

East Werribee Precinct Structure Plan

Strategic Modelling and SIDRA Analysis

Prepared for

Growth Areas Authority

Prepared by

AECOM Australia Pty Ltd
Level 9, 8 Exhibition Street, Melbourne VIC 3000, Australia T +61 3 9653 1234 F +61 3 9654 7117 www.aecom.com
ABN 20 093 846 925

28 March 2013

60277612

AECOM in Australia and New Zealand is certified to the latest version of ISO9001 and ISO14001.

© AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety. AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

Document East Werribee Precinct Structure Plan

Ref 60277612

Date 28 March 2013

Prepared by Catherine Wilms/Paris Brunton

Reviewed by Ellery Salida

Revision History

Revision	Revision	Details	Authorised		
revision	Date		Name/Position	Signature	
А	22-Feb-2013	Draft Report	Ellery Salida Associate Director		
В	28-Mar-2013	Final Report	Ellery Salida Associate Director	Bald	

Table of Contents

1.0	Introdu	uction	1	
	1.1	Overview	1	
2.0	Metho	dology	2	
	2.1	Model Review	2	
	2.2	Strategic Modelling	4	
		2.2.1 Limitations	4	
		2.2.2 Update of Future Year Models	5	
	2.3	SIDRA Assessments	5	
3.0	Strate	gic Modelling – Model Refinement	6	
	3.1	VITM Western Growth Corridor Model	6	
		3.1.1 Overview of model	6	
	3.2	Recommended enhancements for the East Werribee model	6	
		3.2.1 Network Development	6	
		3.2.2 Zone Disaggregation	6	
4.0	Future	e Year East Werribee Strategic Model Development	8	
	4.1	Overview	8	
	4.2	Population and employment	8	
	4.3	Scenario development	8	
	4.4	Public transport services	11 13	
5.0	Foreca	Forecast Results		
	5.1	Demand	13	
	5.2	2026 Base Case	14	
	5.3	2026 Scenario 1	15	
	5.4	2026 Scenario 2	16	
	5.5	2046 Base	17	
	5.6	2046 Scenario 1	18	
6.0		A Analysis	20	
	6.1	Assumptions and Inputs	20	
		6.1.1 Intersections	20	
		6.1.2 Volumes	22	
		6.1.3 Cycle Times and Phasing	22	
		6.1.4 Speed Limits	22	
		6.1.5 Degree of Saturation	22	
		6.1.6 Intersection Layouts	22	
	6.2	SIDRA Outputs and Intersection Operation	22	
Appen				
		graphic inputs by zone	Α	
Appen		and plate of AM and Daily Traffic Volumes	В	
		ed plots of AM and Daily Traffic Volumes	Ь	
Appen		A Results	C-1	

List of Tables

Table 1	Demographic data for EWEP	8
Table 2	Bus Service Headways	11
Table 3	Weekday Car Trips	13
Table 4	Weekday PT Trips	14
Table 5	Intersections in the Study Area and Intersections assessed using SIDRA in 2046 and	
	2026	21
Table 6	Summary of SIDRA Outputs in 2046 Model and 2026 Model	23
List of Figures		
Figure 1	VITM Western Growth Areas 2046 Plus Road Network	2
Figure 2	VITM Western Growth Areas 2046 Plus Transport Zones	3
Figure 4	EWEP model – ultimate road network	7
Figure 5	EWEP model zones	7
Figure 6	2026 base scenario road network	9
Figure 7	2026 scenario 1 road network	9
Figure 8	2026 scenario 1 road network	10
Figure 9	2046 base scenario road network	10
Figure 10	2046 scenario 1 road network	11
Figure 11	Public Transport coverage for 2026 base case	12
Figure 12	Public Transport coverage for 2046 base case	12
Figure 13	Public Transport coverage for 2026 High PT scenario (scenario 2)	13
Figure 14	2026 Base Case Weekday Volumes	14
Figure 15	2026 Base Case AM Volume Capacity Ratios	15
Figure 16	2026 Scenario 1 Weekday Volumes	15
Figure 17	2026 Scenario 1 Volume Capacity Ratios	16
Figure 18	2026 Scenario 2 Weekday Volumes	16
Figure 19	2026 Scenario 1 Volume Capacity Ratios	17
Figure 20	2046 Base Case Weekday Volumes	17
Figure 21	2046 Base Case Volume Capacity Ratios	18
Figure 22	2046 Scenario 1 Weekday Volumes	18
Figure 23	2046 Scenario 1 Volume Capacity Ratios	19
Figure 24	32 intersections in the Study Area	20

1

1.0 Introduction

1.1 Overview

AECOM was engaged by Growth Areas Authority (GAA) to undertake strategic traffic modelling and SIDRA analysis for the East Werribee Precinct Structure Plan.

The modelling will be used to inform Functional Layout Plans (FLPs) which will be a major input into the development of the East Werribee Infrastructure Plan and Development Contributions Plan (DCP) and will form the basis for Government decisions about expenditure on road improvements at East Werribee as well as informing the transport component of the development levy to be paid by proponents as they develop their respective properties.

The modelling work has been undertaken in close liaison with the GAA, Wyndham City Council and VicRoads to confirm the assumptions, inputs and modelling processes.

This is a draft report on work to date intended for review by the Growth Areas Authority.

28 March 2013 Commercial-in-Confidence

2.0 Methodology

The methodology for the project was as follows:

- Inception
- Model Review
- Strategic Modelling
- SIDRA Analysis
- Reporting

More details on the modelling and SIDRA analysis methodologies are provided in the following sections.

2.1 Model Review

The existing Victorian Integrated Transport Model (VITM) Western Growth Areas model was used as the basis for the modelling. This model has disaggregated zones within the East Werribee Employment Precinct; these zones have been assessed in line with the latest land use and network plans for the area. The review has extended to a one mile buffer of the PSP so there is a continuity of detail around the main study area.

Figure 1 shows the 2046 plus road network for the VITM Western Growth Areas model and Figure 2 shows the associated zone system. Figure 3 shows the zone centroid connectors. The VITM Western Growth Area model has increased network detail in the East Werribee Employment Precinct (EWEP) compared to the standard VITM. For example, there are seven zones within EWEP in the standard VITM compared to 25 zones within EWEP in the Western Growth Area version of VITM. Therefore, the Western Growth Area version of VITM was considered to be the most suitable starting point for further network and zone refinement within EWEP.

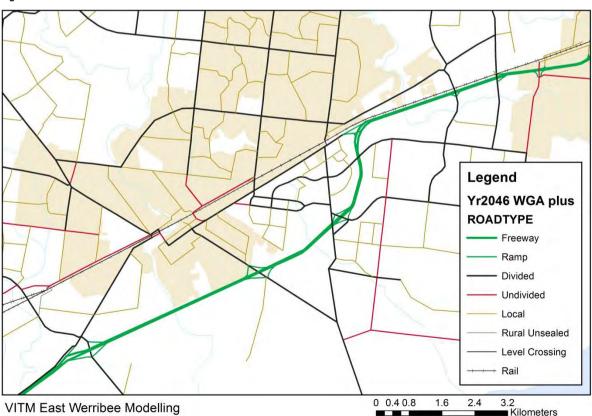


Figure 1 VITM Western Growth Areas 2046 Plus Road Network

Author: AECOM

Figure 2 VITM Western Growth Areas 2046 Plus Transport Zones

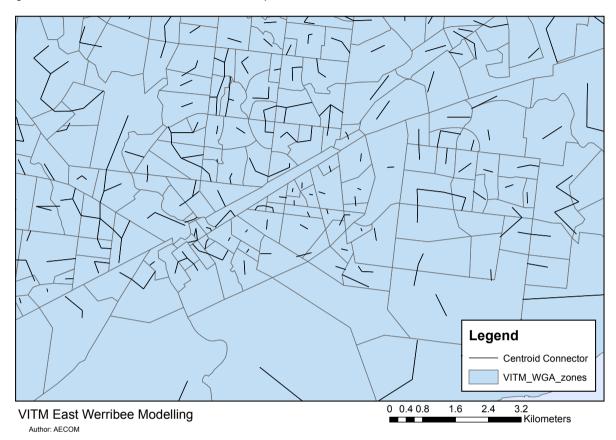


Figure 3 VITM Western Growth Areas 2046 Plus Centroid Connectors

The East Werribee Employment Precinct is planned to be a mixed use development with a relatively high employment density. Such a development is likely to have a higher component of walking/cycling access than other lower density developments. However, one limitation of the current VITM Western Growth Corridor model is that the walking/cycling demand is based on current measures. Therefore it is possible that VITM will underestimate the walking/cycling component of the East Werribee Employment Precinct and overestimate the private vehicle and public transport components. To mitigate this, the trip generation equations for the East Werribee Employment Precinct were reviewed to ensure they represent the mixed use high employment density type of development envisaged.

2.2 Strategic Modelling

2.2.1 Limitations

The Victorian Integrated Transport Model is a strategic multi-modal model used to estimate levels of transport demand for future transport corridors or for major transport infrastructure projects. The model estimates the demand response to changes in land use and changes in the transport supply. In doing so the model uses mathematical equations and assumptions, which are in part determined by the availability of data and computing constraints. To achieve a practical and workable model, the model simplifies the representation of some real life behaviour. It is important to understand the limitations of the model when making an assessment based on outputs from the model. Some of the key model limitations and implications of the limitations are discussed below.

Reliance and uncertainty of land use forecasts

VITM requires land use forecasts, such as population, employment, school enrolments, and retail locations, to be available at the transport zone level, covering the entire modelled area for each of the future modelled years. The land use forecasts have a direct impact on the model performance and changes in the magnitude or distribution of land use inputs can have a material impact on the network behaviour. There is significant growth forecast for Melbourne and the timing of when precisely the growth will occur has a high level of uncertainty being dependant on factors such as birth and death rates, overseas and interstate migration as well as economic growth.

Use of unconstrained public transport capacity

VITM can be operated in a way that provides constraints on public transport so that as public transport services become more crowded, they also become less attractive. This crowding constraint is used to prevent public transport services being modelled with over-capacity loadings. However, the implementation of this capacity constraint can considerable extend the model run time and adds a level of complexity to the model that needs to be carefully managed. Therefore, for the purpose of this assessment, to reduce model run times the public transport constraint was not utilised. A potential implication of this is that public transport services may operate at over capacity levels meaning that road traffic demand is under-estimated.

The use of fixed time period demand

The proportion of total daily travel that occurs in each of the modelled time periods is assumed to be constant when considering a particular mode and trip purpose. For example, of all daily car trips, the percentage journey to work trips that will occur in the two hour AM peak is the same for all modelled years and scenarios. In reality, if peak congestion increases to unacceptable levels, some trips may switch time periods to less congested conditions. This has the potential impact of overestimating demand in the peak periods.

Unlimited parking availability

The model applies some parking charges to car trips going to the CBD and some other inner suburbs. However, there is no cap on parking availability that limits the number of car trips to a particular destination. This may have some implications to how traffic is modelled to the Melbourne CBD with a possible over-estimation of car demand to the CBD.

Intersection not explicitly modelled

VITM uses link based speed flow curves to calculate the vehicle travel times as a function of the level of traffic. These functions are based on the average observed behaviour of particular link types across the metropolitan area. In reality, each section of road will have a unique operational behaviour, which is generally largely determined by the operation of the intersection. VITM does not calculate different delays to different turning movements at intersections or the impact of queuing and blocking back from one intersection to another. It is recommended that more detailed operational models are applied to assess any operation implications of schemes that are taken forward from this assessment.

Fixed travel behaviour

The parameters and functions within VITM were calibrated against observed travel data and therefore represent current travel behaviour. It is possible that behaviour may change over time either increasing or decreasing the demand for travel. It is recommended that travel behaviour is monitored, and model sensitivity test be undertaken if behavioural changes are observed.

2.2.2 Update of Future Year Models

To aid the zone disaggregation process AECOM has created an application with VITM that processes all of the input files required by the model that refer to zones. This application makes it easy to check and update the model and reduces the likelihood of errors due to the misallocation of zones.

The road network has also been updated as part of this task which includes updating the anticipated road network improvements for 2026 and '2046 plus'. In updating the road network, it was ensured that the public transport network is updated concurrently.

Maps detailing the disaggregation of zones along with network coding plots detailing specific road characteristics (lanes, speeds, etc) were discussed and agreed with GAA, Wyndham City Council and VicRoads, as a deliverable from this task.

The demographic data for 2026 and 2046 plus were provided by GAA. The 2026 and '2046 plus' land use and demographic files were updated using information from GAA at the new refined zone system.

Attention was given to centroid connectors so that they best represent the likely access conditions. Centroid connectors were altered so that they did not connect directly into intersections, particularly as the outputs from the strategic model are used for the SIDRA analysis.

Attention was also given to the bus services through and around EWEP to ensure a reasonable level of service was represented within the model.

The 2026 and 2046 plus models were run with the agreed land use data (population, employment, educational enrolments) and road network assumptions for the Western Growth Corridor. Two scenarios were run for '2046 plus', including the base, and three scenarios for 2026, including the base and two options.

Outputs from the strategic modelling were then used to produce turning movement volumes for the SIDRA assessment. It should be noted that using strategic modelling results to produce turning movement forecasts and detailed link flows is highly variable, and that the strategic modelling has not be validated at a turning movement or individual link level. These turning volume estimates are therefore indicative only, and need to be utilised with a high degree of caution and engineering judgement.

2.3 SIDRA Assessments

Twenty intersections were assessed for operation using SIDRA based upon:

- Indicative GAA layouts
- Approach lane configurations from the strategic modelling
- Indicative land constraints
- Turning movement volume forecasts from the strategic modelling

Minor manual adjustments were made to the strategic modelling turning volumes for a selected number of intersections, where deemed appropriate.

Where appropriate, intersection layouts were modified (by increasing, decreasing lane numbers and flare lengths) to cater for the forecast traffic demands.

3.0 Strategic Modelling – Model Refinement

3.1 VITM Western Growth Corridor Model

3.1.1 Overview of model

The starting point for the development of a model for the East Werribee precinct is the VITM Western Growth Corridor Model developed by AECOM for GAA in 2012.

The Western Growth Areas model was based on the standard VITM with the addition of increased network detail and disaggregated zones in the Western Growth Areas. The development of the Western Growth Areas model involved the alteration of approximately 500 zones, including the addition of 359 zones within the local government areas of Melton and Wyndham. The number of zones within EWEP was increased from 7 to 25.

The Western Growth Areas model was developed for an ultimate build scenario of 2046 plus. This includes all likely additions to transport infrastructure such as the completion of the Melbourne Metro rail tunnel as well as road projects such as the East West Link and the North East Link. The Western Growth Areas model does not include any interim network or development scenarios.

Outputs from the Western Growth Areas model include assigned traffic volumes for the AM peak, interpeak, PM peak and off peak periods, with the associated network performance indicators such as speeds and volume capacity ratios.

3.2 Recommended enhancements for the East Werribee model

A review of the Western Growth Areas model with respect to the requirements of EWEP model confirmed that the following enhancements were required:

- Coding of a refined future local / collector road network within EWEP and adjacent buffer region
- Disaggregation of the zones in EWEP
- Updating the bus network in and around EWEP
- Updating the trip generation rates within EWEP to take into account the increase in employment
- Creating an interim model to represent the likely 2026 network and land use development

The next section documents the development of the EWEP model and shows the traffic assignment results for an interim network and an ultimate network.

3.2.1 Network Development

The Growth Areas Authority (GAA) provided AECOM with an 'ultimate' and interim network plans for EWEP and adjacent land. Figure 4 shows the ultimate road network proposed for EWEP. This ultimate network was coded into the Western growth Areas model, using the 2046 plus network as a starting point. Compared to the Western Growth Areas model, the EWEP model has:

- 24 more links
- 374 more nodes
- 188 more lane kms

The vast majority of additional lane kms is due to the addition of local / collector roads.

3.2.2 Zone Disaggregation

GAA provided AECOM with a proposed structure plan for the EWEP PSPs. The EWEP in the WGA model consisted of 25 zones. The structure plan divided the EWEP into 50 zones.

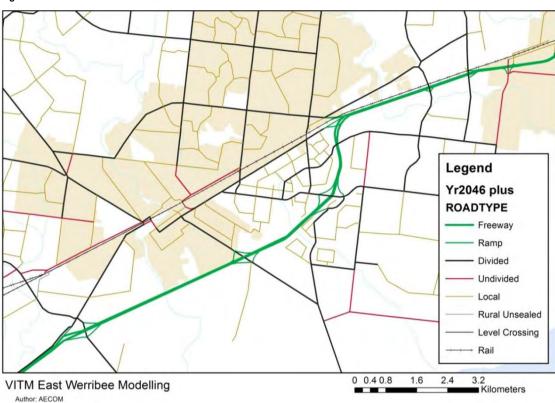


Figure 4 EWEP model – ultimate road network

Figure 5 shows the zone outlines and numbers for the EWEP. Most of the zone disaggregation occurs within the EWEP bounded by the Princes Highway, Duncans Road and Hacketts Road, with some disaggregation occurring east of Hacketts Road.



Figure 5 EWEP model zones

Author: AECOM

4.0 Future Year East Werribee Strategic Model Development

4.1 Overview

Following the review of the Western Growth Areas model, the development of the East Werribee Employment Precinct (EWEP) model involved incorporating additional network details, particularly with respect to local and collector roads and the disaggregation of zones.

GAA provided AECOM with updated demographic and landuse information for the zones in the EWEP region. This information included:

- the number of houses
- population
- education enrolments
- employment

4.2 Population and employment

The updating of demographic data represented a significant increase in total population and particularly employment from the base year of 2011 to 2026 and 2046. Table 1 shows the demographic data input to the 2026 and 2046 EWEP models. The inputs for the demographics are shown in Appendix A.

Table 1 Demographic data for EWEP

Year	Dwellings	Population	Overall Jobs	Retail Jobs	Education Enrolments
2026	3,690	9,291	17,328	1,250	3,920
2046	8,600	19,040	50,700	2,450	7,940

4.3 Scenario development

Five scenarios were developed for testing, three for 2026 and two for 2046. These scenarios are described below:

- 2026 base case. The base case has basic public transport, no Dunnings Road Freeway overpass and no Lakeside Blvd. Southerly ramps are provided at the new Sneydes Road interchange, and the Princes Hwy southerly ramp is removed. Heaths Road ramps are not provided.
- 2026 Scenario 1. Scenario 1 is a high road investment scenario. It includes Heaths Road ramps, Duncans
 Road southerly ramps rather than Sneydes Road southerly ramps, and the completion of Lakeside Ave from
 the lake to Hoppers Lane.
- **2026 Scenario 2**. Scenario 2 is a high public transport scenario. It includes the completion of Dunnings Road via the bridge across the freeway, no southerly ramps at Sneydes Road or Duncans Road, no Heaths Road ramps, and significant bus provision throughout the study area.
- **2046 base case**. The 2046 base case includes the full network development within EWEP. Heaths Road ramps are provided to the Princes Freeway.
- 2046 Scenario. The 2046 scenario is a high public transport scenario and includes reduced headways for bus services as well as increased parking costs within EWEP, but no Heaths Road ramps.

Figure 6 2026 base scenario road network

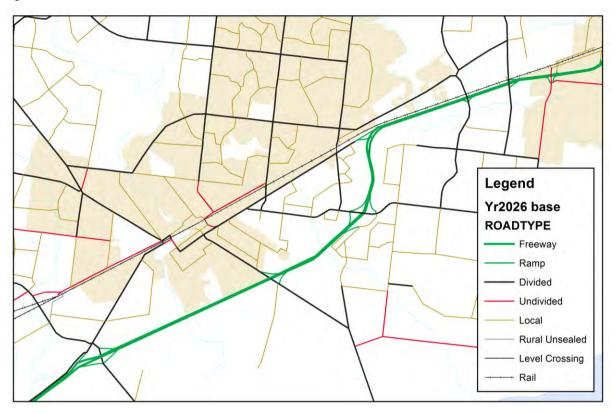


Figure 7 2026 scenario 1 road network

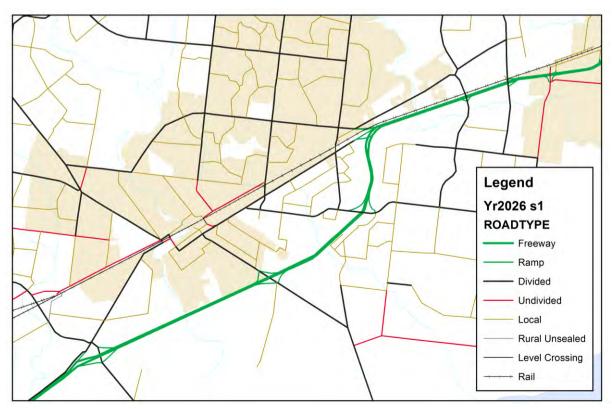


Figure 8 2026 scenario 1 road network

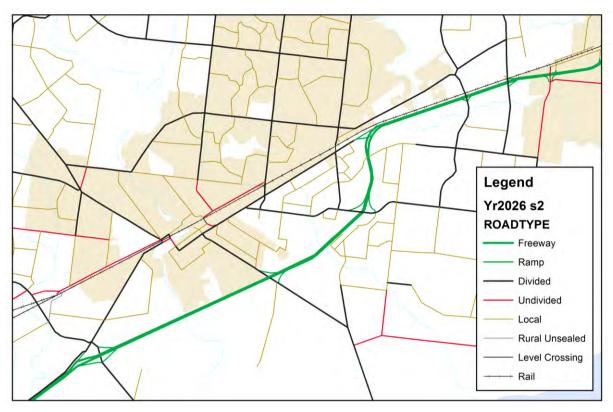
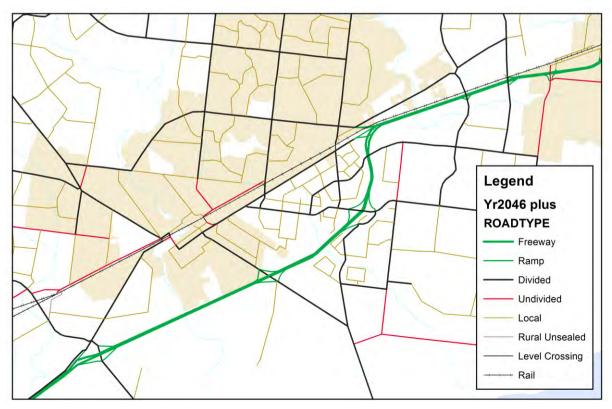



Figure 9 2046 base scenario road network

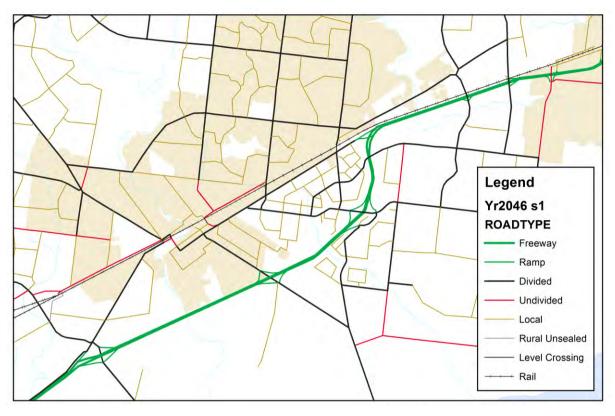


Figure 10 2046 scenario 1 road network

4.4 Public transport services

The public transport service coverage was expanded so that bus routes utilised the new road network within EWEP. For 2026 and 2046 there were two public transport scenarios, a base PT scenario and a high PT scenario. For 2046, the service coverage was the same for both the base and high PT scenarios, however, the headways reduced for the high PT scenario. For the 2026 high PT scenario, the service coverage increased to be similar to the 2046 service coverage, with some adjustments for the absence of some local roads. Table 2 shows the bus service headways used for the base scenario and high PT scenario for 2026 and 2046.

Table 2 Bus Service Headways

Year	Scenario	Base	High PT
0000	Local	40	20
2026	Regional	20	10
	Local	30	20
2046	Regional	15	10

Figure 11 shows the service coverage for the 2026 base scenario, while Figure 12 shows the service coverage for the 2046 base scenario, which is the same as the coverage for the 2046 high PT scenario and very similar to the coverage of the 2026 High PT scenario (scenario 2) shown in Figure 13.

Figure 11 Public Transport coverage for 2026 base case

Figure 12 Public Transport coverage for 2046 base case

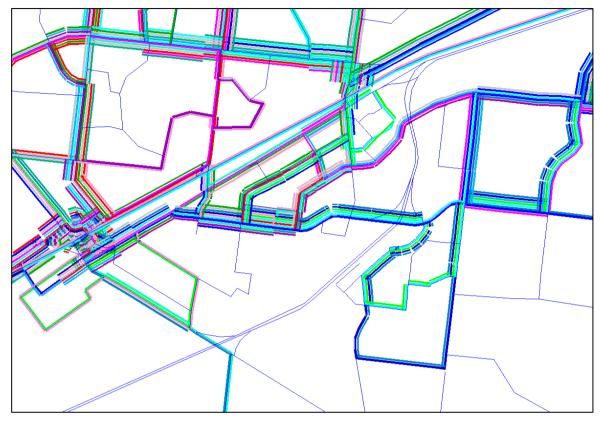


Figure 13 Public Transport coverage for 2026 High PT scenario (scenario 2)

5.0 Forecast Results

5.1 Demand

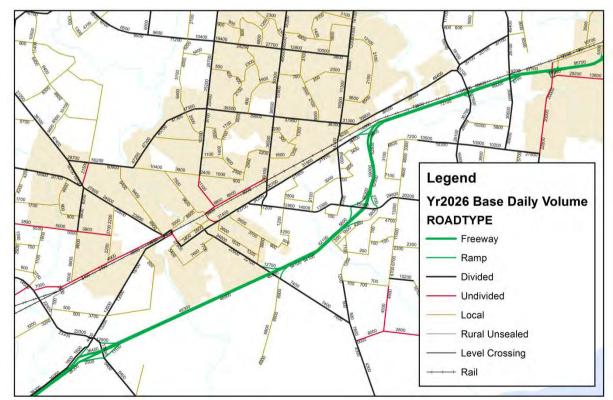
The travel demand from the five scenarios from VITM is summarised in Table 3 for car trips and Table 4 for public transport trips. These tables indicate that there is a significant growth in travel demand between 2026 and 2046 consistent with the growth in employment and population. Table 4 indicates that the increase in parking fees and the improvement in public transport services in 2046 scenario 2 increases the use of public transport and reduces car demand.

Table 3 Weekday Car Trips

Car Trips	2026 Base	2026 S1	2026 S2	2046 Base	2046 S1 med
EWEP to Point Cook	20,619	20,871	20,564	33,387	26,700
EWEP to Wyndham Trips	53,434	53,151	53,155	110,385	103,322
EWEP to Other Trips	51,196	51,034	50,709	70,878	74,984
EWEP to EWEP Trips	17,022	17,169	17,328	53,871	34,602
Total EWEP Car Trips	142,271	142,224	141,757	268,522	239,608
Total VITM Car Trips	14,678,199	14,678,764	14,677,542	17,204,233	17,165,489

Table 4 Weekday PT Trips

PT Trips	2026 Base	2026 S1	2026 S2	2046 Base	2046 S1 med
EWEP to Point Cook	387	389	411	863	3,314
EWEP to Wyndham Trips	1,231	1,230	1,295	3,359	10,760
EWEP to Other Trips	5,800	5,779	5,939	14,430	36,117
EWEP to EWEP Trips	203	204	207	633	3,694
Total EWEP Car Trips	7,620	7,603	7,852	19,285	53,885
Total VITM Car Trips	2,081,691	2,081,171	2,082,188	2,889,333	2,921,014


Figure 14 to Figure 23 shows plots of weekday volumes and AM period volume to capacity ratios. These indicate that the road network within EWEP generally operates within capacity, with the exception of Sneydes Road near the Princes Freeway interchange. Other regions of congestion are noted outside of EWEP, particularly on Derrimut Road and on Morris Road.

The inclusion of the Heaths Road ramps provides an alternative route for some traffic using the Sneydes Road freeway interchange.

Turning movement data from VITM for 2026 and 2046 were passed to SIDRA for more detailed intersection analysis.

5.2 2026 Base Case

Figure 14 2026 Base Case Weekday Volumes

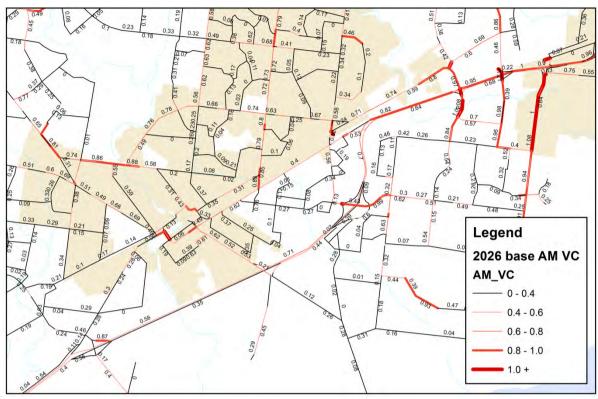
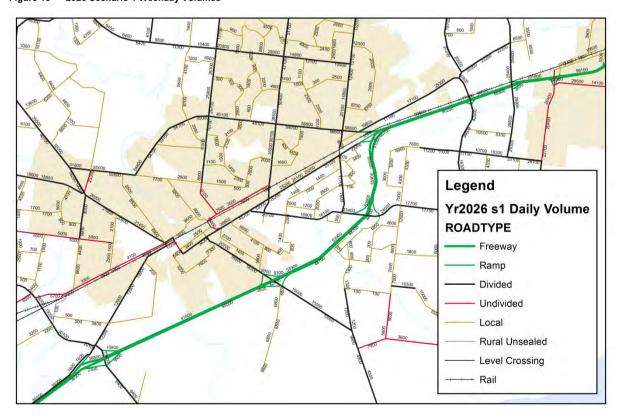



Figure 15 2026 Base Case AM Volume Capacity Ratios

5.3 2026 Scenario 1

Figure 16 2026 Scenario 1 Weekday Volumes

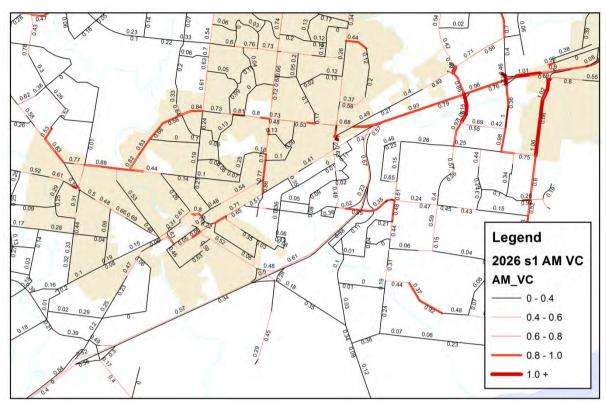
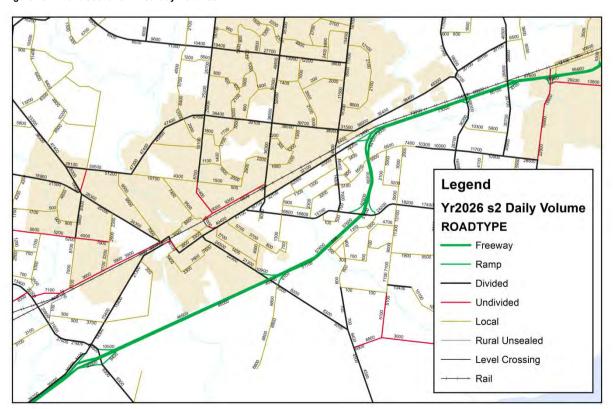



Figure 17 2026 Scenario 1 Volume Capacity Ratios

5.4 2026 Scenario 2

Figure 18 2026 Scenario 2 Weekday Volumes

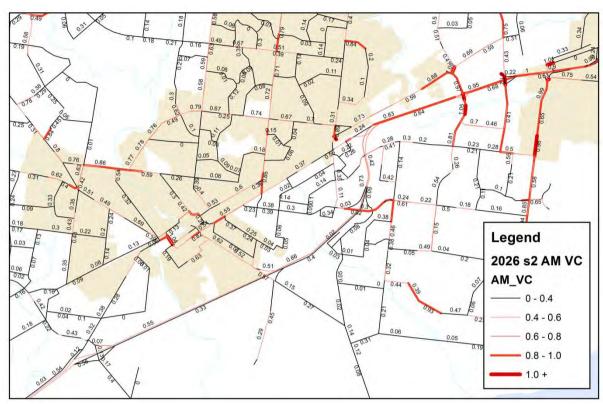
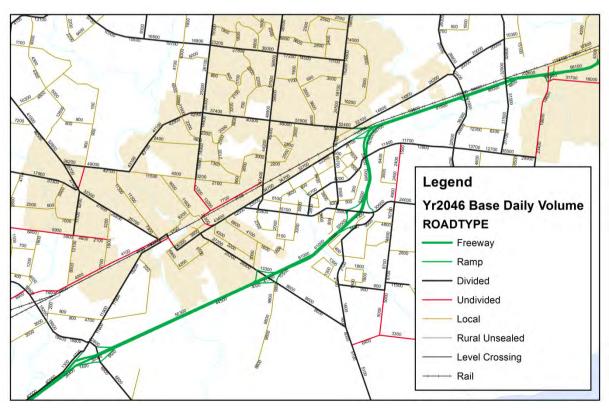



Figure 19 2026 Scenario 1 Volume Capacity Ratios

5.5 2046 Base

Figure 20 2046 Base Case Weekday Volumes

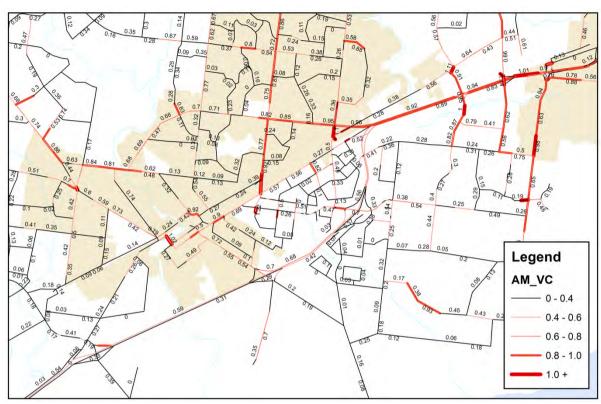


Figure 21 2046 Base Case Volume Capacity Ratios

5.6 2046 Scenario 1

Figure 22 2046 Scenario 1 Weekday Volumes

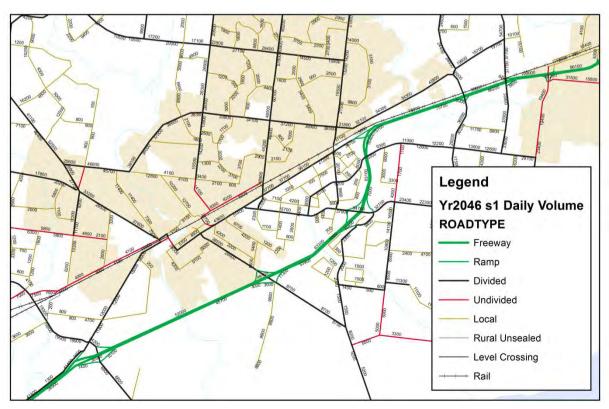
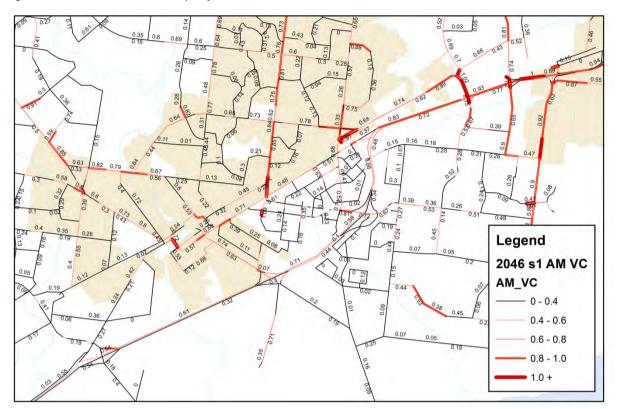



Figure 23 2046 Scenario 1 Volume Capacity Ratios

6.0 SIDRA Analysis

6.1 Assumptions and Inputs

The SIDRA analysis of the relevant intersections was based upon a number of assumptions and inputs. The key assumptions are discussed in the following sections.

6.1.1 Intersections

There are 32 intersections in the study area, of which 20 were assessed using SIDRA. These are shown in Figure 24 and listed in Table 5. Details of the road types, road names and the intersections assessed for interim (2026) and ultimate (2046) design years are included in Table 5. These assumptions were provided by the Growth Area Authority after consultation with VicRoads and Wyndham City Council.

Figure 24 32 intersections in the Study Area

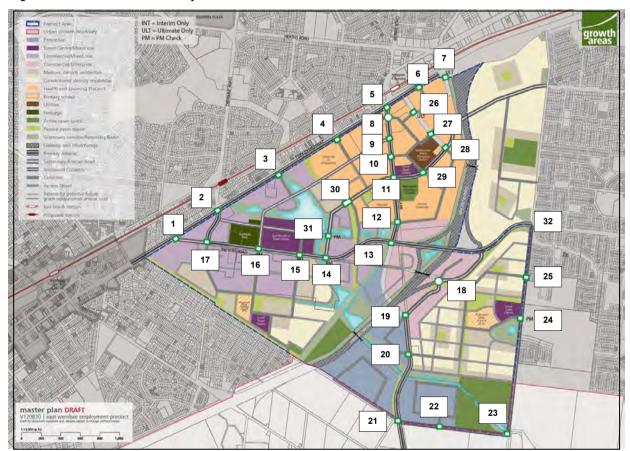


Table 5 Intersections in the Study Area and Intersections assessed using SIDRA in 2046 and 2026

Intersection	Road Type 1	Road Type 2	Year 2	Year 2026 Year 2046			Notes
Number	Major Road	Intersecting Road	AM	PM	AM	PM	Notes
1	Princes Highway	Sneydes Road	✓	×	✓	✓	
2	Princes Highway	Derrimut Road	✓	×	×	✓	
3	Princes Highway	Collector Road	✓	×	✓	✓	
4	Princes Highway	Collector Road	×	×	✓	✓	Does not exist in 2026
5	Princes Highway	Hoppers Lane	×	×	×	×	Assessed in VISSIM*
6	Princes Highway	Collector Road	✓	×	✓	×	
7	Princes Highway	Primary Arterial	×	×	×	×	Not required
8	Hoppers Lane	Old Sneydes Road	×	×	×	×	Not required
9	Hoppers Lane	Lakeside Avenue	×	×	✓	✓	Does not exist in 2026
10	Hoppers Lane	Local Road	×	×	×	×	Not required
11	Hoppers Lane	Dunnings Road	✓	✓	✓	✓	
12	Hoppers Lane	Collector Road	×	×	✓	✓	Does not exist in 2026
13	Sneydes Road	Hoppers Lane	✓	×	✓	✓	
14	Sneydes Road	Dunnings Road	✓	✓	✓	✓	
15	Sneydes Road	Collector Road	×	×	✓	✓	Does not exist in 2026
16	Sneydes Road	Lakeside Avenue	✓	✓	✓	✓	
17	Sneydes Road	Derrimut Road and Collector Road	✓	×	✓	✓	
18a**	Sneydes Road	Connecting Road	✓	×	✓	×	
19	Hoppers Lane	Connecting Road	×	×	×	×	Not required
20	Hoppers Lane	Connecting Road	×	×	×	×	Not required
21	Hoppers Lane	Connecting Road	×	×	×	×	Not required
22	Connecting Road	Connecting Road	×	×	×	×	Not required
23	Hacketts Road	Connecting Road	×	×	×	×	Not required
24	Hacketts Road	Grassbird Drive	✓	✓	✓	✓	
25	Hacketts Road	Connecting Road	✓	×	✓	✓	
26	Connecting Road	Connecting Road	×	×	×	×	Not required
27	Connecting Road	Connecting Road	×	×	×	×	Not required
28	Connecting Road	Connecting Road	×	×	✓	✓	Does not exist in 2026
29	Connecting Road	Connecting Road	×	×	×	×	Not required
30	Connecting Road	Connecting Road	×	×	✓	✓	Does not exist in 2026
31	Connecting Road	Connecting Road	✓	✓	✓	✓	
32	Sneydes Road	Hacketts Road	✓	×	✓	✓	

^{*} Refer to East Werribee Employment Precinct Master Plan – Micro-simulation Operational Assessments for Hoppers Crossing

^{**} Intersection #18 was previously modelled as an intersection connecting between Princes Highway ramp and Connecting Road. This model has been removed and replaced with Intersection #18a which is connecting between Sneydes Road and Connecting Road.

6.1.2 Volumes

- 55% of two hour strategic traffic volumes were used to determine peak hourly flow.
- Loading has been applied flat (consistently across the hour period), Peak Flow Factor = 1.
- 50 pedestrians per hour in all directions have been assumed as standard on every intersection type (unless specified otherwise).
- 20 pedestrians per hour in all directions at intersections 6, 13, 17, 18, 19, 20, 21, 22, 23, 27 and 28.
- Vehicular flows rounded up to the nearest integer for analysis.

6.1.3 Cycle Times and Phasing

- 120 second cycle time for all intersections.
- Fully control right turns
- Diamond phasing tested first prior to testing alternate phasing arrangements

6.1.4 Speed Limits

- 80km/h speed limit on Princes Highway.
- 60km/h speed limit on all other arterial roads.
- 50km/h on all collector roads, local roads, and boulevard collectors.

6.1.5 Degree of Saturation

The Degree of Saturation (DOS) in SIDRA is defined as the ratio of demand flow to capacity. DOS above 1.0 represent oversaturated conditions and DOS below 1.0 represent under-saturated conditions.

Where the DOS was greater than 0.70 and less than 0.90, no changes to the intersection layout were tested.

Where the DOS was less than 0.7 and greater than 0.90, modifications were tested to see if the DOS could change to be within the acceptable limits.

6.1.6 Intersection Layouts

Some over-riding assumptions used for the intersection layouts are specified below and apply unless specified otherwise):

- 3-leg intersections provide pedestrian crossings of two-arms only, except in high pedestrian activity where higher pedestrian priority could be achieved.
- Auxiliary approach lane maximum lengths of 150 m.
- Slip lanes only allowed on four and six lane roadways when merging into four or six lane roadways and no slip lanes allowed in the vicinity of shopping areas.
- Slip lanes will be avoided for interim layout designs.
- Existing roads will be utilised in their current form, where practical, to minimise upgrades.

6.2 SIDRA Outputs and Intersection Operation

An overview of the road network showing the degree of saturation (DOS) for individual traffic movements in the AM and PM peak hours are presented in Appendix C. The intersection layout plan, AM peak phasing summary and PM peak phasing summary are presented in Appendix C.

The key issues for the intersections are shown in Table 6. For reference to level of service, degree of saturation, stop times, delay, etc, these are shown in Appendix C.

All storage turn lanes can cater for the expected queues unless specified otherwise. There may be instances where the queue length is at or slightly over the storage length. The length of the storage lane did not affect the results. The next stage of design should be where the designers take the SIDRA results and design the intersections based on the queue lengths given deceleration and tapers will need to be taken into consideration. There are some instances where the queue length is greater than 150m and that was criteria for the maximum storage lane length (see Section 6.1.6).

Table 6 Summary of SIDRA Outputs in 2046 Model and 2026 Model

Int#	2026 Model	2046 Model
1	 The proposed layout is acceptable given that the DOS is 0.81 in the AM peak hour. Diamond phasing did not work given the high number of right turns from Princes Highway (south-west approach). Tested the provision of a left turn slip lane from Sneydes Road into Princes Highway. The results indicate that the DOS is more than one and queue length increases for both Princes Highway and Sneydes Road. 	 Although the DOS are 0.978 in the AM and 0.866 in the PM peak hours, the queue length on Princes Highway does not impact on other intersections and therefore the proposed layout is considered acceptable. Filtered right turn was modelled however GAA preferred a fully controlled right turn on all approaches. The provision of left turn slip lane on Sneydes Road south approach has been modelled previously however the DOS >1. Provision of a left turn slip lane is not feasible in the 2046 PM peak hour given that there are 1384 left turners from Sneydes Road and 1239 through traffic on Princes Highway NE
2	 Recommended to change the existing two lanes signalised left slip lane on Princes Highway west approach to one lane. However, GAA has requested that this intersection to be kept as close as possible to the existing layout. Proposed layout may be unsatisfactory given DOS >1 for the right turn on Derrimut Road (north-west approach) and not all the vehicles were able to get through the intersection that wanted to. There is already two right turn lanes on this approach therefore it was deemed at its maximum. Diamond phasing did not work given the high number of right turns from princes Highway (south-west approach) We tested removing Phase D for this intersection and the results show slight increase to the queue length of through traffic on Derrimut Road (113.1m to 117.5m). Please note that the layout in 2026 model is different from 2046 model. We have provided three layout options for this intersection in 2046 model. 	 Reduced the existing two lanes signalised left slip lane on Princes Highway west approach to one lane. This is to allow more room to increase the length of the lane drop on Derrimut Road north approach. The proposed layout is acceptable. AECOM assessed three scenarios with different length of the northbound left lane on the departure side of Derrimut Road north approach in the PM peak hour: Scenario 1: 50m departure length. DOS is 0.971 and queue is 290m on Derrimut Road S approach Scenario 2: 100m departure length. DOS is 0.937 and queue is 215.8m Scenario 3: 150m departure length. DOS is 0.91 and queue is 186.3m. A decision by the key stakeholders has yet to made on the preference for the length of the departure lane.

Int#	2026 Model	2046 Model
3	Diamond phasing did not work along the collector road given the very low volumes wanting to go straight ahead and having to fully control right turns.	 Diamond phasing did not work along the collector road given the very low volumes wanting to go straight ahead and having to fully control right turns. Initial runs of the models in the PM peak hour showed a high number of right turners at #15 in which the queues went back past the previous intersection. Given that vehicles are expected to be coming from the town centre and going to Princes Highway, it was deemed appropriate to redistribute the right turners between intersections #3, #15, #16 and #17. The proposed layout and volumes are acceptable given that the DOS are 0.847 in the AM and 0.613 in the PM peak hours.
4	Not applicable.	Tested the provision of pedestrian crossing on Princes Highway SW. The results indicate that in the AM peak the maximum queue length of the right turners on Princes Highway SW is 223.8m and Wyndham City Council has raised concerns. The recommended layout option reduces the maximum queue length of the right turners to 164.6m and also reduces the queue length of through traffic on Princes Highway SW.
5	Not applicable.	Not applicable.
6	No issues	No issues
7	Not applicable.	Not applicable.
8	Not applicable.	Not applicable.
9	Not applicable.	 No issues Phase A could not be removed given that pedestrian crossings are provided on all legs.
10	Not applicable.	Not applicable.
11	No issues	No issues
12	Not applicable.	 Phase A could not be removed given that pedestrian crossings are provided on all legs.
13	Diamond phase not used due to low volume from the south and high volume of right turners from the east.	 No issues Tested the through and right lane configuration for the northern leg and the results show no changes to any queue length at the intersection. Diamond phase not used due to low volume for through movement from north/south and high volume of right turners from the east.
14	 The proposed layout is acceptable given that the DOS are 0.5 in the AM and 0.48 in the PM peak hours Located within the town centre and it is anticipated that this area would attract more pedestrians. Pedestrian crossings are provided on all legs to accommodate the anticipated demand. Not possible to modify the phasing to gain time for traffic further given the pedestrian priority/crossings. 	 No issues Located within the town centre and it is anticipated that this area would attract more pedestrians. Pedestrian crossings are provided on all legs to accommodate the anticipated demand.

Int#	2026 Model	2046 Model
15	Not applicable.	 Redistributed traffic between intersections #3, #15, #16 and #17 in the PM peak hour. The proposed layout and volumes are acceptable given that the DOS are 0.816 in the AM and 0.798 in the PM peak hours.
16	 No issues Located within the town centre and it is anticipated that this area would attract more pedestrians. Pedestrian crossings are provided on all legs to accommodate the anticipated demand. 	 Redistributed traffic between intersections #3, #15, #16 and #17 in the PM peak hour Located within the town centre and it is anticipated that this area would attract more pedestrians. Pedestrian crossings are provided on all legs to accommodate the anticipated demand.
17	- Diamond phase not used due to high volume of right turners from the east.	 Redistributed traffic between intersections #3, #15, #16 and #17 in the PM peak hour Although the DOS are 0.967 in the AM and 0.798 in the PM peak hours, the queue length on Derrimut Road does not impact on other intersections and therefore the proposed layout is considered acceptable. Diamond phase not used due to high volume of right turners from the east and north.
18a	 No issues Located within the town centre and it is anticipated that this area would attract more pedestrians. Pedestrian crossings are provided on all legs to accommodate the anticipated demand. 	 Not issues The through traffic volumes on east approach in 2026 are 1590 vehicles and in 2046 are 1468 vehicles. Therefore the DOS is lower in 2046. Located within the town centre and it is anticipated that this area would attract more pedestrians. Pedestrian crossings are provided on all legs to accommodate the anticipated demand.
19	Not applicable.	Not applicable.
20	Not applicable.	Not applicable.
21	Not applicable.	Not applicable.
22	Not applicable.	Not applicable.
23	Not applicable.	Not applicable.
24	No issues	No issues
25	No issues	No traffic volumes produced from strategic model for the eastern leg and therefore a dedicated right turn lane was not provided.
28	Not applicable.	No issues
30	Not applicable.	Previously tested the layout with a dedicated right turn lane on Dunnings Road and the results show very low DOS. GAA has requested to reduce the flaring and therefore a shared left-through lane and a right-through lane have been provided.
31	No issues	No issues

Int#	2026 Model	2046 Model
32	Assessed four scenarios in the AM peak hour given the intersection could not work with fully controlled right turns and pedestrian crossings: - Scenario 1: Filtered right turn with full pedestrian crossing. DOS is 0.839 - Scenario 2: Filtered right turn with staged pedestrian crossing. DOS is 0.869 - Scenario 3: Fully controlled right turn with full pedestrian crossing. DOS is 1.099. - Scenario 4: Fully controlled right turn with staged pedestrian crossing. DOS is 0.948.	Not applicable.

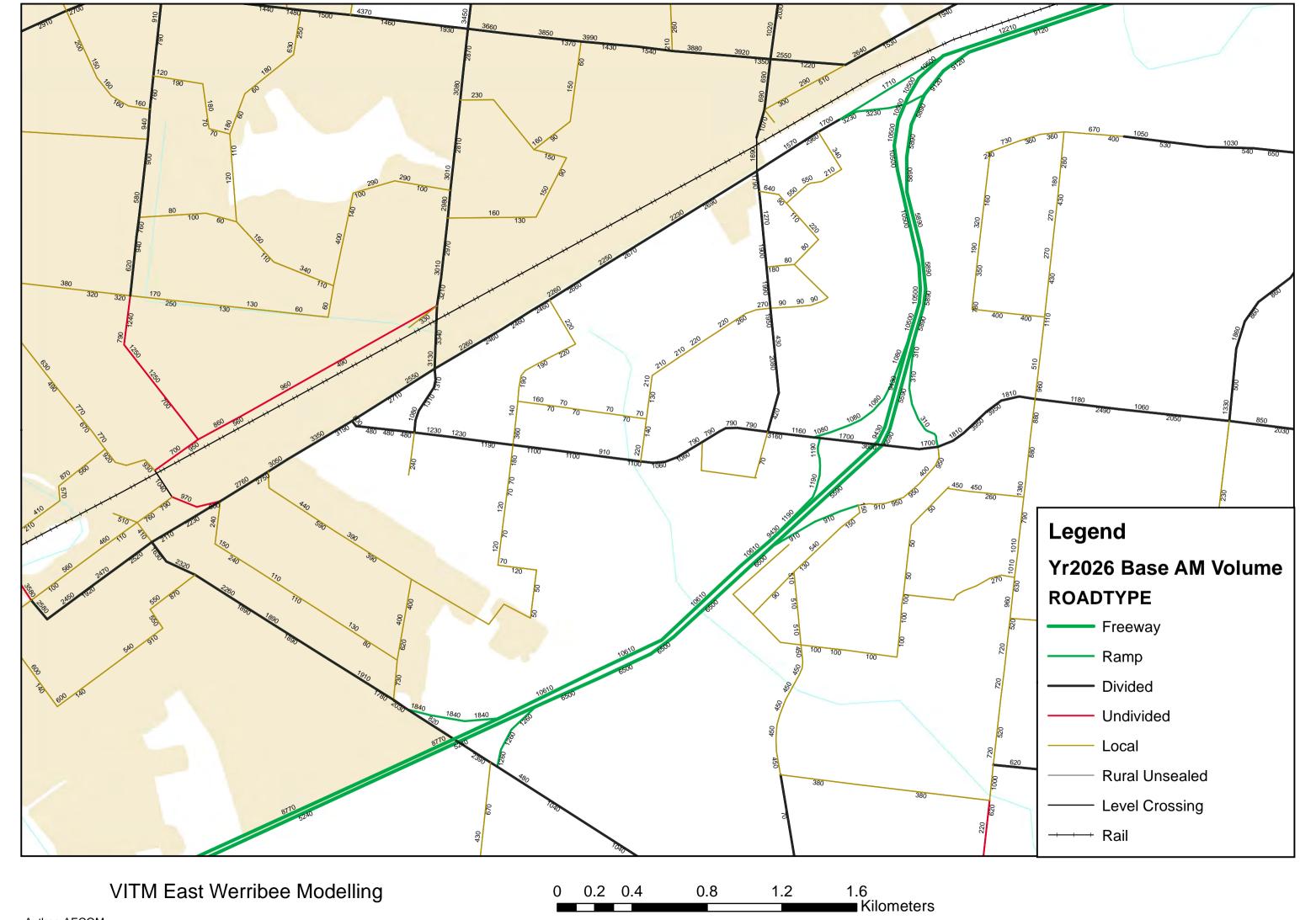
The aim for the intersection performance is to maintain DOS not more than 0.95 as agreed by GAA. Although intersections #1, #2 and #17 exceeded DOS 0.95 they are less than 1.0 in 2046 model and the queue lengths at these intersections will not impact the performance of other intersections therefore considered acceptable.

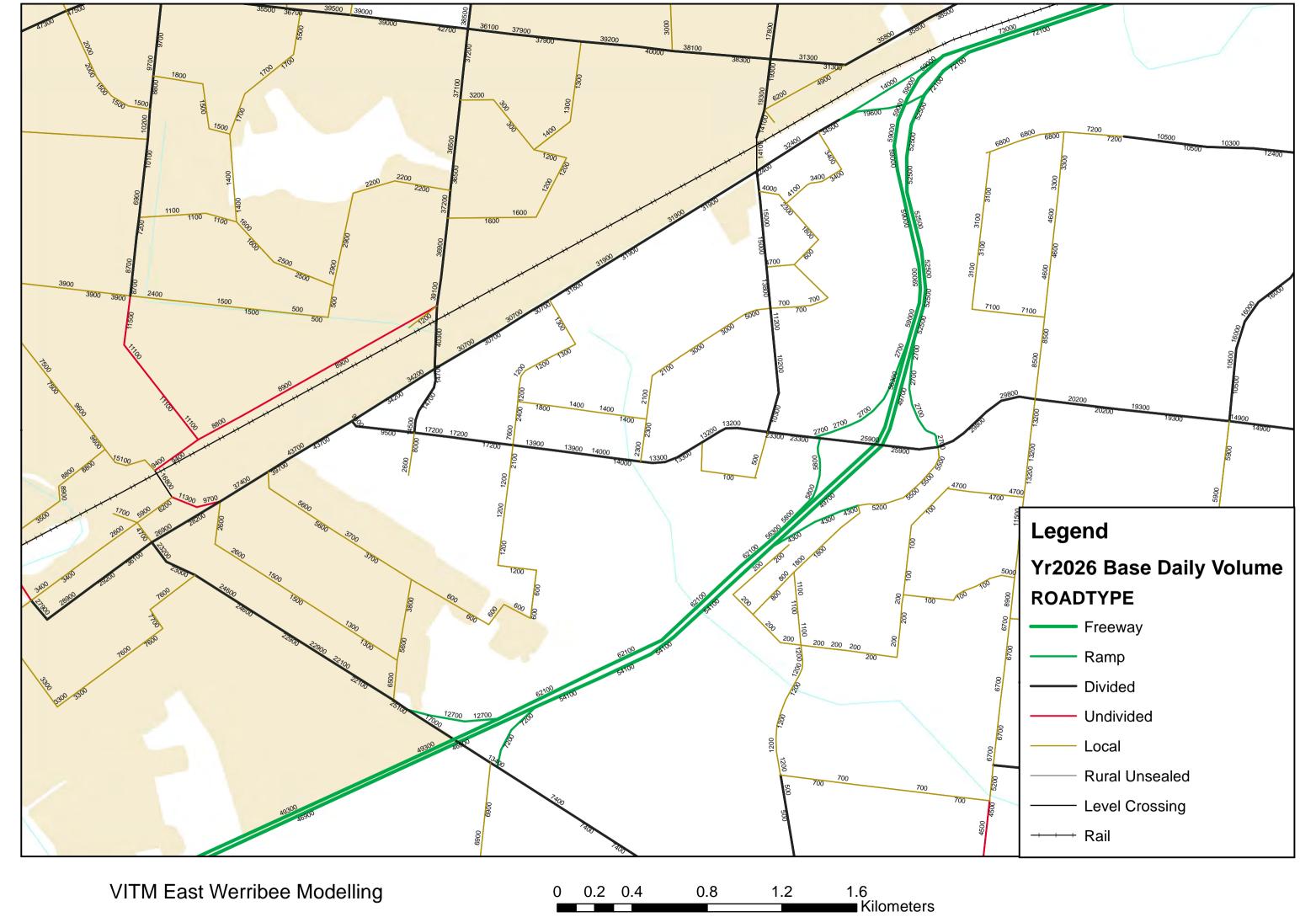
The SIDRA outputs for intersections #2 and #32 in 2026 model indicate DOS more than 1.0. The intersection layout for intersection #2 is designed as close as possible to the existing layout as requested by GAA. For intersection #32, four scenarios have been assessed. The final design for this intersection would require further discussion by GAA with Council and VicRoads.

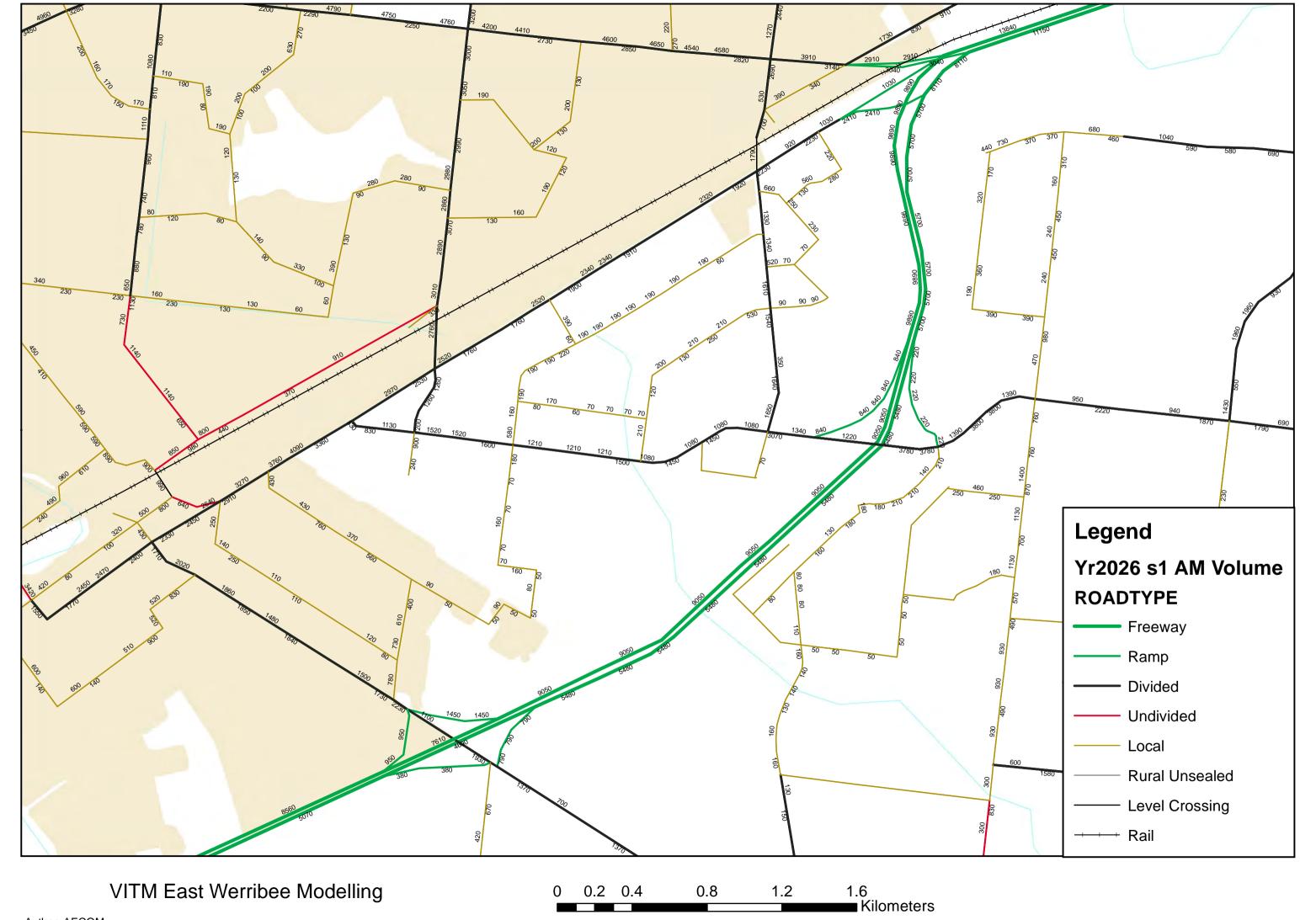
Appendix A

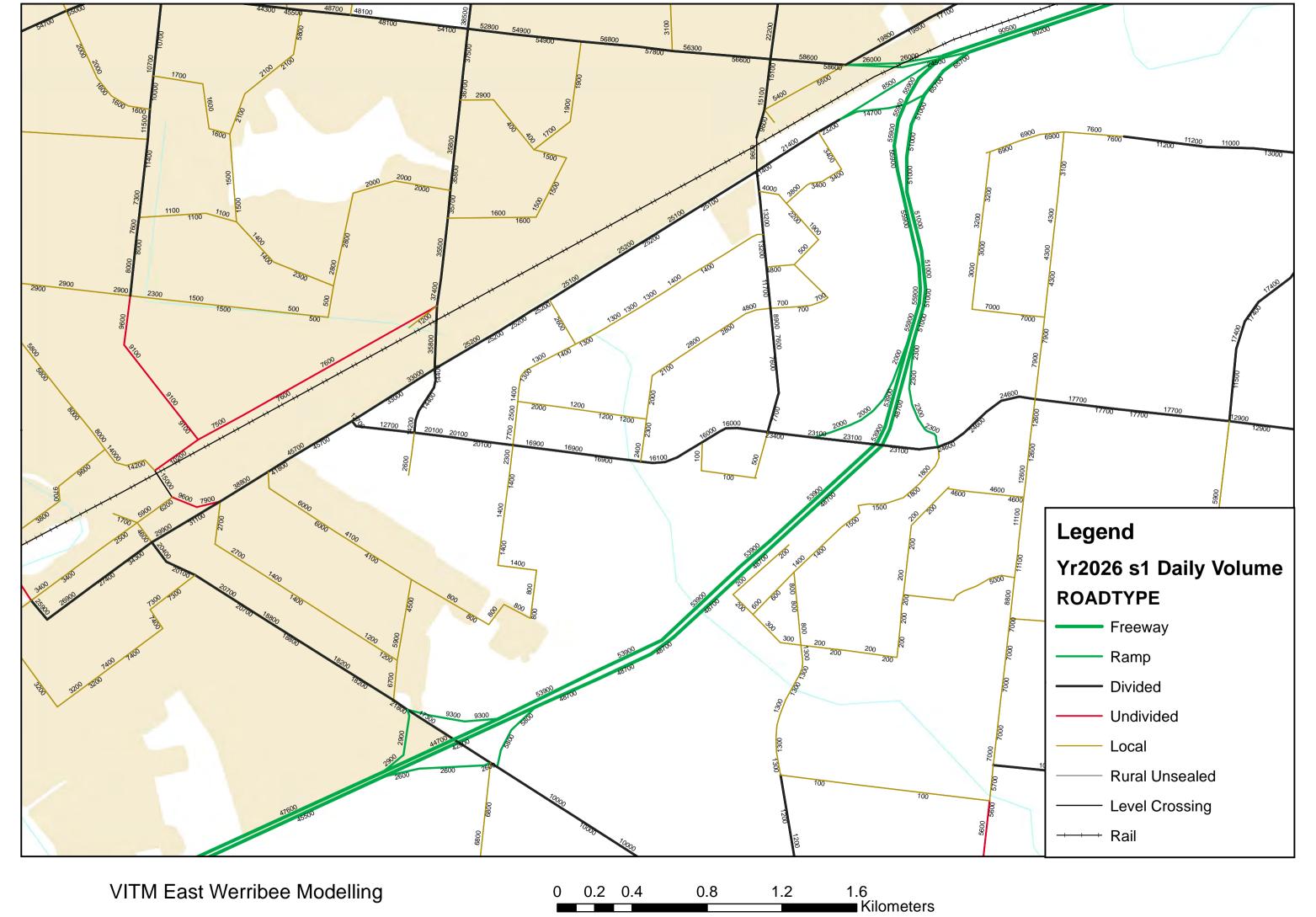
Demographic inputs by zone

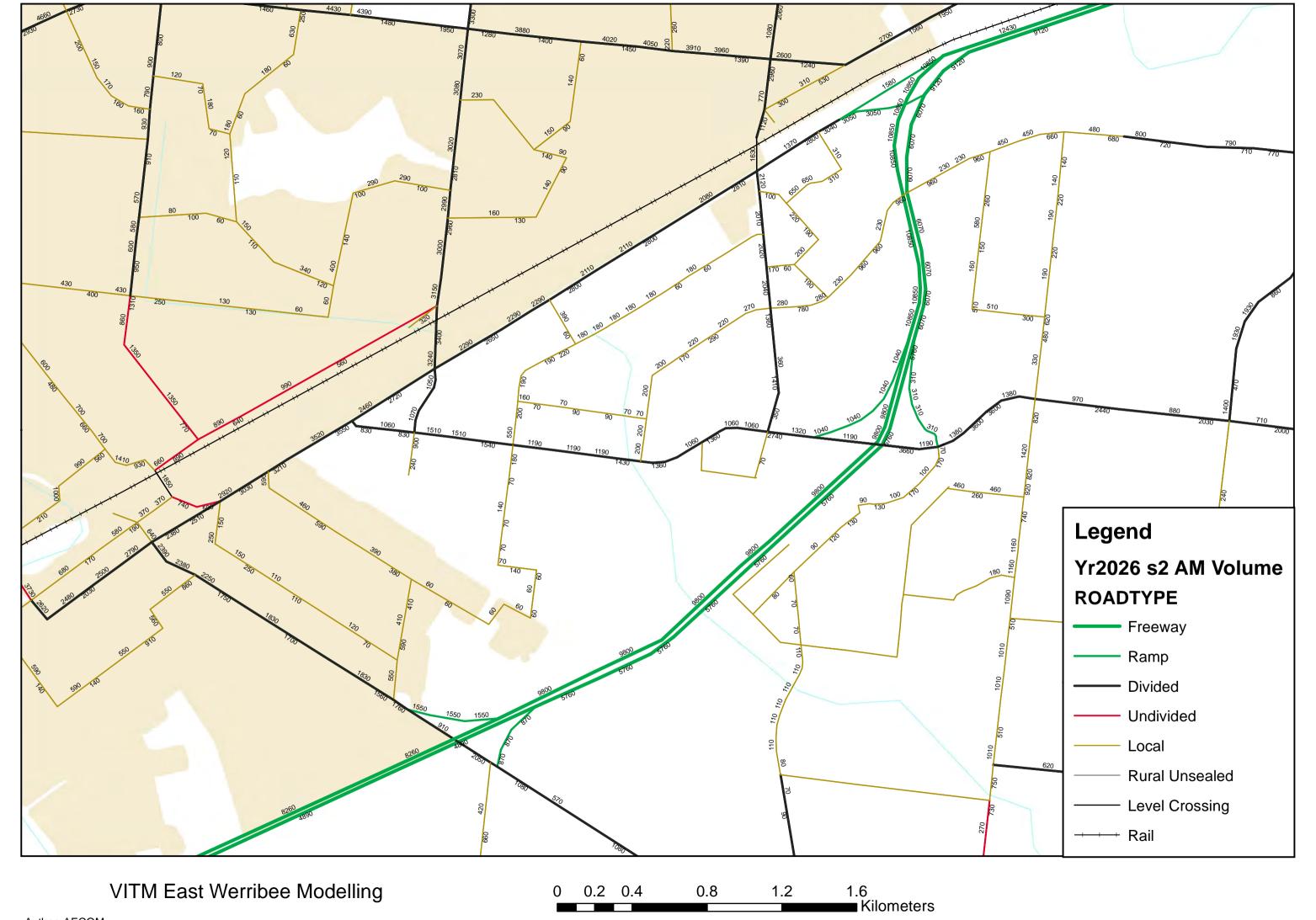
Appendix A Demographic inputs by zone

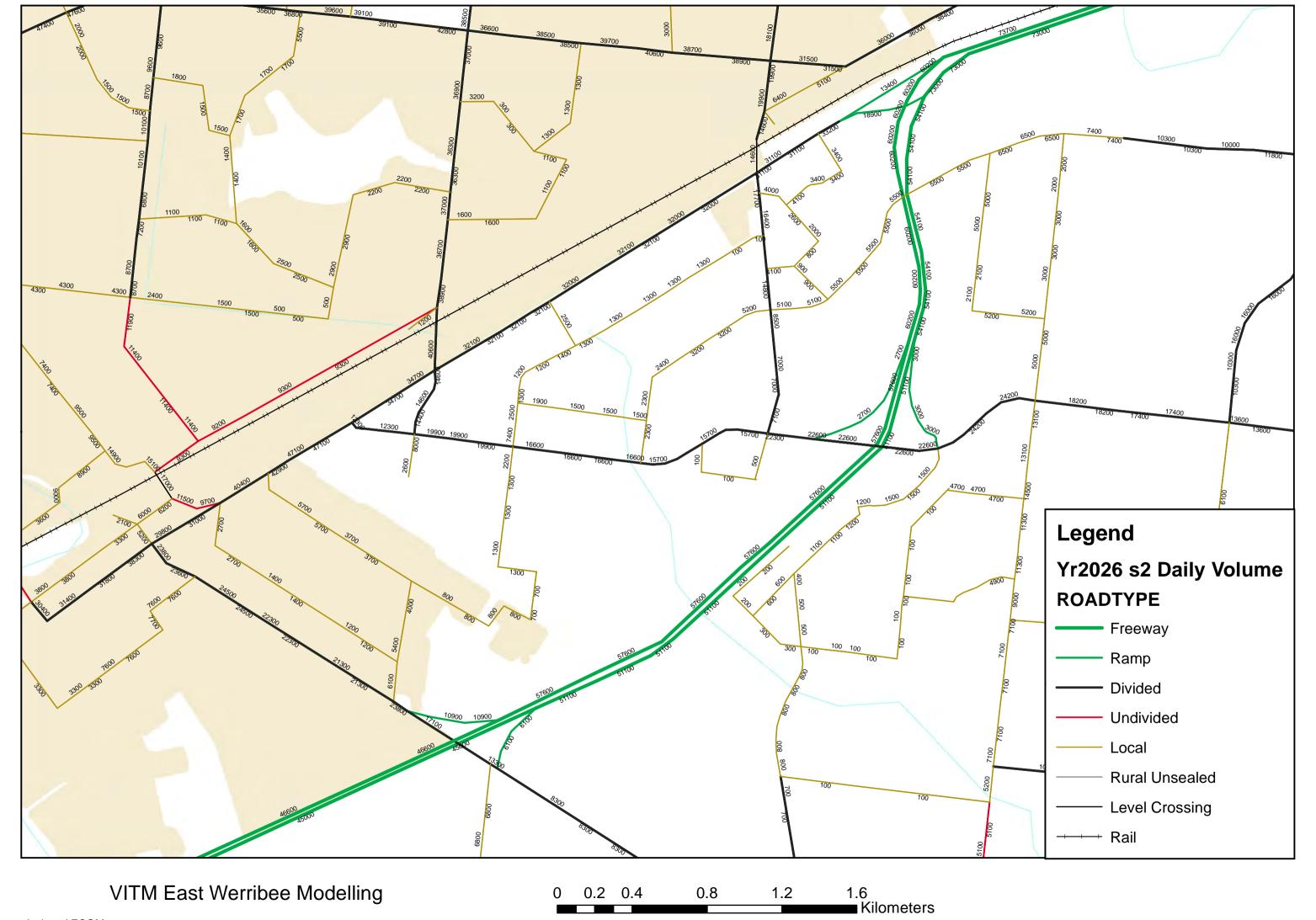

Precinct	Zone	2026					2046					
		Dwellings	Population	Overall Jobs	Retail Jobs	Education Enrolments	Dwellings	Population	Overall Jobs	Retail Jobs	Education Enrolments	
Health & Learning	9	0	0	1500	0	30	0	0	2000	0	40	
Health & Learning	27	0	0	300	0	0	100	190	400	0	0	
Health & Learning	28	0	0	500	0	300	100	190	600	0	1000	
Health & Learning	29	0	0	1600	0	0	100	190	2500	0	0	
Health & Learning	30	50	95	1200	0	0	50	95	1700	0	0	
Health & Learning	31	0	0	2500	0	0	0	0	3000	0	0	
Health & Learning	48	0	0	140	0	300	0	0	300	0	400	
Health & Learning	49	100	190	500	0	0	300	570	1500	0	0	
Health & Learning	50	0	0	200	0	800	0	0	200	0	800	
Health & Learning	51	300	570	700	0	0	800	1520	1500	0	0	
Health & Learning	52	0	0	750	0	1200	200	380	2000	0	4000	
Health & Learning	53	50	95	150	150	0	50	95	300	300	0	
EW Town Centre	10	80	152	600	150	0	450	855	3000	450	0	
EW Town Centre	22	160	304	1200	350	0	550	1045	6000	950	0	

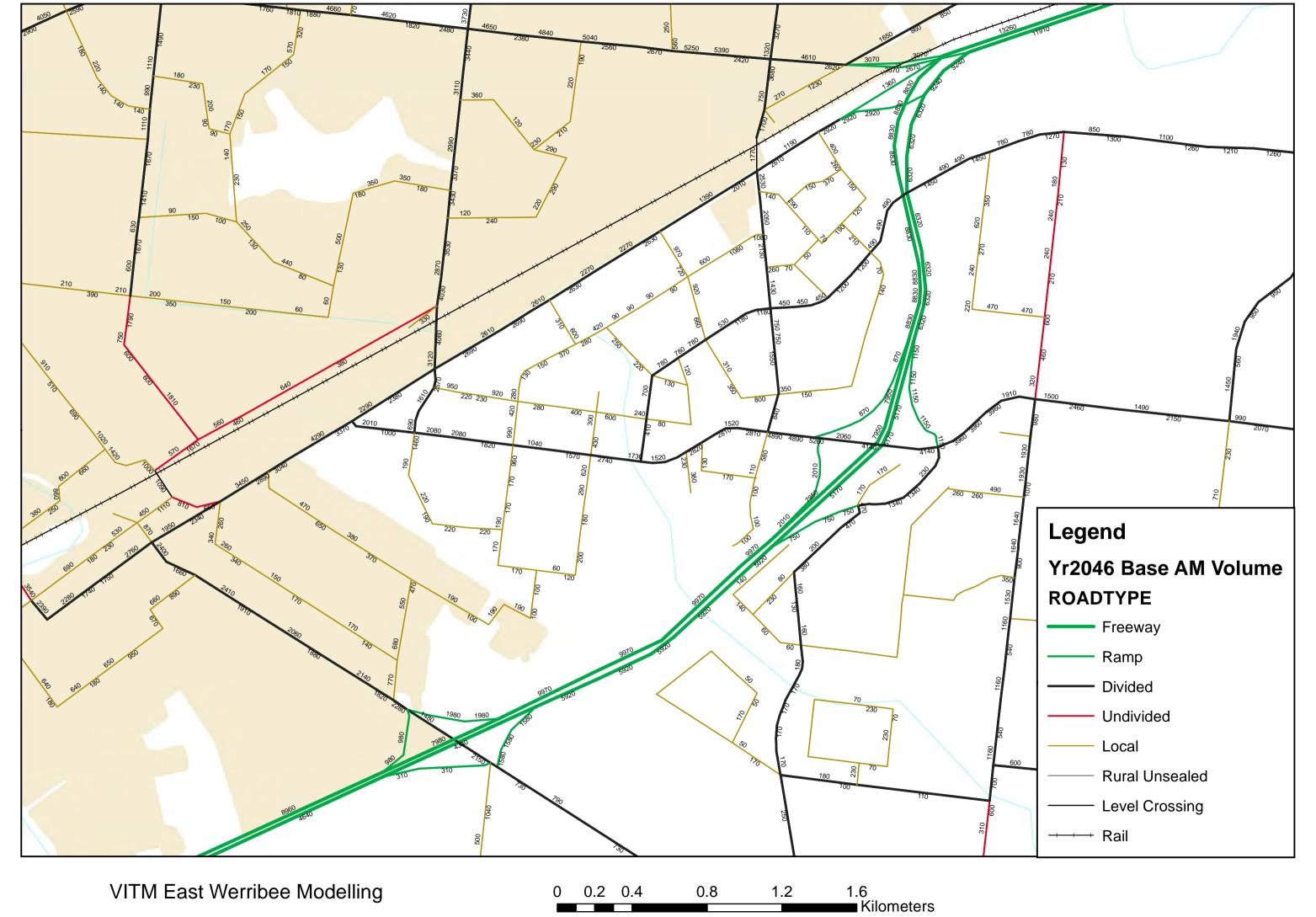

Precinct	Zone	2026					2046				
		Dwellings	Population	Overall Jobs	Retail Jobs	Education Enrolments	Dwellings	Population	Overall Jobs	Retail Jobs	Education Enrolments
Commercial	8	0	0	38	0	40	200	380	700	0	200
Commercial	11	0	0	0	0	0	50	95	500	0	0
Commercial	12	0	0	0	0	0	50	95	1000	0	0
Commercial	13	100	190	800	0	0	200	380	1000	0	0
Commercial	15	50	95	800	0	0	300	570	3200	0	0
Commercial	16	100	190	1600	0	0	200	380	2500	0	0
Commercial	17	0	0	0	0	0	200	380	1000	0	0
Commercial	18	0	0	100	0	0	100	190	500	0	0
Commercial	21	0	0	0	0	0	300	570	1000	0	0
Commercial	23	0	0	0	0	0	50	95	1000	0	0
Commercial	25	0	0	0	0	0	100	190	1000	0	0
Commercial	26	0	0	0	0	0	0	0	1000	0	0
Commercial	46	0	0	250	0	0	250	475	3200	0	0
Enterprise	6	0	0	100	0	0	0	0	900	0	0
Enterprise	7	0	0	0	0	0	0	0	0	0	0
Enterprise	37	0	0	0	0	0	0	0	500	0	0
Enterprise	39	0	0	500	0	0	0	0	800	0	0
Enterprise	41	0	0	0	0	0	0	0	800	0	0
Interchange Business	5	0	0	150	0	0	0	0	400	0	0
Interchange Business	35	0	0	150	0	0	0	0	600	0	0
Interchange Business	36	0	0	300	0	0	0	0	2000	0	0

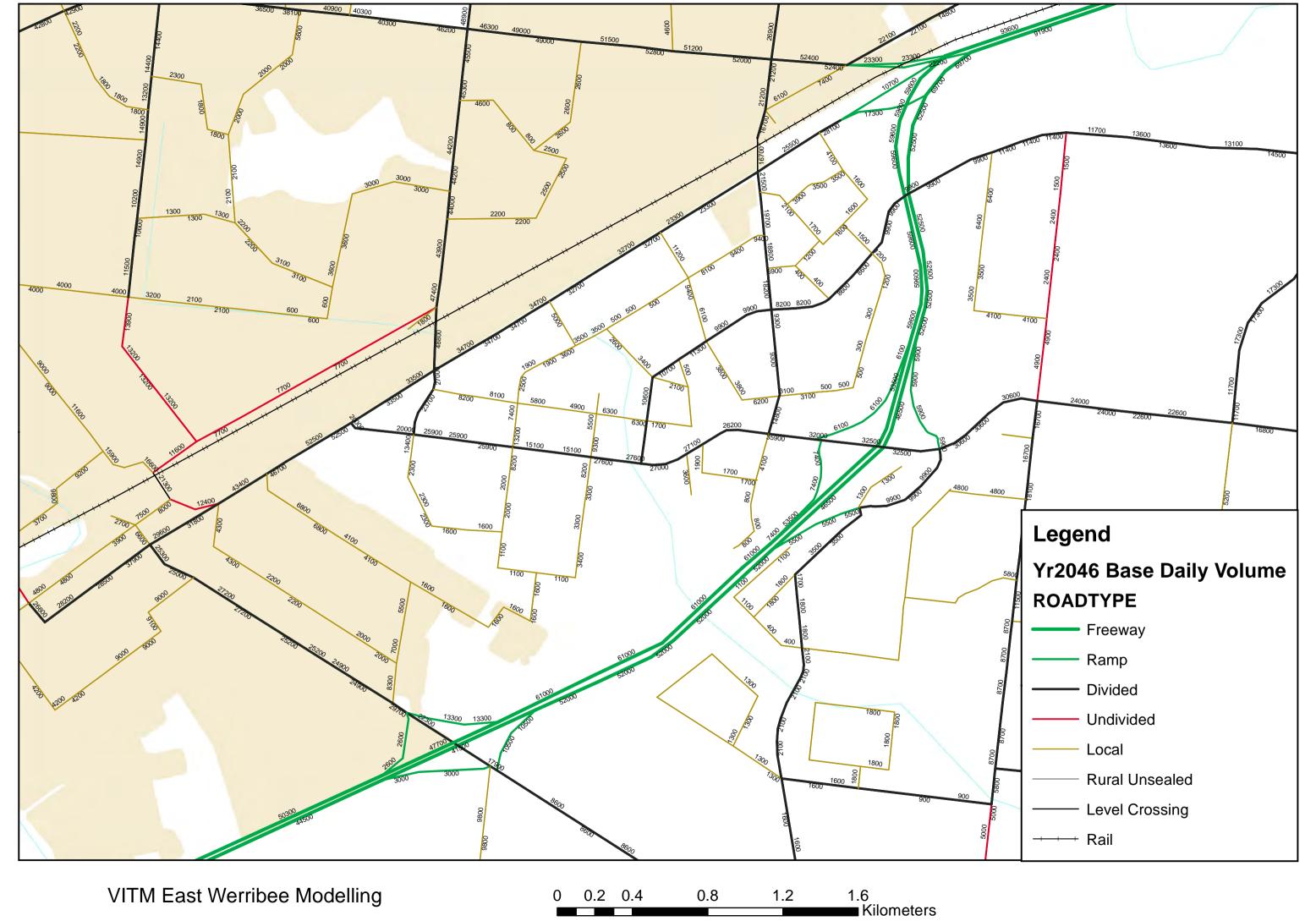

Precinct	Zone	2026					2046					
		Dwellings	Population	Overall Jobs	Retail Jobs	Education Enrolments	Dwellings	Population	Overall Jobs	Retail Jobs	Education Enrolments	
Interchange Business	38	0	0	100	0	0	0	0	500	0	0	
Interchange Business	40	0	0	100	0	0	0	0	500	0	0	
Point Cook SW	42	700	1960	50	0	650	700	1960	70	0	650	
Point Cook SW	43	50	140	50	400	0	50	140	420	400	0	
Point Cook SW	44	800	2240	50	0	400	800	2240	70	0	400	
Point Cook SW	45	650	1820	50	0	0	650	1820	40	0	0	
Wattle Avenue	14	300	750	60	0	200	350	875	80	0	450	
Wattle Avenue	19	0	0	230	200	0	0	0	370	350	0	
Wattle Avenue	20	200	500	10	0	0	550	1375	25	0	0	
Wattle Avenue	47	0	0	0	0	0	300	750	25	0	0	

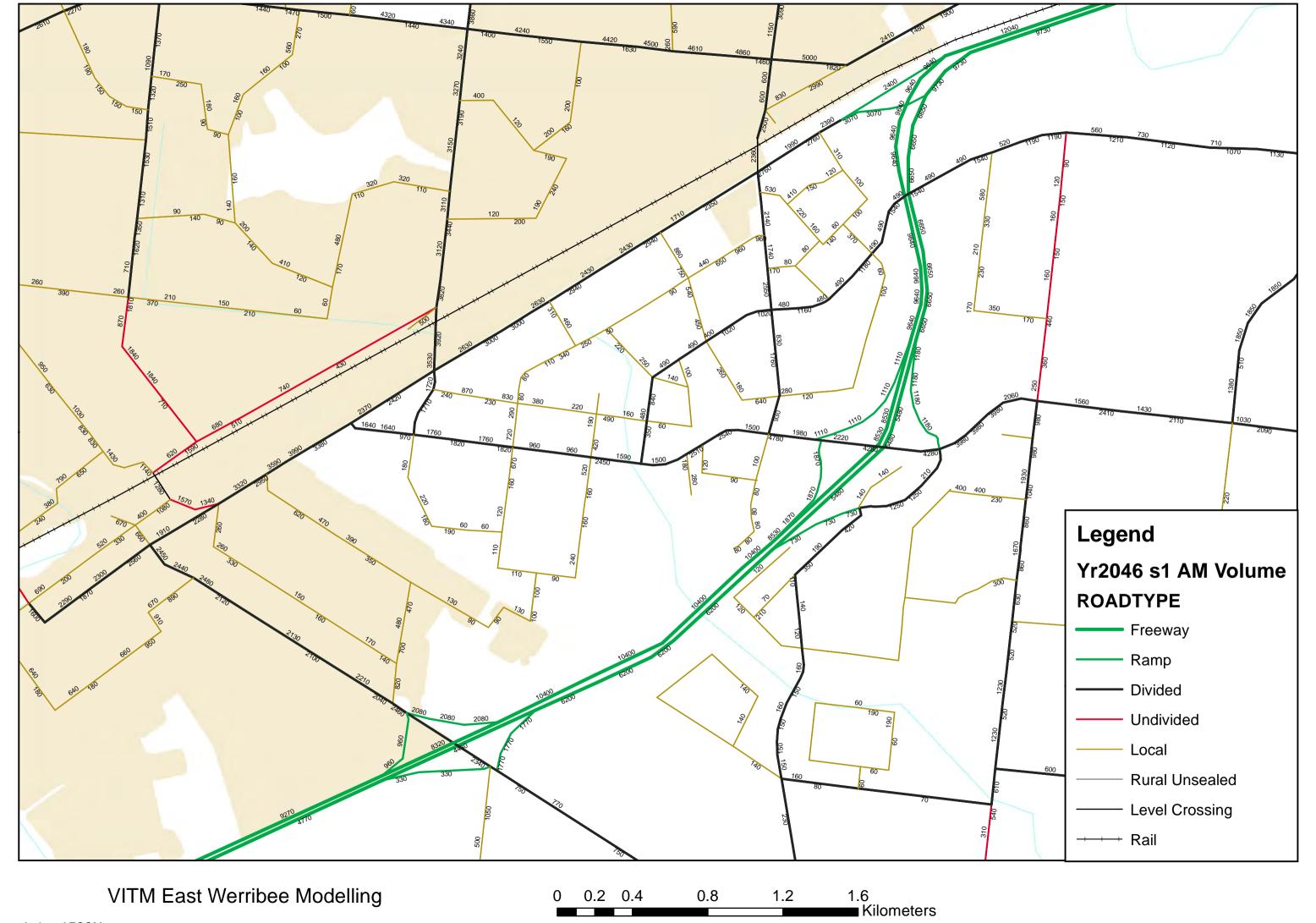

Appendix B

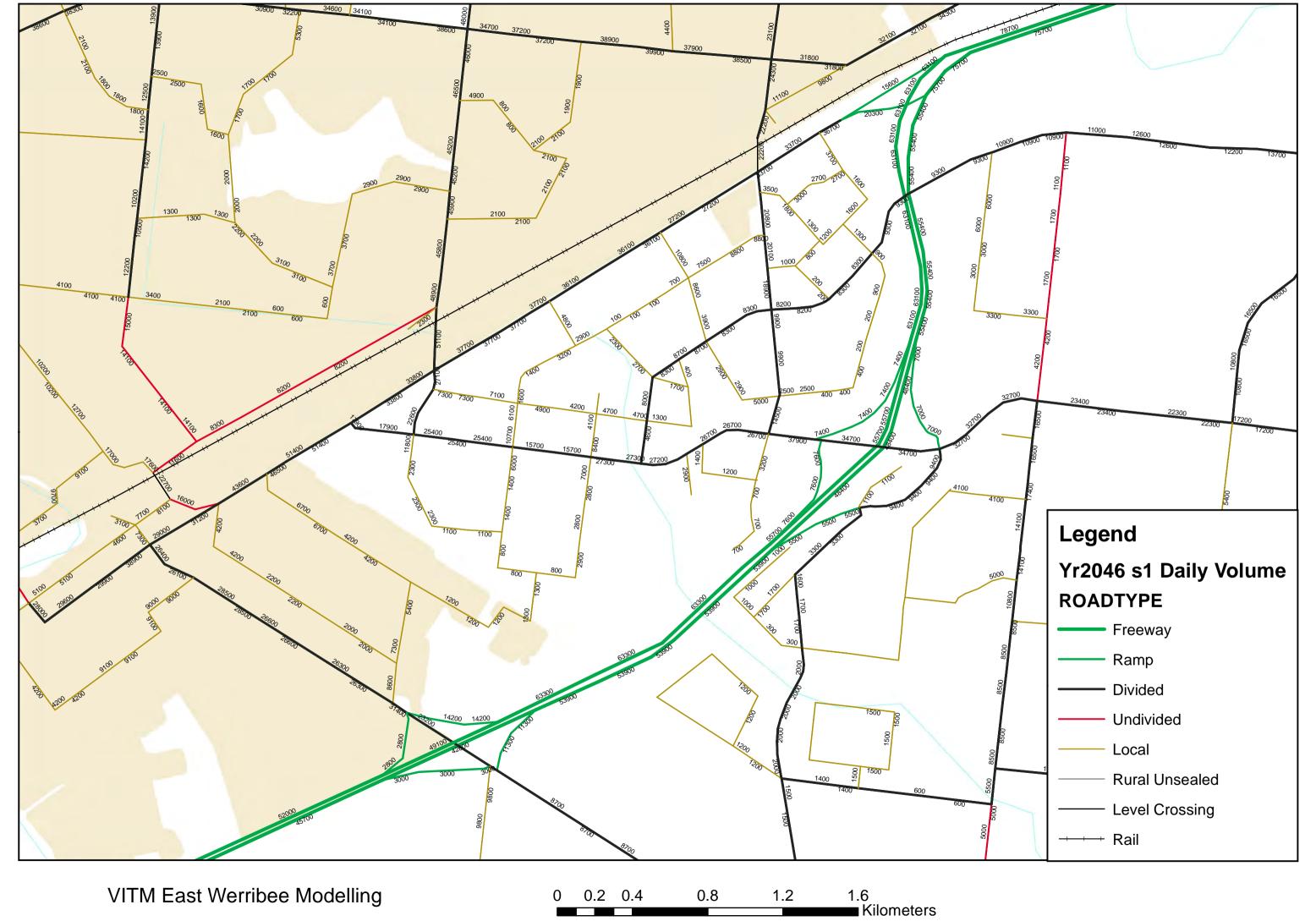

Detailed plots of AM and Daily Traffic Volumes

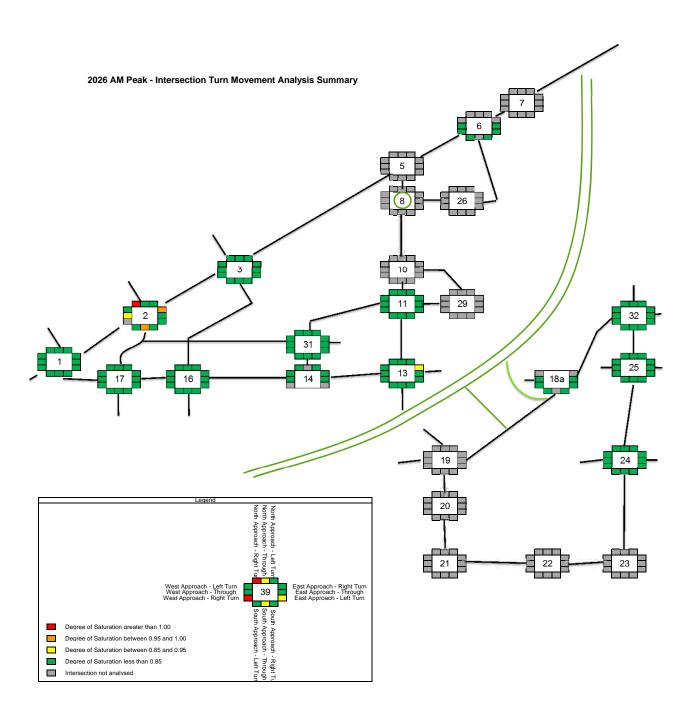


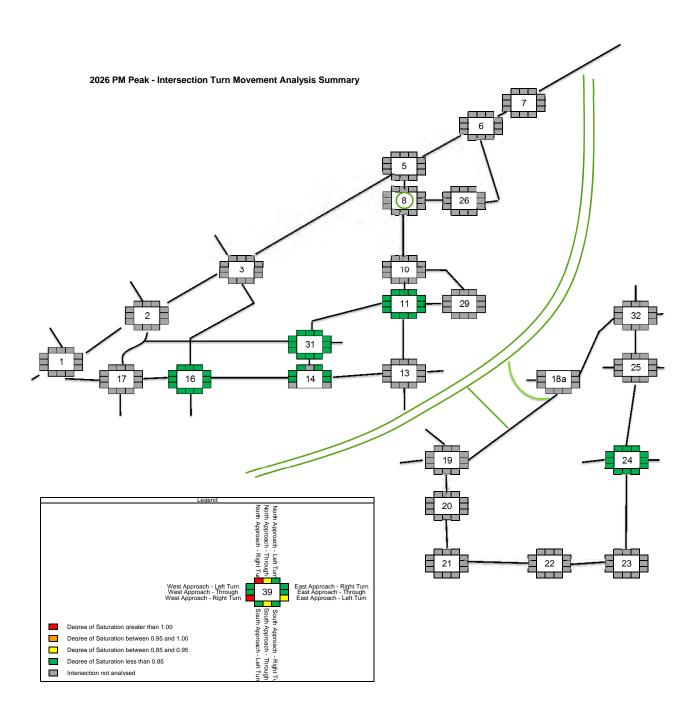











Appendix C

SIDRA Results

Turning Movement Summary

Turning Movement Summary

MOVEMENT SUMMARY

Intersection 1 - 2026 AM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Moven	nent Per	formance - \	Vehicles								
Mov ID	Turn	Demand	HV	Deg.	Average	Level of	95% Back of		Prop.	Effective	Average
טו ייטועו	Tulli	Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South F	East: Snev	veh/h des Road S	%	v/c	sec		veh	m		per veh	km/h
21	L	291	0.3	0.571	33.9	LOS C	10.9	76.3	0.91	0.83	33.7
22	T	1	0.0	0.008	50.5	LOS D	0.1	0.7	0.90	0.57	23.3
23	r R	1	0.0	0.008	58.3	LOS E	0.1	0.7	0.90	0.64	25.6
		<u> </u>									
Approa	cn	293	0.3	0.571	34.0	LOS C	10.9	76.3	0.91	0.83	33.6
North E	ast: Princ	es Highway N	IE								
24	L	1	0.0	0.003	11.7	LOS B	0.0	0.1	0.22	0.65	54.7
25	Т	1529	42.2	0.799	36.1	LOS D	27.6	262.7	0.94	0.88	34.7
26	R	10	0.0	0.119	62.4	LOS E	0.5	3.7	0.92	0.67	23.4
Approa	ch	1540	41.9	0.799	36.3	LOS D	27.6	262.7	0.94	0.88	34.7
		ne Street N									
27	L	17	0.0	0.233	61.9	LOS E	2.6	18.1	0.95	0.75	22.9
28	Т	1	0.0	0.233	54.2	LOS D	2.6	18.1	0.95	0.71	21.1
29	R	29	0.0	0.233	61.7	LOS E	2.6	18.1	0.95	0.74	22.9
Approa	ch	47	0.0	0.233	61.6	LOS E	2.6	18.1	0.95	0.74	22.8
South V	Nest Prin	ces Highway :	SW								
30	L	25	0.0	0.130	19.4	LOS B	0.6	3.9	0.41	0.72	45.4
31	T	1480	22.6	0.633	26.5	LOS C	21.9	183.0	0.41	0.72	40.5
32	r R	450	0.4	0.833	69.0	LOS E	13.9	97.5	1.00	0.73	22.5
Approa	CH	1955	17.2	0.810	36.2	LOS D	21.9	183.0	0.86	0.77	34.7
All Vehi	icles	3835	25.6	0.810	36.4	LOS D	27.6	262.7	0.90	0.82	34.4
VII AGIII	0163	3033	25.0	0.010	30.4	LO3 D	21.0	202.7	0.90	0.02	34.4

Level of Service (LOS) Method: Delay (HCM 2000).

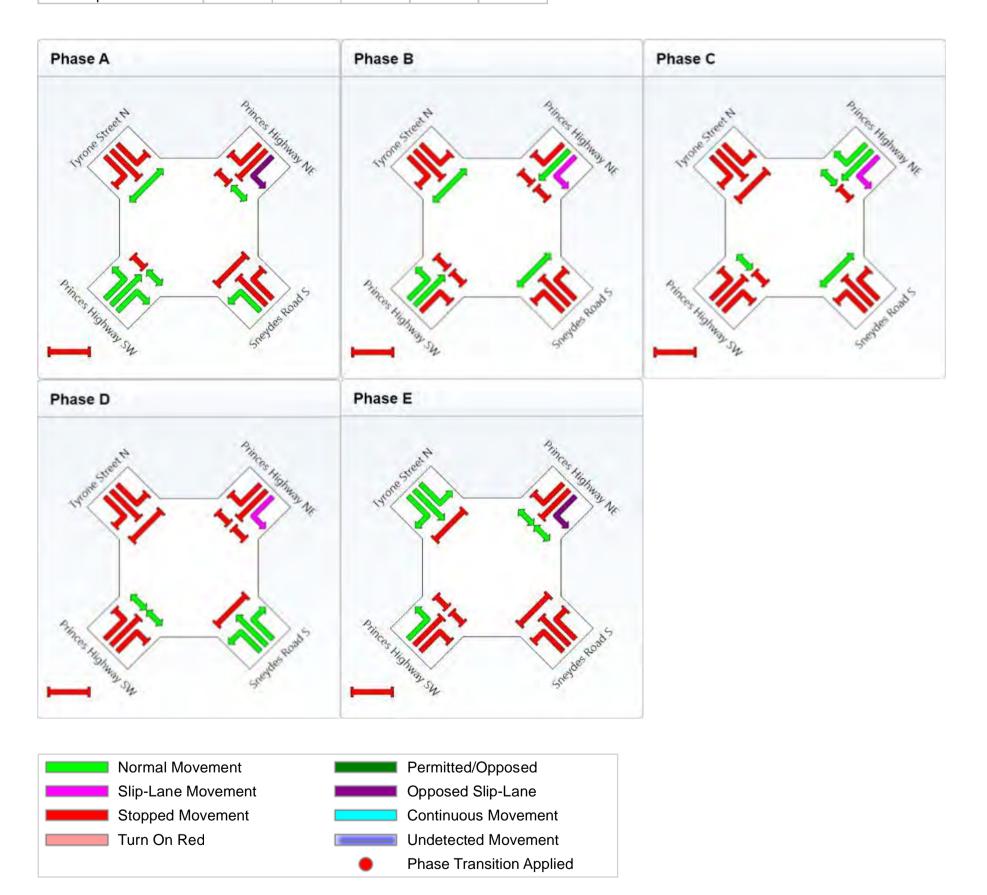
Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Move	Movement Performance - Pedestrians									
		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective		
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate		
		ped/h	sec		ped	m		per ped		
P9	Across SE approach	53	28.0	LOS C	0.1	0.1	0.68	0.68		
P11	Across NE approach	50	35.3	LOS D	0.1	0.1	0.77	0.77		
P12	Across NE approach	50	48.6	LOS E	0.2	0.2	0.90	0.90		
P13	Across NW approach	53	20.4	LOS C	0.1	0.1	0.58	0.58		
P15	Across SW approach	50	42.5	LOS E	0.1	0.1	0.84	0.84		
P16	Across SW approach	50	42.5	LOS E	0.1	0.1	0.84	0.84		
All Ped	destrians	306	36.0	LOS D			0.77	0.77		

PHASING SUMMARY

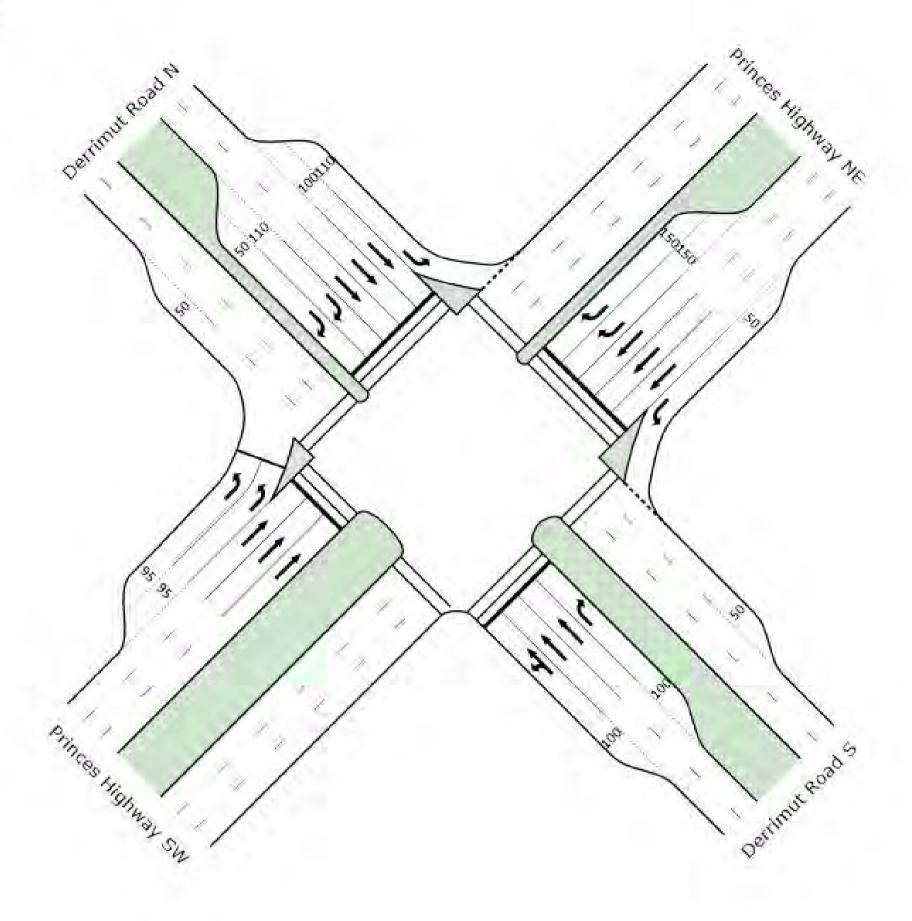

Intersection 1 - 2026 AM Peak Hour

Phase times determined by the program

Sequence: Split-Phase Input Sequence: A, B, C, D, E Output Sequence: A, B, C, D, E

Phase Timing Results

Phase	Α	В	С	D	E
Green Time (sec)	18	31	13	15	13
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	24	37	19	21	19
Phase Split	20 %	31 %	16 %	18 %	16 %



Processed: Thursday, 21 February 2013 5:03:50 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2026\Int #1.sip 8000907, AECOM, ENTERPRISE

MOVEMENT SUMMARY

Intersection 2 - AM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Manne	t . D	· · · · · · · · · · · · · · · · · · ·	/alatalas								
Movem	ient Per	formance - \	venicies		A	l aval af	05% D	-1 0	Duca	□#a atiu	A
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back (Vehicles	or Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	V/C	Sec	Service	verlicies veh	Distance M	Queueu	per veh	speed km/r
South E	ast: Derri	mut Road S	70	V, 0	330		7011			por vori	1(11)/1
21	L	1	0.0	0.405	64.6	LOS E	4.8	33.7	0.98	0.78	24.5
22	Т	505	0.2	0.997	103.9	LOS F	18.8	131.8	1.00	1.25	15.2
23	R	70	0.0	0.452	68.0	LOS E	4.1	28.6	0.99	0.76	23.1
Approac	ch	576	0.2	0.997	99.4	LOS F	18.8	131.8	1.00	1.19	15.9
North Ea	ast: Princ	es Highway N	IE								
24	L	108	7.4	0.199	12.7	LOS B	1.3	9.9	0.28	0.70	53.5
25	Т	768	51.6	0.478	31.5	LOS C	11.5	116.5	0.82	0.70	37.5
26	R	484	31.2	0.956	99.5	LOS F	19.5	172.8	1.00	1.13	17.4
Approac	ch	1360	40.8	0.956	54.2	LOS D	19.5	172.8	0.84	0.86	27.5
North W	/est: Derri	imut Road N									
27	L	388	7.7	0.432	13.3	LOS B	6.4	47.6	0.37	0.72	47.3
28	Т	789	2.2	0.479	28.0	LOS C	15.9	113.1	0.78	0.67	32.2
<mark>29</mark>	R	<mark>617</mark>	32.0	1.000 ³	47.4	LOS D	20.1	179.5	0.99	0.86	28.8
Approac	ch	1794	16.3	1.000	31.5	LOS C	20.1	179.5	0.76	0.75	33.2
South W	Vest: Prin	ces Highway S	SW								
30	L	801	15.5	0.565	20.0	LOS C	8.2	65.2	0.67	0.80	45.8
31	Т	684	31.0	0.937	79.8	LOS E	17.1	151.2	1.00	1.13	21.5
Approac	ch	1485	22.6	0.937	47.6	LOS D	17.1	151.2	0.82	0.95	29.5
All Vehic	cles	5215	22.7	1.000	49.5	LOS D	20.1	179.5	0.83	0.88	27.6

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

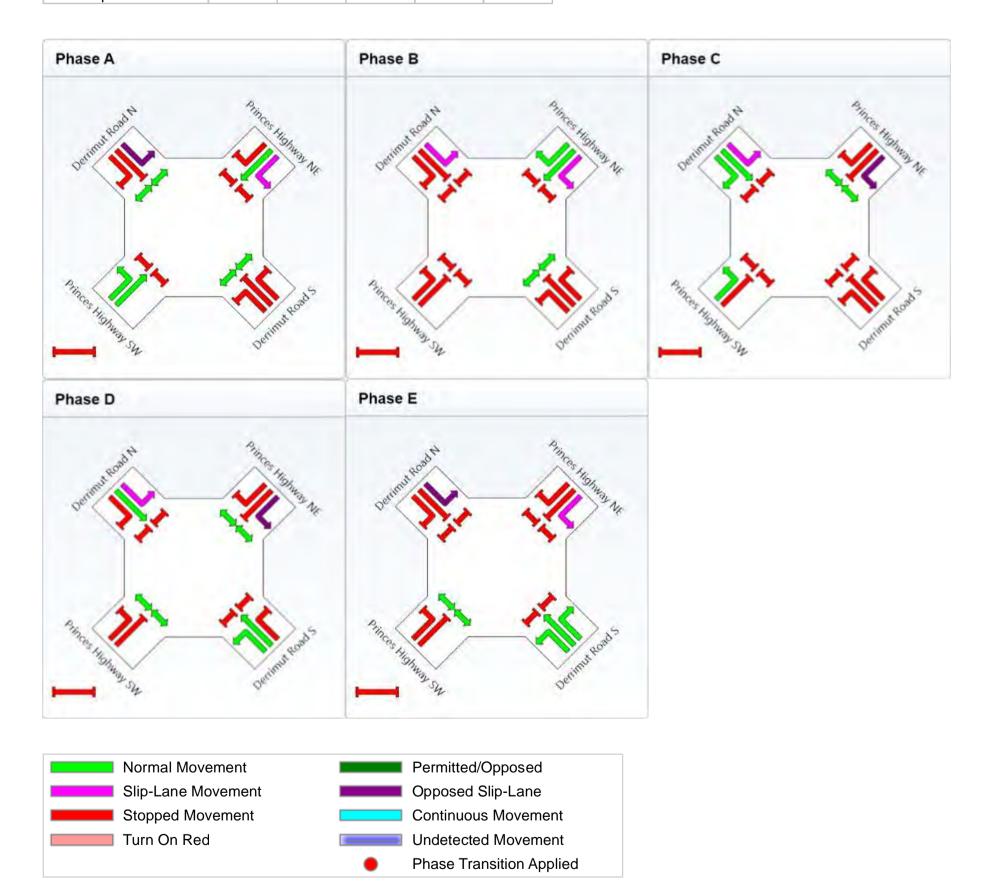
Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

 3×1.00 due to short lane. Refer to the Lane Summary report for information about excess flow and related conditions.

Move	ment Performance -	Pedestrian	S					
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P9	Across SE approach	50	30.1	LOS D	0.1	0.1	0.71	0.71
P10	Across SE approach	50	28.7	LOS C	0.1	0.1	0.69	0.69
P11	Across NE approach	50	29.4	LOS C	0.1	0.1	0.70	0.70
P12	Across NE approach	50	26.0	LOS C	0.1	0.1	0.66	0.66
P13	Across NW approach	50	54.2	LOS E	0.2	0.2	0.95	0.95
P14	Across NW approach	50	49.5	LOS E	0.2	0.2	0.91	0.91
P15	Across SW approach	50	54.2	LOS E	0.2	0.2	0.95	0.95
P16	Across SW approach	50	54.2	LOS E	0.2	0.2	0.95	0.95
All Ped	lestrians	400	40.8	LOS E			0.81	0.81

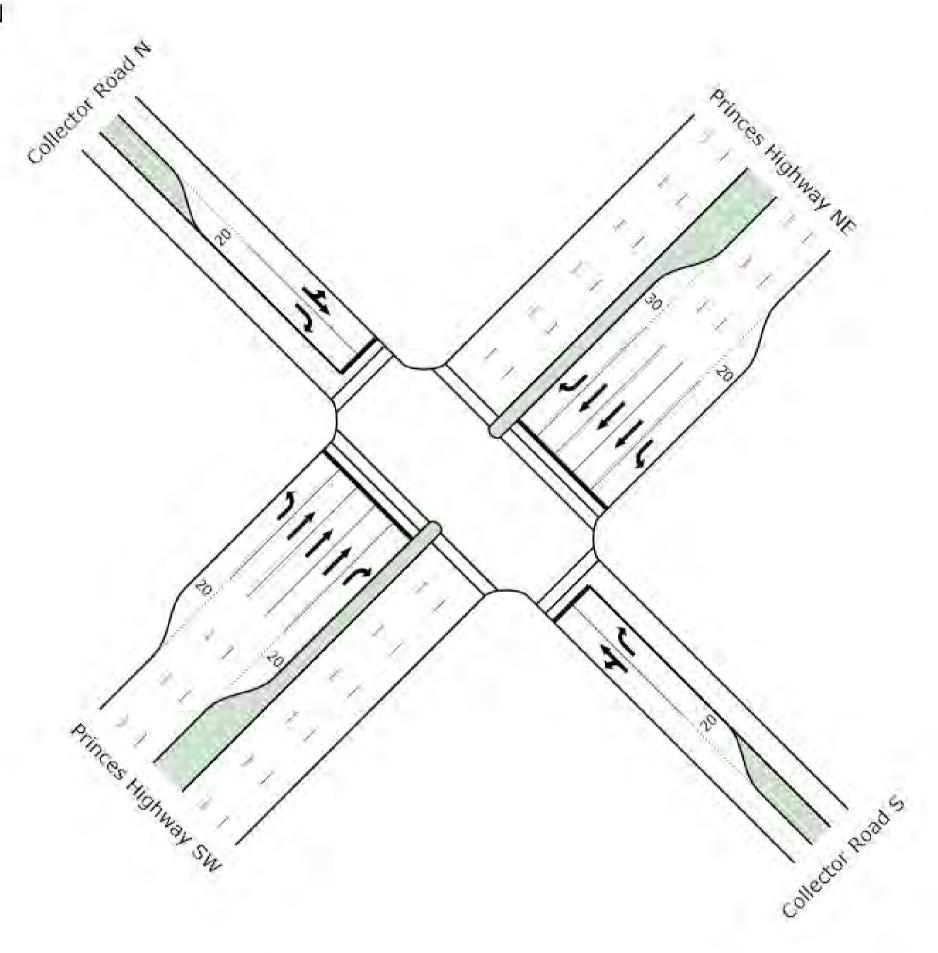
PHASING SUMMARY


Intersection 2 - AM Peak Hour

Phase times determined by the program

Sequence: Split-phase Input Sequence: A, B, C, D, E Output Sequence: A, B, C, D, E

Phase Timing Results


Phase	Α	В	С	D	E
Green Time (sec)	18	20	45	0	10
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	24	26	51	3	16
Phase Split	20 %	22 %	43 %	3 %	13 %

Processed: Thursday, 21 February 2013 5:10:25 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

SIDRA ---

MOVEMENT SUMMARY

Intersection 3 - 2026 AM Peak

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back (Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South E	East: Colle	ctor Road S	,,,	·, o	300		7011			poi voii	13,11,711
21	L	2	0.0	0.007	45.9	LOS D	0.1	1.0	0.80	0.67	27.1
22	Т	1	0.0	0.007	38.1	LOS D	0.1	1.0	0.80	0.51	27.4
23	R	12	8.3	0.137	50.2	LOS D	0.6	4.3	0.84	0.67	25.7
Approa	ich	15	6.6	0.137	48.8	LOS D	0.6	4.3	0.83	0.66	25.9
North E	ast: Princ	es Highway N	E								
24	L	109	17.4	0.466	16.6	LOS B	1.7	14.0	0.45	0.74	49.1
25	Т	1344	41.4	0.714	31.9	LOS C	21.9	207.9	0.90	0.80	37.0
26	R	48	0.0	0.521	72.4	LOS E	3.0	20.8	1.00	0.75	20.1
Approa	ich	1501	38.3	0.714	32.1	LOS C	21.9	207.9	0.87	0.79	36.7
North V	Vest: Colle	ector Road N									
27	L	89	0.0	0.245	32.4	LOS C	2.9	20.2	0.88	0.77	31.7
28	Т	1	0.0	0.245	24.2	LOS C	2.9	20.2	0.88	0.69	32.3
29	R	16	0.0	0.178	55.1	LOS E	0.8	5.6	0.89	0.68	24.0
Approa	ich	106	0.0	0.245	35.6	LOS D	2.9	20.2	0.88	0.75	30.3
South V	Nest: Princ	ces Highway S	SW								
30	L	4	0.0	0.022	17.7	LOS B	0.1	0.7	0.40	0.66	40.3
31	Т	1128	21.3	0.538	28.8	LOS C	16.6	137.5	0.81	0.71	39.1
32	R	9	11.1	0.130	72.4	LOS E	0.5	4.1	0.98	0.67	21.2
Approa	ich	1141	21.1	0.538	29.1	LOS C	16.6	137.5	0.81	0.71	38.8
All Vehi	icles	2764	29.6	0.714	31.1	LOS C	21.9	207.9	0.84	0.76	37.2

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

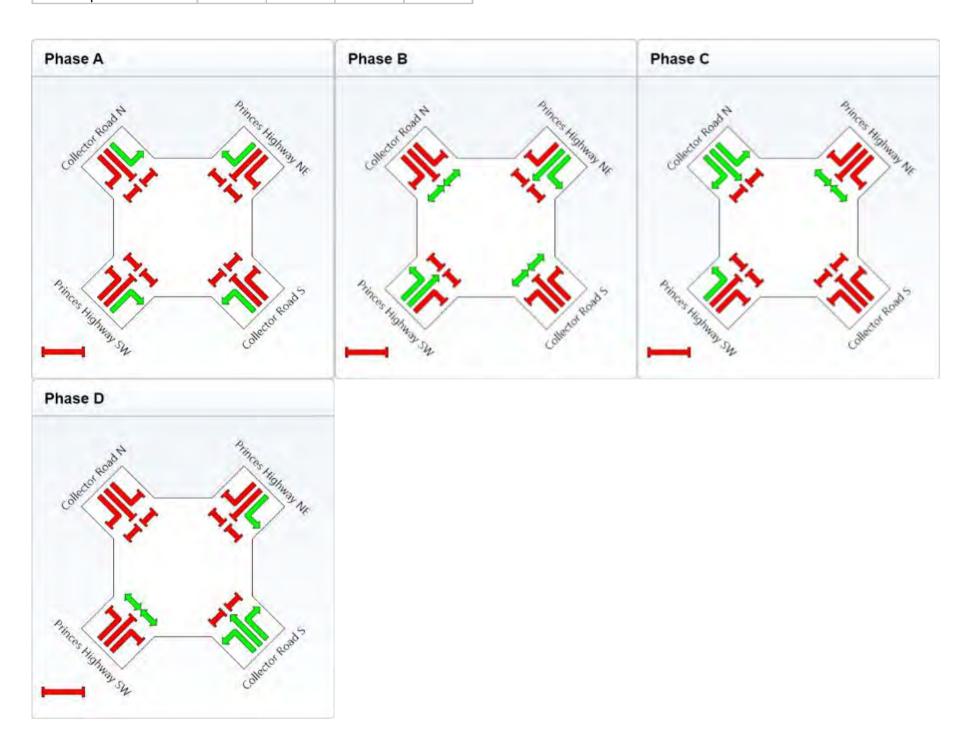
Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Move	Movement Performance - Pedestrians									
Mov II	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped		
P9	Across SE approach	50	23.4	LOS C	0.1	0.1	0.63	0.63		
P10	Across SE approach	50	22.2	LOS C	0.1	0.1	0.61	0.61		
P11	Across NE approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
P12	Across NE approach	50	49.5	LOS E	0.2	0.2	0.91	0.91		
P13	Across NW approach	53	23.4	LOS C	0.1	0.1	0.63	0.63		
P14	Across NW approach	53	22.2	LOS C	0.1	0.1	0.61	0.61		
P15	Across SW approach	50	49.5	LOS E	0.2	0.2	0.91	0.91		
P16	Across SW approach	50	45.1	LOS E	0.1	0.1	0.87	0.87		
All Ped	destrians	406	36.0	LOS D			0.76	0.76		

PHASING SUMMARY

Intersection 3 - 2026 AM Peak

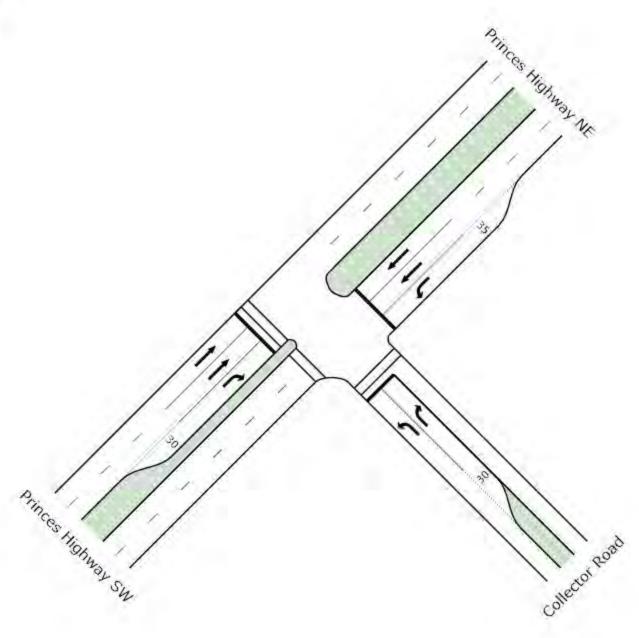

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Split-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	6	49	18	23
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	12	55	24	29
Phase Split	10 %	46 %	20 %	24 %


Processed: Wednesday, 20 February 2013 4:39:58 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

: #3.sip

MOVEMENT SUMMARY

Intersection 6 - AM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South E	East: Colle	ector Road	/0	V/ C	366		VEII	'''		per veri	KIII/II
21	L	34	0.0	0.067	41.9	LOS D	1.5	10.2	0.77	0.73	28.0
23	R	66	3.0	0.509	53.9	LOS D	3.3	24.0	0.90	0.75	24.6
Approa	ıch	100	2.0	0.509	49.8	LOS D	3.3	24.0	0.85	0.74	25.7
North E	ast: Princ	es Highway N	IE								
24	L	187	1.6	0.600	22.7	LOS C	4.5	31.7	0.56	0.77	42.5
25	Т	959	68.7	0.569	14.0	LOS B	16.2	180.4	0.63	0.57	51.8
Approa	ıch	1146	57.8	0.600	15.4	LOS B	16.2	180.4	0.62	0.60	50.3
South V	West: Prin	ces Highway S	SW								
31	Т	696	35.8	0.352	11.5	LOS B	9.6	88.2	0.52	0.45	55.3
32	R	50	0.0	0.538	74.6	LOS E	3.1	21.6	1.00	0.75	20.6
Approa	ich	746	33.4	0.538	15.7	LOS B	9.6	88.2	0.55	0.47	50.5
All Vehi	icles	1992	45.8	0.600	17.2	LOS B	16.2	180.4	0.60	0.56	48.0

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Movement Performance - Pedestrians									
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped	
P9	Across SE approach	50	11.3	LOS B	0.1	0.1	0.43	0.43	
P15	Across SW approach	50	54.2	LOS E	0.2	0.2	0.95	0.95	
All Ped	lestrians	100	32.7	LOS D			0.69	0.69	

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Friday, 22 March 2013 5:01:15 PM SIDRA INTERSECTION 5.1.2.1953

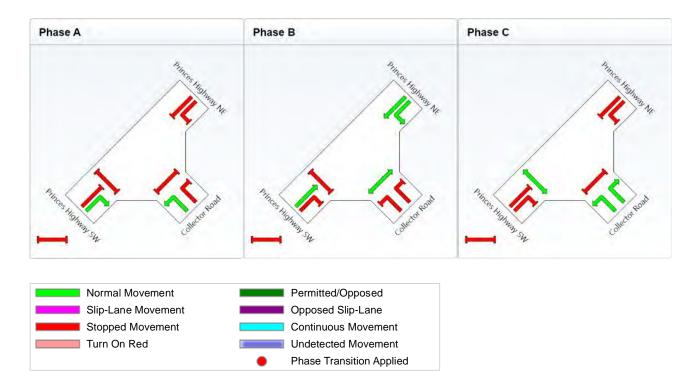
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2026\Int #6.sip 8000907, AECOM, ENTERPRISE

Pty Ltd SIDRA - - INTERSECTION

PHASING SUMMARY

Intersection 6 - AM Peak Hour

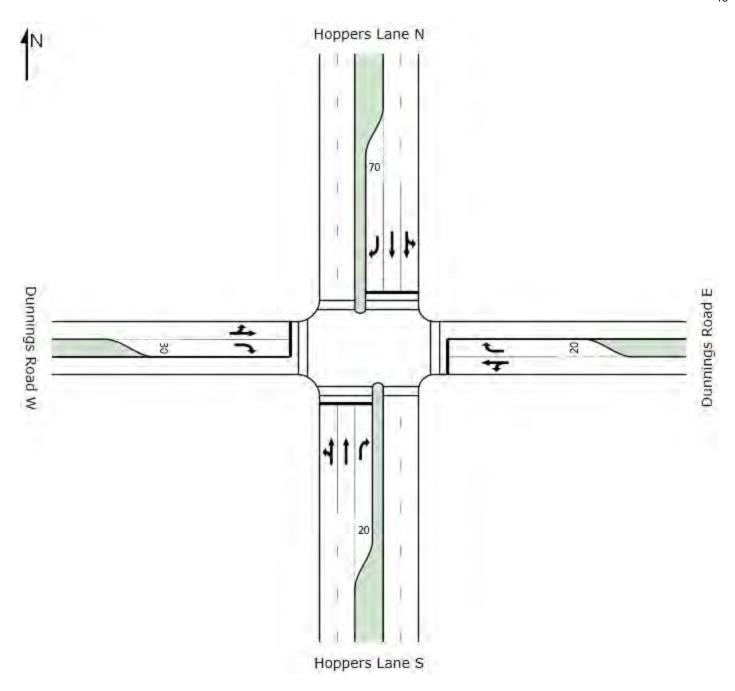

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Three-Phase Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	6	75	21
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	12	81	27
Phase Split	10 %	68 %	23 %



Processed: Friday, 22 March 2013 5:01:15 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd $\underline{www.sidrasolutions.com}$

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2026\Int #6.sip 8000907, AECOM, ENTERPRISE

MOVEMENT SUMMARY

Intersection 11 - AM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Moven	nent Pe	rformance -	Vehicles								
		Demand	107	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 11 1		veh/h	%	v/c	sec		veh	m		per veh	km/h
	Hoppers										
1	L	70	0.0	0.627	50.1	LOS D	15.9	112.6	0.94	0.86	25.3
2	Т	539	1.3	0.627	43.0	LOS D	15.9	112.6	0.94	0.80	26.2
3	R	14	0.0	0.124	36.4	LOS D	0.5	3.8	0.70	0.67	29.0
Approa	ch	623	1.1	0.627	43.7	LOS D	15.9	112.6	0.94	0.81	26.2
East: D	unnings l	Road E									
4	L	3	0.0	0.010	45.4	LOS D	0.2	1.3	0.80	0.66	24.9
5	Т	1	0.0	0.010	38.2	LOS D	0.2	1.3	0.80	0.52	24.6
6	R	7	0.0	0.091	68.5	LOS E	0.4	2.9	0.98	0.66	19.6
Approa	ch	11	0.0	0.091	59.4	LOS E	0.4	2.9	0.91	0.65	21.2
North: F	Hoppers I	Lane N									
7	L	33	6.1	0.387	47.2	LOS D	8.9	64.7	0.87	0.85	26.3
8	Т	335	3.9	0.387	40.0	LOS D	9.0	64.8	0.88	0.72	27.3
9	R	206	4.9	0.633	40.6	LOS D	9.2	66.9	0.81	0.79	27.4
Approa	ch	574	4.4	0.633	40.6	LOS D	9.2	66.9	0.85	0.76	27.3
West: D	unnings	Road W									
10	L	112	1.8	0.120	23.0	LOS C	3.3	23.7	0.54	0.74	33.3
11	Т	1	0.0	0.120	15.8	LOS B	3.3	23.7	0.54	0.44	34.2
12	R	35	0.0	0.377	70.7	LOS E	2.1	14.9	1.00	0.73	19.3
Approa	ch	148	1.4	0.377	34.2	LOS C	3.3	23.7	0.65	0.73	28.4
All Vehi	cles	1356	2.5	0.633	41.5	LOS D	15.9	112.6	0.87	0.78	26.8

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

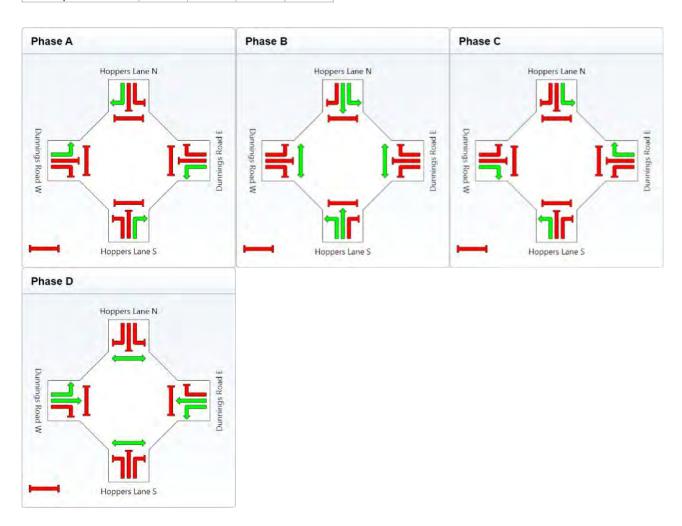
Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

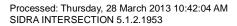
Moven	Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped					
P1	Across S approach	50	54.2	LOS E	0.2	0.2	0.95	0.95					
P3	Across E approach	50	39.2	LOS D	0.1	0.1	0.81	0.81					
P5	Across N approach	50	54.2	LOS E	0.2	0.2	0.95	0.95					
P7	Across W approach	50	39.2	LOS D	0.1	0.1	0.81	0.81					
All Pede	estrians	200	46.7	LOS E			0.88	0.88					

PHASING SUMMARY

Intersection 11 - AM Peak Hour

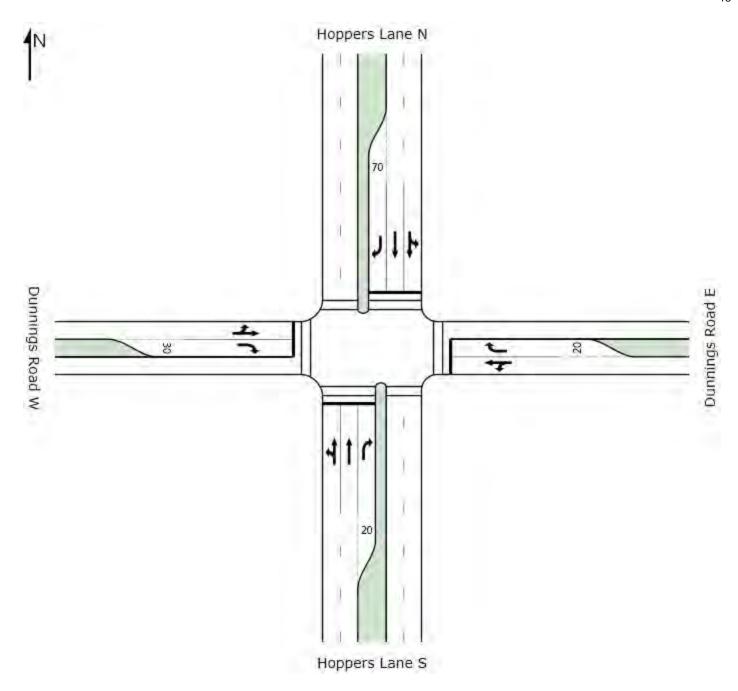

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program


Sequence: Diamond-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	39	30	6	21
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	45	36	12	27
Phase Split	38 %	30 %	10 %	23 %



MOVEMENT SUMMARY

Intersection 11 - PM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Moven	nent Pe	rformance - \	Vehicles								
		Demand	1.13.7	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 11 1		veh/h	%	v/c	sec		veh	m		per veh	km/h
	Hoppers										
1	L	50	0.0	0.481	48.9	LOS D	11.3	80.3	0.90	0.85	25.6
2	Т	400	1.8	0.481	41.9	LOS D	11.3	80.3	0.91	0.76	26.6
3	R	5	0.0	0.058	57.1	LOS E	0.3	1.8	0.90	0.64	22.5
Approac	ch	455	1.5	0.481	42.8	LOS D	11.3	80.3	0.91	0.77	26.5
East: Di	unnings l	Road E									
4	L	12	0.0	0.024	38.5	LOS D	0.5	3.7	0.73	0.69	26.9
5	Т	1	0.0	0.024	31.3	LOS C	0.5	3.7	0.73	0.52	26.8
6	R	37	2.7	0.375	44.0	LOS D	1.6	11.8	0.80	0.71	25.2
Approac	ch	50	2.0	0.375	42.4	LOS D	1.6	11.8	0.78	0.70	25.6
North: F	Hoppers I	Lane N									
7	L	15	13.3	0.649	51.4	LOS D	15.9	113.5	0.95	0.87	25.3
8	Т	590	1.4	0.649	44.0	LOS D	16.1	113.8	0.95	0.81	26.0
9	R	145	4.8	0.646	63.6	LOS E	8.4	61.4	1.00	0.82	21.0
Approac	ch	750	2.3	0.649	48.0	LOS D	16.1	113.8	0.96	0.82	24.9
West: D	unnings	Road W									
10	L	210	0.5	0.322	37.1	LOS D	8.9	62.6	0.77	0.79	27.4
11	Т	1	0.0	0.322	29.9	LOS C	8.9	62.6	0.77	0.65	27.2
12	R	95	0.0	0.647	47.3	LOS D	4.6	31.9	0.83	0.80	24.3
Approac	ch	306	0.3	0.647	40.2	LOS D	8.9	62.6	0.79	0.79	26.3
All Vehi	cles	1561	1.7	0.649	44.8	LOS D	16.1	113.8	0.91	0.79	25.6

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

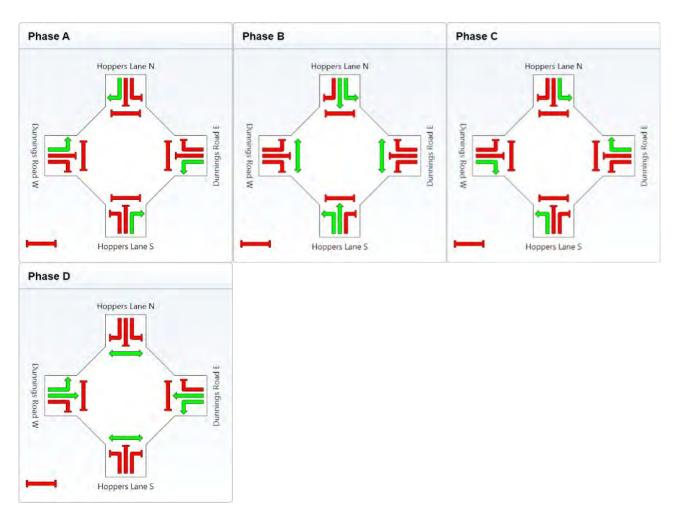
Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

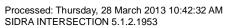
Moven	Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped					
P1	Across S approach	50	53.2	LOS E	0.2	0.2	0.94	0.94					
P3	Across E approach	50	40.0	LOS E	0.1	0.1	0.82	0.82					
P5	Across N approach	50	53.2	LOS E	0.2	0.2	0.94	0.94					
P7	Across W approach	50	40.0	LOS E	0.1	0.1	0.82	0.82					
All Pede	estrians	200	46.6	LOS E			0.88	0.88					

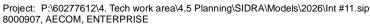
PHASING SUMMARY

Intersection 11 - PM Peak Hour

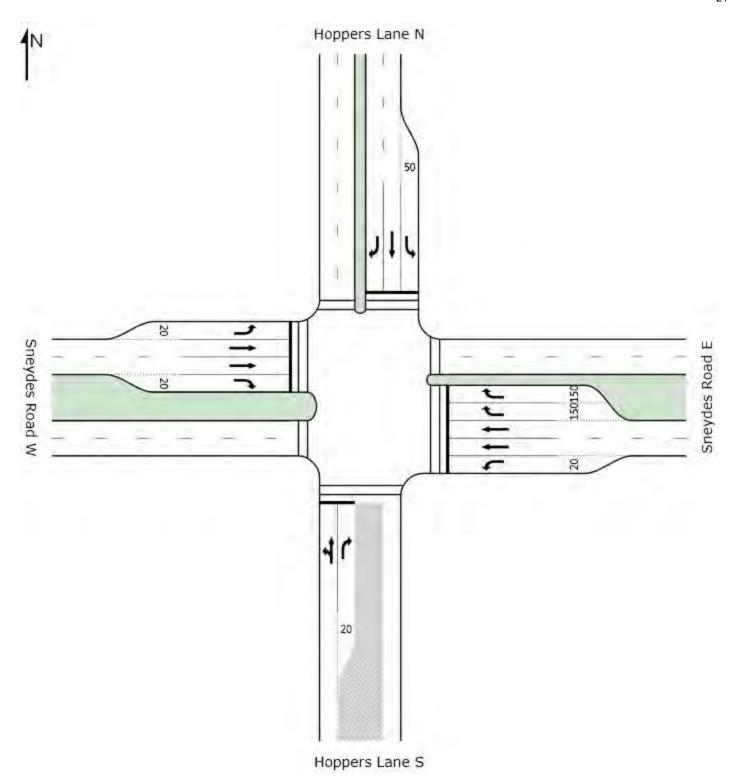

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program


Sequence: Diamond-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D


Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	15	29	30	22
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	21	35	36	28
Phase Split	18 %	29 %	30 %	23 %



MOVEMENT SUMMARY

Intersection 13 - AM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Movement Performance - Vehicles												
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back o Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed	
Carrellar	l lanaana	veh/h	%	v/c	sec		veh	m		per veh	km/h	
	Hoppers		0.0	0.005	40.7	1.00.0	0.4		0.00	2.25	0.1.0	
1	L	1	0.0	0.005	48.7	LOS D	0.1	0.7	0.83	0.65	24.2	
2	T	1	0.0	0.005	41.5	LOS D	0.1	0.7	0.83	0.52	24.4	
3	R	7	42.9	0.102	50.1	LOS D	0.3	3.2	0.84	0.65	23.9	
Approa	ch	9	33.3	0.102	49.0	LOS D	0.3	3.2	0.83	0.64	24.0	
East: S	neydes R	load E										
4	L	23	26.1	0.127	16.1	LOS B	0.4	3.7	0.49	0.68	40.9	
5	Т	637	1.4	0.482	33.4	LOS C	14.6	103.6	0.84	0.72	30.0	
6	R	696	0.9	0.870	67.1	LOS E	22.5	158.6	1.00	0.97	21.1	
Approa	ch	1356	1.5	0.870	50.4	LOS D	22.5	158.6	0.92	0.85	24.8	
North: F	Hoppers I	_ane N										
7	L	201	3.0	0.637	27.3	LOS C	6.7	48.3	0.62	0.77	34.3	
8	Т	5	20.0	0.013	40.5	LOS D	0.2	1.9	0.81	0.56	27.0	
9	R	13	7.7	0.034	47.6	LOS D	0.6	4.5	0.82	0.69	26.1	
Approa	ch	219	3.7	0.637	28.8	LOS C	6.7	48.3	0.63	0.76	33.4	
West: S	Sneydes F	Road W										
10	L	8	0.0	0.087	52.1	LOS D	0.4	2.7	0.85	0.66	24.6	
11	Т	443	0.9	0.653	50.6	LOS D	12.3	86.8	0.99	0.82	24.1	
12	R	11	9.1	0.156	69.8	LOS E	0.7	4.9	0.98	0.67	19.8	
Approa	ch	462	1.1	0.653	51.0	LOS D	12.3	86.8	0.98	0.81	24.0	
All Vehi	cles	2046	1.8	0.870	48.2	LOS D	22.5	158.6	0.90	0.83	25.3	

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

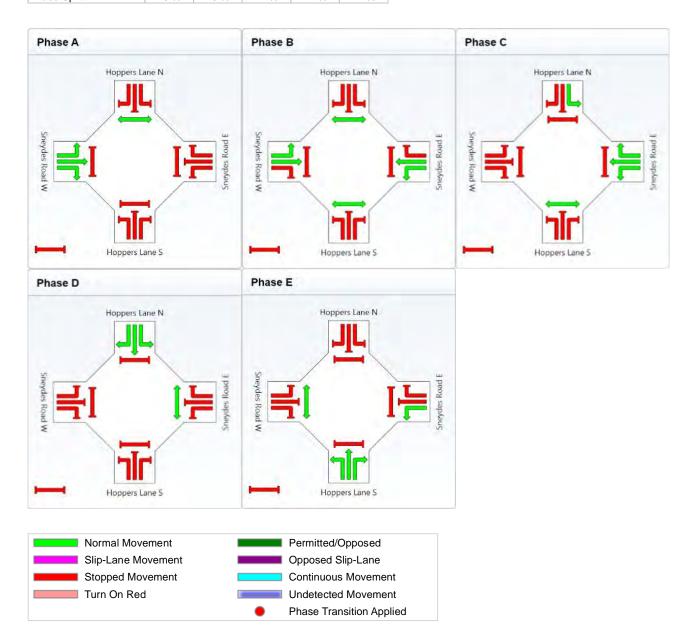
Intersection and Approach LOS values are based on average delay for all vehicle movements.

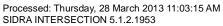
SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians												
		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective					
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate					
		ped/h	sec		ped	m		per ped					
P1	Across S approach	50	30.8	LOS D	0.1	0.1	0.72	0.72					
P3	Across E approach	50	54.2	LOS E	0.2	0.2	0.95	0.95					
P5	Across N approach	50	54.2	LOS E	0.2	0.2	0.95	0.95					
P7	Across W approach	50	54.2	LOS E	0.2	0.2	0.95	0.95					
All Pedestrians		200	48.3	LOS E			0.89	0.89					

PHASING SUMMARY

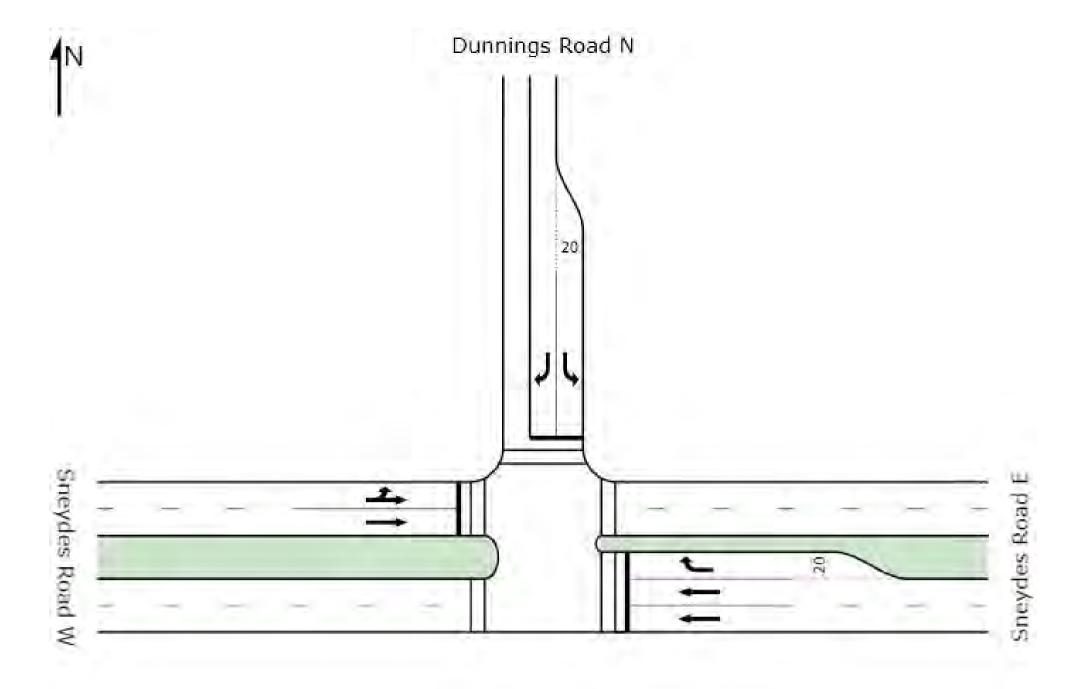
Intersection 13 - AM Peak Hour


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Split-Phase Input Sequence: A, B, C, D, E Output Sequence: A, B, C, D, E

Phase Timing Results


Phase	Α	В	С	D	E
Green Time (sec)	6	9	26	26	23
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	12	15	32	32	29
Phase Split	10 %	13 %	27 %	27 %	24 %

MOVEMENT SUMMARY

Intersection 14 - AM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Mover	nent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back of Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
5 0		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: S	neydes Ro										
5	Т	592	0.7	0.494	36.4	LOS D	14.1	99.4	0.87	0.74	28.8
6	R	58	3.4	0.500	33.8	LOS C	2.2	15.8	0.69	0.72	30.1
Approa	ch	650	0.9	0.500	36.2	LOS D	14.1	99.4	0.85	0.74	28.9
North: I	Dunnings I	Road N									
7	L	22	4.5	0.126	17.9	LOS B	0.5	3.8	0.43	0.67	36.1
9	R	55	0.0	0.169	52.9	LOS D	2.8	19.3	0.89	0.75	22.8
Approa	ch	77	1.3	0.169	42.9	LOS D	2.8	19.3	0.76	0.73	25.5
West: S	Sneydes R	toad W									
10	L	88	2.3	0.448	43.3	LOS D	12.3	87.3	0.85	0.86	27.3
11	Т	442	1.1	0.448	35.8	LOS D	12.5	88.7	0.85	0.72	28.8
Approa	ch	530	1.3	0.448	37.0	LOS D	12.5	88.7	0.85	0.75	28.6
All Vehi	icles	1257	1.1	0.500	36.9	LOS D	14.1	99.4	0.85	0.74	28.5

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians												
		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective					
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate					
		ped/h	sec		ped	m		per ped					
P3	Across E approach	50	54.2	LOS E	0.2	0.2	0.95	0.95					
P5	Across N approach	50	33.8	LOS D	0.1	0.1	0.75	0.75					
P7	Across W approach	50	32.3	LOS D	0.1	0.1	0.73	0.73					
All Ped	estrians	150	40.1	LOS E			0.81	0.81					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

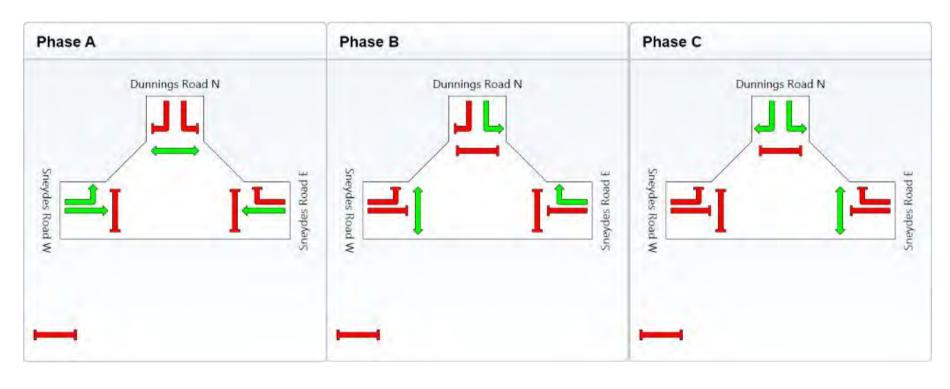
Processed: Thursday, 21 February 2013 5:32:18 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2026\Int #14.sip 8000907, AECOM, ENTERPRISE

PHASING SUMMARY

Intersection 14 - AM Peak Hour

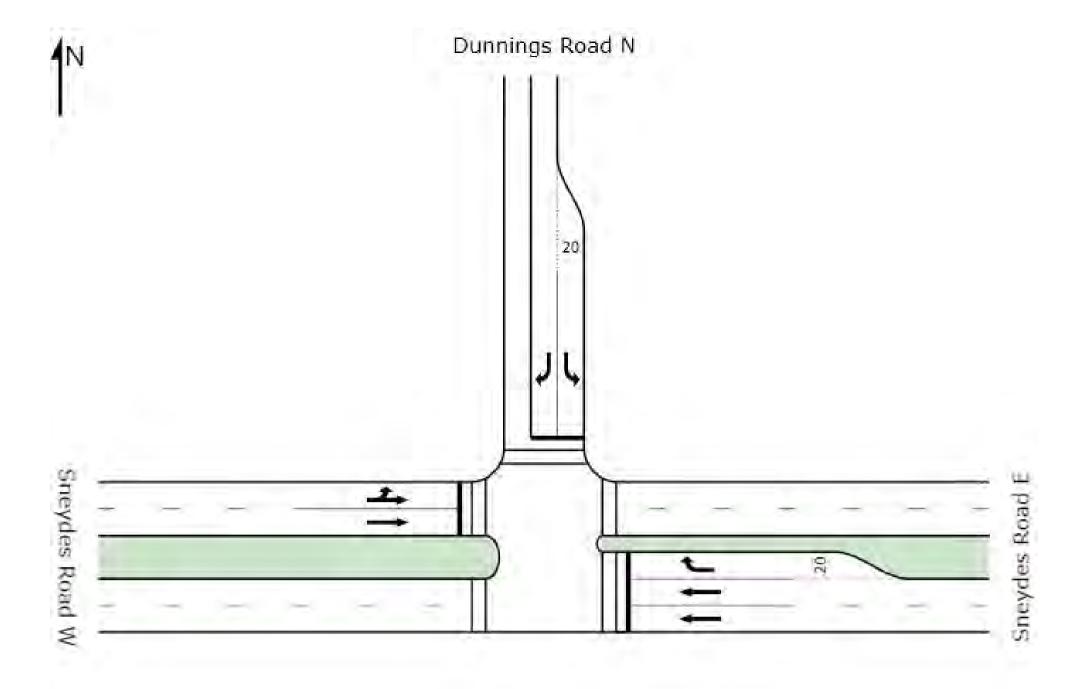

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Three-Phase Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	37	44	21
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	43	50	27
Phase Split	36 %	42 %	23 %



Processed: Thursday, 21 February 2013 5:32:18 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd $\underline{www.sidrasolutions.com}$

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2026\Int #14.sip 8000907, AECOM, ENTERPRISE

MOVEMENT SUMMARY

Intersection 14 - PM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Moven	nent Per	formance - V	ehicles								
Mov ID	Turn	Demand	HV	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
טו ייטוייו	Tulli	Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
F4: 0:		veh/h	%	v/c	sec		veh	m		per veh	km/h
	neydes R										
5	Т	567	1.1	0.314	21.2	LOS C	10.2	72.2	0.67	0.57	36.4
6	R	22	9.1	0.248	48.5	LOS D	1.0	7.8	0.83	0.70	24.9
Approa	ch	589	1.4	0.314	22.2	LOS C	10.2	72.2	0.67	0.58	35.8
North: [Dunnings	Road N									
7	L	63	1.6	0.480	28.3	LOS C	2.1	15.1	0.62	0.71	30.8
9	R	112	0.0	0.345	54.7	LOS D	5.8	40.9	0.92	0.79	22.4
Approa	ch	175	0.6	0.480	45.2	LOS D	5.8	40.9	0.81	0.76	24.8
West: S	Sneydes R	toad W									
10	L	56	1.8	0.471	30.7	LOS C	16.7	117.8	0.73	0.93	33.0
11	Т	795	0.4	0.471	23.2	LOS C	16.9	118.5	0.73	0.64	35.0
Approa	ch	851	0.5	0.471	23.7	LOS C	16.9	118.5	0.73	0.66	34.8
All Vehi	icles	1615	0.8	0.480	25.5	LOS C	16.9	118.5	0.72	0.64	33.7

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians												
		Demand	Average	Level of	Average Back	of Queue	Queued Stop Rat per pe 0.95 0.9 0.59 0.5 0.89 0.8	Effective					
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate					
		ped/h	sec		ped	m		per ped					
P3	Across E approach	50	54.2	LOS E	0.2	0.2	0.95	0.95					
P5	Across N approach	50	21.0	LOS C	0.1	0.1	0.59	0.59					
P7	Across W approach	50	47.7	LOS E	0.2	0.2	0.89	0.89					
All Ped	estrians	150	41.0	LOS E			0.81	0.81					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 21 February 2013 5:32:29 PM SIDRA INTERSECTION 5.1.2.1953

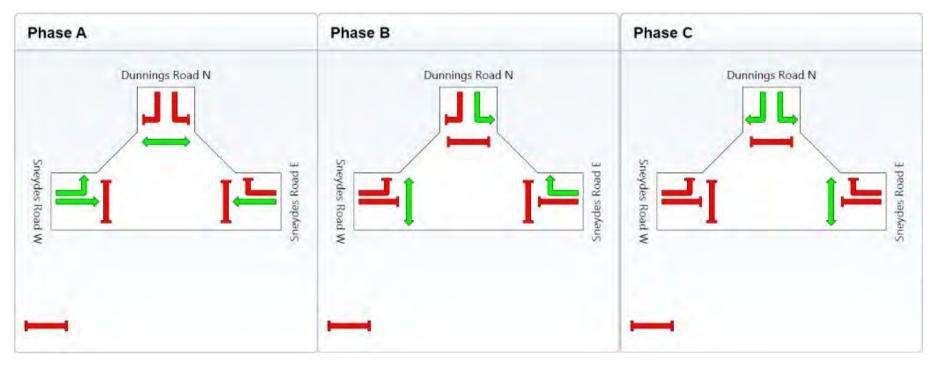
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2026\Int #14.sip 8000907, AECOM, ENTERPRISE

SIDRA INTERSECTION

PHASING SUMMARY

Intersection 14 - PM Peak Hour

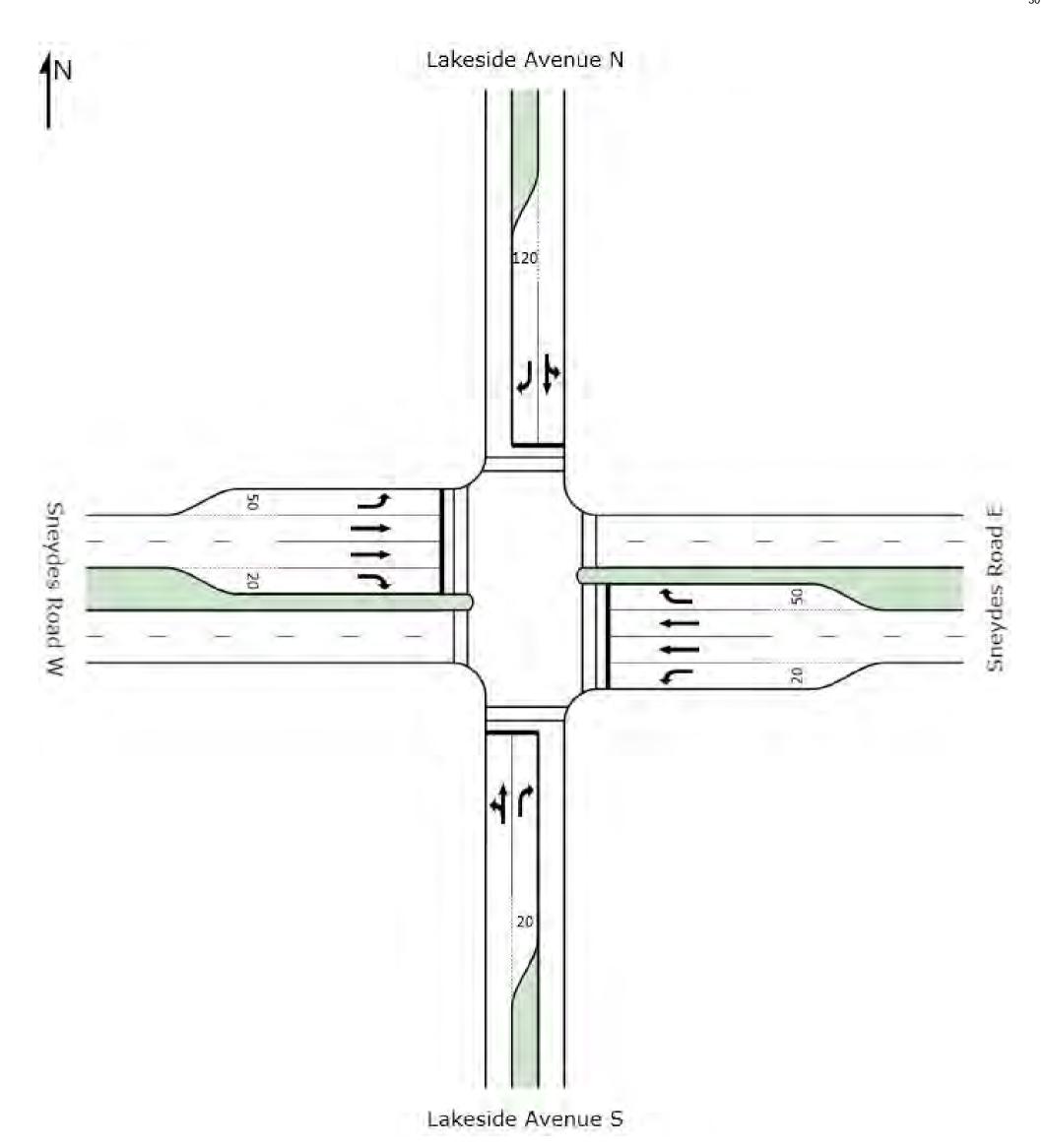

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Three-Phase Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	56	25	21
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	62	31	27
Phase Split	52 %	26 %	23 %



Processed: Thursday, 21 February 2013 5:32:29 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd $\underline{www.sidrasolutions.com}$

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2026\Int #14.sip 8000907, AECOM, ENTERPRISE

MOVEMENT SUMMARY

Intersection 16 - 2026 AM Peak

Moven	nent Per	formance - '	Vehicles								
-MOVCII		Demand	Verilleles	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Lakeside	Avenue S									
1	L	29	0.0	0.098	45.9	LOS D	1.9	13.5	0.82	0.75	24.8
2	Т	13	0.0	0.098	38.7	LOS D	1.9	13.5	0.82	0.62	24.5
3	R	41	0.0	0.500	62.1	LOS E	2.3	16.0	0.96	0.73	20.9
Approa	ch	83	0.0	0.500	52.8	LOS D	2.3	16.0	0.89	0.72	22.6
East: S	neydes R	oad E									
4	L	46	2.2	0.397	34.3	LOS C	1.7	12.4	0.69	0.71	29.8
5	Т	533	0.2	0.657	47.4	LOS D	14.5	101.5	0.97	0.82	25.0
6	R	166	0.0	0.671	43.5	LOS D	7.7	53.7	0.81	0.80	26.4
Approa	ch	745	0.3	0.671	45.8	LOS D	14.5	101.5	0.92	0.81	25.5
North: L	_akeside /	Avenue N									
7	L	50	0.0	0.152	45.7	LOS D	3.1	22.1	0.82	0.76	24.8
8	Т	17	11.8	0.152	38.5	LOS D	3.1	22.1	0.82	0.64	24.5
9	R	121	0.0	0.652	65.8	LOS E	7.2	50.2	1.00	0.82	20.2
Approa	ch	188	1.1	0.652	58.0	LOS E	7.2	50.2	0.94	0.79	21.6
West: S	Sneydes F	Road W									
10	L	134	2.2	0.509	35.9	LOS D	5.4	38.4	0.73	0.76	29.2
11	Т	537	1.1	0.666	47.6	LOS D	14.6	103.4	0.98	0.82	25.0
12	R	39	7.7	0.384	39.6	LOS D	1.6	12.1	0.75	0.71	27.8
Approa	ch	710	1.7	0.666	44.9	LOS D	14.6	103.4	0.92	0.80	25.8
All Vehi	cles	1726	0.9	0.671	47.1	LOS D	14.6	103.4	0.92	0.80	25.0

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back of Queue Pedestrian Distance ped m		Prop. Queued	Effective Stop Rate per ped					
P1	Across S approach	50	43.4	LOS E	0.1	0.1	0.85	0.85					
P3	Across E approach	50	54.2	LOS E	0.2	0.2	0.95	0.95					
P5	Across N approach	50	43.4	LOS E	0.1	0.1	0.85	0.85					
P7	Across W approach	50	54.2	LOS E	0.2	0.2	0.95	0.95					
All Pede	estrians	200	48.8	LOS E			0.90	0.90					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

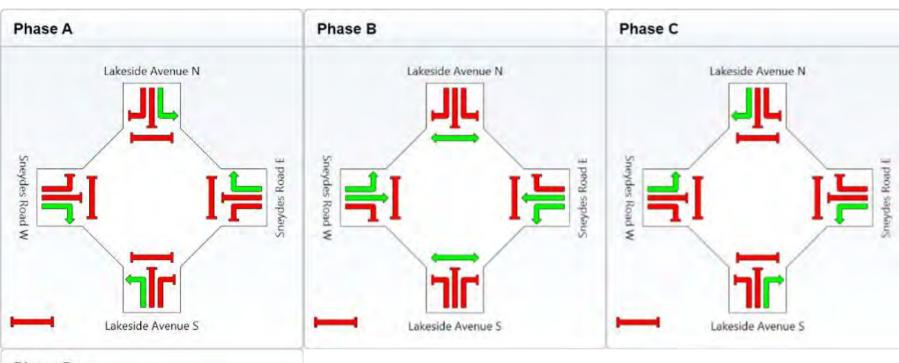
Processed: Friday, 7 December 2012 3:04:35 PM SIDRA INTERSECTION 5.1.2.1953 Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2026\Int #16.sip

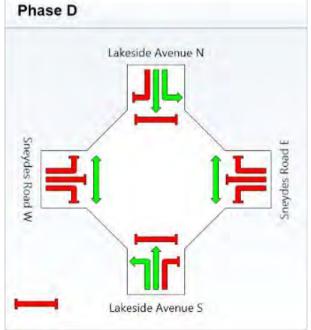
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

8000907, AECOM, ENTERPRISE

PHASING SUMMARY

Intersection 16 - 2026 AM Peak

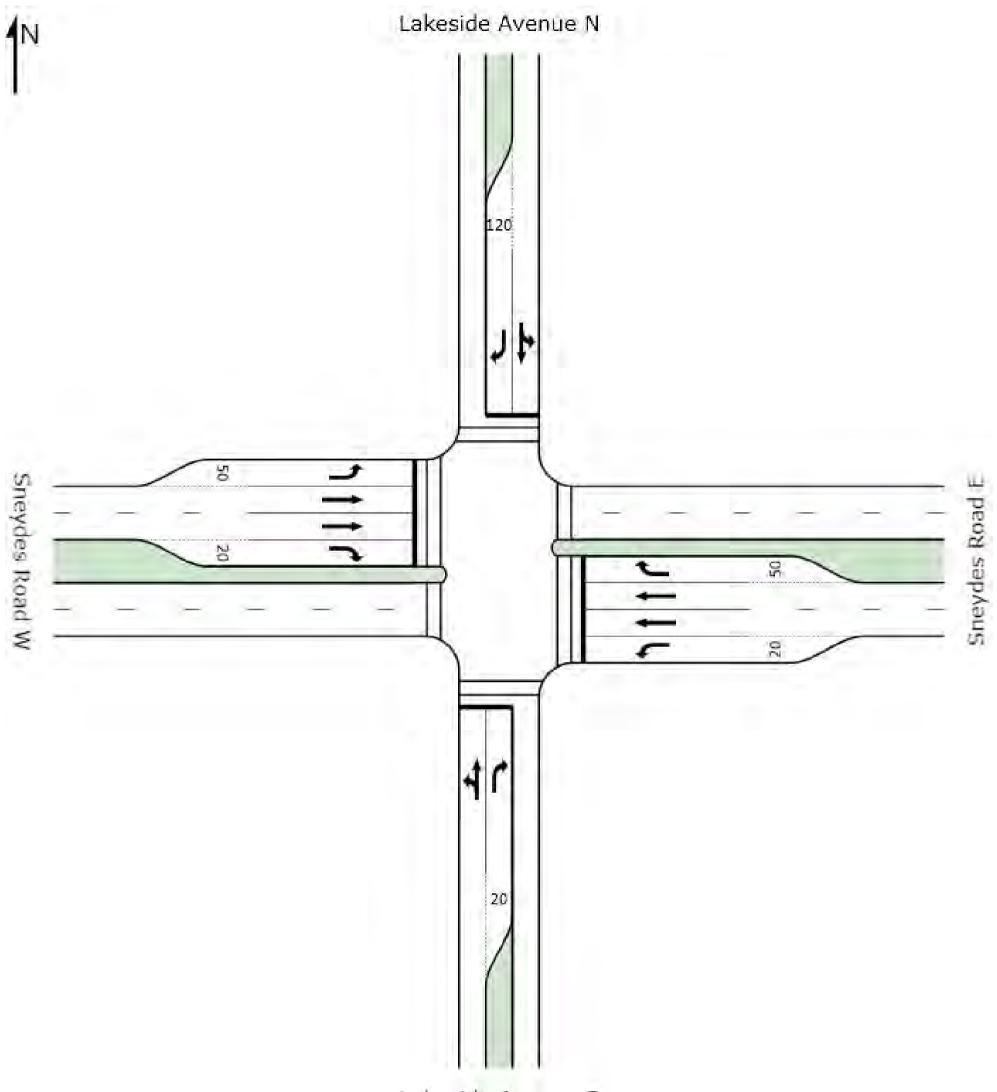

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Diamond-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	36	25	12	23
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	42	31	18	29
Phase Split	35 %	26 %	15 %	24 %



Processed: Friday, 7 December 2012 3:04:35 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2026\Int #16.sip 8000907, AECOM, ENTERPRISE

Lakeside Avenue 5

Site: 2026 PM - Rev A

MOVEMENT SUMMARY

Intersection 16 - 2026 PM Peak

Moven	nent Per	rformance - '	Vehicles								
		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
		Avenue S									
1	L	42	0.0	0.132	46.3	LOS D	2.6	18.4	0.83	0.76	24.7
2	Т	15	0.0	0.132	39.1	LOS D	2.6	18.4	0.83	0.64	24.3
3	R	74	0.0	0.668	42.5	LOS D	3.3	23.3	0.75	0.80	25.7
Approa	ch	131	0.0	0.668	43.3	LOS D	3.3	23.3	0.78	0.77	25.2
East: S	neydes R	Road E									
4	L	51	5.9	0.285	17.5	LOS B	1.2	8.6	0.42	0.69	39.4
5	Т	582	0.5	0.620	44.0	LOS D	15.3	107.6	0.95	0.80	26.1
6	R	46	0.0	0.495	71.6	LOS E	2.8	19.7	1.00	0.74	19.4
Approa	ch	679	0.9	0.620	43.9	LOS D	15.3	107.6	0.91	0.79	26.1
North: L	_akeside	Avenue N									
7	L	153	0.0	0.379	46.7	LOS D	8.6	60.2	0.87	0.81	24.5
8	Т	25	0.0	0.379	39.5	LOS D	8.6	60.2	0.87	0.72	24.1
9	R	343	0.0	0.675	43.9	LOS D	16.8	117.8	0.89	0.83	25.3
Approa	ch	521	0.0	0.675	44.5	LOS D	16.8	117.8	0.89	0.82	25.0
West: S	Sneydes F	Road W									
10	L	200	1.0	0.496	18.3	LOS B	5.0	35.5	0.47	0.73	38.7
11	Т	622	0.5	0.662	44.5	LOS D	16.6	116.4	0.96	0.82	25.9
12	R	34	2.9	0.465	71.1	LOS E	2.1	14.8	1.00	0.72	19.5
Approa	ch	856	0.7	0.662	39.5	LOS D	16.6	116.4	0.85	0.79	27.6
All Vehi	cles	2187	0.5	0.675	42.3	LOS D	16.8	117.8	0.87	0.80	26.3

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped					
P1	Across S approach	50	40.0	LOS E	0.1	0.1	0.82	0.82					
P3	Across E approach	50	54.2	LOS E	0.2	0.2	0.95	0.95					
P5	Across N approach	50	40.0	LOS E	0.1	0.1	0.82	0.82					
P7	Across W approach	50	54.2	LOS E	0.2	0.2	0.95	0.95					
All Pede	estrians	200	47.1	LOS E			0.88	0.88					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Friday, 7 December 2012 3:04:36 PM SIDRA INTERSECTION 5.1.2.1953

8000907, AECOM, ENTERPRISE

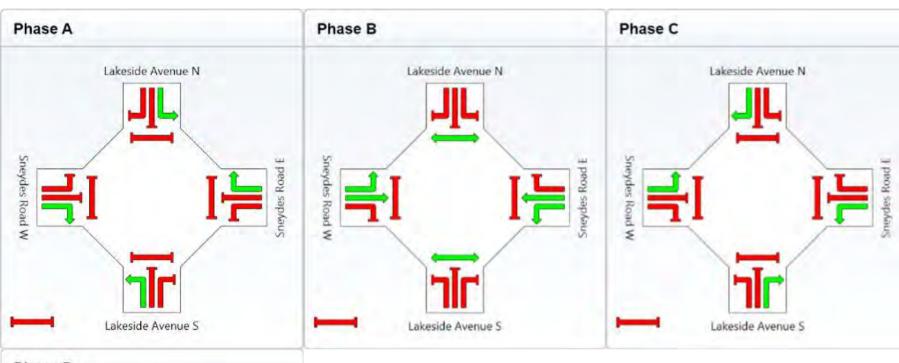
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

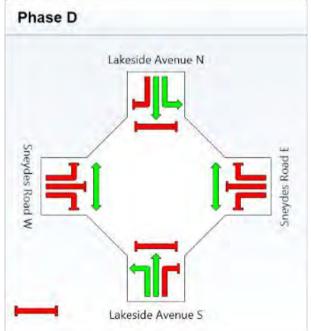
Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2026\Int #16.sip

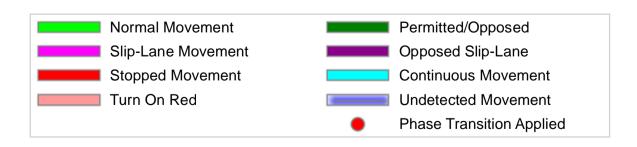
Site: 2026 PM - Rev A

PHASING SUMMARY

Intersection 16 - 2026 PM Peak

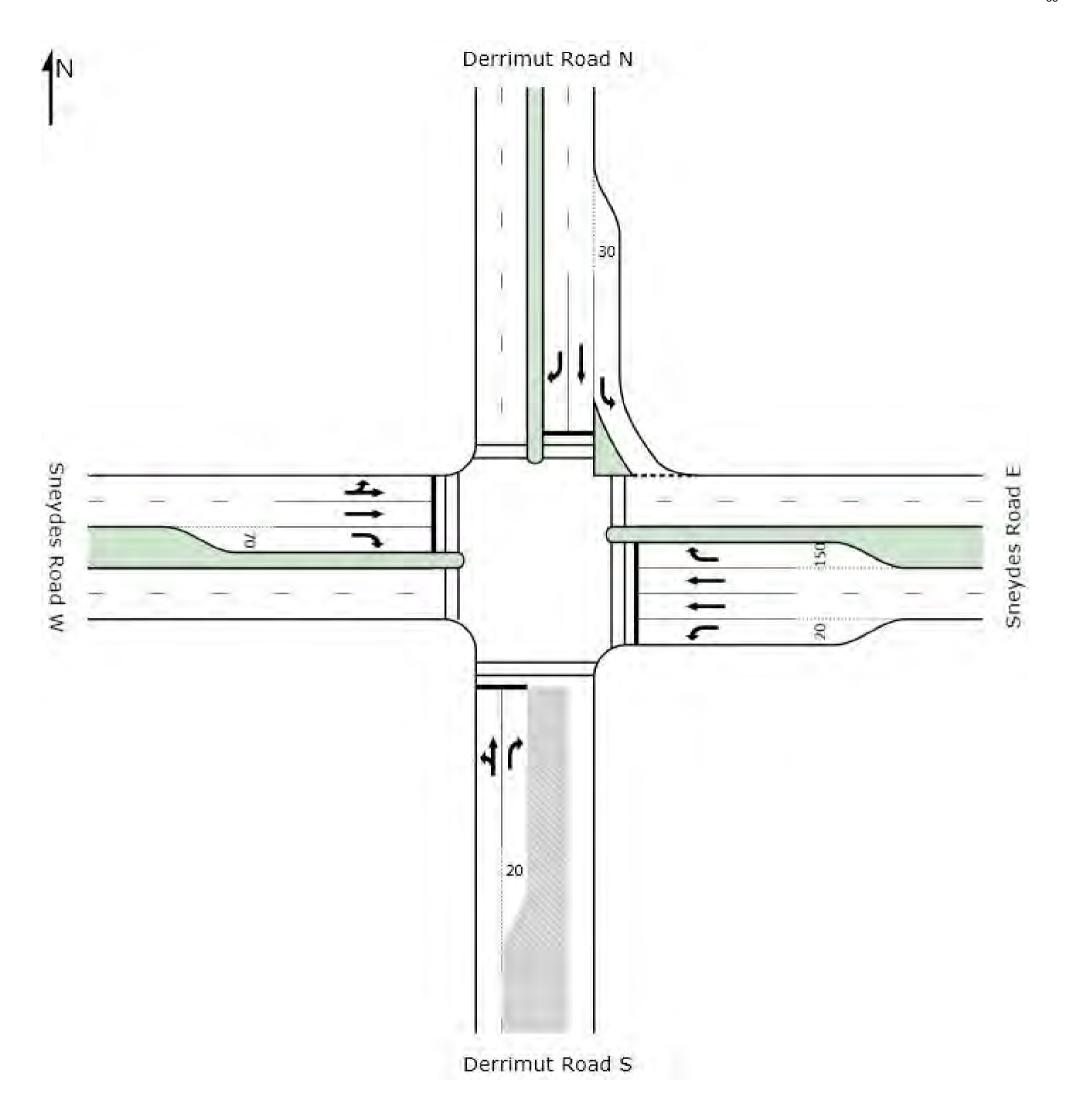

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Diamond-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	6	29	38	23
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	12	35	44	29
Phase Split	10 %	29 %	37 %	24 %


Processed: Friday, 7 December 2012 3:04:36 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2026\Int #16.sip

8000907, AECOM, ENTERPRISE

MOVEMENT SUMMARY

Intersection 17 - 2026 AM Peak

Moyer	nont Por	formance - \	Vohiclos								
Wover	nent Per	Demand	veriicies	Deg.	Average	Level of	95% Back (of Oueue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec	Corvido	veh	m	Quoucu	per veh	km/h
South:	Derrimut	Road S									
1	L	74	0.0	0.636	56.8	LOS E	12.3	85.9	0.98	0.83	22.3
2	Т	149	0.0	0.636	49.6	LOS D	12.3	85.9	0.98	0.81	22.3
3	R	30	0.0	0.328	51.8	LOS D	1.5	10.3	0.87	0.70	23.2
Approa	ch	253	0.0	0.636	51.9	LOS D	12.3	85.9	0.97	0.81	22.4
East: S	neydes R	oad E									
4	L	68	0.0	0.288	17.4	LOS B	1.2	8.5	0.59	0.71	39.4
5	Т	204	0.5	0.185	34.8	LOS C	4.5	31.6	0.80	0.64	29.5
6	R	413	0.2	0.786	53.4	LOS D	23.4	163.9	0.99	0.90	24.3
Approa	ch	685	0.3	0.786	44.3	LOS D	23.4	163.9	0.89	0.80	26.7
North: [Derrimut F	Road N									
7	L	421	2.4	0.692	10.2	LOS B	4.0	28.9	0.42	0.71	46.8
8	Т	266	1.5	0.719	51.9	LOS D	15.1	106.9	0.99	0.86	23.4
9	R	13	0.0	0.037	50.2	LOS D	0.6	4.3	0.84	0.69	25.3
Approa	ch	700	2.0	0.719	26.8	LOS C	15.1	106.9	0.64	0.77	33.9
West: S	Sneydes F	Road W									
10	L	27	0.0	0.488	61.9	LOS E	7.5	52.6	0.96	0.85	23.0
11	Т	259	0.8	0.488	52.4	LOS D	7.8	54.8	0.96	0.79	23.6
12	R	164	0.0	0.589	59.8	LOS E	9.2	64.2	0.98	0.81	21.8
Approa	ch	450	0.4	0.589	55.7	LOS E	9.2	64.2	0.97	0.80	22.9
All Vehi	cles	2088	0.9	0.786	41.8	LOS D	23.4	163.9	0.83	0.79	27.0

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

8000907, AECOM, ENTERPRISE

Moven	Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back of Queue Pedestrian Distance ped m		Prop. Queued	Effective Stop Rate per ped					
P1	Across S approach	20	36.0	LOS D	0.1	0.1	0.78	0.78					
P3	Across E approach	20	54.2	LOS E	0.1	0.1	0.95	0.95					
P5	Across N approach	20	54.2	LOS E	0.1	0.1	0.95	0.95					
P7	Across W approach	20	54.2	LOS E	0.1	0.1	0.95	0.95					
All Pede	estrians	80	49.6	LOS E			0.91	0.91					

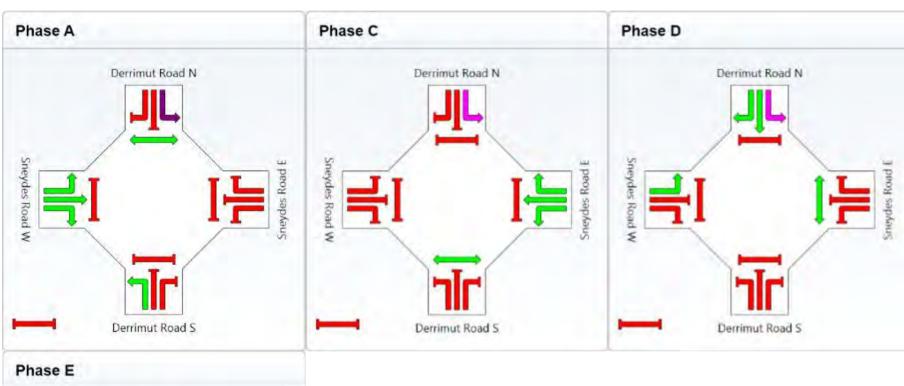
Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

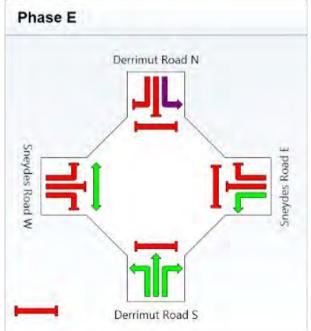
Processed: Friday, 7 December 2012 8:46:40 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com
Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2026\Int #17.sip

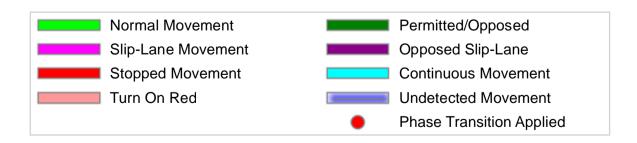
PHASING SUMMARY

Intersection 17 - 2026 AM Peak

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

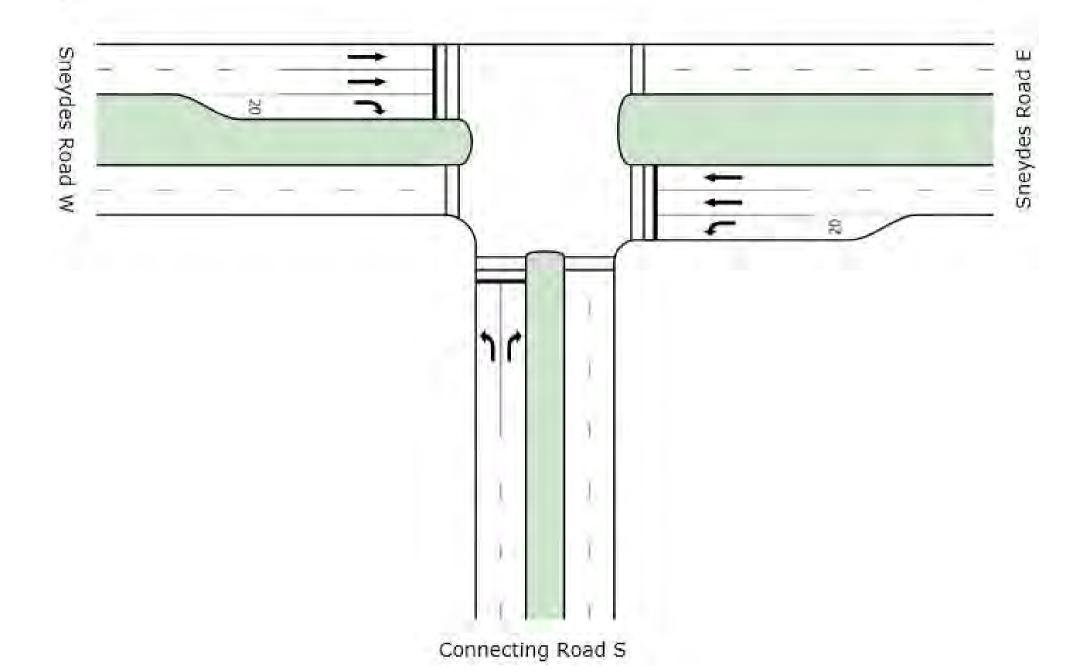

Phase times determined by the program


Sequence: Split-phase (phase reduction applied)


Input Sequence: A, B, C, D, E Output Sequence: A, C, D, E

Phase Timing Results

Phase	Α	С	D	E
Green Time (sec)	18	34	23	21
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	24	40	29	27
Phase Split	20 %	33 %	24 %	23 %


Processed: Friday, 7 December 2012 8:46:40 AM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2026\Int #17.sip 8000907, AECOM, ENTERPRISE

MOVEMENT SUMMARY

Intersection 18a - AM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Moven	nent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back o Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: 0	South: Connecting Road S										
1	L	16	0.0	0.029	39.6	LOS D	0.7	4.6	0.73	0.70	28.7
3	R	10	0.0	0.027	48.9	LOS D	0.5	3.3	0.83	0.68	25.7
Approac	ch	26	0.0	0.029	43.2	LOS D	0.7	4.6	0.77	0.69	27.5
East: Sr	neydes R	oad E									
4	L	13	0.0	0.070	18.2	LOS B	0.3	2.1	0.42	0.68	39.9
5	Т	1590	0.1	0.680	17.2	LOS B	30.9	216.6	0.73	0.67	38.9
Approac	ch	1603	0.1	0.680	17.2	LOS B	30.9	216.6	0.73	0.67	38.9
West: S	neydes R	load W									
11	Т	843	0.4	0.361	12.9	LOS B	12.4	86.7	0.55	0.48	42.6
12	R	36	0.0	0.480	71.5	LOS E	2.2	15.3	1.00	0.72	20.3
Approac	ch	879	0.3	0.480	15.3	LOS B	12.4	86.7	0.57	0.49	40.7
All Vehi	cles	2508	0.2	0.680	16.8	LOS B	30.9	216.6	0.67	0.61	39.3

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

8000907, AECOM, ENTERPRISE

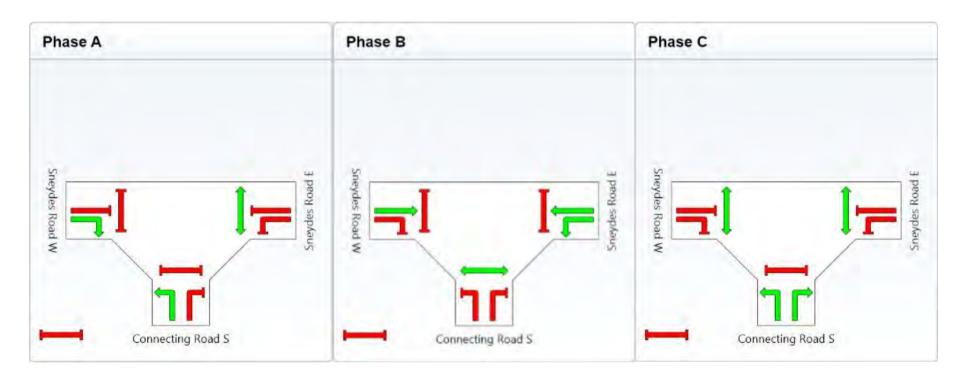
Moven	Movement Performance - Pedestrians											
		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective				
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate				
		ped/h	sec		ped	m		per ped				
P1	Across S approach	50	16.0	LOS B	0.1	0.1	0.52	0.52				
P3	Across E approach	50	43.4	LOS E	0.1	0.1	0.85	0.85				
P7	Across W approach	50	54.2	LOS E	0.2	0.2	0.95	0.95				
All Ped	estrians	150	37.8	LOS D			0.77	0.77				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Wednesday, 20 February 2013 5:04:13 PM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com
Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #18a.sip

PHASING SUMMARY

Intersection 18a - AM Peak Hour

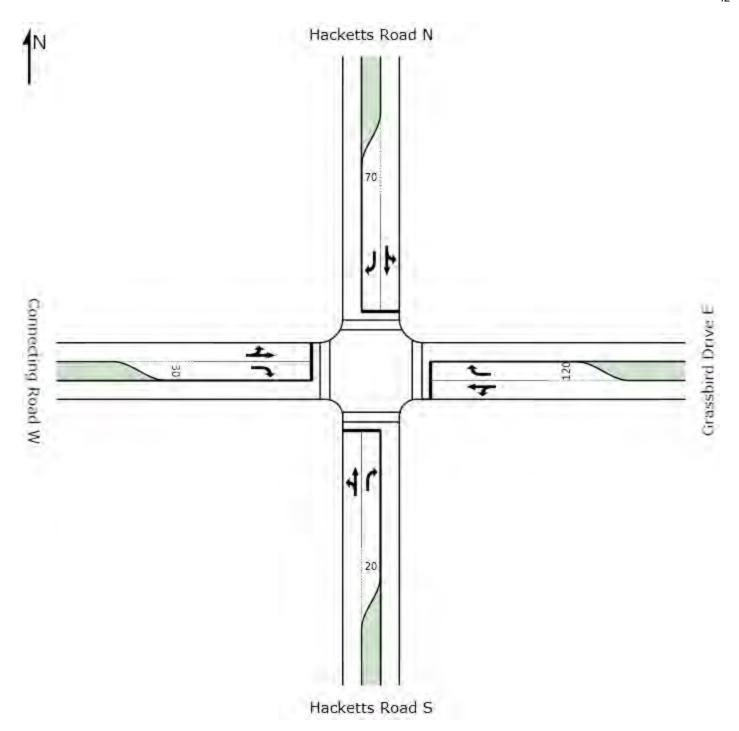

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Two-Phase Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	6	72	24
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	12	78	30
Phase Split	10 %	65 %	25 %



Processed: Wednesday, 20 February 2013 5:04:13 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd $\underline{\text{www.sidrasolutions.com}}$

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #18a.sip 8000907, AECOM, ENTERPRISE

MOVEMENT SUMMARY

Intersection 24 - AM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
		Demand	1.0.7	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Caudhil	la alsatta	veh/h	%	v/c	sec		veh	m		per veh	km/h
	Hacketts										
1	L	43	0.0	0.671	39.7	LOS D	24.1	168.4	0.89	0.91	29.2
2	Т	458	0.0	0.671	32.2	LOS C	24.1	168.4	0.89	0.78	30.3
3	R	3	0.0	0.036	61.5	LOS E	0.2	1.1	0.93	0.63	21.4
Approac	ch	504	0.0	0.671	33.0	LOS C	24.1	168.4	0.89	0.79	30.1
East: G	rassbird	Drive E									
4	L	14	0.0	0.038	46.9	LOS D	0.7	4.8	0.82	0.70	24.4
5	Т	1	0.0	0.038	39.7	LOS D	0.7	4.8	0.82	0.58	24.0
6	R	265	0.0	0.659	54.1	LOS D	14.4	100.5	0.97	0.84	22.5
Approac	ch	280	0.0	0.659	53.7	LOS D	14.4	100.5	0.96	0.83	22.6
North: F	Hacketts	Road N									
7	L	66	0.0	0.502	37.0	LOS D	16.5	115.5	0.81	0.90	30.0
8	Т	309	0.0	0.502	29.5	LOS C	16.5	115.5	0.81	0.71	31.4
9	R	107	0.0	0.629	67.2	LOS E	6.4	44.5	1.00	0.80	20.2
Approac	ch	482	0.0	0.629	38.9	LOS D	16.5	115.5	0.85	0.75	27.9
West: C	Connectin	ng Road W									
10	L	72	0.0	0.163	45.8	LOS D	3.4	23.6	0.83	0.76	24.7
11	Т	1	0.0	0.163	38.6	LOS D	3.4	23.6	0.83	0.65	24.3
12	R	18	0.0	0.127	47.0	LOS D	0.8	5.8	0.82	0.69	24.3
Approac	ch	91	0.0	0.163	46.0	LOS D	3.4	23.6	0.83	0.74	24.6
All Vehi	cles	1357	0.0	0.671	40.2	LOS D	24.1	168.4	0.89	0.78	27.1

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

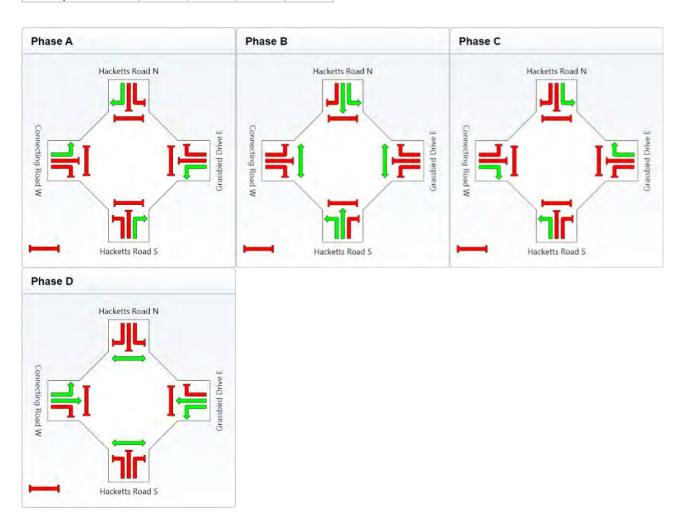
SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians											
Marris		Demand	Average		Average Back		Prop.	Effective				
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate				
		ped/h	sec		ped	m		per ped				
P1	Across S approach	50	54.2	LOS E	0.2	0.2	0.95	0.95				
P3	Across E approach	50	27.3	LOS C	0.1	0.1	0.68	0.68				
P5	Across N approach	50	54.2	LOS E	0.2	0.2	0.95	0.95				
P7	Across W approach	50	27.3	LOS C	0.1	0.1	0.68	0.68				
All Pedestrians		200	40.7	LOS E			0.81	0.81				

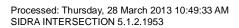
Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

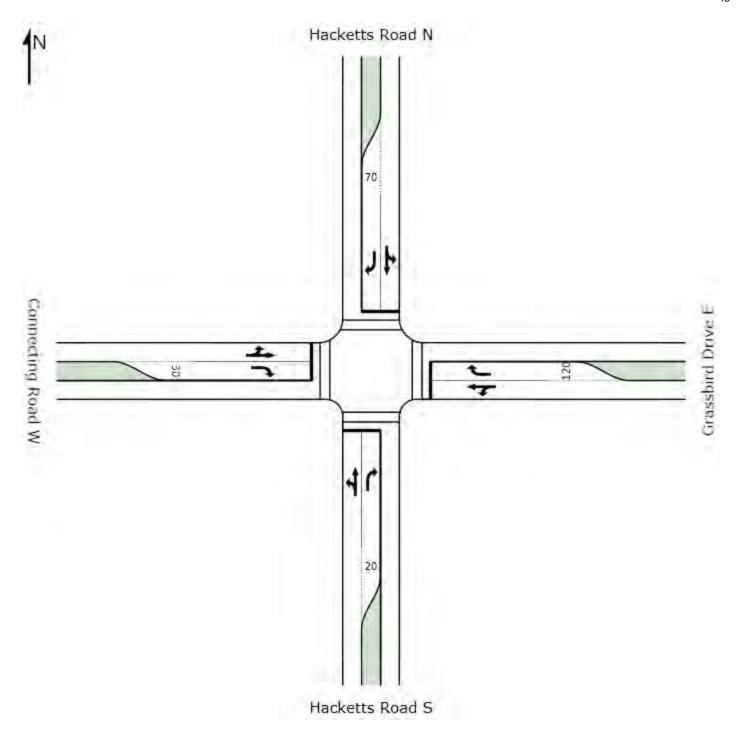
Intersection 24 - AM Peak Hour


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program


Sequence: Diamond-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results


Phase	Α	В	С	D
Green Time (sec)	11	46	26	13
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	17	52	32	19
Phase Split	14 %	43 %	27 %	16 %

Site: 2026 PM Rev B

MOVEMENT SUMMARY

Intersection 24 - PM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Mover	Movement Performance - Vehicles											
Marrido	T	Demand	1.17.7	Deg.	Average	Level of	95% Back		Prop.	Effective	Average	
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
South	Hacketts	veh/h	%	v/c	sec		veh	m		per veh	km/h	
1	L	55	0.0	0.494	36.8	LOS D	16.2	113.2	0.81	0.90	30.1	
2	T	314	0.0	0.494	29.4	LOS D	16.2	113.2	0.81	0.90	31.5	
3	R	314	0.0	0.494	59.4 59.2	LOS E	0.2	1.1	0.81	0.70	21.9	
						LOS C						
Approa	icn	372	0.0	0.494	30.7	LOSC	16.2	113.2	0.81	0.73	31.2	
East: G	assbird [Drive E										
4	L	14	0.0	0.037	46.0	LOS D	0.7	4.8	0.81	0.70	24.6	
5	Т	1	0.0	0.037	38.8	LOS D	0.7	4.8	0.81	0.58	24.3	
6	R	265	0.0	0.713	57.2	LOS E	14.9	104.5	0.99	0.86	21.8	
Approa	ich	280	0.0	0.713	56.6	LOS E	14.9	104.5	0.98	0.85	21.9	
North:	Hacketts F	Road N										
7	L	66	0.0	0.729	40.7	LOS D	27.0	189.2	0.92	0.91	28.8	
8	Т	479	0.0	0.729	33.3	LOS C	27.0	189.2	0.92	0.82	29.7	
9	R	148	0.0	0.736	67.5	LOS E	9.0	62.7	1.00	0.85	20.2	
Approa	nch	693	0.0	0.736	41.3	LOS D	27.0	189.2	0.93	0.83	27.0	
West: 0	Connecting	g Road W										
10	L	215	0.0	0.443	46.7	LOS D	10.6	73.9	0.88	0.81	24.4	
11	Т	1	0.0	0.443	39.5	LOS D	10.6	73.9	0.88	0.74	23.9	
12	R	72	0.0	0.524	50.5	LOS D	3.5	24.7	0.87	0.75	23.3	
Approa	ich	288	0.0	0.524	47.6	LOS D	10.6	73.9	0.88	0.80	24.1	
All Veh	icles	1633	0.0	0.736	42.6	LOS D	27.0	189.2	0.90	0.81	26.2	

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

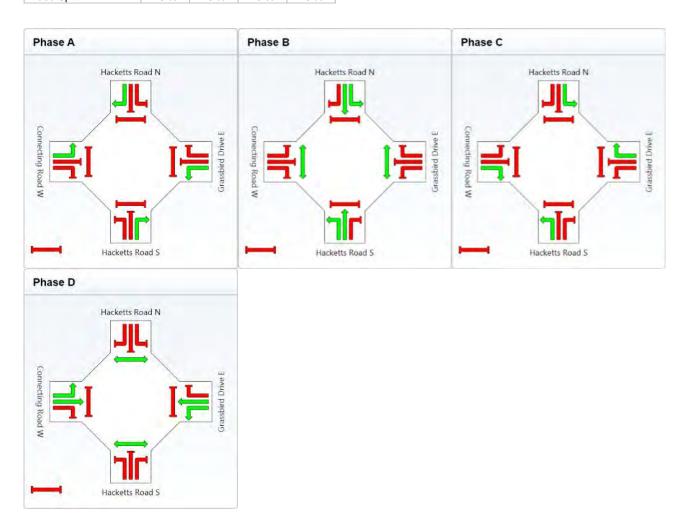
Movement Performance - Pedestrians											
		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective			
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate			
		ped/h	sec		ped	m		per ped			
P1	Across S approach	50	54.2	LOS E	0.2	0.2	0.95	0.95			
P3	Across E approach	50	27.3	LOS C	0.1	0.1	0.68	0.68			
P5	Across N approach	50	54.2	LOS E	0.2	0.2	0.95	0.95			
P7	Across W approach	50	27.3	LOS C	0.1	0.1	0.68	0.68			
All Pede	estrians	200	40.7	LOS E			0.81	0.81			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

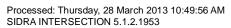
Site: 2026 PM Rev B

PHASING SUMMARY

Intersection 24 - PM Peak Hour

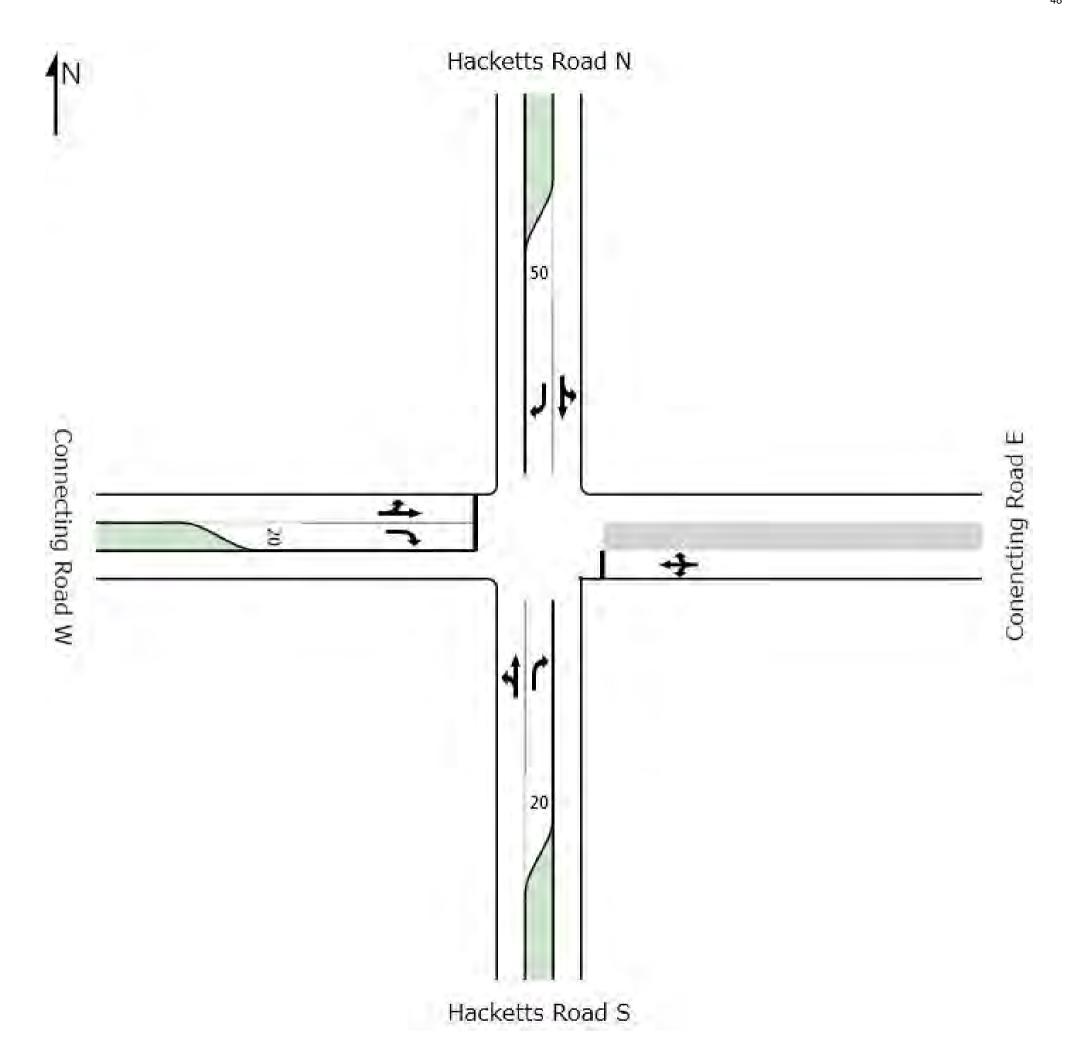

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program


Sequence: Diamond-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	13	46	24	13
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	19	52	30	19
Phase Split	16 %	43 %	25 %	16 %



Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2026\Int #24.sip 8000907, AECOM, ENTERPRISE

MOVEMENT SUMMARY

Intersection 25 - AM Peak Hour Stop (Two-Way)

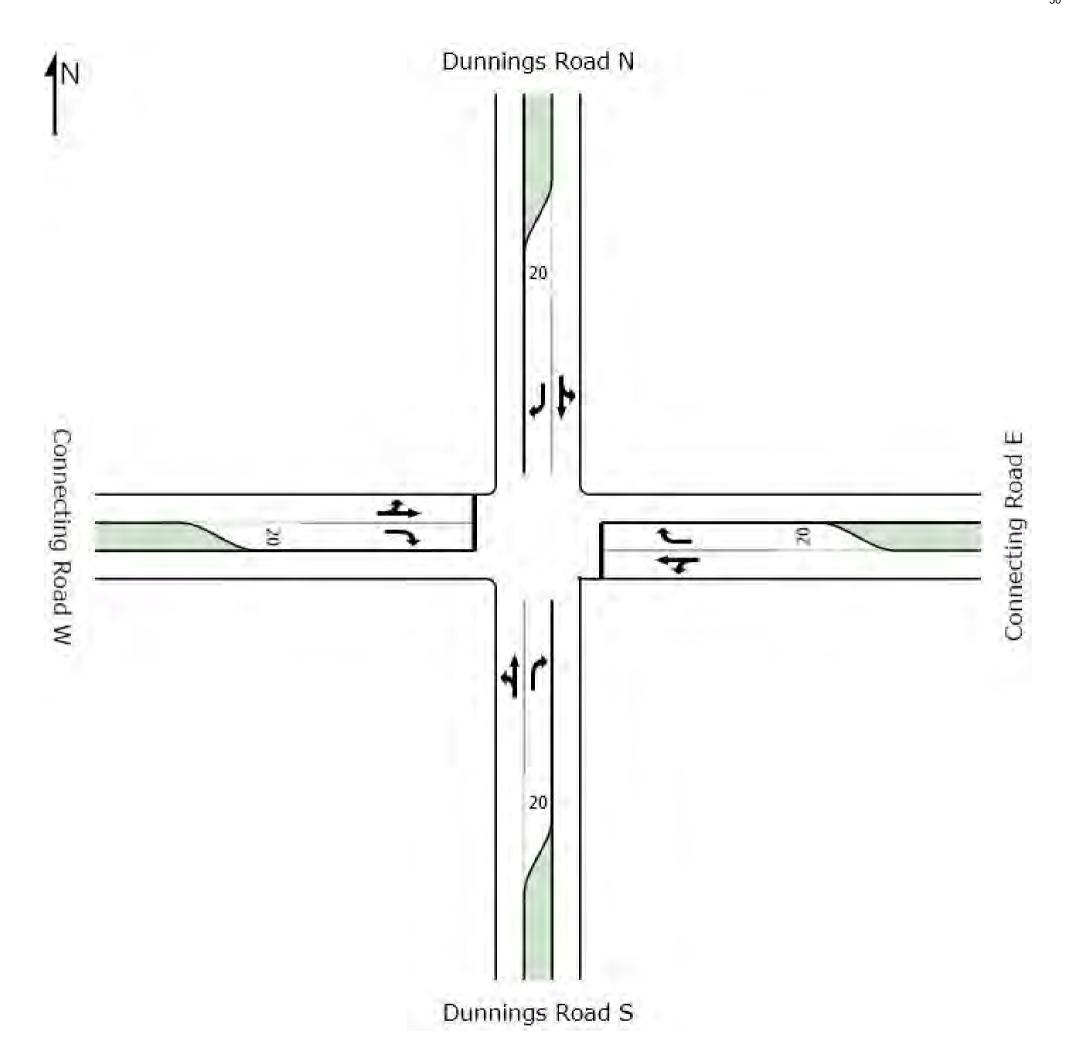
Movement Performance - Vehicles											
Moven	nent Per		ehicles				2.70/ 5				
Mov ID	Turn	Demand	HV	Deg.	Average	Level of	95% Back o		Prop.	Effective	Average
IVIOV ID	14111	Flow veh/h	%	Satn v/c	Delay sec	Service	Vehicles veh	Distance	Queued	Stop Rate per veh	Speed km/h
South: I	Hacketts		/0	V/G	366		VGII	m		per veri	KIII/II
1	L	20	0.0	0.272	7.4	LOS A	0.0	0.0	0.00	1.15	48.6
2	Т	510	0.0	0.272	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
3	R	1	0.0	0.001	9.4	LOS A	0.0	0.0	0.43	0.60	46.5
Approa	ch	531	0.0	0.272	0.3	NA	0.0	0.0	0.00	0.04	59.5
East: C	onencting	g Road E									
4	L	1	0.0	0.017	28.6	LOS D	0.1	0.4	0.78	0.76	31.3
5	Т	1	0.0	0.017	27.6	LOS D	0.1	0.4	0.78	0.98	30.7
6	R	1	0.0	0.017	28.5	LOS D	0.1	0.4	0.78	1.00	31.3
Approa	ch	3	0.0	0.017	28.3	LOS D	0.1	0.4	0.78	0.91	31.1
North: H	Hacketts I	Road N									
7	L	1	0.0	0.201	7.4	LOS A	0.0	0.0	0.00	1.19	48.6
8	Т	390	0.0	0.201	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
9	R	125	0.0	0.159	10.6	LOS B	0.6	4.3	0.54	0.81	45.2
Approa	ch	516	0.0	0.201	2.6	NA	0.6	4.3	0.13	0.20	55.7
West: C	Connectin	g Road W									
10	L	224	0.0	0.360	15.2	LOS C	1.7	11.8	0.60	1.06	38.6
11	Т	1	0.0	0.360	14.2	LOS B	1.7	11.8	0.60	1.05	38.1
12	R	27	0.0	0.179	34.2	LOS D	0.6	4.1	0.86	1.01	29.0
Approa	ch	252	0.0	0.360	17.2	LOS C	1.7	11.8	0.63	1.05	37.2
All Vehi	icles	1302	0.0	0.360	4.6	NA	1.7	11.8	0.18	0.30	52.0

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.


SIDRA Standard Delay Model used.

Processed: Thursday, 21 February 2013 5:38:57 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2026\Int #25.sip 8000907, AECOM, ENTERPRISE

MOVEMENT SUMMARY

Intersection 31 - AM Peak Hour Stop (Two-Way)

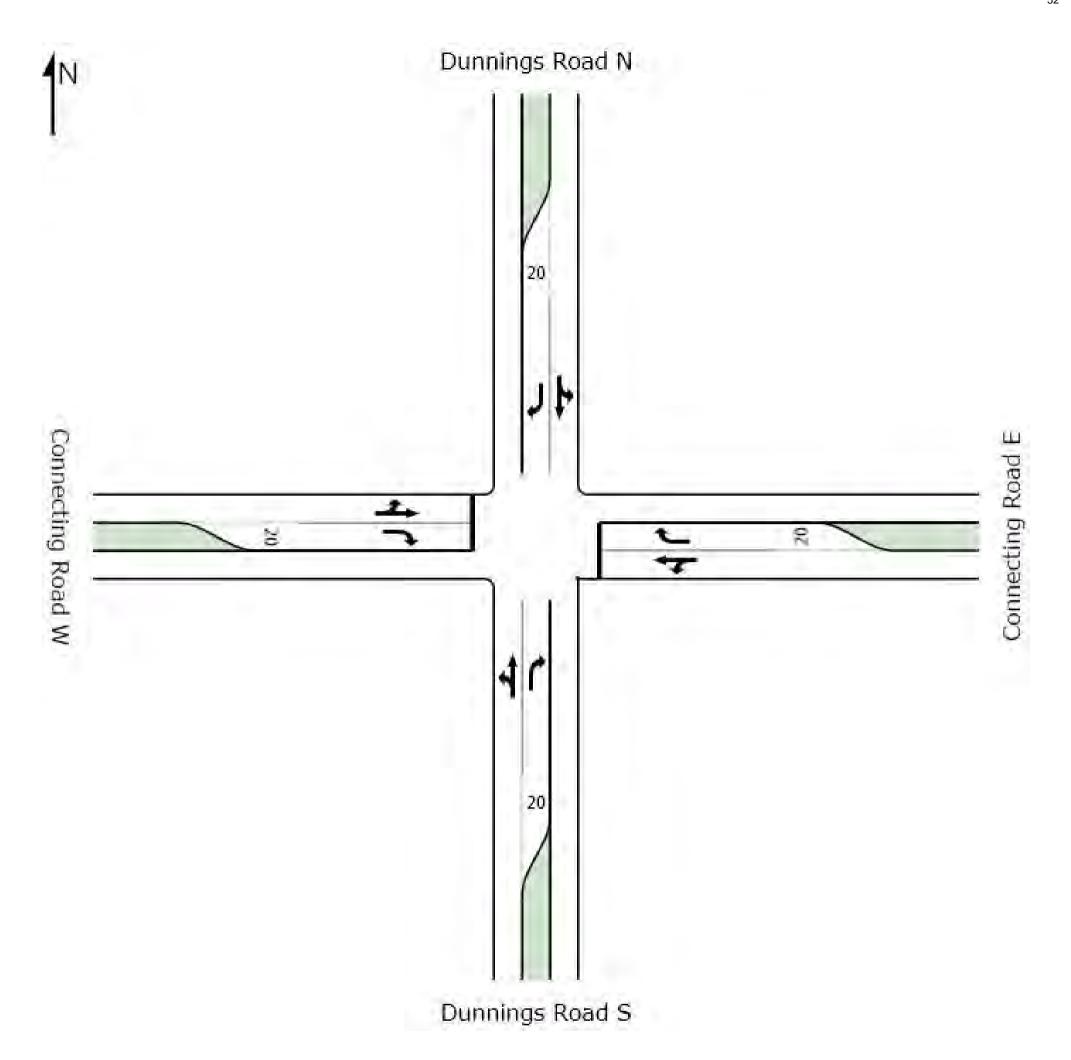
Moyer	Movement Performance - Vehicles											
wover	nent Per	Demand	venicles	Deg.	Average	Level of	95% Back of	of Oueue	Prop.	Effective	Average	
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
		veh/h	%	v/c	sec	Corvioc	veh	m	Quoucu	per veh	km/h	
South:	Dunnings	Road S										
1	L	24	0.0	0.074	6.4	LOS A	0.0	0.0	0.00	0.85	43.3	
2	Т	119	8.0	0.074	0.0	LOS A	0.0	0.0	0.00	0.00	50.0	
3	R	1	0.0	0.001	6.7	LOS A	0.0	0.0	0.14	0.57	42.7	
Approa	ch	144	0.7	0.074	1.1	NA	0.0	0.0	0.00	0.15	48.7	
East: C	onnecting	Road E										
4	L	1	0.0	0.002	10.2	LOS B	0.0	0.1	0.19	0.86	40.4	
5	Т	1	0.0	0.002	10.0	LOS A	0.0	0.1	0.19	0.90	40.6	
6	R	1	0.0	0.002	11.0	LOS B	0.0	0.0	0.36	0.80	40.0	
Approa	ch	3	0.0	0.002	10.4	LOS B	0.0	0.1	0.25	0.85	40.4	
North: I	Dunnings	Road N										
7	L	1	0.0	0.030	6.4	LOS A	0.0	0.0	0.00	0.91	43.3	
8	Т	56	1.8	0.030	0.0	LOS A	0.0	0.0	0.00	0.00	50.0	
9	R	15	0.0	0.017	7.1	LOS A	0.0	0.3	0.24	0.58	42.3	
Approa	ch	72	1.4	0.030	1.6	NA	0.0	0.3	0.05	0.13	48.1	
West: C	Connecting	g Road W										
10	L	16	0.0	0.017	9.9	LOS A	0.1	0.4	0.24	0.87	40.7	
11	Т	1	0.0	0.017	9.7	LOS A	0.1	0.4	0.24	0.90	40.9	
12	R	22	4.5	0.042	11.3	LOS B	0.1	0.9	0.37	0.86	39.9	
Approa	ch	39	2.6	0.042	10.7	LOS B	0.1	0.9	0.31	0.87	40.3	
All Vehi	cles	258	1.2	0.074	2.8	NA	0.1	0.9	0.06	0.26	46.9	

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.


SIDRA Standard Delay Model used.

Processed: Thursday, 21 February 2013 5:40:14 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2026\Int #31.sip 8000907, AECOM, ENTERPRISE

MOVEMENT SUMMARY

Intersection 31 - 2026 PM Peak Hour Stop (Two-Way)

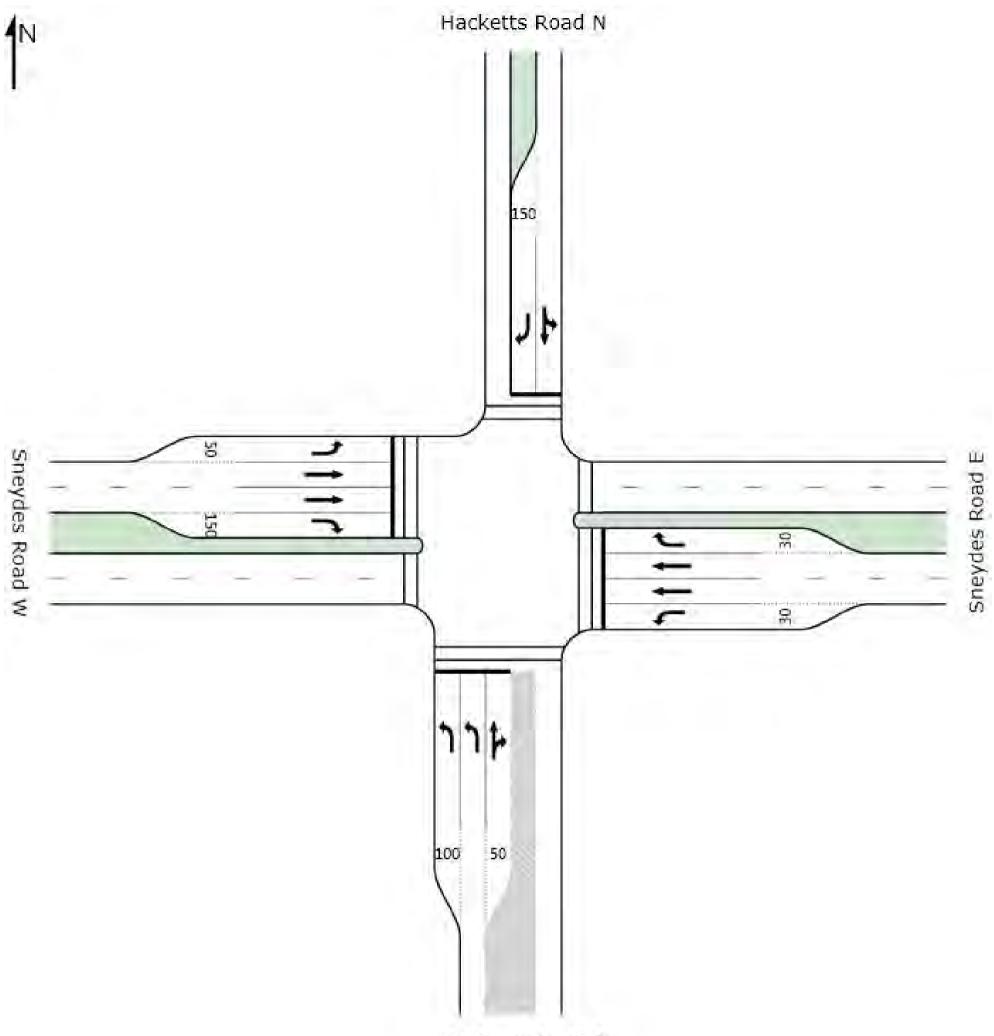
Mover	nent Per	formance -	Vehicles								
-Movel		Demand	Verilles	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	· km/h
South:	Dunnings	Road S									
1	L	20	0.0	0.040	6.4	LOS A	0.0	0.0	0.00	0.81	43.3
2	Т	56	1.8	0.040	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
3	R	11	0.0	0.001	6.9	LOS A	0.0	0.0	0.21	0.56	42.4
Approa	ch	77	1.3	0.040	1.8	NA	0.0	0.0	0.00	0.22	48.0
East: C	onnecting	Road E									
4	L	1	0.0	0.002	10.3	LOS B	0.0	0.1	0.27	0.82	40.5
5	Т	1	0.0	0.002	10.1	LOS B	0.0	0.1	0.27	0.85	40.6
6	R	1	0.0	0.002	11.1	LOS B	0.0	0.0	0.37	0.80	40.0
Approa	ch	3	0.0	0.002	10.5	LOS B	0.0	0.1	0.31	0.83	40.4
North: I	Dunnings	Road N									
7	L	1	0.0	0.058	6.4	LOS A	0.0	0.0	0.00	0.92	43.3
8	Т	112	0.0	0.058	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
9	R	24	0.0	0.026	6.8	LOS A	0.1	0.5	0.17	0.58	42.6
Approa	ch	137	0.0	0.058	1.2	NA	0.1	0.5	0.03	0.11	48.5
West: 0	Connecting	g Road W									
10	L	25	0.0	0.024	9.6	LOS A	0.1	0.6	0.16	0.90	40.9
11	Т	1	0.0	0.024	9.4	LOS A	0.1	0.6	0.16	0.94	41.0
12	R	63	1.6	0.119	11.4	LOS B	0.4	2.6	0.39	0.88	39.9
Approa	ch	89	1.1	0.119	10.9	LOS B	0.4	2.6	0.32	0.89	40.1
All Veh	icles	306	0.7	0.119	4.3	NA	0.4	2.6	0.11	0.37	45.5

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model used.


Processed: Thursday, 21 February 2013 5:40:22 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2026\Int #31.sip

8000907, AECOM, ENTERPRISE

Hacketts Road S

MOVEMENT SUMMARY

Site: 2026 AM Rev A - filtered right turn with full ped

Intersection 32 - 2026 AM Peak

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Move	ment Per	formance -	Vehicles								
Mov IC) Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Hacketts		70	V/ O	300		V 011			per veri	IXIII/II
1	L	537	0.0	0.723	58.4	LOS E	15.2	106.5	0.99	0.86	23.0
2	Т	49	0.0	0.585	36.8	LOS D	6.3	44.3	0.83	0.68	27.9
3	R	87	0.0	0.585	44.7	LOS D	6.3	44.3	0.83	0.80	27.3
Approa	ach	673	0.0	0.723	55.1	LOS E	15.2	106.5	0.96	0.84	23.8
East: S	Sneydes R	oad E									
4	L	101	0.0	0.613	39.4	LOS D	4.2	29.7	0.74	0.77	28.8
5	Т	1088	0.4	0.839	45.0	LOS D	31.9	223.7	0.99	0.96	25.7
6	R	57	0.0	0.526	71.2	LOS E	3.5	24.2	1.00	0.75	20.3
Approa	ach	1246	0.3	0.839	45.7	LOS D	31.9	223.7	0.97	0.93	25.6
North:	Hacketts F	Road N									
7	L	62	0.0	0.211	40.2	LOS D	5.4	37.8	0.77	0.82	29.1
8	Т	65	0.0	0.211	32.1	LOS C	5.4	37.8	0.77	0.63	29.9
9	R	366	0.3	0.825	57.0	LOS E	22.1	155.3	0.99	0.94	23.4
Approa	ach	493	0.2	0.825	51.6	LOS D	22.1	155.3	0.94	0.88	24.7
West: S	Sneydes F	Road W									
10	L	176	1.1	0.556	27.6	LOS C	5.9	41.6	0.62	0.76	34.1
11	Т	520	8.0	0.282	20.2	LOS C	9.1	64.0	0.65	0.55	37.1
12	R	299	0.0	0.805	62.2	LOS E	18.0	125.9	1.00	0.91	22.2
Approa	ach	995	0.6	0.805	34.1	LOS C	18.0	125.9	0.75	0.70	30.4
All Veh	icles	3407	0.3	0.839	45.1	LOS D	31.9	223.7	0.90	0.84	26.3

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

8000907, AECOM, ENTERPRISE

woven	nent Performance -							
NA ID	Description	Demand	Average	Level of	Average Back		Prop.	Effective
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	Across S approach	50	33.8	LOS D	0.1	0.1	0.75	0.75
P3	Across E approach	50	40.8	LOS E	0.1	0.1	0.83	0.83
P5	Across N approach	50	20.4	LOS C	0.1	0.1	0.58	0.58
P7	Across W approach	50	40.8	LOS E	0.1	0.1	0.83	0.83
All Pede	estrians	200	34.0	LOS D			0.75	0.75

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Friday, 22 February 2013 9:28:39 AM Copyright © 2000-2011 Akc SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2026\Int #32.sip

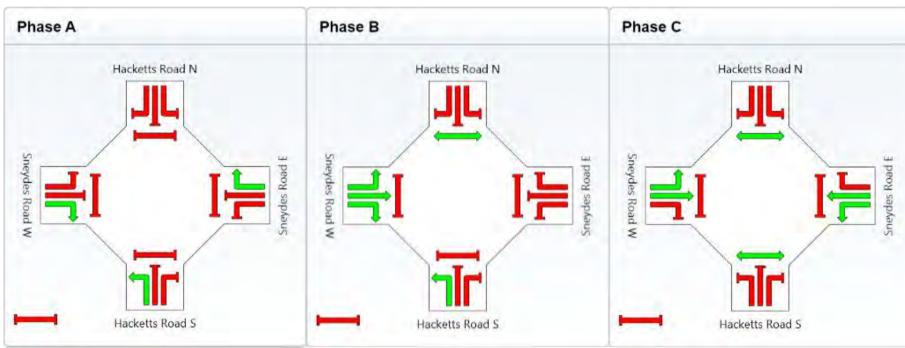
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

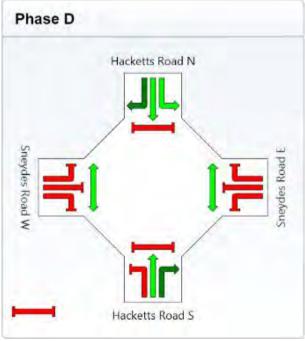
INTERSE

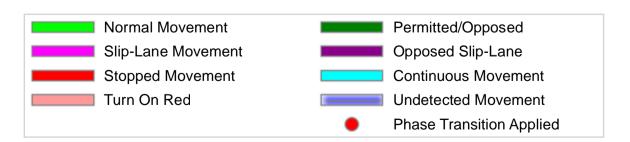
PHASING SUMMARY

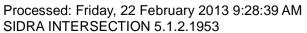
Site: 2026 AM Rev A - filtered right turn with full ped

Intersection 32 - 2026 AM Peak

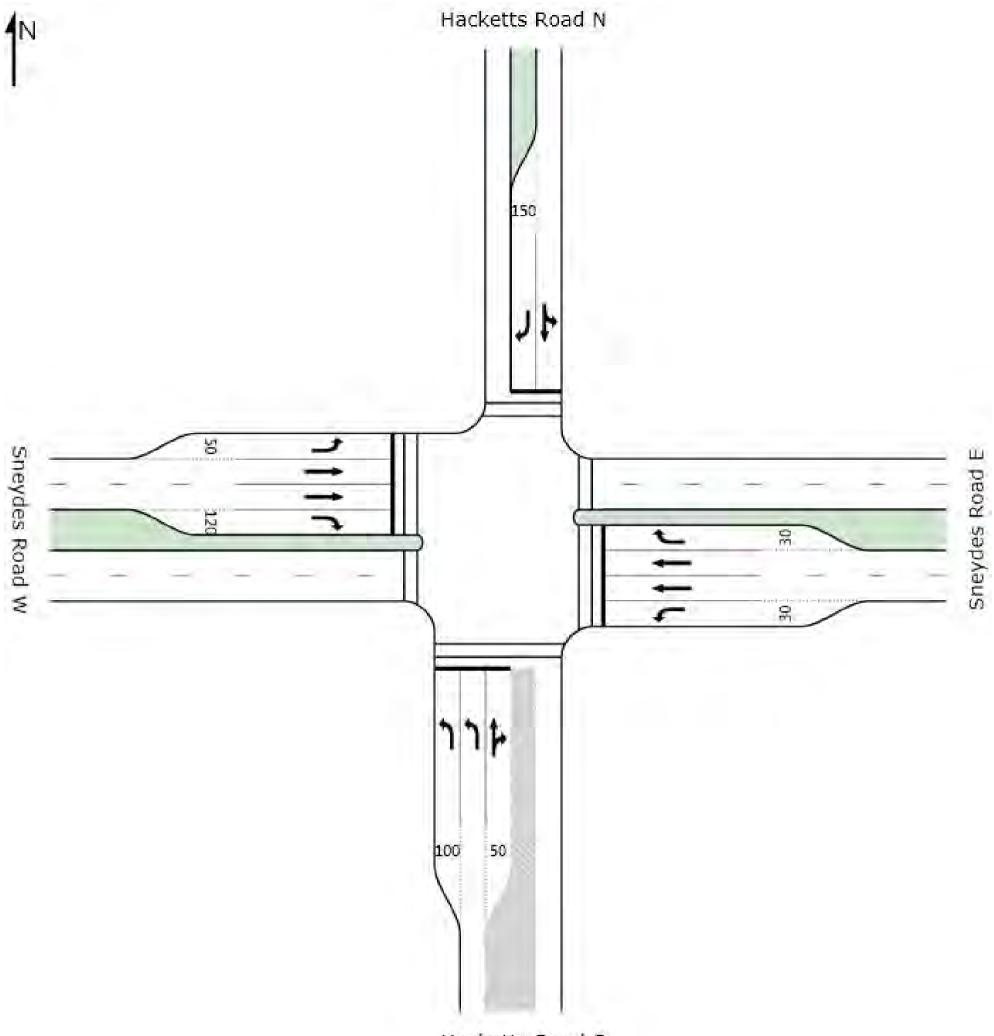

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Split-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D


Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	7	11	40	38
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	13	17	46	44
Phase Split	11 %	14 %	38 %	37 %



Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Hacketts Road S

MOVEMENT SUMMARY

Site: 2026 AM Rev A - filtered right turn with staged ped

Intersection 32 - 2026 AM Peak

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Mover	nent Per	formance -	Vehicles								
IIIO VOI		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
	Hacketts										
1	L	537	0.0	0.643	54.0	LOS D	14.4	100.8	0.96	0.84	24.1
2	Т	49	0.0	0.599	38.7	LOS D	6.5	45.5	0.85	0.69	27.2
3	R	87	0.0	0.599	46.6	LOS D	6.5	45.5	0.85	0.80	26.7
Approa	ich	673	0.0	0.643	52.0	LOS D	14.4	100.8	0.94	0.82	24.6
East: S	neydes R	oad E									
4	L	101	0.0	0.620	40.4	LOS D	4.3	30.2	0.75	0.78	28.4
5	Т	1088	0.4	0.860	48.3	LOS D	33.2	233.0	1.00	0.99	24.7
6	R	57	0.0	0.614	73.4	LOS E	3.5	24.8	1.00	0.78	19.9
Approa	ich	1246	0.3	0.860	48.8	LOS D	33.2	233.0	0.98	0.97	24.7
North:	Hacketts I	Road N									
7	L	62	0.0	0.222	41.9	LOS D	5.5	38.8	0.79	0.81	28.4
8	Т	65	0.0	0.222	33.7	LOS C	5.5	38.8	0.79	0.64	29.2
9	R	366	0.3	0.869	64.3	LOS E	23.9	168.0	1.00	0.98	21.7
Approa	ich	493	0.2	0.869	57.5	LOS E	23.9	168.0	0.95	0.92	23.2
West: S	Sneydes F	Road W									
10	L	176	1.1	0.534	25.7	LOS C	5.6	39.5	0.59	0.76	35.1
11	Т	520	8.0	0.268	18.3	LOS B	8.6	60.8	0.62	0.53	38.4
12	R	299	0.0	0.716	55.5	LOS E	16.6	116.0	0.98	0.86	23.8
Approa	ich	995	0.6	0.716	30.8	LOS C	16.6	116.0	0.72	0.67	31.9
All Veh	icles	3407	0.3	0.869	45.4	LOS D	33.2	233.0	0.89	0.84	26.2

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P1	Across S approach	50	34.5	LOS D	0.1	0.1	0.76	0.76				
P3	Across E approach	50	31.5	LOS D	0.1	0.1	0.73	0.73				
P4	Across E approach	50	24.1	LOS C	0.1	0.1	0.63	0.63				
P5	Across N approach	50	18.7	LOS B	0.1	0.1	0.56	0.56				
P7	Across W approach	50	36.0	LOS D	0.1	0.1	0.78	0.78				
P8	Across W approach	50	32.3	LOS D	0.1	0.1	0.73	0.73				
All Pede	estrians	300	29.5	LOS C			0.70	0.70				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

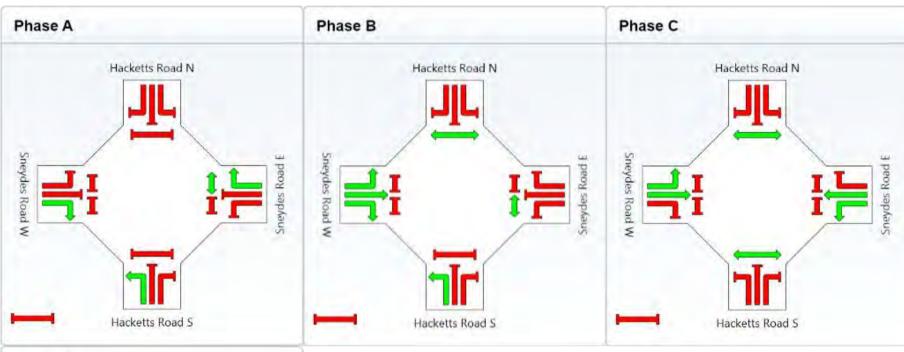
Pedestrian movement LOS values are based on average delay per pedestrian movement.

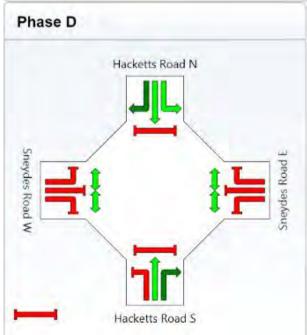
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

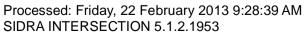
Site: 2026 AM Rev A - filtered right turn with staged ped

Intersection 32 - 2026 AM Peak

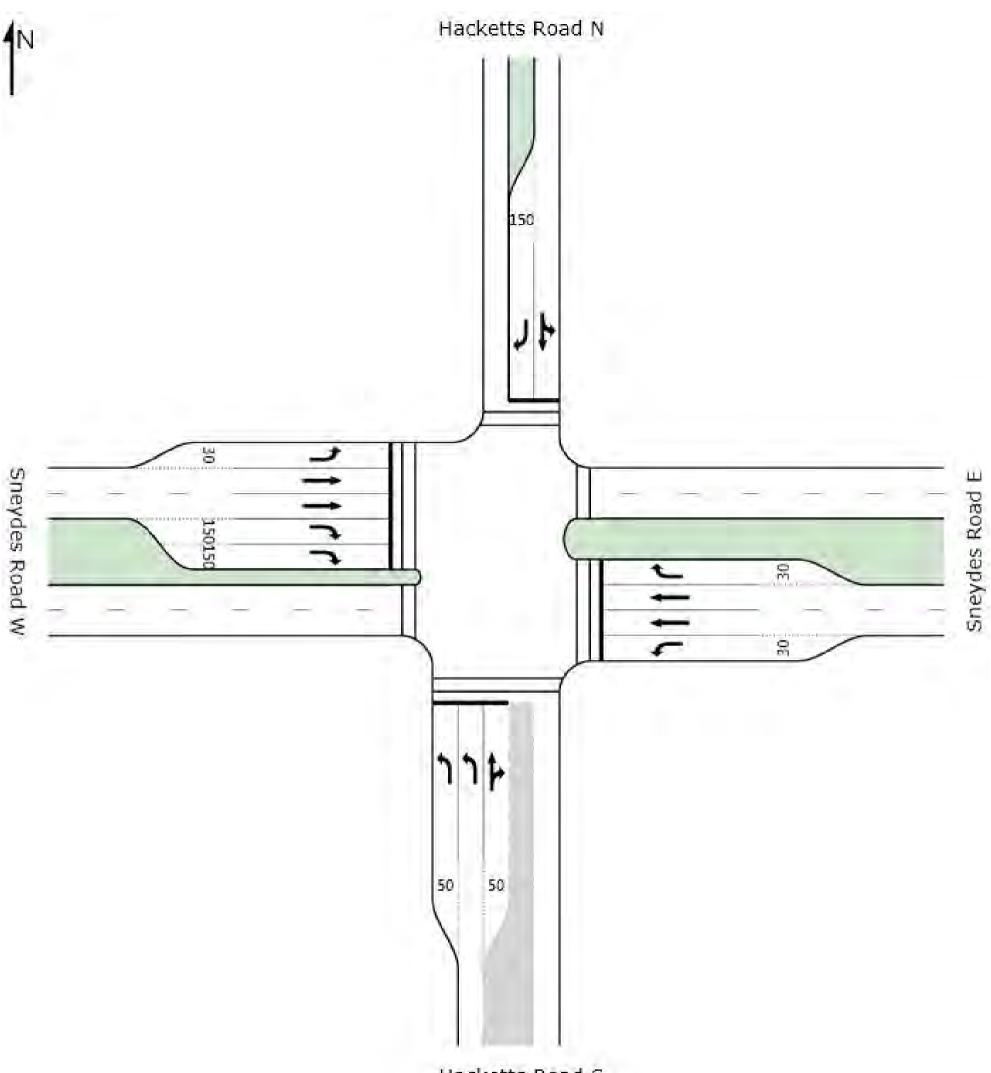

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Split-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D


Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	6	15	39	36
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	12	21	45	42
Phase Split	10 %	18 %	38 %	35 %



Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Hacketts Road S

MOVEMENT SUMMARY

Site: 2026 AM Rev A - fully controlled with full ped

Intersection 32 - 2026 AM Peak

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Moven	nent Per	formance - \	/ehicles								
	_	Demand	1.07	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Cautha	l lookotto	veh/h	%	v/c	sec		veh	m		per veh	km/h
	Hacketts		0.0	0.500	25.0	1.00.0	0.7	04.0	0.00	0.04	25.4
1	L	537	0.0	0.522	25.8	LOS C	8.7	61.0	0.83	0.81	35.1
2	T	49	0.0	0.611	43.2	LOS D	6.8	47.5	0.89	0.72	25.7
3	R	87	0.0	0.611	51.1	LOS D	6.8	47.5	0.89	0.80	25.4
Approa	ch	673	0.0	0.611	30.3	LOS C	8.7	61.0	0.84	0.80	32.6
East: S	neydes R	load E									
4	L	101	0.0	0.433	22.2	LOS C	2.8	19.6	0.51	0.73	37.2
5	Т	1088	0.4	1.017	134.2	LOS F	57.2	401.7	1.00	1.61	12.5
6	R	57	0.0	0.463	61.5	LOS E	3.1	21.9	0.95	0.75	22.3
Approa	ch	1246	0.3	1.017	121.8	LOS F	57.2	401.7	0.96	1.50	13.5
North: H	Hacketts	Road N									
7	L	62	0.0	0.374	54.1	LOS D	7.0	49.1	0.92	0.81	24.6
8	Т	74	0.0	0.374	46.0	LOS D	7.0	49.1	0.92	0.74	24.9
9	R	357	0.3	1.005	131.0	LOS F	34.7	243.7	1.00	1.31	13.1
Approa	ch	493	0.2	1.005	108.6	LOS F	34.7	243.7	0.98	1.16	15.1
West: S	Sneydes F	Road W									
10	L	176	1.1	0.573	18.8	LOS B	3.7	25.9	0.62	0.75	39.5
11	Т	538	0.8	0.504	39.5	LOS D	13.3	93.6	0.89	0.76	27.6
12	R	281	0.0	1.099	236.7	LOS F	35.0	244.8	0.99	1.53	8.0
Approa	ch	995	0.6	1.099	91.6	LOS F	35.0	244.8	0.87	0.98	16.8
All Vehi	icles	3407	0.3	1.099	93.0	LOS F	57.2	401.7	0.91	1.16	16.6

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	Across S approach	50	39.2	LOS D	0.1	0.1	0.81	0.81
P3	Across E approach	50	54.2	LOS E	0.2	0.2	0.95	0.95
P5	Across N approach	50	36.8	LOS D	0.1	0.1	0.78	0.78
P7	Across W approach	50	54.2	LOS E	0.2	0.2	0.95	0.95
All Pedestrians		200	46.1	LOS E			0.87	0.87

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Friday, 22 February 2013 9:28:39 AM SIDRA INTERSECTION 5.1.2.1953

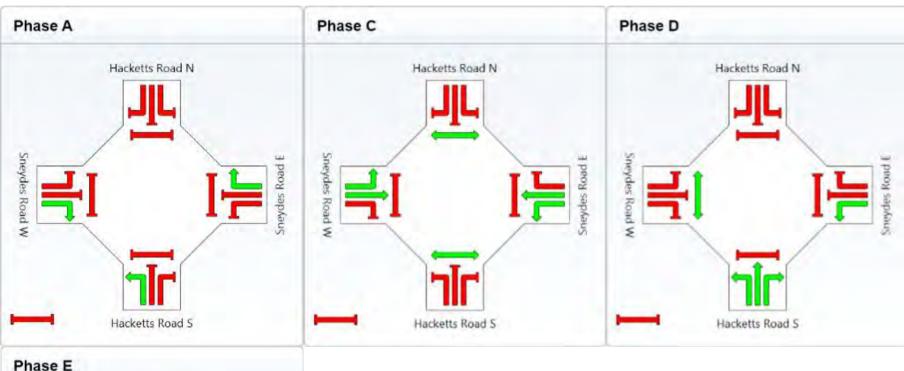
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

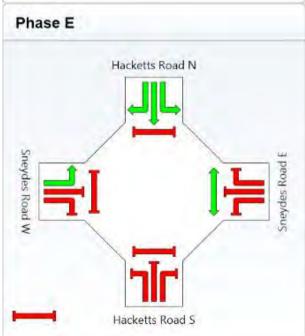
Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2026\Int #32.sip 8000907, AECOM, ENTERPRISE

PHASING SUMMARY

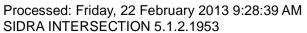
Site: 2026 AM Rev A - fully controlled with full ped

Intersection 32 - 2026 AM Peak

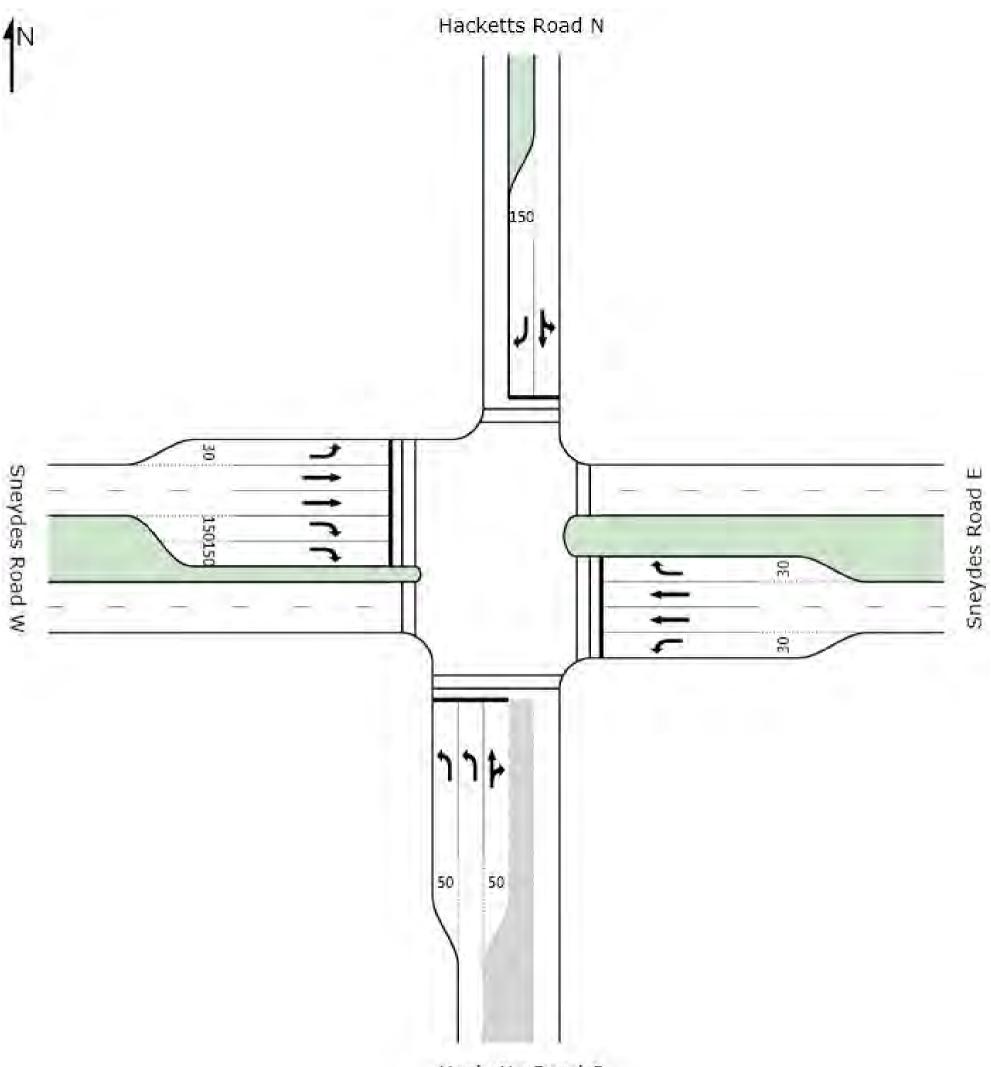

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Split-Phase Input Sequence: A, C, D, E Output Sequence: A, C, D, E


Phase Timing Results

Phase	Α	С	D	E
Green Time (sec)	14	33	26	23
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	20	39	32	29
Phase Split	17 %	33 %	27 %	24 %



Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Hacketts Road S

MOVEMENT SUMMARY

Site: 2026 AM Rev A - fully controlled with staged ped

Intersection 32 - 2026 AM Peak

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Mover	nent Per	formance -	Vehicles								
Mever		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
	Hacketts										
1	L	537	0.0	0.580	28.1	LOS C	9.1	63.9	0.88	0.82	33.8
2	Т	49	0.0	0.665	52.3	LOS D	7.6	53.0	0.96	0.80	23.1
3	R	87	0.0	0.665	60.3	LOS E	7.6	53.0	0.96	0.83	22.9
Approa	ich	673	0.0	0.665	34.1	LOS C	9.1	63.9	0.90	0.82	30.8
East: S	neydes R	oad E									
4	L	101	0.0	0.468	24.9	LOS C	3.1	21.4	0.56	0.73	35.6
5	Т	1088	0.4	0.932	66.8	LOS E	39.8	279.5	1.00	1.16	20.5
6	R	57	0.0	0.447	58.1	LOS E	3.0	21.1	0.92	0.74	23.1
Approa	ıch	1246	0.3	0.932	63.0	LOS E	39.8	279.5	0.96	1.11	21.3
North: I	Hacketts F	Road N									
7	L	62	0.0	0.320	51.9	LOS D	6.4	44.5	0.89	0.81	25.2
8	Т	65	0.0	0.320	43.7	LOS D	6.4	44.5	0.89	0.72	25.6
9	R	366	0.3	0.948	87.5	LOS F	28.2	198.2	1.00	1.11	17.7
Approa	ich	493	0.2	0.948	77.3	LOS E	28.2	198.2	0.97	1.02	19.2
West: S	Sneydes F	Road W									
10	L	176	1.1	0.472	16.9	LOS B	2.9	20.4	0.57	0.75	41.0
11	Т	520	8.0	0.447	36.5	LOS D	12.3	86.5	0.86	0.73	28.8
12	R	299	0.0	0.947	84.6	LOS F	18.9	132.0	0.99	1.05	18.1
Approa	nch	995	0.6	0.947	47.5	LOS D	18.9	132.0	0.85	0.83	25.5
All Veh	icles	3407	0.3	0.948	54.8	LOS D	39.8	279.5	0.92	0.96	23.5

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P1	Across S approach	50	36.8	LOS D	0.1	0.1	0.78	0.78				
P3	Across E approach	50	45.1	LOS E	0.1	0.1	0.87	0.87				
P4	Across E approach	50	40.8	LOS E	0.1	0.1	0.83	0.83				
P5	Across N approach	50	34.5	LOS D	0.1	0.1	0.76	0.76				
P7	Across W approach	50	54.2	LOS E	0.2	0.2	0.95	0.95				
P8	Across W approach	50	46.8	LOS E	0.2	0.2	0.88	0.88				
All Pede	All Pedestrians		43.0	LOS E			0.84	0.84				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

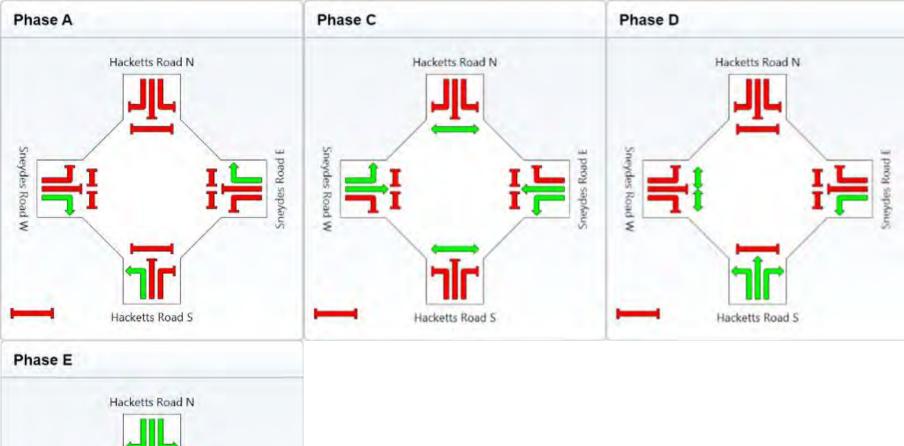
Pedestrian movement LOS values are based on average delay per pedestrian movement.

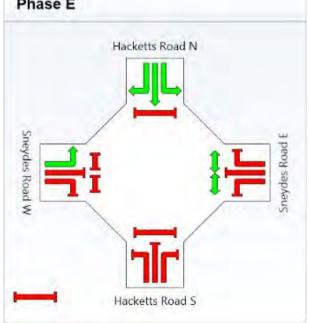
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

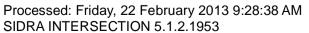
Site: 2026 AM Rev A - fully controlled with staged ped

Intersection 32 - 2026 AM Peak

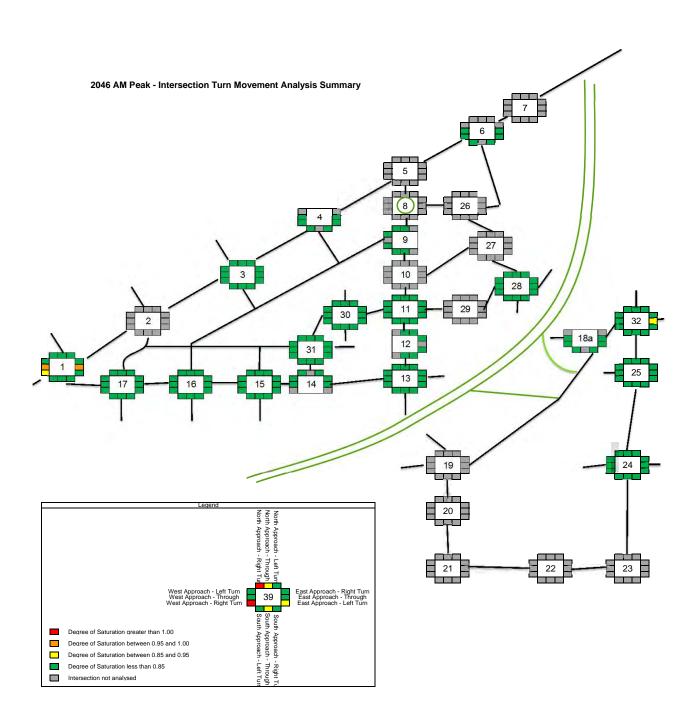

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

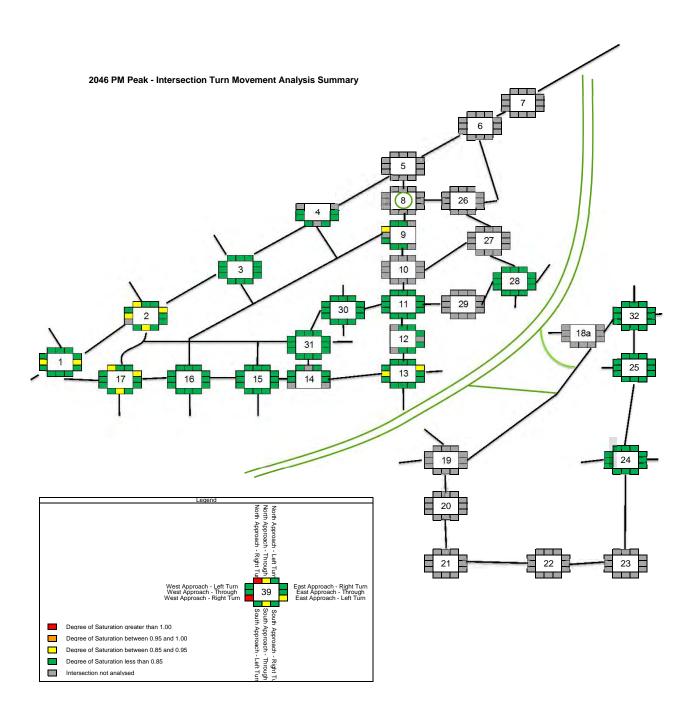

Phase times determined by the program

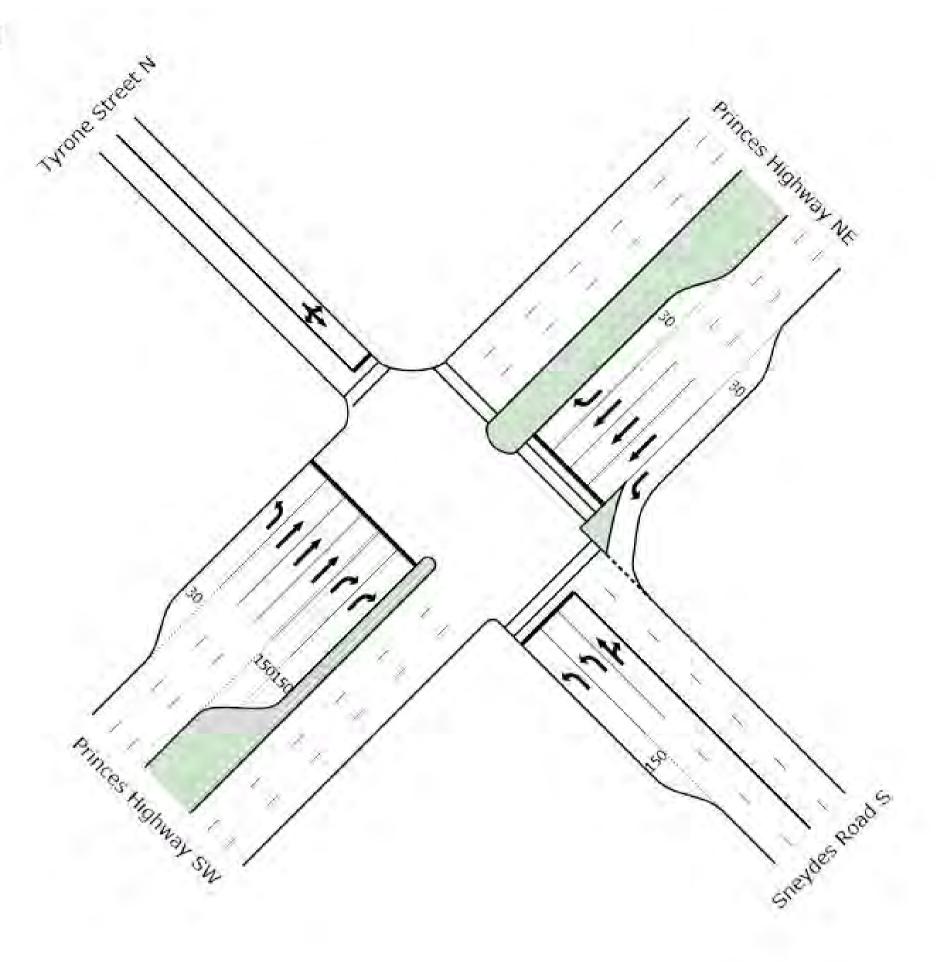
Sequence: Split-Phase Input Sequence: A, C, D, E Output Sequence: A, C, D, E


Phase Timing Results

Phase	Α	С	D	E
Green Time (sec)	17	36	18	25
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	23	42	24	31
Phase Split	19 %	35 %	20 %	26 %




Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com



Turning Movement Summary

Turning Movement Summary

Site: 2046 AM Rev A

MOVEMENT SUMMARY

Intersection 1 - AM Peak Hour

Mover	Movement Performance - Vehicles											
Mov ID		Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back (Vehicles	Distance	Prop. Queued	Effective Stop Rate	Average Speed	
South E	East: Sney	veh/h des Road S	%	v/c	sec		veh	m		per veh	km/h	
21	L	542	0.2	0.342	26.6	LOS C	8.3	58.2	0.68	0.83	37.4	
22	Т	1	0.0	0.129	63.2	LOS E	0.7	5.0	0.98	0.67	20.0	
23	R	11	0.0	0.129	71.1	LOS E	0.7	5.0	0.98	0.68	22.4	
Approa	ich	554	0.2	0.342	27.6	LOS C	8.3	58.2	0.69	0.83	36.9	
North E	ast: Princ	es Highway N	IE									
24	L	1	0.0	0.003	15.7	LOS B	0.0	0.1	0.36	0.64	49.8	
25	Т	1308	43.6	0.956	84.2	LOS F	36.3	349.1	1.00	1.25	20.8	
26	R	10	0.0	0.063	41.2	LOS D	0.4	2.8	0.73	0.69	30.8	
Approa	ich	1319	43.2	0.956	83.8	LOS F	36.3	349.1	1.00	1.24	20.8	
North V	Vest: Tyro	ne Street N										
27	L	17	0.0	0.506	72.0	LOS E	2.9	20.2	1.00	0.74	20.9	
28	Т	1	0.0	0.506	64.3	LOS E	2.9	20.2	1.00	0.74	19.1	
29	R	29	0.0	0.506	71.9	LOS E	2.9	20.2	1.00	0.74	20.9	
Approa	ich	47	0.0	0.506	71.8	LOS E	2.9	20.2	1.00	0.74	20.9	
South V	Nest: Prin	ces Highway :	SW									
30	L	25	0.0	0.173	48.3	LOS D	1.1	7.9	0.81	0.72	27.8	
31	Т	1203	16.9	0.978	98.5	LOS F	35.2	282.4	1.00	1.28	18.6	
32	R	1108	0.2	0.853	50.8	LOS D	31.2	219.0	0.92	0.92	27.7	
Approa	ich	2336	8.8	0.978	75.3	LOS E	35.2	282.4	0.96	1.10	21.8	
All Vehi	icles	4256	18.2	0.978	71.7	LOS E	36.3	349.1	0.94	1.11	22.7	

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Move	Movement Performance - Pedestrians										
N 4 15	December (in a	Demand	Average		Average Back		Prop.	Effective			
Mov II	D Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate			
		ped/h	sec		ped	m		per ped			
P9	Across SE approach	53	39.2	LOS D	0.1	0.1	0.81	0.81			
P11	Across NE approach	50	54.2	LOS E	0.2	0.2	0.95	0.95			
P13	Across NW approach	53	24.7	LOS C	0.1	0.1	0.64	0.64			
All Ped	destrians	156	39.1	LOS D			0.80	0.80			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 21 February 2013 4:10:56 PM SIDRA INTERSECTION 5.1.2.1953

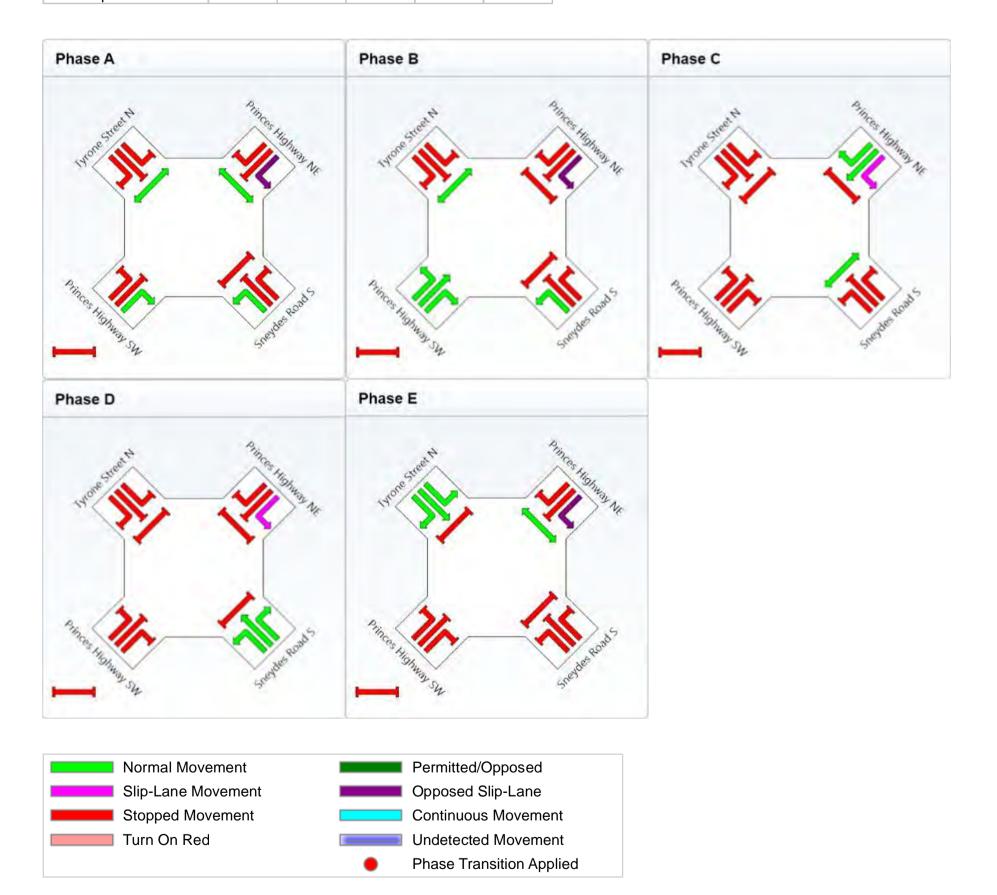
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #1.sip 8000907, AECOM, ENTERPRISE

Site: 2046 AM Rev A

PHASING SUMMARY

Intersection 1 - AM Peak Hour


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Split-Phase Input Sequence: A, B, C, D, E Output Sequence: A, B, C, D, E

Phase Timing Results

Phase	Α	В	С	D	E
Green Time (sec)	14	28	36	6	6
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	20	34	42	12	12
Phase Split	17 %	28 %	35 %	10 %	10 %

Processed: Thursday, 21 February 2013 4:10:56 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #1.sip 8000907, AECOM, ENTERPRISE

Site: 2046 PM Rev A

MOVEMENT SUMMARY

Intersection 1 - PM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Mover	Movement Performance - Vehicles											
Mov ID		Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back o	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed	
		veh/h	%	v/c	sec		veh	m		per veh	km/h	
South E	East: Sney	/des Road S										
21	L	1384	0.1	0.818	36.5	LOS D	28.4	199.3	0.90	0.99	32.5	
22	Т	1	0.0	0.814	66.6	LOS E	8.0	56.1	1.00	0.92	19.3	
23	R	125	0.0	0.814	74.5	LOS E	8.0	56.1	1.00	0.92	21.6	
Approa	ch	1510	0.1	0.818	39.7	LOS D	28.4	199.3	0.91	0.98	31.2	
North E	ast: Princ	es Highway N	ΙE									
24	L	1	0.0	0.002	12.1	LOS B	0.0	0.1	0.24	0.65	54.2	
25	Т	1239	19.2	0.866	54.7	LOS D	26.3	214.8	1.00	1.00	27.5	
26	R	44	0.0	0.288	44.5	LOS D	1.9	13.3	0.78	0.73	29.4	
Approa	ch	1284	18.5	0.866	54.3	LOS D	26.3	214.8	0.99	0.99	27.6	
North V	Vest: Tyro	ne Street N										
27	L	18	0.0	0.419	71.6	LOS E	2.4	16.6	1.00	0.73	20.9	
28	Т	1	0.0	0.419	63.8	LOS E	2.4	16.6	1.00	0.73	19.2	
29	R	20	0.0	0.419	71.4	LOS E	2.4	16.6	1.00	0.73	21.0	
Approa	ch	39	0.0	0.419	71.3	LOS E	2.4	16.6	1.00	0.73	20.9	
South V	Nest: Prin	ces Highway S	SW									
30	L	36	0.0	0.252	49.5	LOS D	1.7	11.6	0.82	0.73	27.4	
31	Т	1009	17.9	0.856	57.2	LOS E	21.4	172.6	1.00	0.98	26.8	
32	R	675	0.1	0.524	38.9	LOS D	14.6	102.2	0.79	0.83	32.6	
Approa	ch	1720	10.6	0.856	49.9	LOS D	21.4	172.6	0.92	0.92	28.6	
All Vehi	icles	4553	9.2	0.866	47.9	LOS D	28.4	214.8	0.94	0.96	29.0	

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Move	Movement Performance - Pedestrians										
Mov IE	D Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped			
P9	Across SE approach	53	41.7	LOS E	0.2	0.2	0.83	0.83			
P11	Across NE approach	50	54.2	LOS E	0.2	0.2	0.95	0.95			
P13	Across NW approach	53	25.4	LOS C	0.1	0.1	0.65	0.65			
All Ped	destrians	156	40.1	LOS E			0.81	0.81			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 21 February 2013 4:10:49 PM SIDRA INTERSECTION 5.1.2.1953

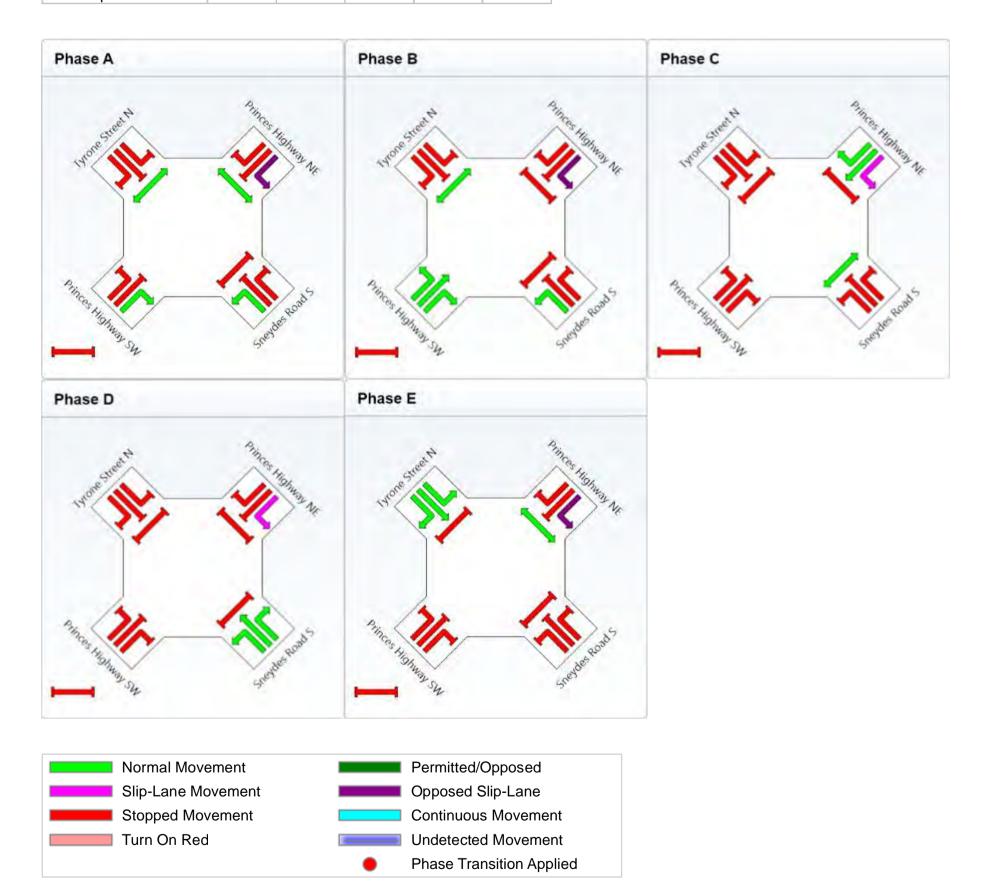
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #1.sip 8000907, AECOM, ENTERPRISE

Site: 2046 PM Rev A

PHASING SUMMARY

Intersection 1 - PM Peak Hour

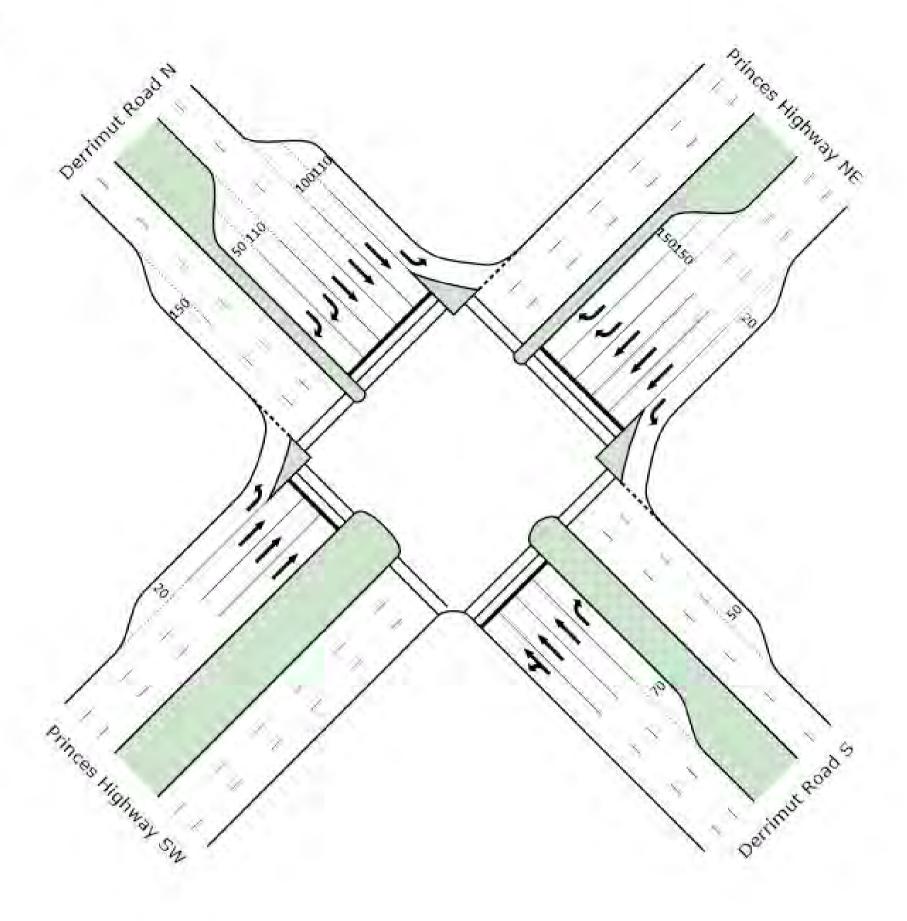

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Split-Phase Input Sequence: A, B, C, D, E Output Sequence: A, B, C, D, E

Phase Timing Results

Phase	Α	В	С	D	E
Green Time (sec)	14	27	33	10	6
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	20	33	39	16	12
Phase Split	17 %	28 %	33 %	13 %	10 %



Processed: Thursday, 21 February 2013 4:10:49 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #1.sip

Site: 2046 PM Rev C - SLT - 150m

MOVEMENT SUMMARY

Intersection 2 - PM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Movem	nent Per	formance - \	Vehicles								
Mov ID	Turn	Demand	HV	Deg.	Average	Level of	95% Back (Prop.	Effective	Average
IVIOV ID	Tuili	Flow veh/h	%	Satn v/c	Delay sec	Service	Vehicles veh	Distance	Queued	Stop Rate per veh	Speed km/h
South F	ast: Derri	mut Road S	/0	V/C	560		ven	m m		per veri	KIII/II
21	L	1	0.0	0.813	60.6	LOS E	22.0	153.9	1.00	0.94	25.5
22	T	1176	0.0	0.888	57.3	LOS E	26.6	186.3	1.00	1.02	22.5
23	R			0.682							
		169	0.0		64.8	LOS E	9.8	68.9	1.00	0.84	23.8
Approac	ch	1346	0.1	0.888	58.2	LOS E	26.6	186.3	1.00	0.99	22.6
North Ea	ast: Princ	es Highway N	IE								
24	L	139	6.5	0.535	14.0	LOS B	2.1	15.7	0.33	0.71	51.9
25	Т	777	23.2	0.382	27.3	LOS C	10.7	89.6	0.75	0.65	40.2
26	R	655	1.7	0.892	73.8	LOS E	22.0	156.4	1.00	0.99	21.6
Approac	ch	1571	12.7	0.892	45.5	LOS D	22.0	156.4	0.82	0.79	30.5
North W	est: Derr	imut Road N									
27	L	350	5.1	0.422	15.0	LOS B	6.8	49.8	0.42	0.73	45.7
28	Т	960	0.6	0.680	37.6	LOS D	21.3	149.9	0.91	0.79	28.3
29	R	523	11.1	0.910	71.1	LOS E	23.4	179.5	0.97	0.98	22.4
Approac	ch	1833	4.5	0.910	42.8	LOS D	23.4	179.5	0.84	0.83	28.2
South W	Vest: Prin	ces Highway :	SW								
30	L	522	6.9	0.652	11.4	LOS B	2.3	16.7	0.49	0.76	54.1
31	Т	683	21.2	0.886	67.1	LOS E	15.3	126.7	1.00	1.02	24.2
Approac	ch	1205	15.0	0.886	43.0	LOS D	15.3	126.7	0.78	0.91	31.2
All Vehic	cles	5955	7.8	0.910	47.0	LOS D	26.6	186.3	0.86	0.87	27.8

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Movem	ent Performance -	Pedestrians	S					
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P9 A	Across SE approach	50	27.3	LOS C	0.1	0.1	0.68	0.68
P10 A	Across SE approach	50	26.0	LOS C	0.1	0.1	0.66	0.66
P11 A	Across NE approach	50	36.8	LOS D	0.1	0.1	0.78	0.78
P12 A	Across NE approach	50	33.0	LOS D	0.1	0.1	0.74	0.74
P13 A	Across NW approach	50	54.2	LOS E	0.2	0.2	0.95	0.95
P14 A	Across NW approach	50	49.5	LOS E	0.2	0.2	0.91	0.91
P15 A	Across SW approach	50	40.8	LOS E	0.1	0.1	0.83	0.83
P16 A	Across SW approach	50	40.8	LOS E	0.1	0.1	0.83	0.83
All Pedes	strians	400	38.6	LOS D			0.80	0.80

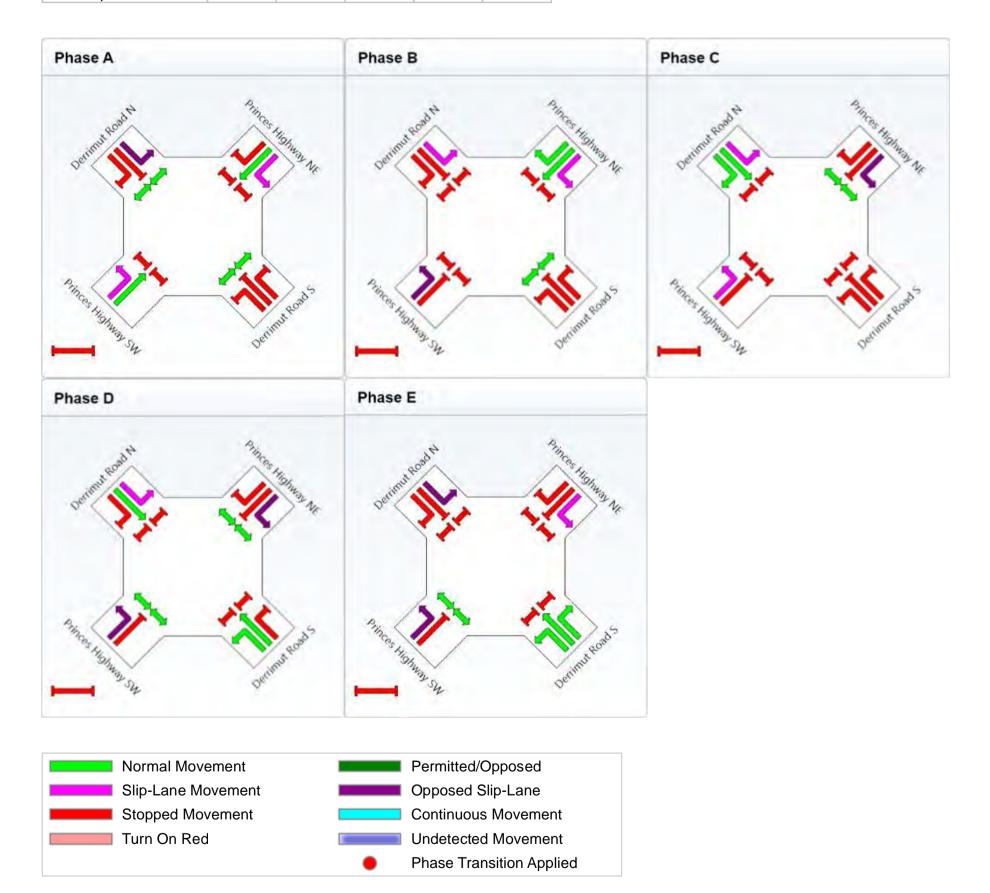
Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

Site: 2046 PM Rev C - SLT - 150m

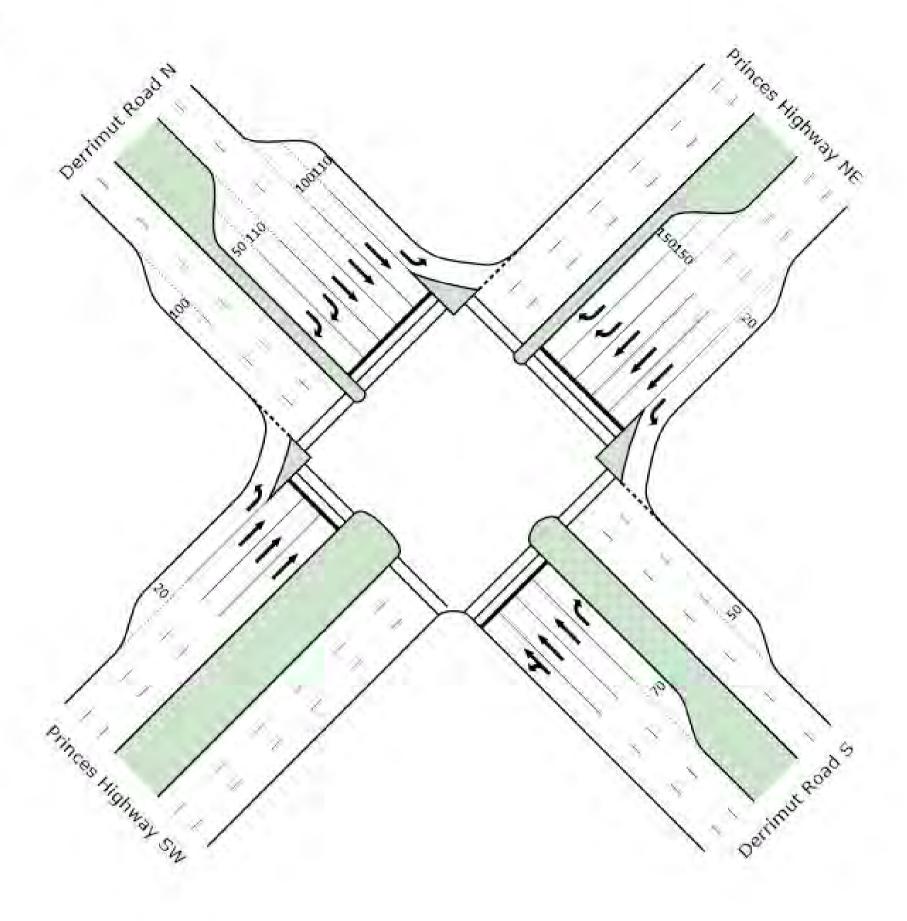
Intersection 2 - PM Peak Hour


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Split-phase Input Sequence: A, B, C, D, E Output Sequence: A, B, C, D, E

Phase Timing Results


Phase	Α	В	С	D	E
Green Time (sec)	18	24	26	6	16
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	24	30	32	12	22
Phase Split	20 %	25 %	27 %	10 %	18 %

Processed: Wednesday, 20 February 2013 5:27:25 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Site: 2046 PM Rev C - SLT - 100m

MOVEMENT SUMMARY

Intersection 2 - PM Peak Hour

Moven	Movement Performance - Vehicles												
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h		
South E	ast: Derri	imut Road S											
21	L	1	0.0	0.592	52.0	LOS D	14.9	104.6	0.94	0.86	28.0		
22	Т	1176	0.1	0.912	58.8	LOS E	30.8	215.8	0.98	1.03	22.1		
23	R	169	0.0	0.682	64.8	LOS E	9.8	68.9	1.00	0.84	23.8		
Approa	ch	1346	0.1	0.912	59.5	LOS E	30.8	215.8	0.99	1.01	22.3		
North E	ast: Princ	es Highway N	IE										
24	L	139	6.5	0.536	14.1	LOS B	2.1	15.7	0.33	0.71	51.9		
25	Т	777	23.2	0.390	28.1	LOS C	10.8	90.9	0.77	0.65	39.7		
26	R	655	1.7	0.931	84.0	LOS F	24.0	170.5	1.00	1.05	19.7		
Approa	ch	1571	12.7	0.931	50.1	LOS D	24.0	170.5	0.82	0.82	28.8		
North V	Vest: Derr	imut Road N											
27	L	350	5.1	0.422	15.0	LOS B	6.8	49.8	0.42	0.73	45.7		
28	Т	960	0.6	0.663	36.6	LOS D	21.1	148.3	0.90	0.78	28.6		
29	R	523	11.1	0.937	71.9	LOS E	23.4	179.5	0.98	0.97	22.2		
Approa	ch	1833	4.5	0.937	42.6	LOS D	23.4	179.5	0.83	0.82	28.3		
South V	Vest: Prin	ces Highway :	SW										
30	L	522	6.9	0.652	11.4	LOS B	2.3	16.7	0.49	0.76	54.1		
31	Т	683	21.2	0.886	67.1	LOS E	15.3	126.7	1.00	1.02	24.2		
Approa	ch	1205	15.0	0.886	43.0	LOS D	15.3	126.7	0.78	0.91	31.2		
All Vehi	icles	5955	7.8	0.937	48.5	LOS D	30.8	215.8	0.85	0.88	27.4		

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moveme	ent Performance -	Pedestrians	S					
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P9 A	cross SE approach	50	28.0	LOS C	0.1	0.1	0.68	0.68
P10 A	cross SE approach	50	26.7	LOS C	0.1	0.1	0.67	0.67
P11 A	cross NE approach	50	36.0	LOS D	0.1	0.1	0.78	0.78
P12 A	cross NE approach	50	32.3	LOS D	0.1	0.1	0.73	0.73
P13 A	cross NW approach	50	54.2	LOS E	0.2	0.2	0.95	0.95
P14 A	cross NW approach	50	49.5	LOS E	0.2	0.2	0.91	0.91
P15 A	cross SW approach	50	39.2	LOS D	0.1	0.1	0.81	0.81
P16 A	cross SW approach	50	39.2	LOS D	0.1	0.1	0.81	0.81
All Pedes	strians	400	38.1	LOS D			0.79	0.79

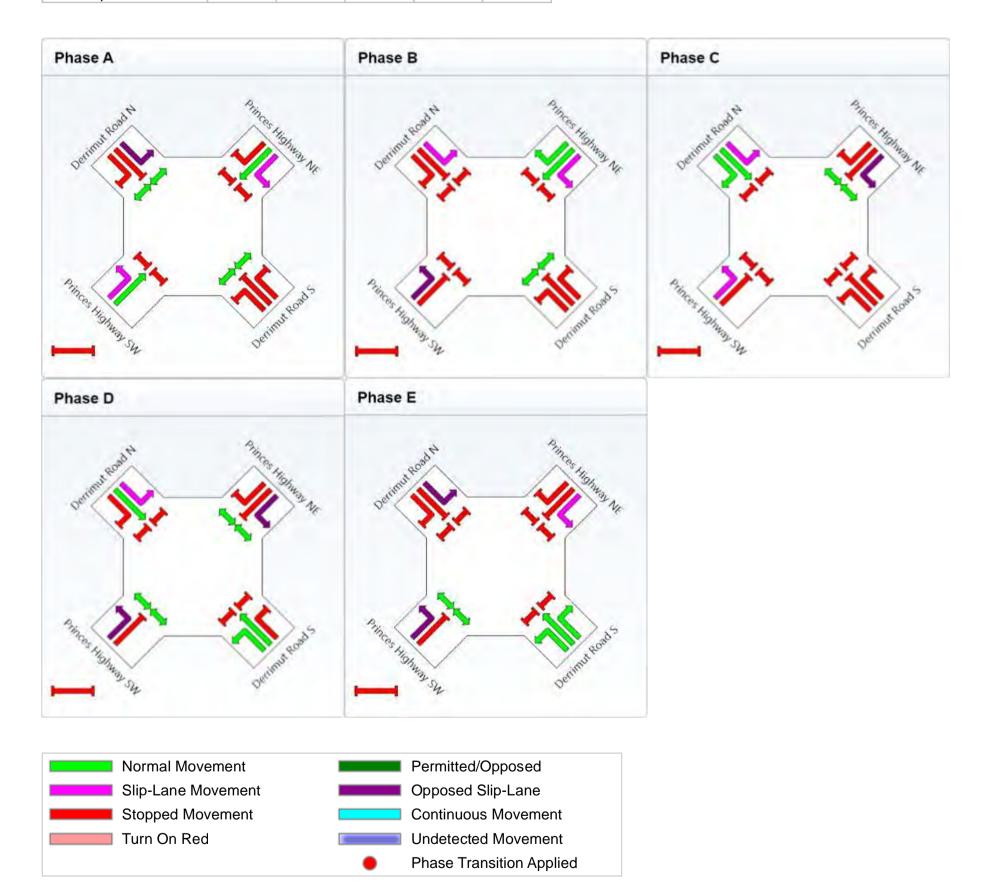
Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

Site: 2046 PM Rev C - SLT - 100m

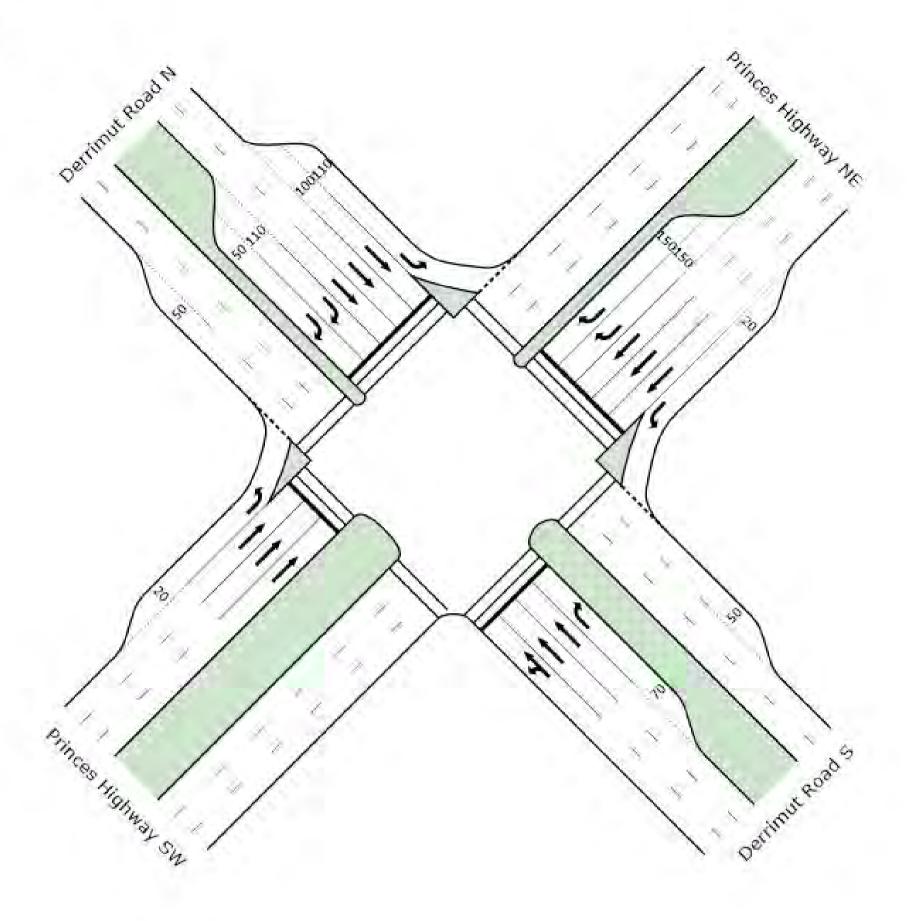
Intersection 2 - PM Peak Hour


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Split-phase Input Sequence: A, B, C, D, E Output Sequence: A, B, C, D, E

Phase Timing Results


Phase	Α	В	С	D	E
Green Time (sec)	18	23	25	8	16
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	24	29	31	14	22
Phase Split	20 %	24 %	26 %	12 %	18 %

Processed: Wednesday, 20 February 2013 5:27:35 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

SIDRA INTERSECTION

Site: 2046 PM Rev C - SLT - 50m

MOVEMENT SUMMARY

Intersection 2 - PM Peak Hour

Movem	nent Per	formance - \	Vehicles								
Mov ID	Turn	Demand	HV	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
IVIOV ID	Talli	Flow veh/h	%	Satn v/c	Delay sec	Service	Vehicles veh	Distance	Queued	Stop Rate per veh	Speed km/h
South E	ast: Derri	mut Road S	/0	V/C	360		VEII	<u> </u>		per veri	KIII/II
21	L	1	0.0	0.395	48.8	LOS D	9.6	67.4	0.87	0.85	29.0
22	T	1176	0.1	0.971	81.6	LOS F	41.4	290.0	0.98	1.23	18.0
23	R	169	0.0	0.682	64.8	LOS E	9.8	68.9	1.00	0.84	23.8
		1346	0.1	0.971	79.4	LOS E	41.4	290.0	0.98	1.18	18.6
Approac	UI I	1340	0.1	0.971	79.4	LO3 E	41.4	290.0	0.90	1.10	10.0
North Ea	ast: Princ	es Highway N	IE								
24	L	139	6.5	0.536	14.1	LOS B	2.1	15.7	0.33	0.71	51.9
25	Т	777	23.2	0.390	28.1	LOS C	10.8	90.9	0.77	0.65	39.7
26	R	655	1.7	0.931	84.0	LOS F	24.0	170.5	1.00	1.05	19.7
Approac	ch	1571	12.7	0.931	50.1	LOS D	24.0	170.5	0.82	0.82	28.8
North W	/est: Derr	imut Road N									
27	L	350	5.1	0.422	15.0	LOS B	6.8	49.8	0.42	0.73	45.7
28	Т	960	0.6	0.663	36.6	LOS D	21.1	148.3	0.90	0.78	28.6
29	R	523	11.1	0.965	73.0	LOS E	23.4	179.5	0.98	0.95	22.0
Approac	ch	1833	4.5	0.965	42.9	LOS D	23.4	179.5	0.83	0.82	28.2
South W	Vest: Prin	ces Highway :	SW								
30	L	522	6.9	0.652	11.4	LOS B	2.3	16.7	0.49	0.76	54.1
31	Т	683	21.2	0.886	67.1	LOS E	15.3	126.7	1.00	1.02	24.2
Approac	ch	1205	15.0	0.886	43.0	LOS D	15.3	126.7	0.78	0.91	31.2
All Vehic	cles	5955	7.8	0.971	53.1	LOS D	41.4	290.0	0.85	0.92	26.0

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

8000907, AECOM, ENTERPRISE

Moven	Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped					
P9	Across SE approach	50	28.0	LOS C	0.1	0.1	0.68	0.68					
P10	Across SE approach	50	26.7	LOS C	0.1	0.1	0.67	0.67					
P11	Across NE approach	50	36.0	LOS D	0.1	0.1	0.78	0.78					
P12	Across NE approach	50	32.3	LOS D	0.1	0.1	0.73	0.73					
P13	Across NW approach	50	54.2	LOS E	0.2	0.2	0.95	0.95					
P14	Across NW approach	50	49.5	LOS E	0.2	0.2	0.91	0.91					
P15	Across SW approach	50	38.4	LOS D	0.1	0.1	0.80	0.80					
P16	Across SW approach	50	38.4	LOS D	0.1	0.1	0.80	0.80					
All Ped	estrians	400	37.9	LOS D			0.79	0.79					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

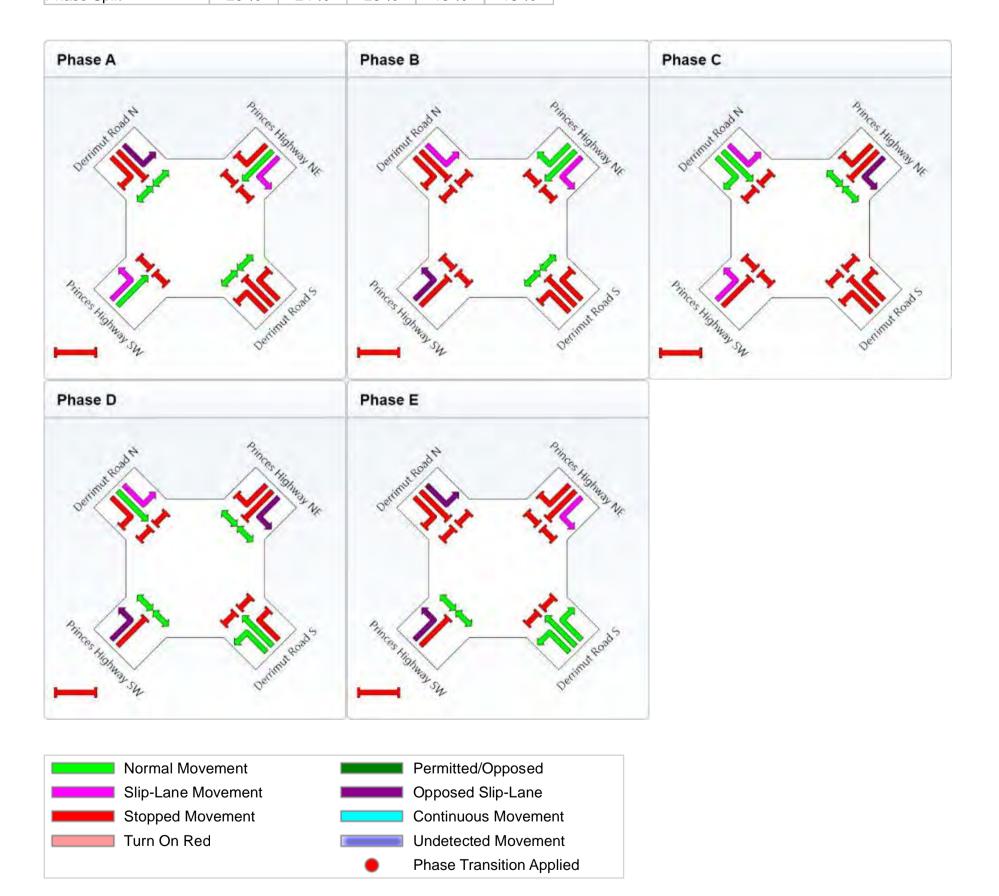
Processed: Wednesday, 20 February 2013 5:27:47 PM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #2.sip

Site: 2046 PM Rev C - SLT - 50m

PHASING SUMMARY

Intersection 2 - PM Peak Hour


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Split-phase Input Sequence: A, B, C, D, E Output Sequence: A, B, C, D, E

Phase Timing Results

<u> </u>					
Phase	Α	В	С	D	E
Green Time (sec)	18	23	24	9	16
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	24	29	30	15	22
Phase Split	20 %	24 %	25 %	13 %	18 %

Processed: Wednesday, 20 February 2013 5:27:47 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #2.sip 8000907, AECOM, ENTERPRISE

Site: 2046 AM Rev C

MOVEMENT SUMMARY

Intersection 3 - AM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Moven	Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn	Average Delay	Level of Service	95% Back (Vehicles	Distance	Prop. Queued	Effective Stop Rate	Average Speed	
South E	East: Colle	ector Road S	%	v/c	sec	_	veh	m	_	per veh	km/h	
21	L	116	0.0	0.182	36.6	LOS D	4.7	33.0	0.73	0.77	29.8	
22	Т	1	0.0	0.182	28.9	LOS C	4.7	33.0	0.73	0.59	30.7	
23	R	47	2.1	0.285	56.3	LOS E	2.4	17.4	0.91	0.74	24.1	
Approa	ch	164	0.6	0.285	42.2	LOS D	4.7	33.0	0.78	0.76	27.9	
North E	ast: Princ	es Highway N	ΙE									
24	L	94	13.8	0.394	19.5	LOS B	1.5	11.7	0.57	0.75	45.8	
25	Т	1351	38.9	0.847	47.7	LOS D	27.5	256.8	0.99	0.98	29.8	
26	R	14	0.0	0.152	54.2	LOS D	0.7	4.8	0.88	0.68	24.1	
Approa	ch	1459	36.9	0.847	45.9	LOS D	27.5	256.8	0.97	0.96	30.4	
North V	Vest: Colle	ector Road N										
27	L	29	0.0	0.058	26.8	LOS C	0.9	6.0	0.76	0.72	34.6	
28	Т	1	0.0	0.058	18.6	LOS B	0.9	6.0	0.76	0.56	35.8	
29	R	76	0.0	0.590	57.8	LOS E	4.0	28.3	0.93	0.77	23.3	
Approa	ch	106	0.0	0.590	48.8	LOS D	4.0	28.3	0.88	0.76	25.7	
South V	Nest: Princ	ces Highway S	SW									
30	L	39	0.0	0.239	21.7	LOS C	1.0	7.3	0.49	0.70	37.6	
31	Т	1154	15.3	0.635	35.7	LOS D	18.9	150.0	0.90	0.78	35.0	
32	R	234	1.7	0.806	68.1	LOS E	14.3	101.9	1.00	0.89	22.1	
Approa	ch	1427	12.7	0.806	40.7	LOS D	18.9	150.0	0.90	0.80	32.4	
All Vehi	icles	3156	22.8	0.847	43.4	LOS D	27.5	256.8	0.93	0.87	30.9	

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

8000907, AECOM, ENTERPRISE

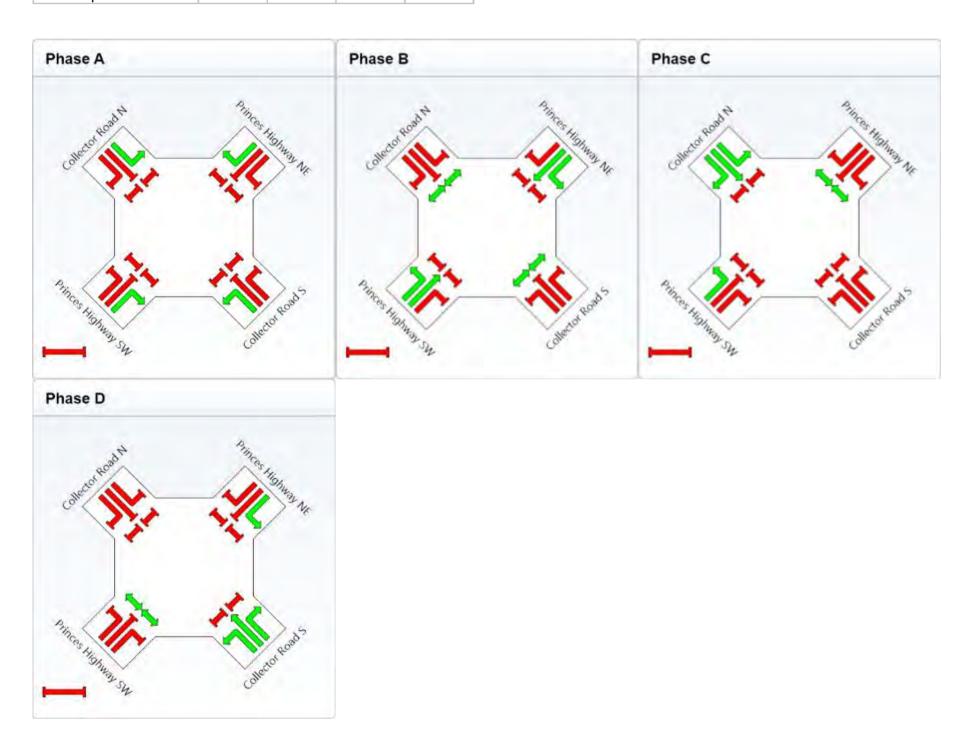
Mover	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P9	Across SE approach	50	28.7	LOS C	0.1	0.1	0.69	0.69				
P10	Across SE approach	50	27.3	LOS C	0.1	0.1	0.68	0.68				
P11	Across NE approach	50	54.2	LOS E	0.2	0.2	0.95	0.95				
P12	Across NE approach	50	49.5	LOS E	0.2	0.2	0.91	0.91				
P13	Across NW approach	53	28.7	LOS C	0.1	0.1	0.69	0.69				
P14	Across NW approach	53	27.3	LOS C	0.1	0.1	0.68	0.68				
P15	Across SW approach	50	54.2	LOS E	0.2	0.2	0.95	0.95				
P16	Across SW approach	50	49.5	LOS E	0.2	0.2	0.91	0.91				
All Ped	estrians	406	39.7	LOS D			0.80	0.80				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 2046 AM Rev C

PHASING SUMMARY

Intersection 3 - AM Peak Hour


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Split-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	19	41	18	18
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	25	47	24	24
Phase Split	21 %	39 %	20 %	20 %

Processed: Wednesday, 20 February 2013 5:24:01 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #3.sip 8000907, AECOM, ENTERPRISE

Site: 2046 PM Rev C

MOVEMENT SUMMARY

Intersection 3 - PM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
wover	nent Per	Demand	venicies	Deg.	Average	Level of	95% Back (of Ougue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec	00.1100	veh	m	Quousu	per veh	km/h
South E	East: Colle	ector Road S									
21	L	291	0.0	0.501	43.5	LOS D	13.9	97.2	0.87	0.83	27.5
22	Т	1	0.0	0.501	35.8	LOS D	13.9	97.2	0.87	0.74	27.6
23	R	100	1.0	0.597	57.2	LOS E	5.3	37.7	0.93	0.79	23.9
Approa	ch	392	0.3	0.597	47.0	LOS D	13.9	97.2	0.88	0.82	26.4
North E	ast: Princ	es Highway N	E								
24	L	60	18.3	0.259	17.9	LOS B	0.9	7.5	0.50	0.73	47.7
25	Т	1244	16.1	0.613	32.0	LOS C	19.5	155.4	0.86	0.76	37.1
26	R	32	0.0	0.379	61.5	LOS E	1.7	12.0	0.94	0.72	22.3
Approa	ch	1336	15.8	0.613	32.1	LOS C	19.5	155.4	0.85	0.76	36.9
North V	Vest: Colle	ector Road N									
27	L	15	0.0	0.036	29.0	LOS C	0.5	3.3	0.79	0.70	33.4
28	Т	1	0.0	0.036	20.8	LOS C	0.5	3.3	0.79	0.56	34.5
29	R	38	0.0	0.293	56.0	LOS E	1.9	13.6	0.90	0.72	23.7
Approa	ch	54	0.0	0.293	47.9	LOS D	1.9	13.6	0.87	0.71	25.9
South V	Nest: Prin	ces Highway \$	SW								
30	L	74	0.0	0.415	19.6	LOS B	1.8	12.8	0.46	0.71	39.0
31	Т	1013	15.9	0.498	30.2	LOS C	15.0	119.3	0.81	0.71	38.2
32	R	119	1.7	0.599	67.2	LOS E	6.9	49.1	1.00	0.80	22.3
Approa	ch	1206	13.5	0.599	33.2	LOS C	15.0	119.3	0.81	0.72	36.1
All Vehi	icles	2987	12.6	0.613	34.8	LOS C	19.5	155.4	0.84	0.75	34.5

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

8000907, AECOM, ENTERPRISE

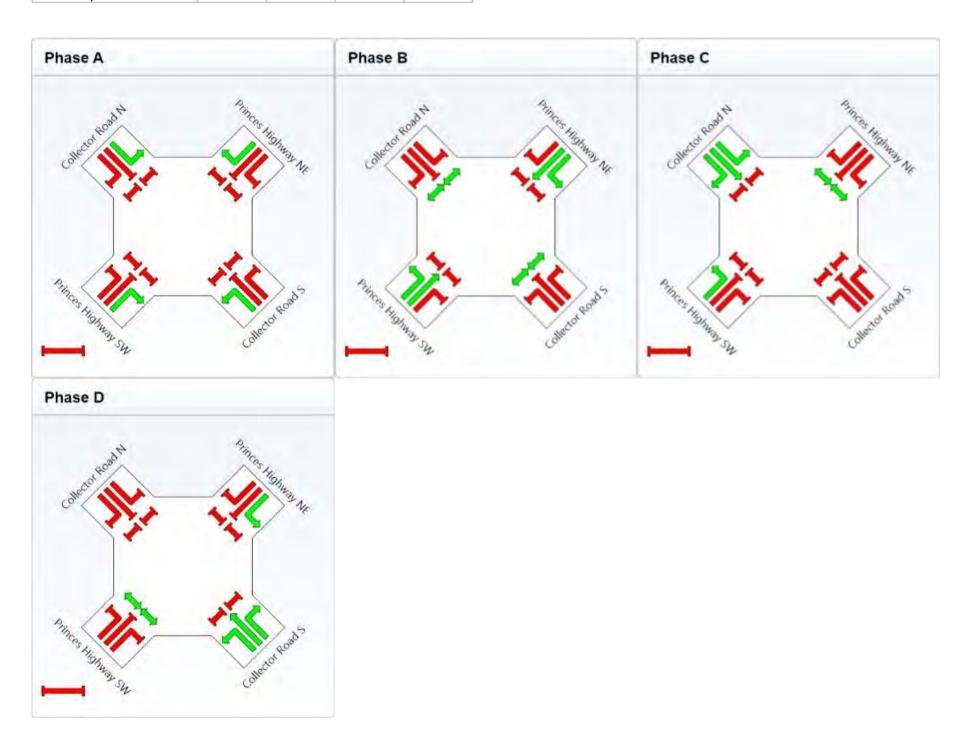
Move	Movement Performance - Pedestrians												
Mov IC	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped					
P9	Across SE approach	50	25.4	LOS C	0.1	0.1	0.65	0.65					
P10	Across SE approach	50	24.1	LOS C	0.1	0.1	0.63	0.63					
P11	Across NE approach	50	54.2	LOS E	0.2	0.2	0.95	0.95					
P12	Across NE approach	50	49.5	LOS E	0.2	0.2	0.91	0.91					
P13	Across NW approach	53	25.4	LOS C	0.1	0.1	0.65	0.65					
P14	Across NW approach	53	24.1	LOS C	0.1	0.1	0.63	0.63					
P15	Across SW approach	50	53.2	LOS E	0.2	0.2	0.94	0.94					
P16	Across SW approach	50	48.6	LOS E	0.2	0.2	0.90	0.90					
All Ped	destrians	406	37.8	LOS D			0.78	0.78					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 2046 PM Rev C

PHASING SUMMARY

Intersection 3 - PM Peak Hour

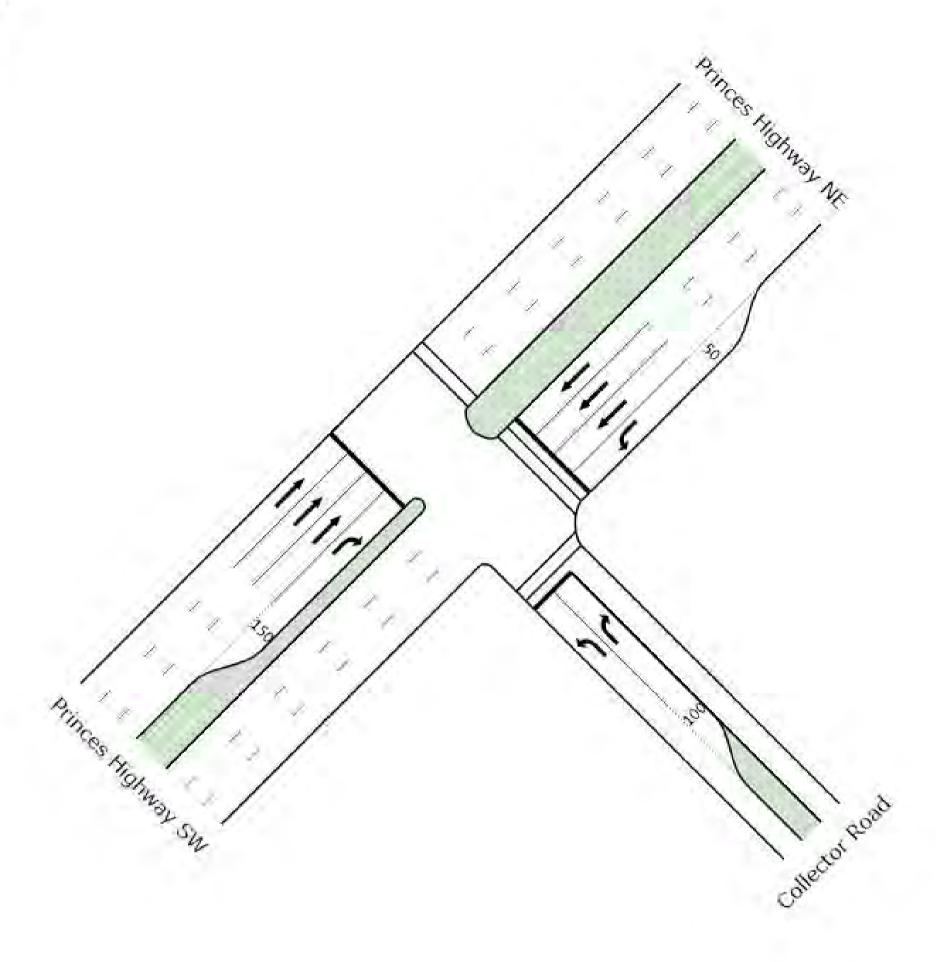

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Three-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	13	46	18	19
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	19	52	24	25
Phase Split	16 %	43 %	20 %	21 %



Processed: Wednesday, 20 February 2013 5:24:22 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #3.sip

Site: 2046 AM Rev A

MOVEMENT SUMMARY

Intersection 4 - AM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South E	ast: Colle	ctor Road									
21	L	353	0.3	0.336	22.4	LOS C	10.9	76.3	0.57	0.78	36.0
23	R	42	0.0	0.452	71.7	LOS E	2.6	18.0	1.00	0.73	20.9
Approa	ch	395	0.3	0.452	27.7	LOS C	10.9	76.3	0.62	0.78	33.4
North E	ast: Princ	es Highway N	IE								
24	L	9	0.0	0.030	30.4	LOS C	0.3	2.0	0.59	0.70	36.7
25	Т	1105	48.6	0.746	40.0	LOS D	19.8	196.3	0.95	0.86	33.0
Approad	ch	1114	48.2	0.746	39.9	LOS D	19.8	196.3	0.95	0.85	33.0
South V	Vest: Prin	ces Highway	SW								
31	Т	703	23.8	0.238	12.8	LOS B	6.5	54.9	0.52	0.44	53.7
32	R	526	2.1	0.761	36.1	LOS D	23.1	164.6	0.81	0.85	33.3
Approa	ch	1229	14.5	0.761	22.8	LOS C	23.1	164.6	0.64	0.62	43.5
All Vehi	cles	2738	26.2	0.761	30.4	LOS C	23.1	196.3	0.76	0.74	36.9

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Move	Movement Performance - Pedestrians									
Mov ID	Description	Demand	Average		Average Back		Prop.	Effective		
IVIOV IL	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate		
		ped/h	sec		ped	m		per ped		
P9	Across SE approach	50	31.5	LOS D	0.1	0.1	0.73	0.73		
P11	Across NE approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
All Ped	lestrians	100	42.8	LOS E			0.84	0.84		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 21 February 2013 4:20:04 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #4.sip

Site: 2046 AM Rev A

PHASING SUMMARY

Intersection 4 - AM Peak Hour

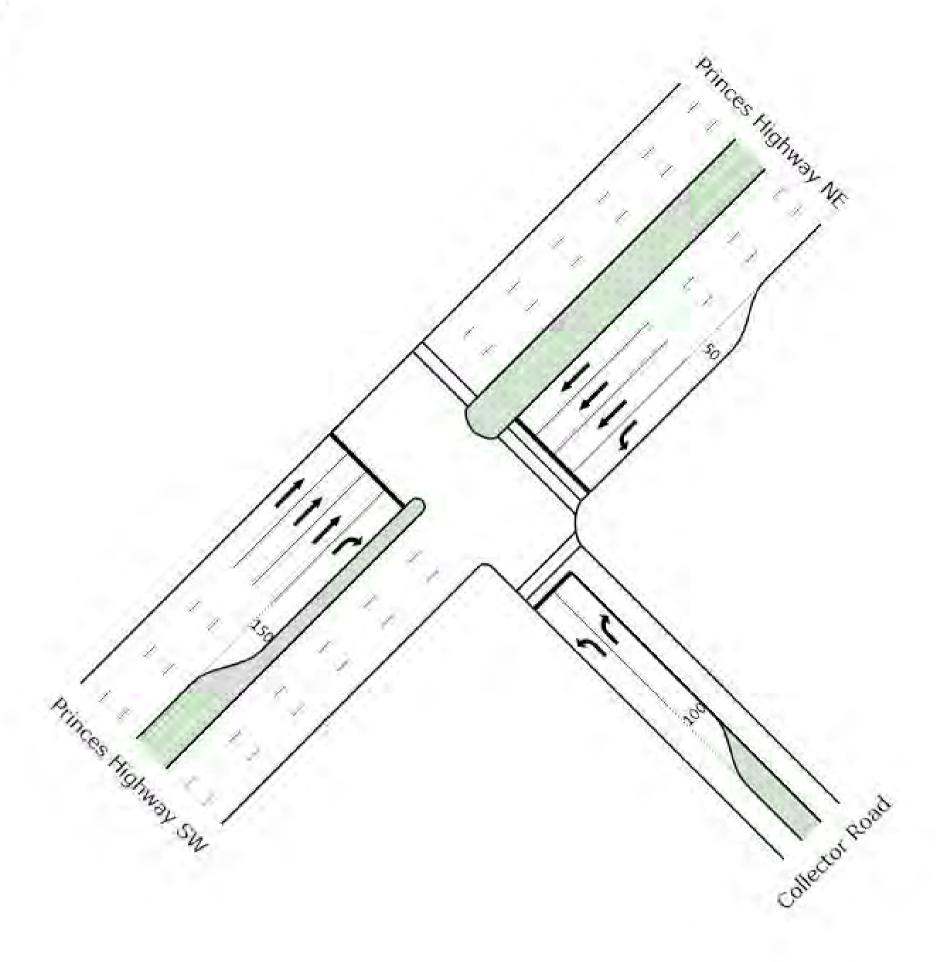
Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Split-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	24	40	6	26
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	30	46	12	32
Phase Split	25 %	38 %	10 %	27 %



Processed: Thursday, 21 February 2013 4:20:04 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #4.sip 8000907, AECOM, ENTERPRISE

Site: 2046 PM Rev A

MOVEMENT SUMMARY

Intersection 4 - PM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Movem	Movement Performance - Vehicles										
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back o Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South E	ast: Colle	ector Road									
21	L	532	0.2	0.485	22.6	LOS C	17.5	123.0	0.62	0.80	36.0
23	R	7	0.0	0.075	69.1	LOS E	0.4	2.9	0.98	0.66	21.4
Approac	ch	539	0.2	0.485	23.2	LOS C	17.5	123.0	0.62	0.80	35.6
North E	ast: Princ	es Highway N	E								
24	L	46	2.2	0.162	32.9	LOS C	1.6	11.4	0.63	0.74	35.1
25	Т	802	26.2	0.520	36.9	LOS D	12.9	111.0	0.88	0.75	34.5
Approac	ch	848	24.9	0.520	36.7	LOS D	12.9	111.0	0.86	0.75	34.5
South V	Vest: Prin	ces Highway S	SW								
31	Т	756	20.4	0.251	12.9	LOS B	7.1	58.2	0.52	0.45	53.6
32	R	370	2.2	0.519	30.7	LOS C	13.6	97.1	0.68	0.82	36.5
Approac	ch	1126	14.4	0.519	18.8	LOS B	13.6	97.1	0.57	0.57	47.2
All Vehic	cles	2513	14.9	0.520	25.8	LOS C	17.5	123.0	0.68	0.68	39.4

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Move	Movement Performance - Pedestrians									
Mov ID	Description	Demand	Average		Average Back		Prop.	Effective		
IVIOV IL	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate		
		ped/h	sec		ped	m		per ped		
P9	Across SE approach	50	33.8	LOS D	0.1	0.1	0.75	0.75		
P11	Across NE approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
All Ped	lestrians	100	44.0	LOS E			0.85	0.85		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 21 February 2013 4:20:12 PM SIDRA INTERSECTION 5.1.2.1953

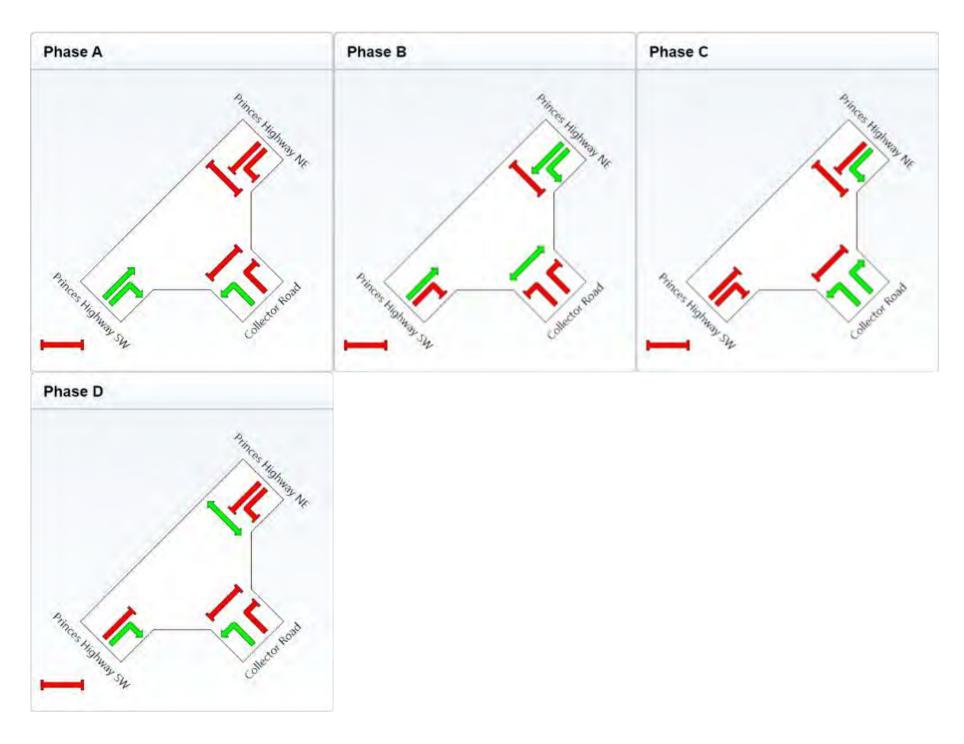
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #4.sip

Site: 2046 PM Rev A

PHASING SUMMARY

Intersection 4 - PM Peak Hour

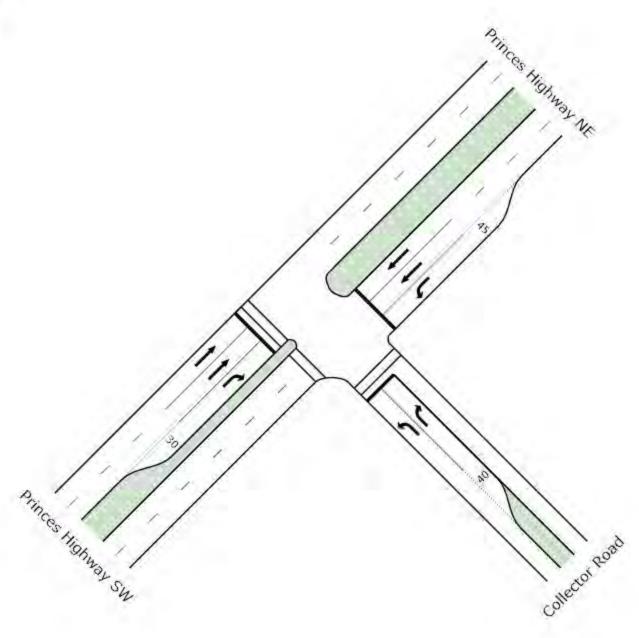

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Split-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	27	37	6	26
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	33	43	12	32
Phase Split	28 %	36 %	10 %	27 %


Processed: Thursday, 21 February 2013 4:20:12 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #4.sip 8000907, AECOM, ENTERPRISE

Site: 2046 AM Rev B

MOVEMENT SUMMARY

Intersection 6 - AM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Moven	Movement Performance - Vehicles										
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South E	ast: Colle	ector Road									
21	L	48	0.0	0.094	42.3	LOS D	2.1	14.5	0.78	0.74	27.9
23	R	92	2.2	0.542	54.7	LOS D	4.7	33.8	0.91	0.77	24.4
Approa	ch	140	1.4	0.542	50.4	LOS D	4.7	33.8	0.87	0.76	25.5
North E	ast: Princ	es Highway N	E								
24	L	216	1.9	0.567	21.6	LOS C	5.3	37.4	0.52	0.77	43.4
25	Т	788	76.0	0.483	12.9	LOS B	12.3	142.2	0.58	0.52	53.3
Approac	ch	1004	60.1	0.567	14.8	LOS B	12.3	142.2	0.56	0.57	51.1
South V	Vest: Prin	ces Highway S	SW								
31	Т	497	31.8	0.246	10.5	LOS B	6.3	56.4	0.47	0.41	56.7
32	R	50	0.0	0.538	74.6	LOS E	3.1	21.6	1.00	0.75	20.6
Approa	ch	547	28.9	0.538	16.4	LOS B	6.3	56.4	0.52	0.44	49.9
All Vehi	cles	1691	45.1	0.567	18.3	LOS B	12.3	142.2	0.58	0.55	46.8

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Mover	Movement Performance - Pedestrians								
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped	
P9	Across SE approach	50	11.3	LOS B	0.1	0.1	0.43	0.43	
P15	Across SW approach	50	54.2	LOS E	0.2	0.2	0.95	0.95	
All Ped	lestrians	100	32.7	LOS D			0.69	0.69	

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Friday, 22 March 2013 5:01:43 PM SIDRA INTERSECTION 5.1.2.1953

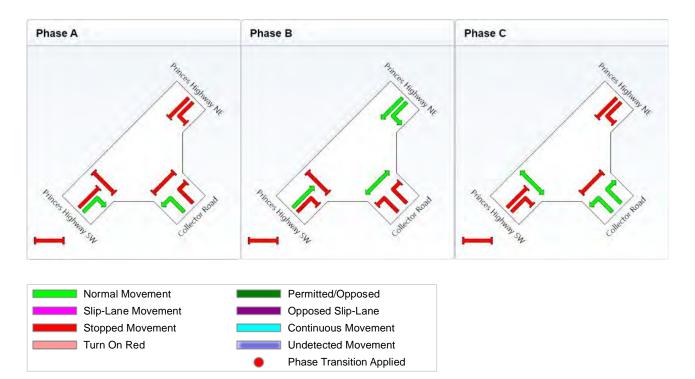
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #6.sip

Site: 2046 AM Rev B

PHASING SUMMARY

Intersection 6 - AM Peak Hour

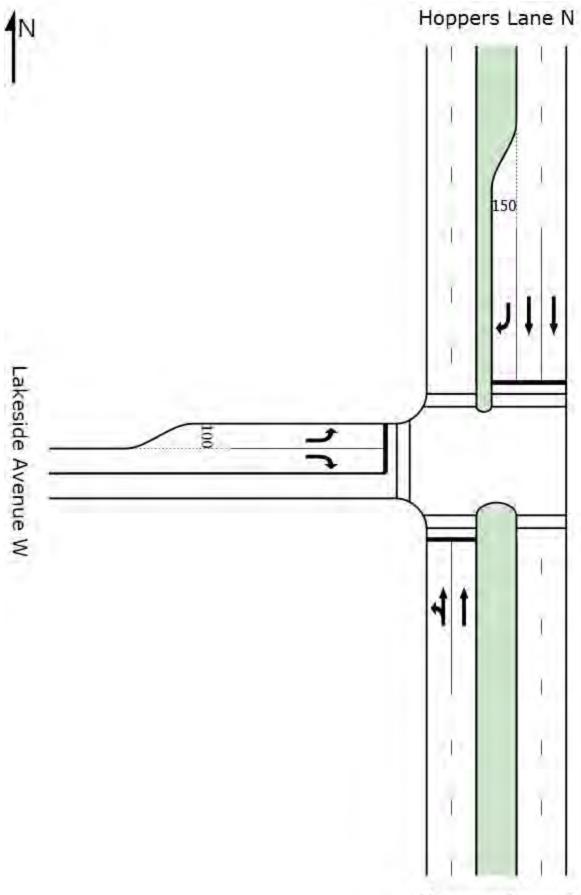

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Three-Phase Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	6	75	21
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	12	81	27
Phase Split	10 %	68 %	23 %



Processed: Friday, 22 March 2013 5:01:43 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd $\underline{www.sidrasolutions.com}$

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #6.sip 8000907, AECOM, ENTERPRISE

Hoppers Lane S

Site: 2046 AM Rev C

MOVEMENT SUMMARY

Intersection 9 - AM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: F	Hoppers L	₋ane S									
1	L	241	8.0	0.568	45.6	LOS D	15.7	111.0	0.90	0.84	26.0
2	Т	408	0.7	0.568	38.1	LOS D	16.3	115.0	0.90	0.77	27.9
Approac	ch	649	0.8	0.568	40.9	LOS D	16.3	115.0	0.90	0.80	27.2
North: F	Hoppers L	ane N									
8	Т	748	2.8	0.651	39.4	LOS D	19.1	136.7	0.93	0.80	27.6
9	R	353	20.4	0.652	40.1	LOS D	16.5	135.8	0.85	0.84	27.7
Approac	ch	1101	8.4	0.652	39.6	LOS D	19.1	136.7	0.91	0.81	27.7
West: La	akeside A	venue W									
10	L	113	4.4	0.178	18.1	LOS B	2.8	20.0	0.45	0.72	36.0
12	R	125	8.0	0.387	55.1	LOS E	6.6	46.4	0.93	0.79	22.3
Approac	ch	238	2.5	0.387	37.5	LOS D	6.6	46.4	0.70	0.76	27.2
All Vehi	cles	1988	5.2	0.652	39.8	LOS D	19.1	136.7	0.88	0.80	27.4

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians									
		Demand	Average		Average Back		Prop.	Effective		
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate		
		ped/h	sec		ped	m		per ped		
P1	Across S approach	50	31.5	LOS D	0.1	0.1	0.73	0.73		
P5	Across N approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
P7	Across W approach	50	34.5	LOS D	0.1	0.1	0.76	0.76		
All Ped	estrians	150	40.1	LOS E			0.81	0.81		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 28 March 2013 8:51:01 AM SIDRA INTERSECTION 5.1.2.1953

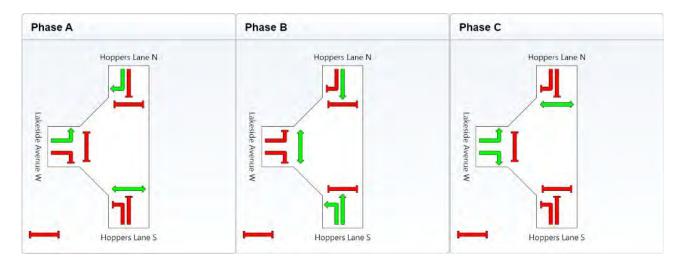
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

 $\label{lem:project: P:lo277612lambda} Project: P:lo277612lambda. Tech work area lambda Planning SIDRA lambda lam$

Site: 2046 AM Rev C

PHASING SUMMARY

Intersection 9 - AM Peak Hour

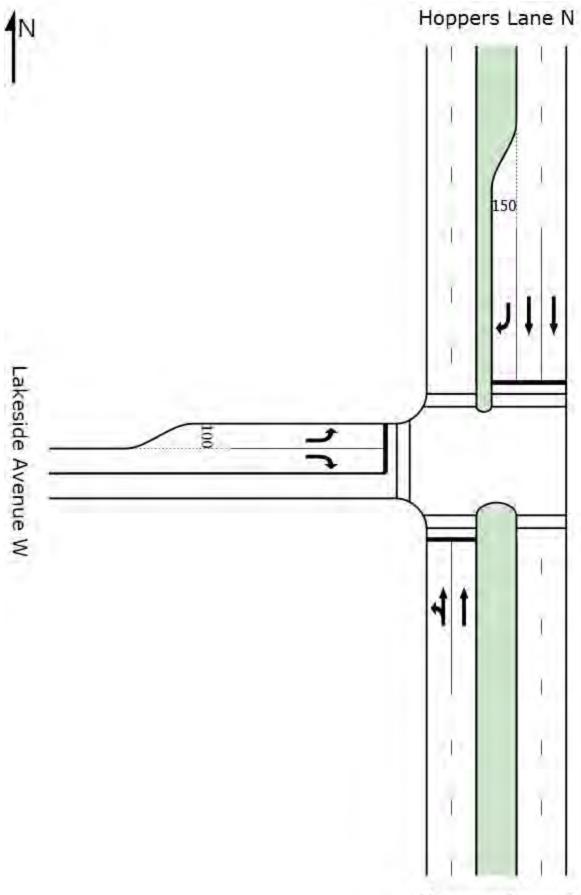

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Split-Phase Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	45	36	21
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	51	42	27
Phase Split	43 %	35 %	23 %



Processed: Thursday, 28 March 2013 8:51:01 AM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd $\underline{www.sidrasolutions.com}$

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #9.sip 8000907, AECOM, ENTERPRISE

Hoppers Lane S

Site: 2046 PM Rev C

MOVEMENT SUMMARY

Intersection 9 - PM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Movell	ieni rei	formance - \	renicles		A	l south of	050/ DI			E (()'	Λ
Mov ID	Turn	Demand	HV	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
טו ייטוייו	Tuiti	Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Carrella	11	veh/h	%	v/c	sec		veh	m		per veh	km/h
South: F	Hoppers I	ane S									
1	L	135	1.5	0.614	36.1	LOS D	22.6	159.1	0.84	0.90	30.3
2	Т	871	0.7	0.614	28.6	LOS C	22.9	161.1	0.84	0.74	31.9
Approac	ch	1006	0.8	0.614	29.6	LOS C	22.9	161.1	0.84	0.76	31.7
North: F	Hoppers L	ane N									
8	Т	725	2.3	0.444	26.0	LOS C	14.9	106.3	0.76	0.66	33.5
9	R	199	28.1	0.594	54.4	LOS D	10.7	92.8	0.95	0.83	23.3
Approac	ch	924	7.9	0.594	32.1	LOS C	14.9	106.3	0.80	0.70	30.7
West: La	akeside A	venue W									
10	L	335	1.2	0.622	28.7	LOS C	12.4	87.9	0.69	0.79	30.6
12	R	227	0.0	0.587	53.9	LOS D	12.1	85.0	0.96	0.83	22.6
Approac	ch	562	0.7	0.622	38.9	LOS D	12.4	87.9	0.80	0.81	26.7
All Vehi	cles	2492	3.4	0.622	32.7	LOS C	22.9	161.1	0.81	0.75	30.1

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians									
		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective		
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate		
		ped/h	sec		ped	m		per ped		
P1	Across S approach	50	46.8	LOS E	0.2	0.2	0.88	0.88		
P5	Across N approach	50	50.4	LOS E	0.2	0.2	0.92	0.92		
P7	Across W approach	50	24.1	LOS C	0.1	0.1	0.63	0.63		
All Ped	estrians	150	40.4	LOS E			0.81	0.81		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 28 March 2013 8:51:20 AM SIDRA INTERSECTION 5.1.2.1953

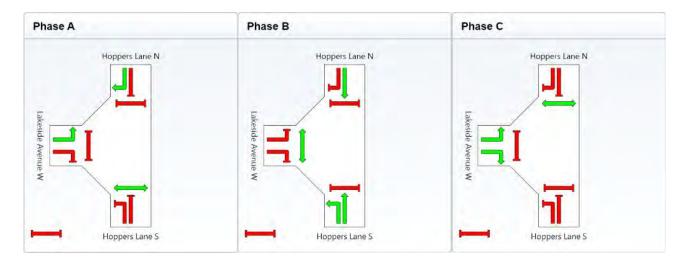
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

 $\label{lem:project: P:lo277612lambda} Project: P:lo277612lambda. Tech work area lambda Planning SIDRA lambda lam$

Site: 2046 PM Rev C

PHASING SUMMARY

Intersection 9 - PM Peak Hour

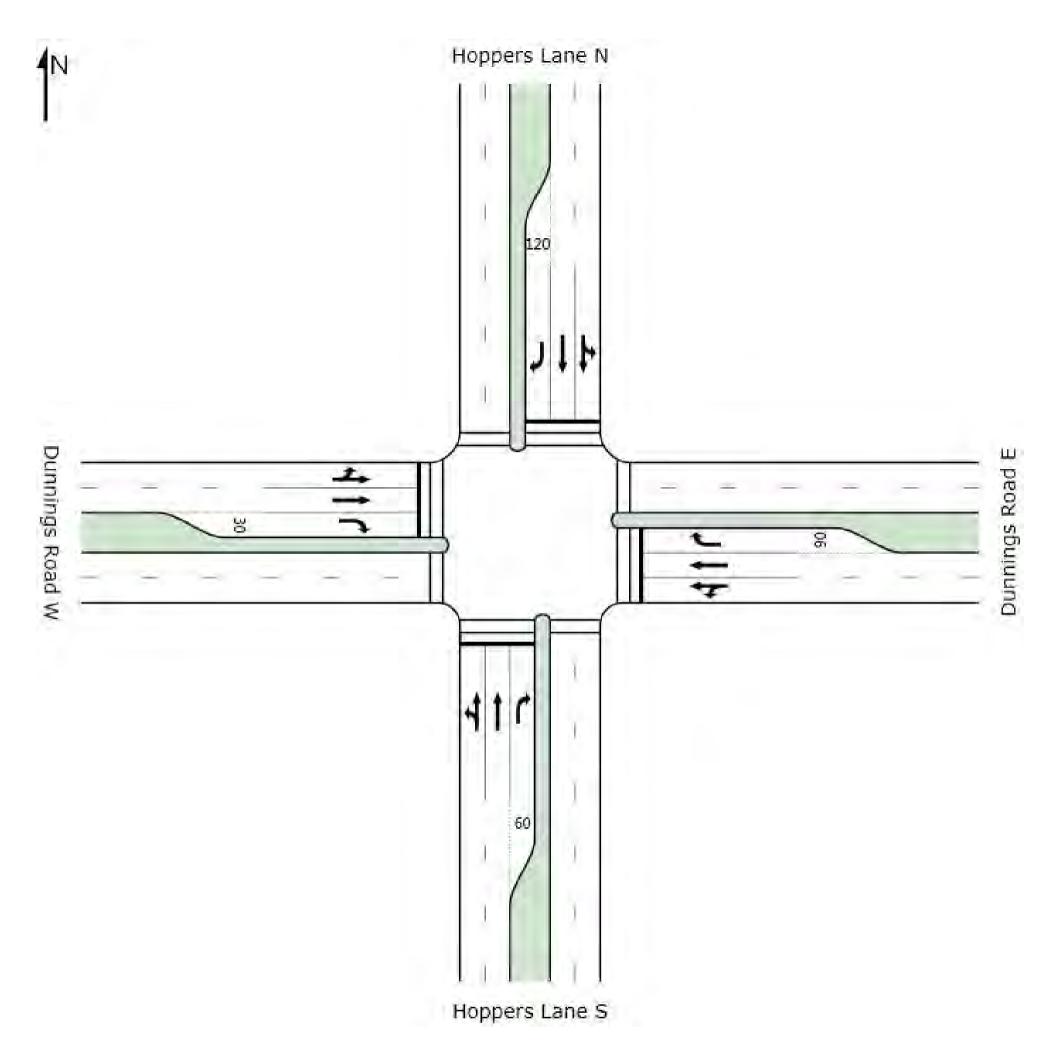

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Split-Phase Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	26	51	25
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	32	57	31
Phase Split	27 %	48 %	26 %



Processed: Thursday, 28 March 2013 8:51:20 AM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #9.sip 8000907, AECOM, ENTERPRISE

Site: 2046 AM Rev B

MOVEMENT SUMMARY

Intersection 11 - AM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Moven	nent Pe	rformance - '	Vehicle <u>s</u>								
		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
	Hoppers										
1	L	1	0.0	0.541	56.8	LOS E	9.9	69.8	0.96	0.83	24.5
2	Т	366	8.0	0.541	49.0	LOS D	9.9	70.1	0.96	0.79	24.6
3	R	19	0.0	0.067	41.8	LOS D	0.8	5.6	0.76	0.70	28.0
Approa	ch	386	8.0	0.541	48.6	LOS D	9.9	70.1	0.95	0.78	24.7
East: D	unnings	Road E									
4	L	55	0.0	0.565	57.0	LOS E	10.6	74.8	0.96	0.83	24.1
5	Т	332	1.2	0.565	49.3	LOS D	10.6	74.8	0.97	0.79	24.4
6	R	206	0.5	0.636	58.4	LOS E	11.4	80.3	0.98	0.82	23.1
Approa	ch	593	0.8	0.636	53.2	LOS D	11.4	80.3	0.97	0.81	23.9
North: H	Hoppers I	Lane N									
7	L	113	0.9	0.643	57.1	LOS E	12.6	89.8	0.98	0.83	23.8
8	Т	333	2.7	0.643	49.9	LOS D	12.6	89.8	0.98	0.81	24.1
9	R	314	3.8	0.632	49.4	LOS D	16.2	117.3	0.93	0.84	25.5
Approa	ch	760	2.9	0.643	50.8	LOS D	16.2	117.3	0.96	0.83	24.6
West: D	Dunnings	Road W									
10	L	178	0.6	0.229	26.1	LOS C	6.9	48.4	0.60	0.79	35.1
11	Т	112	0.0	0.229	37.7	LOS D	6.9	48.4	0.81	0.64	28.1
12	R	1	0.0	0.007	51.1	LOS D	0.0	0.3	0.84	0.60	25.0
Approa	ch	291	0.3	0.229	30.6	LOS C	6.9	48.4	0.68	0.73	32.0
All Vehi	cles	2030	1.5	0.643	48.2	LOS D	16.2	117.3	0.92	0.80	25.2

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians									
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped		
P1	Across S approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
P3	Across E approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
P5	Across N approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
P7	Across W approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
All Pede	estrians	200	54.2	LOS E			0.95	0.95		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 21 February 2013 4:28:54 PM SIDRA INTERSECTION 5.1.2.1953

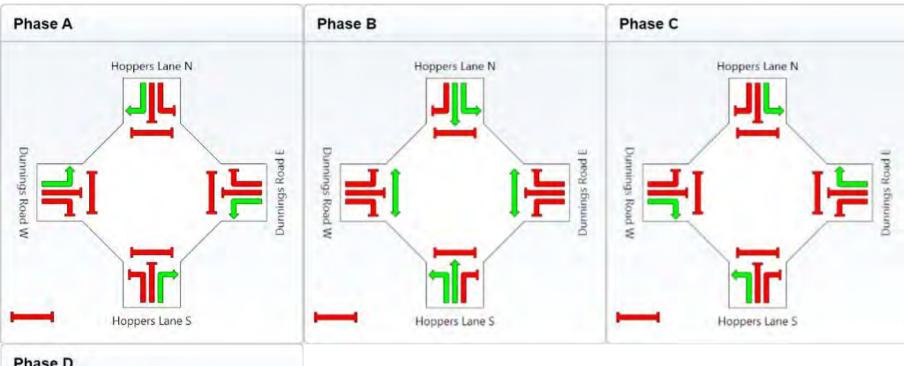
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

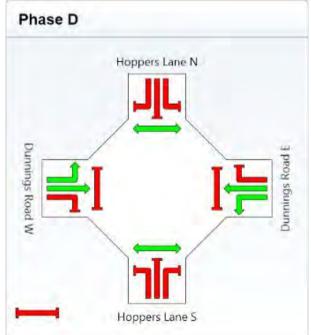
Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #11.sip 8000907, AECOM, ENTERPRISE

Site: 2046 AM Rev B

PHASING SUMMARY

Intersection 11 - AM Peak Hour

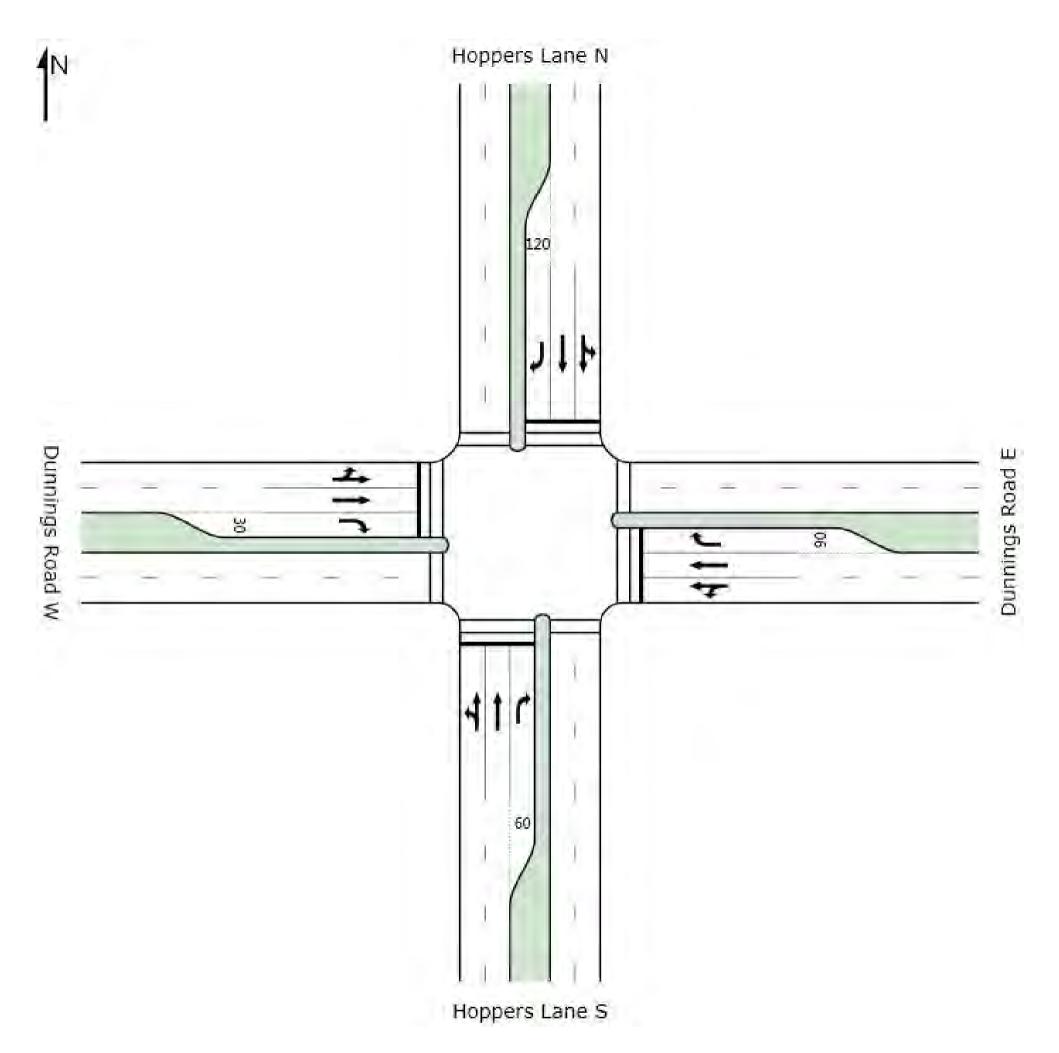

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Diamond-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	33	21	21	21
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	39	27	27	27
Phase Split	33 %	23 %	23 %	23 %


Processed: Thursday, 21 February 2013 4:28:54 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

8000907, AECOM, ENTERPRISE

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #11.sip

Site: 2046 PM Rev B

MOVEMENT SUMMARY

Intersection 11 - PM Peak Hour

Moven	nent Pe	rformance - \	Vehicle <u>s</u>								
		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Hoppers	Lane S									
1	L	1	0.0	0.348	45.7	LOS D	8.4	59.6	0.85	0.87	27.8
2	Т	356	2.0	0.348	37.9	LOS D	8.4	60.1	0.85	0.70	28.2
3	R	43	0.0	0.161	46.7	LOS D	2.0	13.8	0.82	0.73	26.3
Approa	ch	400	1.8	0.348	38.9	LOS D	8.4	60.1	0.85	0.71	28.0
East: D	unnings	Road E									
4	L	18	0.0	0.242	53.7	LOS D	4.2	29.5	0.90	0.80	25.0
5	Т	148	0.0	0.242	46.0	LOS D	4.2	29.5	0.90	0.70	25.4
6	R	153	0.7	0.662	64.3	LOS E	8.9	62.8	1.00	0.83	21.7
Approa	ch	319	0.3	0.662	55.2	LOS E	8.9	62.8	0.95	0.77	23.5
North: H	Hoppers	Lane N									
7	L	259	0.8	0.706	48.5	LOS D	20.5	144.7	0.95	0.86	26.1
8	Т	500	8.0	0.706	42.3	LOS D	20.5	144.7	0.96	0.83	26.4
9	R	290	4.1	0.689	54.0	LOS D	15.7	114.1	0.97	0.85	24.2
Approa	ch	1049	1.7	0.706	47.0	LOS D	20.5	144.7	0.96	0.84	25.7
West: D	Dunnings	Road W									
10	L	394	0.3	0.581	33.8	LOS C	21.1	148.2	0.79	0.85	31.4
11	Т	298	0.0	0.581	41.7	LOS D	21.1	148.2	0.91	0.77	26.5
12	R	1	0.0	0.008	57.0	LOS E	0.1	0.4	0.89	0.60	23.4
Approa	ch	693	0.1	0.581	37.2	LOS D	21.1	148.2	0.84	0.82	29.1
All Vehi	cles	2461	1.1	0.706	44.0	LOS D	21.1	148.2	0.91	0.80	26.6

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians									
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped		
P1	Across S approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
P3	Across E approach	50	44.2	LOS E	0.1	0.1	0.86	0.86		
P5	Across N approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
P7	Across W approach	50	44.2	LOS E	0.1	0.1	0.86	0.86		
All Pede	estrians	200	49.2	LOS E			0.90	0.90		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 21 February 2013 4:28:43 PM SIDRA INTERSECTION 5.1.2.1953

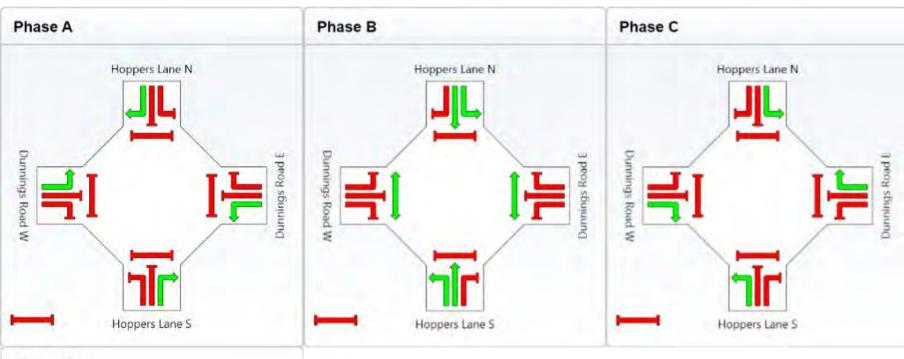
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

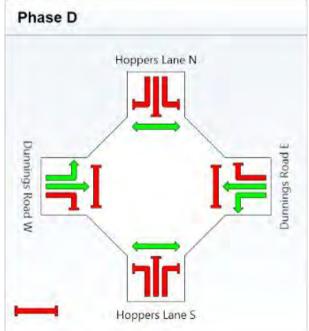
Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #11.sip 8000907, AECOM, ENTERPRISE

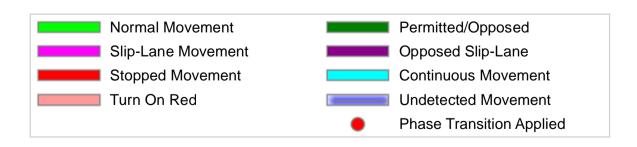
Site: 2046 PM Rev B

PHASING SUMMARY

Intersection 11 - PM Peak Hour

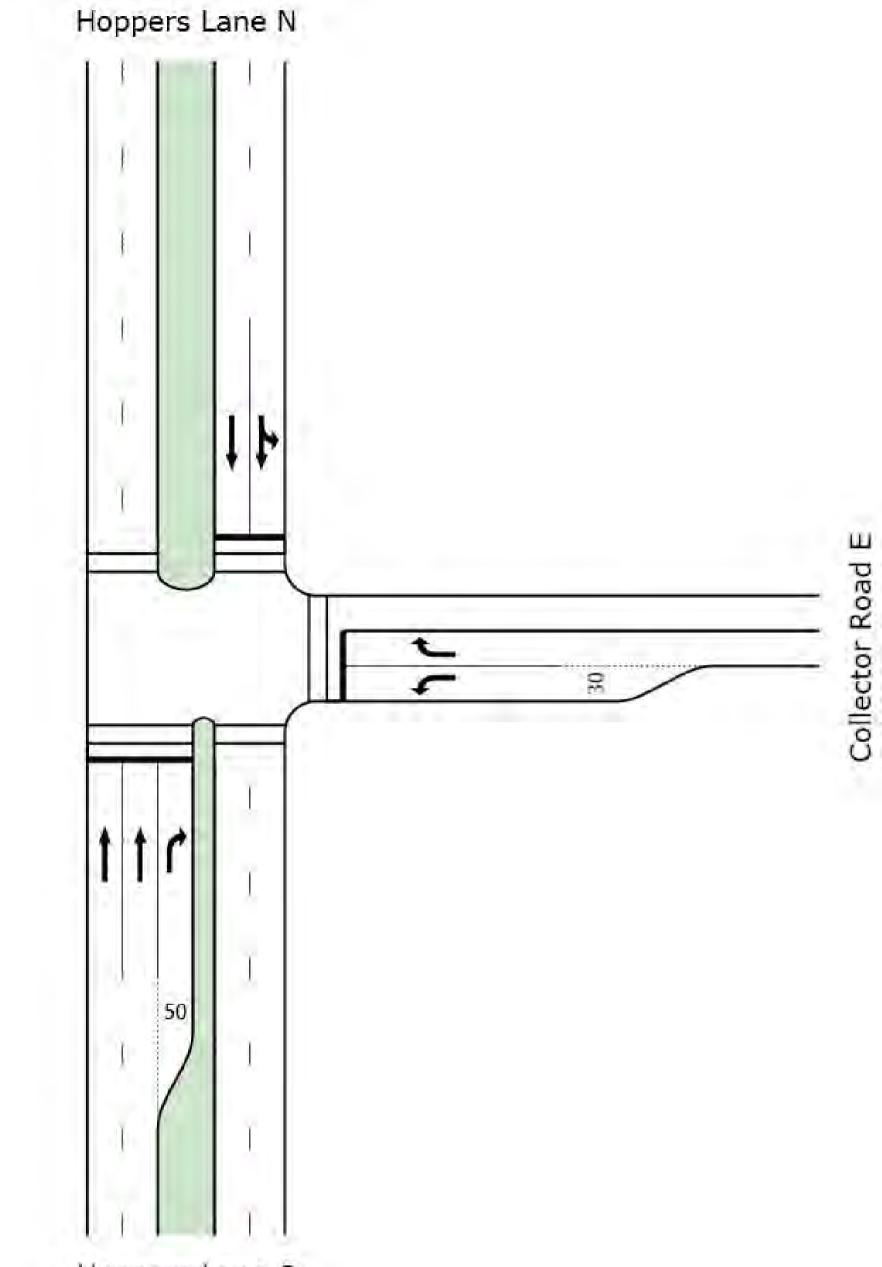

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Diamond-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	28	32	15	21
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	34	38	21	27
Phase Split	28 %	32 %	18 %	23 %



Processed: Thursday, 21 February 2013 4:28:43 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #11.sip 8000907, AECOM, ENTERPRISE

Hoppers Lane S

Site: 2046 AM Rev A

MOVEMENT SUMMARY

Intersection 12 - AM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Moven	nent Per	formance - V	ehicles								
Mov ID	Turn	Demand	HV	Deg.	Average	Level of	95% Back o		Prop.	Effective	Average
טוטט וט	Tulli	Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Courthy	Lannaral	veh/h	%	v/c	sec		veh	m		per veh	km/h
	Hoppers L										
2	Т	658	0.5	0.508	34.4	LOS C	15.4	108.2	0.86	0.74	29.6
3	R	134	0.7	0.515	37.3	LOS D	5.5	38.9	0.75	0.76	28.6
Approac	ch	792	0.5	0.515	34.9	LOS C	15.4	108.2	0.84	0.74	29.4
East: Co	ollector R	oad E									
4	L	66	3.0	0.276	19.5	LOS B	1.7	12.2	0.47	0.70	35.1
6	R	15	0.0	0.046	51.5	LOS D	0.7	5.1	0.86	0.70	23.1
Approac	ch	81	2.5	0.276	25.4	LOS C	1.7	12.2	0.54	0.70	32.1
North: F	Hoppers L	ane N									
7	L	59	6.8	0.340	39.8	LOS D	9.4	67.0	0.80	0.86	28.7
8	Т	374	1.1	0.340	32.2	LOS C	9.6	67.7	0.80	0.67	30.4
Approac	ch	433	1.8	0.340	33.2	LOS C	9.6	67.7	0.80	0.70	30.2
All Vehi	cles	1306	1.1	0.515	33.8	LOS C	15.4	108.2	0.81	0.72	29.8

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians											
		Demand	Average	Level of	evel of Average Back of Queue			Effective				
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate				
		ped/h	sec		ped	m		per ped				
P1	Across S approach	50	54.2	LOS E	0.2	0.2	0.95	0.95				
P3	Across E approach	53	31.5	LOS D	0.1	0.1	0.73	0.73				
P5	Across N approach	53	34.5	LOS D	0.1	0.1	0.76	0.76				
All Pede	estrians	156	39.8	LOS D			0.81	0.81				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

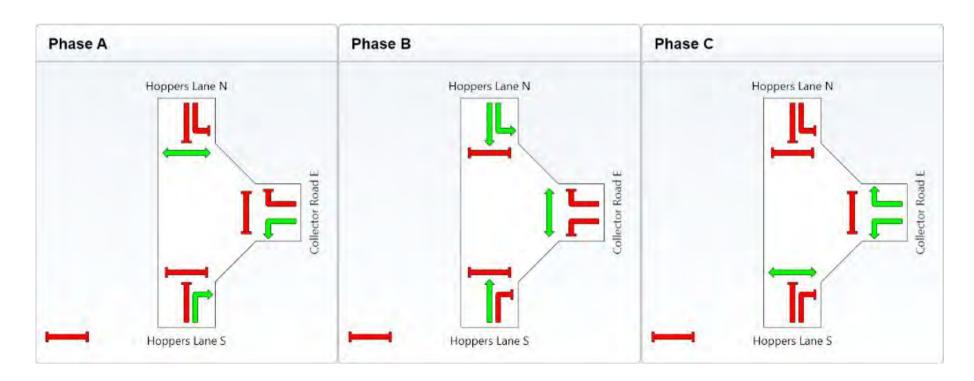
Processed: Thursday, 21 February 2013 4:34:59 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #12.sip

Site: 2046 AM Rev A

PHASING SUMMARY

Intersection 12 - AM Peak Hour

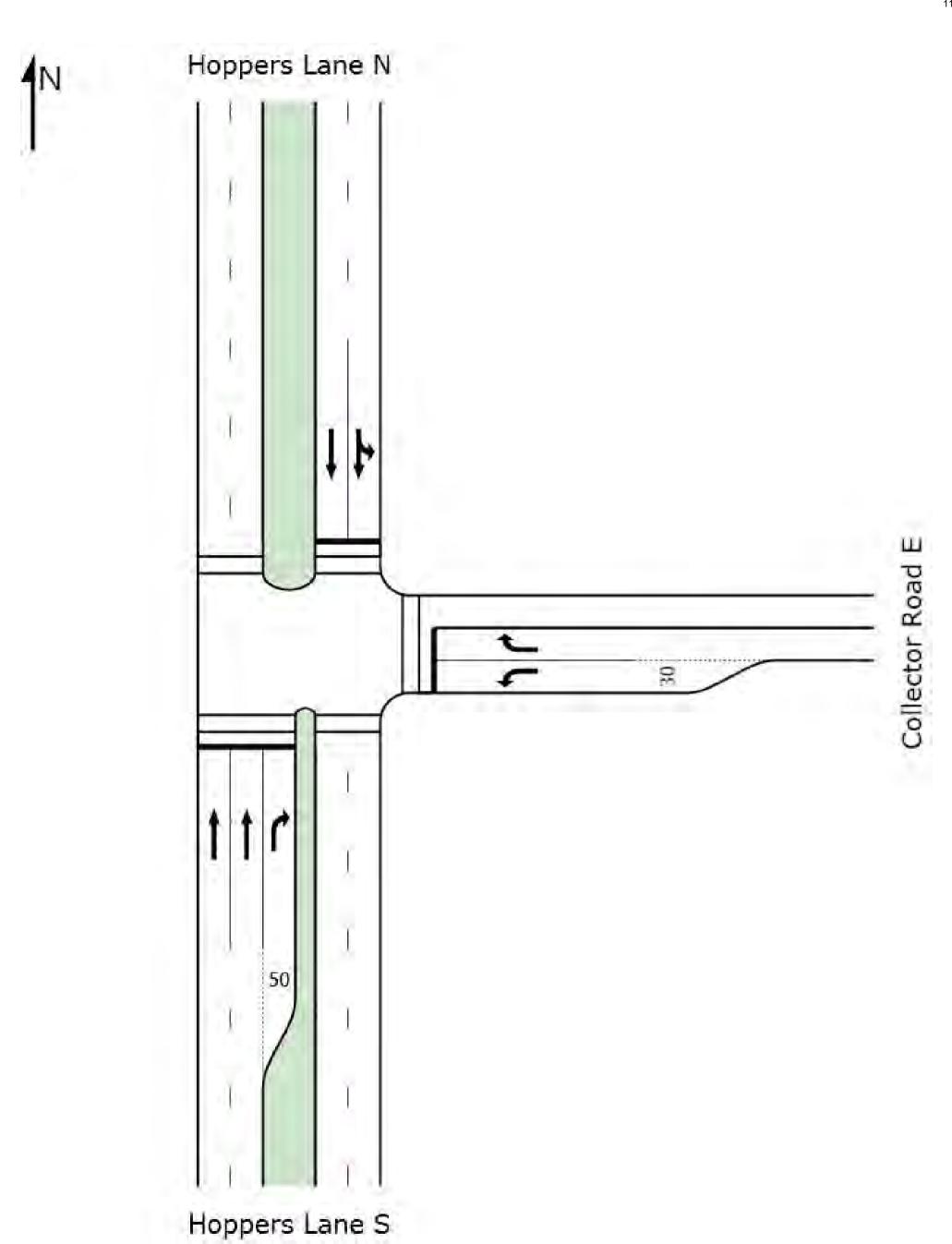

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Split-Phase Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	41	40	21
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	47	46	27
Phase Split	39 %	38 %	23 %



Processed: Thursday, 21 February 2013 4:34:59 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd $\underline{www.sidrasolutions.com}$

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #12.sip 8000907, AECOM, ENTERPRISE

Site: 2046 PM Rev A

MOVEMENT SUMMARY

Intersection 12 - PM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Moven	nent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back o Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: I	Hoppers L	∟ane S									
2	Т	459	1.7	0.357	32.4	LOS C	10.1	71.8	0.80	0.68	30.5
3	R	84	4.8	0.333	36.5	LOS D	3.4	24.5	0.73	0.74	29.0
Approac	ch	543	2.2	0.357	33.0	LOS C	10.1	71.8	0.79	0.69	30.2
East: Co	ollector R	oad E									
4	L	161	1.2	0.665	26.2	LOS C	4.8	33.7	0.64	0.77	31.7
6	R	49	0.0	0.151	52.7	LOS D	2.4	17.1	0.88	0.75	22.9
Approac	ch	210	1.0	0.665	32.4	LOS C	4.8	33.7	0.70	0.77	29.1
North: F	Hoppers L	ane N									
7	L	25	0.0	0.655	44.1	LOS D	21.1	148.3	0.91	0.90	27.6
8	Т	823	0.5	0.655	36.6	LOS D	21.2	148.7	0.91	0.80	28.6
Approac	ch	848	0.5	0.655	36.9	LOS D	21.2	148.7	0.91	0.80	28.5
All Vehi	cles	1601	1.1	0.665	35.0	LOS C	21.2	148.7	0.84	0.76	29.2

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians											
		Demand	Average	Level of	evel of Average Back of Queue			Effective				
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate				
		ped/h	sec		ped	m		per ped				
P1	Across S approach	50	54.2	LOS E	0.2	0.2	0.95	0.95				
P3	Across E approach	53	31.5	LOS D	0.1	0.1	0.73	0.73				
P5	Across N approach	53	34.5	LOS D	0.1	0.1	0.76	0.76				
All Pede	estrians	156	39.8	LOS D			0.81	0.81				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

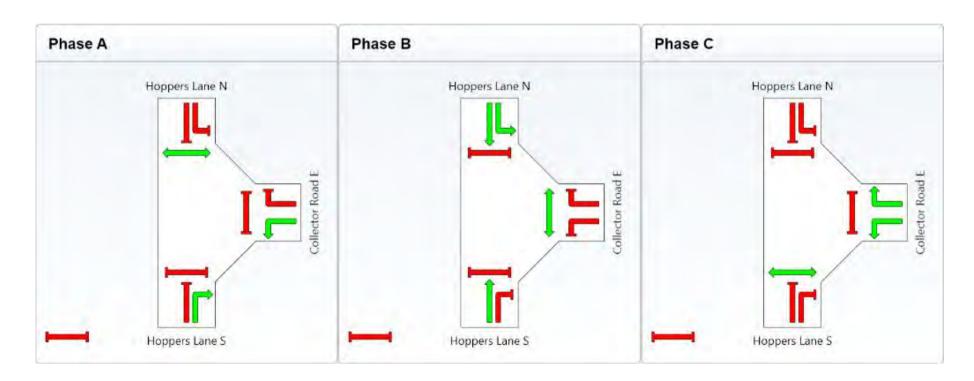
Processed: Thursday, 21 February 2013 4:34:51 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #12.sip

Site: 2046 PM Rev A

PHASING SUMMARY

Intersection 12 - PM Peak Hour

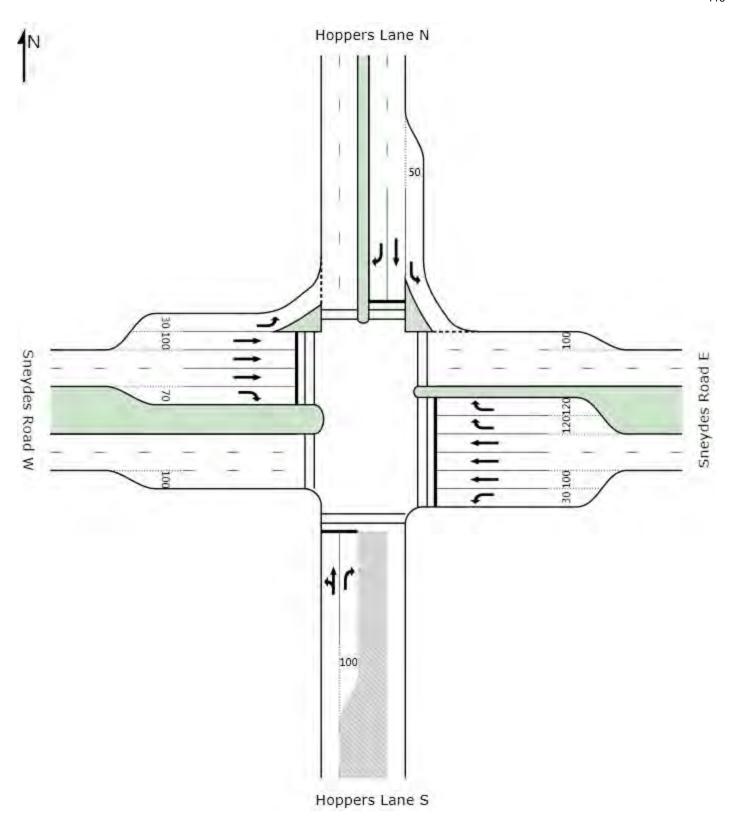

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Split-Phase Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	41	40	21
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	47	46	27
Phase Split	39 %	38 %	23 %



Processed: Thursday, 21 February 2013 4:34:51 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd $\underline{www.sidrasolutions.com}$

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #12.sip 8000907, AECOM, ENTERPRISE

Site: 2046 AM Rev D

MOVEMENT SUMMARY

Intersection 13 - AM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Moven	nent Pe	rformance -	Vehicles								
	_	Demand	1.13.7	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 11 1		veh/h	%	v/c	sec		veh	m		per veh	km/h
	Hoppers										
1	L	1	0.0	0.065	55.6	LOS E	0.9	6.1	0.90	0.73	22.8
2	Т	16	0.0	0.065	48.4	LOS D	0.9	6.1	0.90	0.64	22.9
3	R	45	6.7	0.190	57.5	LOS E	2.4	17.7	0.93	0.74	22.0
Approa	ch	62	4.8	0.190	55.1	LOS E	2.4	17.7	0.92	0.71	22.2
East: Si	neydes F	Road E									
4	L	137	5.1	0.416	15.8	LOS B	2.5	18.0	0.54	0.73	40.7
5	Т	1415	0.9	0.784	33.9	LOS C	30.9	218.3	0.91	0.82	29.7
6	R	674	0.6	0.667	44.7	LOS D	16.5	116.0	0.89	0.83	27.0
Approa	ch	2226	1.1	0.784	36.0	LOS D	30.9	218.3	0.88	0.82	29.3
North: F	Hoppers I	Lane N									
7	L	264	1.9	0.213	8.0	LOS A	0.9	6.6	0.12	0.63	49.1
8	Т	44	0.0	0.129	46.4	LOS D	2.2	15.3	0.88	0.68	25.0
9	R	132	0.0	0.406	55.8	LOS E	7.0	48.8	0.93	0.79	23.8
Approa	ch	440	1.1	0.406	26.2	LOS C	7.0	48.8	0.44	0.68	34.8
West: S	neydes I	Road W									
10	L	102	0.0	0.235	10.5	LOS B	1.3	8.8	0.28	0.66	46.6
11	Т	593	0.5	0.675	50.4	LOS D	12.9	90.6	0.98	0.81	24.2
12	R	139	0.7	0.752	68.6	LOS E	8.5	60.0	1.00	0.87	20.0
Approa	ch	834	0.5	0.752	48.5	LOS D	12.9	90.6	0.90	0.80	24.9
All Vehi	cles	3562	1.0	0.784	38.1	LOS D	30.9	218.3	0.83	0.80	28.5

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians										
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped			
P1	Across S approach	20	24.7	LOS C	0.0	0.0	0.64	0.64			
P2	Across S approach	20	23.4	LOS C	0.0	0.0	0.63	0.63			
P3	Across E approach	20	54.2	LOS E	0.1	0.1	0.95	0.95			
P4	Across E approach	20	46.8	LOS E	0.1	0.1	0.88	0.88			
P5	Across N approach	20	44.2	LOS E	0.1	0.1	0.86	0.86			
P6	Across N approach	20	44.2	LOS E	0.1	0.1	0.86	0.86			
P7	Across W approach	20	53.2	LOS E	0.1	0.1	0.94	0.94			
P8	Across W approach	20	51.3	LOS E	0.1	0.1	0.93	0.93			
All Ped	All Pedestrians		42.8	LOS E			0.84	0.84			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

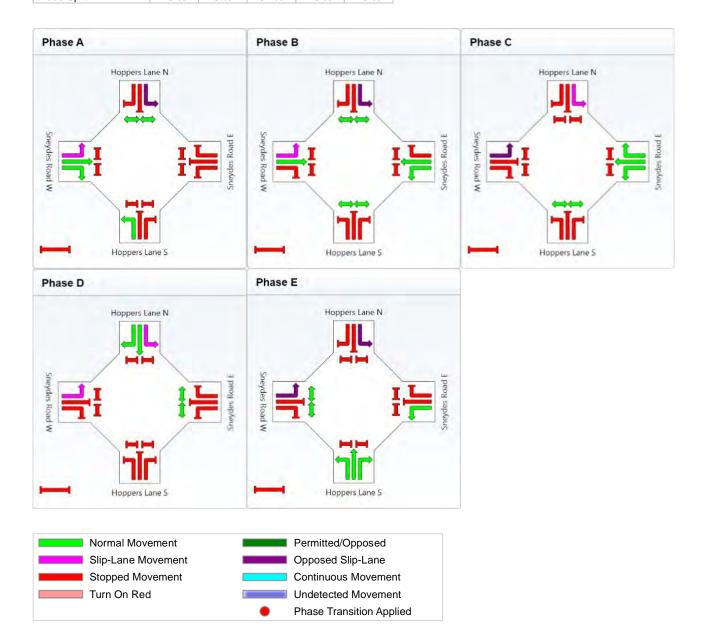
Pedestrian movement LOS values are based on average delay per pedestrian movement.

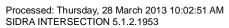
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 2046 AM Rev D

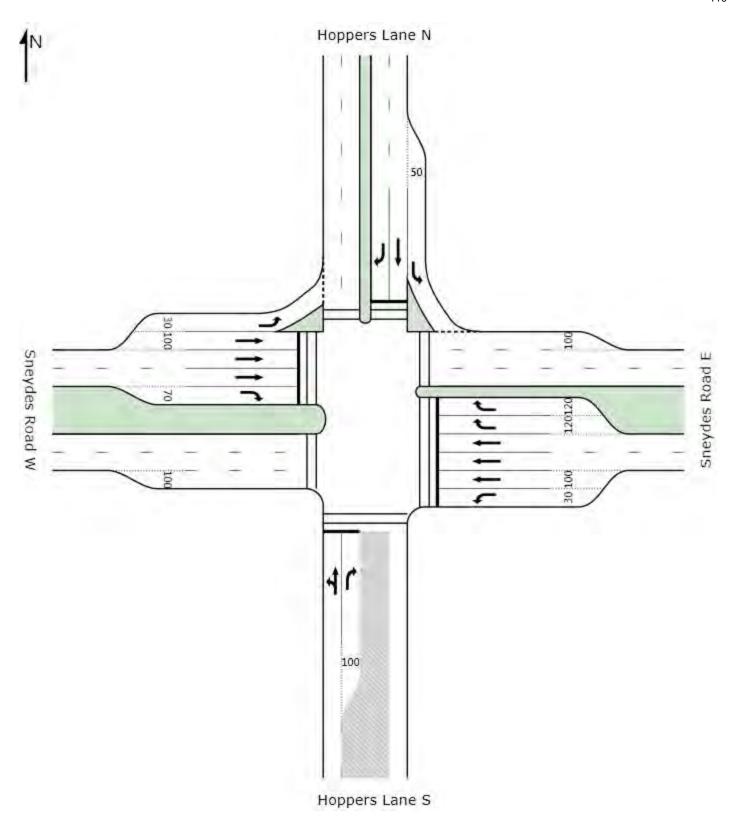
PHASING SUMMARY

Intersection 13 - AM Peak Hour


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Split-Phase Input Sequence: A, B, C, D, E Output Sequence: A, B, C, D, E


Phase Timing Results

Phase	Α	В	С	D	E
Green Time (sec)	12	3	38	21	16
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	18	9	44	27	22
Phase Split	15 %	8 %	37 %	23 %	18 %

Site: 2046 PM Rev D

MOVEMENT SUMMARY

Intersection 13 - PM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
Mov ID) Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back (Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
Cauthi		veh/h	%	v/c	sec		veh	m		per veh	km/h
	Hoppers I		0.0	0.054	50.5	1.00.5	0.0	22.2	2.24	0.77	20.4
1	L	1	0.0	0.254	58.5	LOS E	3.3	23.3	0.94	0.77	22.1
2	T	61	0.0	0.254	51.3	LOS D	3.3	23.3	0.94	0.72	22.2
3	R	181	1.7	0.789	66.9	LOS E	11.1	79.1	1.00	0.92	20.1
Approa	ich	243	1.2	0.789	63.0	LOS E	11.1	79.1	0.98	0.87	20.6
East: S	neydes R	oad E									
4	L	49	10.2	0.158	16.2	LOS B	0.9	6.5	0.54	0.70	40.5
5	Т	792	1.9	0.460	29.7	LOS C	14.6	103.7	0.79	0.68	31.7
6	R	414	2.9	0.853	71.8	LOS E	13.3	95.7	1.00	0.96	20.3
Approa	nch	1255	2.5	0.853	43.0	LOS D	14.6	103.7	0.85	0.77	26.9
North:	Hoppers L	₋ane N									
7	L	791	0.6	0.632	8.6	LOS A	4.2	29.4	0.35	0.69	47.9
8	Т	24	0.0	0.067	44.7	LOS D	1.2	8.1	0.86	0.64	25.5
9	R	168	0.0	0.493	55.8	LOS E	9.0	62.8	0.95	0.81	23.8
Approa	ich	983	0.5	0.632	17.6	LOS B	9.0	62.8	0.46	0.71	40.2
West: S	Sneydes F	Road W									
10	L	69	1.4	0.145	10.0	LOS A	0.8	5.4	0.25	0.65	47.1
11	Т	1496	0.1	0.895	48.0	LOS D	40.6	284.3	0.96	0.98	24.9
12	R	95	1.1	0.442	62.1	LOS E	5.3	37.8	0.98	0.78	21.4
Approa	ich	1660	0.2	0.895	47.2	LOS D	40.6	284.3	0.94	0.96	25.1
All Veh	icles	4141	1.1	0.895	39.8	LOS D	40.6	284.3	0.80	0.84	27.8

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

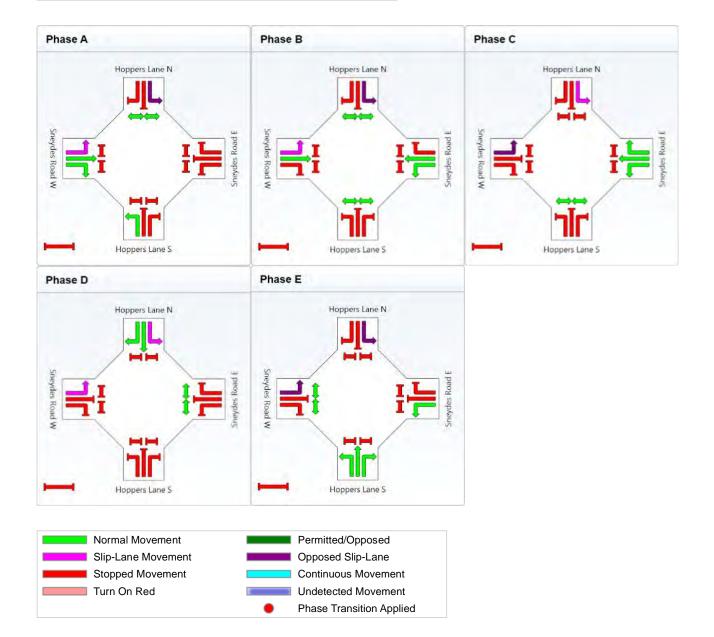
Moven	nent Performance -	Pedestrians	s					
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	Across S approach	20	26.0	LOS C	0.0	0.0	0.66	0.66
P2	Across S approach	20	24.7	LOS C	0.0	0.0	0.64	0.64
P3	Across E approach	20	53.2	LOS E	0.1	0.1	0.94	0.94
P4	Across E approach	20	45.9	LOS E	0.1	0.1	0.88	0.88
P5	Across N approach	20	27.3	LOS C	0.0	0.0	0.68	0.68
P6	Across N approach	20	27.3	LOS C	0.0	0.0	0.68	0.68
P7	Across W approach	20	54.2	LOS E	0.1	0.1	0.95	0.95
P8	Across W approach	20	52.3	LOS E	0.1	0.1	0.93	0.93
All Pedestrians		160	38.9	LOS D			0.79	0.79

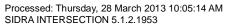
Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: 2046 PM Rev D

PHASING SUMMARY

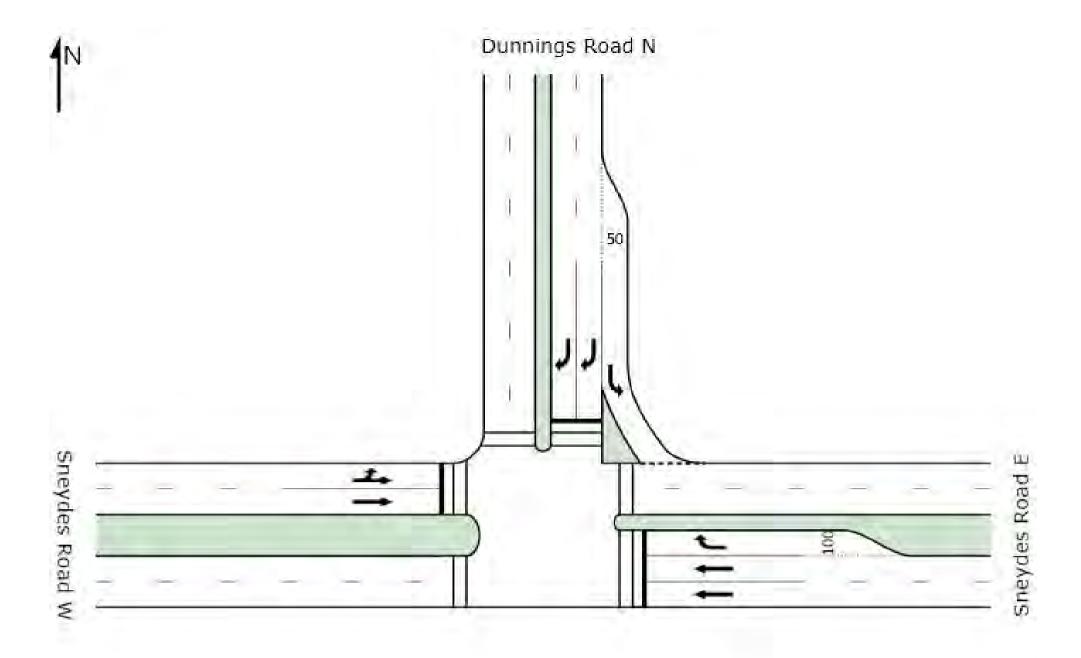
Intersection 13 - PM Peak Hour


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Split-Phase Input Sequence: A, B, C, D, E Output Sequence: A, B, C, D, E

Phase Timing Results


Phase	Α	В	С	D	E
Green Time (sec)	14	23	16	22	15
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	20	29	22	28	21
Phase Split	17 %	24 %	18 %	23 %	18 %

Site: 2046 AM Rev A

MOVEMENT SUMMARY

Intersection 14 - AM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Moven	nent Per	formance - V	ehicles								
Mov ID	Turn	Demand	HV	Deg.	Average	Level of	95% Back o		Prop.	Effective	Average
טו ייטוייו	Tulli	Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
5 1 0		veh/h	%	v/c	sec		veh	m		per veh	km/h
	neydes R										
5	Т	1327	0.7	0.651	21.8	LOS C	27.7	194.7	0.78	0.71	35.8
6	R	155	0.0	0.556	60.1	LOS E	8.6	60.3	0.98	0.81	22.7
Approa	ch	1482	0.6	0.651	25.8	LOS C	27.7	194.7	0.80	0.72	33.7
North: [Dunnings	Road N									
7	L	43	0.0	0.080	10.4	LOS B	0.5	3.6	0.27	0.65	46.7
9	R	181	0.6	0.280	54.9	LOS D	4.7	32.7	0.91	0.78	23.9
Approa	ch	224	0.4	0.280	46.3	LOS D	4.7	32.7	0.79	0.75	26.4
West: S	Sneydes R	toad W									
10	L	159	0.0	0.470	27.2	LOS C	17.2	120.4	0.68	0.89	35.3
11	Т	792	0.5	0.470	19.0	LOS B	17.4	122.4	0.68	0.60	37.5
Approa	ch	951	0.4	0.470	20.4	LOS C	17.4	122.4	0.68	0.65	37.1
All Vehi	icles	2657	0.5	0.651	25.6	LOS C	27.7	194.7	0.76	0.70	34.0

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians									
		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective		
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate		
		ped/h	sec		ped	m		per ped		
P3	Across E approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
P5	Across N approach	50	19.8	LOS B	0.1	0.1	0.58	0.58		
P7	Across W approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
All Pede	estrians	150	42.7	LOS E			0.83	0.83		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

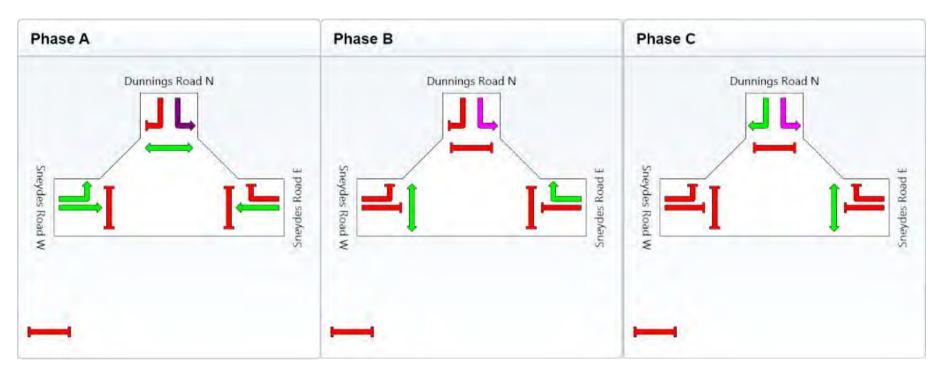
Processed: Thursday, 21 February 2013 4:46:54 PM Copyright © 2000-2011 Akt SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com
Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #14.sip

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Site: 2046 AM Rev A

PHASING SUMMARY

Intersection 14 - AM Peak Hour

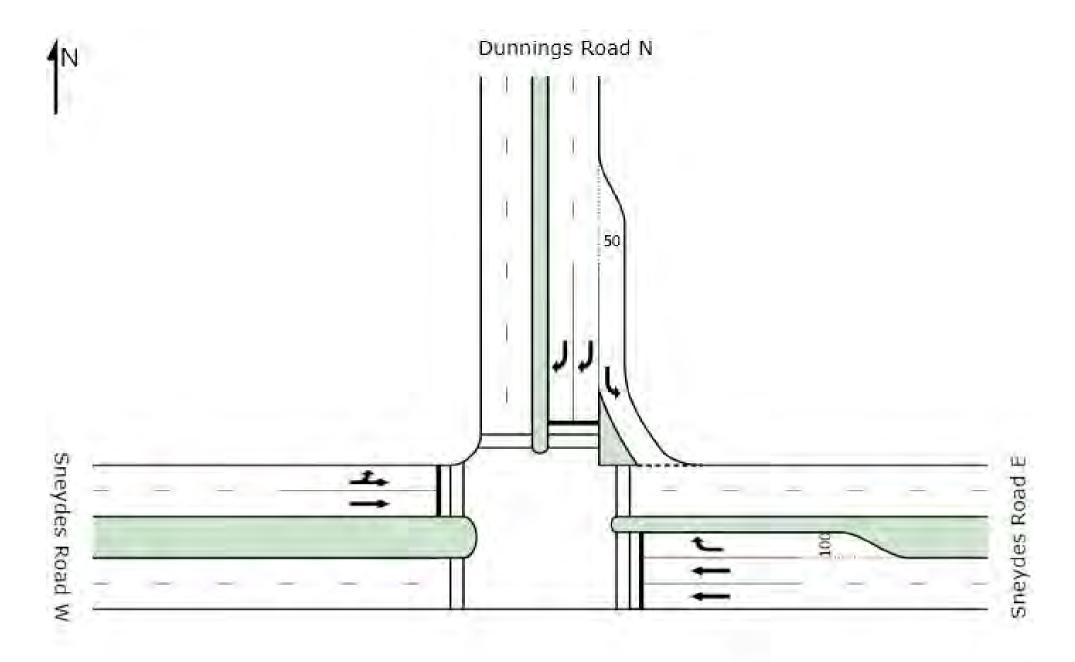

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Three-Phase Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	63	18	21
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	69	24	27
Phase Split	58 %	20 %	23 %



Processed: Thursday, 21 February 2013 4:46:54 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd $\underline{www.sidrasolutions.com}$

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #14.sip 8000907, AECOM, ENTERPRISE

Site: 2046 PM Rev A

MOVEMENT SUMMARY

Intersection 14 - PM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Moven	nent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back of Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: Sr	neydes R	oad E									
5	Т	1015	1.2	0.500	19.5	LOS B	18.8	133.2	0.69	0.62	37.4
6	R	166	0.6	0.598	60.5	LOS E	9.3	65.5	0.98	0.81	22.6
Approac	ch	1181	1.1	0.598	25.2	LOS C	18.8	133.2	0.73	0.64	34.3
North: E	Dunnings	Road N									
7	L	228	0.4	0.643	19.7	LOS B	6.4	45.3	0.57	0.74	39.0
9	R	212	0.0	0.326	55.3	LOS E	5.5	38.5	0.92	0.78	23.8
Approac	ch	440	0.2	0.643	36.9	LOS D	6.4	45.3	0.74	0.76	29.9
West: S	neydes F	Road W									
10	L	187	0.0	0.796	32.9	LOS C	38.0	266.3	0.88	0.92	32.8
11	Т	1432	0.2	0.796	24.7	LOS C	38.4	269.4	0.88	0.81	33.8
Approac	ch	1619	0.2	0.796	25.7	LOS C	38.4	269.4	0.88	0.82	33.6
All Vehi	cles	3240	0.5	0.796	27.0	LOS C	38.4	269.4	0.81	0.75	33.3

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians									
		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective		
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate		
		ped/h	sec		ped	m		per ped		
P3	Across E approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
P5	Across N approach	50	19.8	LOS B	0.1	0.1	0.58	0.58		
P7	Across W approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
All Pede	estrians	150	42.7	LOS E			0.83	0.83		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

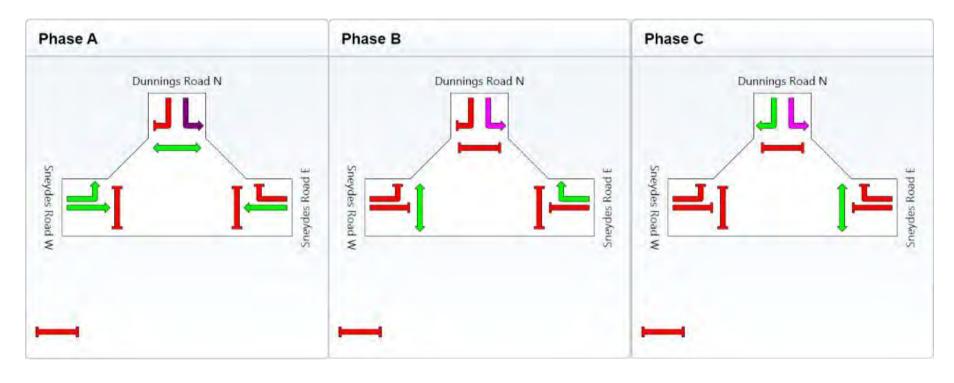
Processed: Thursday, 21 February 2013 4:47:11 PM SIDRA INTERSECTION 5.1.2.1953

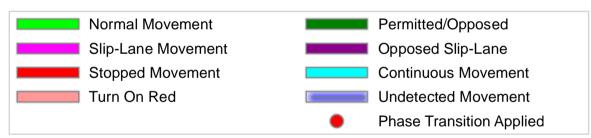
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #14.sip

Site: 2046 PM Rev A

PHASING SUMMARY

Intersection 14 - PM Peak Hour

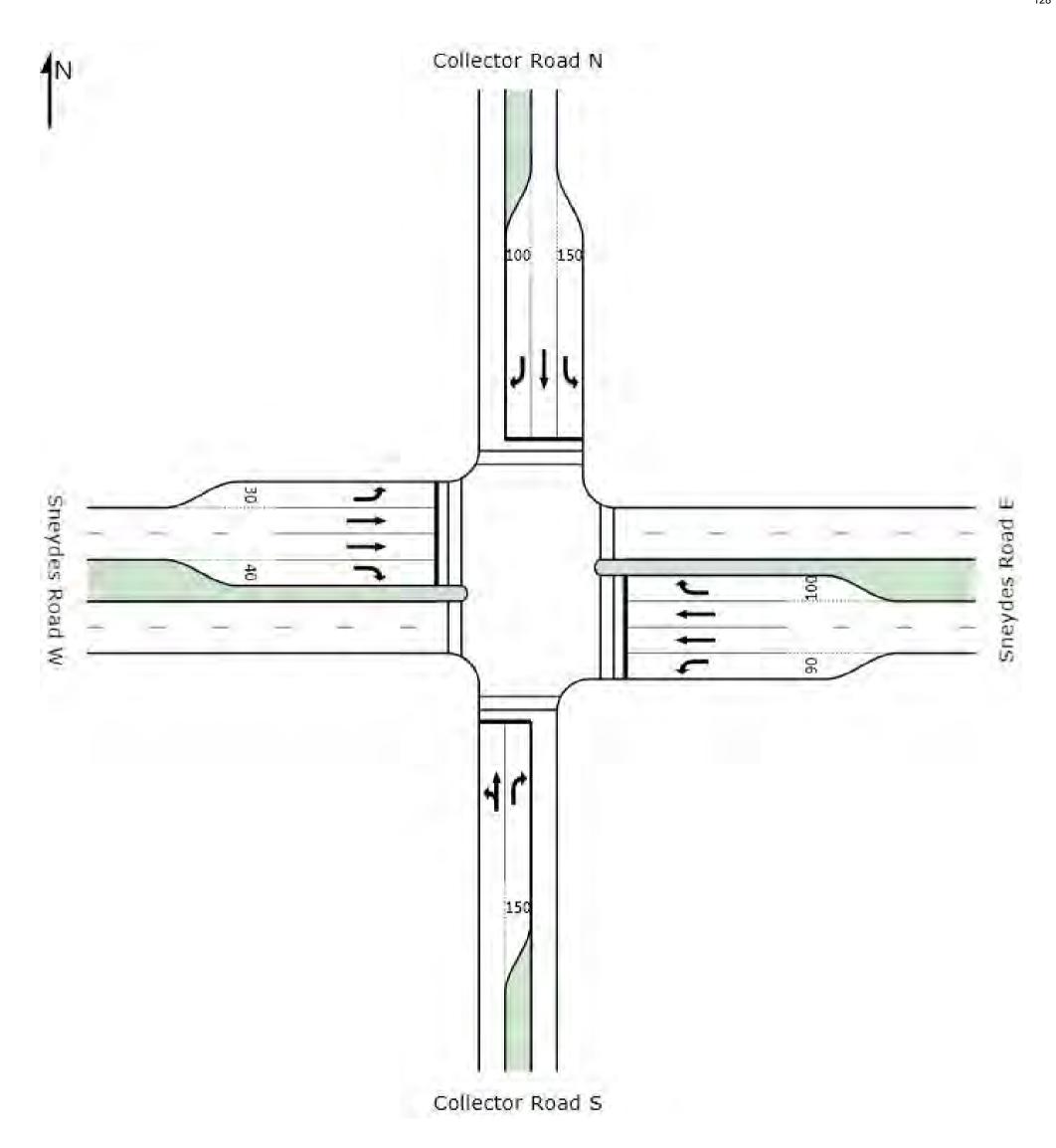

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Three-Phase Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	63	18	21
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	69	24	27
Phase Split	58 %	20 %	23 %



Processed: Thursday, 21 February 2013 4:47:11 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd $\underline{www.sidrasolutions.com}$

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #14.sip 8000907, AECOM, ENTERPRISE

Site: 2046 AM Rev C

MOVEMENT SUMMARY

Intersection 15 - AM Peak Hour

Movement Performance - Vehicles											
wover	nent Per	Demand	venicies	Deg.	Average	Level of	95% Back (of Oueue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec	0011100	veh	m	Quodod	per veh	km/h
South:	Collector	Road S									
1	L	89	0.0	0.266	47.0	LOS D	5.7	39.6	0.85	0.79	24.5
2	Т	30	0.0	0.266	39.8	LOS D	5.7	39.6	0.85	0.69	24.1
3	R	214	0.5	0.816	67.1	LOS E	13.3	93.5	1.00	0.93	20.0
Approa	ch	333	0.3	0.816	59.2	LOS E	13.3	93.5	0.95	0.87	21.3
East: S	neydes R	oad E									
4	L	315	1.6	0.611	26.7	LOS C	11.0	77.8	0.65	0.78	33.5
5	Т	968	0.3	0.807	44.3	LOS D	27.4	192.6	0.99	0.92	25.9
6	R	227	1.3	0.779	63.9	LOS E	13.7	96.7	1.00	0.89	21.0
Approa	ch	1510	0.7	0.807	43.6	LOS D	27.4	192.6	0.92	0.89	26.2
North: (Collector I	Road N									
7	L	221	0.5	0.340	33.3	LOS C	8.7	61.3	0.72	0.79	28.7
8	Т	13	0.0	0.035	42.2	LOS D	0.6	4.3	0.84	0.59	24.0
9	R	1	0.0	0.004	53.9	LOS D	0.0	0.3	0.88	0.60	22.7
Approa	ch	235	0.4	0.340	33.9	LOS C	8.7	61.3	0.73	0.77	28.4
West: S	Sneydes F	Road W									
10	L	100	0.0	0.464	24.1	LOS C	3.0	21.2	0.56	0.72	34.9
11	Т	516	0.6	0.431	35.5	LOS D	12.0	84.5	0.85	0.72	29.1
12	R	58	1.7	0.347	55.3	LOS E	3.0	21.3	0.91	0.75	22.9
Approa	ch	674	0.6	0.464	35.5	LOS D	12.0	84.5	0.81	0.72	29.2
All Vehi	icles	2752	0.6	0.816	42.7	LOS D	27.4	192.6	0.88	0.84	26.3

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians									
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped		
P1	Across S approach	50	33.8	LOS D	0.1	0.1	0.75	0.75		
P3	Across E approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
P5	Across N approach	50	36.0	LOS D	0.1	0.1	0.78	0.78		
P7	Across W approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
All Pede	estrians	200	44.5	LOS E			0.86	0.86		

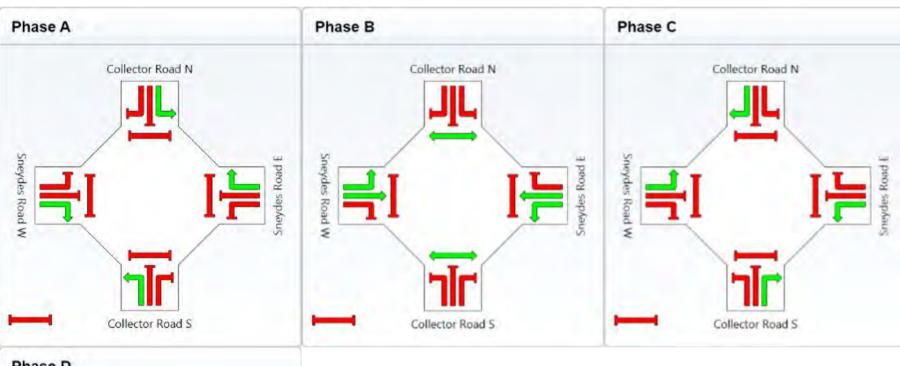
Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

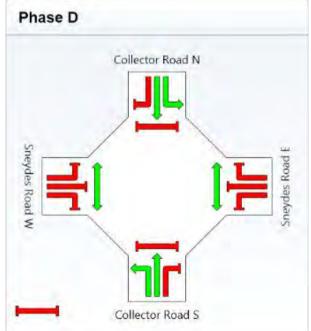
SIDRA INTERSECTION

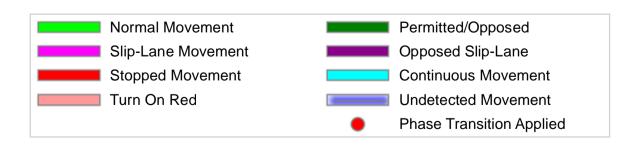
Site: 2046 AM Rev C

PHASING SUMMARY

Intersection 15 - AM Peak Hour

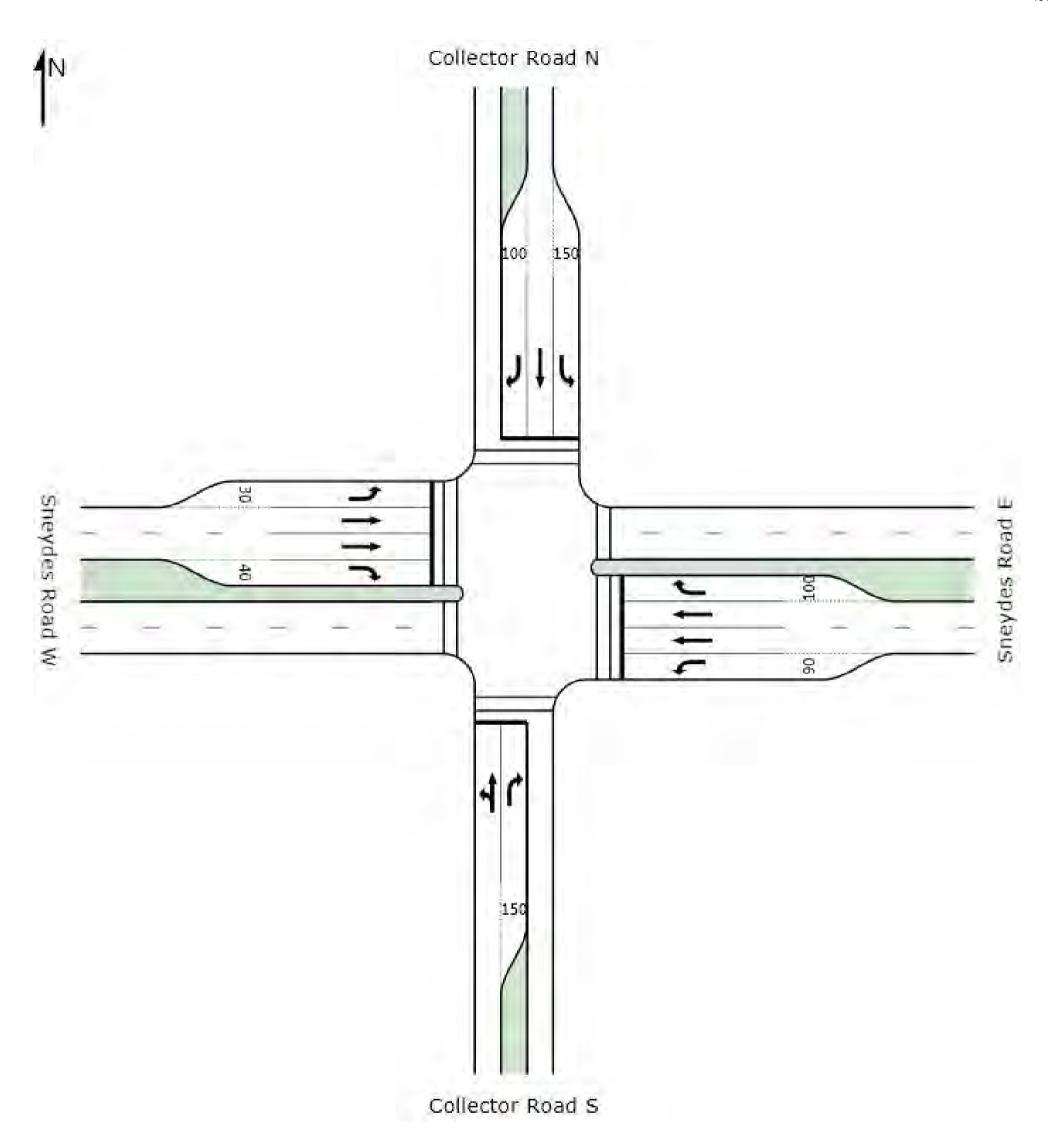

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Diamond-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	19	37	17	23
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	25	43	23	29
Phase Split	21 %	36 %	19 %	24 %



Processed: Wednesday, 20 February 2013 5:36:14 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P: $60277612\4$. Tech work area4.5 Planning $SIDRA\Models\2046\Int #15.sip 8000907, AECOM, ENTERPRISE$

Site: 2046 PM Rev C

MOVEMENT SUMMARY

Intersection 15 - PM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Mover	nent Per	formance - \	Vehicles								
Wover	nent r er	Demand	Verificies	Deg.	Average	Level of	95% Back	of Oueue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Collector	Road S									
1	L	58	0.0	0.232	49.1	LOS D	4.6	32.2	0.87	0.78	24.0
2	Т	37	0.0	0.232	41.9	LOS D	4.6	32.2	0.87	0.69	23.6
3	R	331	0.3	0.794	58.2	LOS E	19.5	136.7	1.00	0.91	21.7
Approa	ch	426	0.2	0.794	55.5	LOS E	19.5	136.7	0.97	0.87	22.1
East: S	neydes R	oad E									
4	L	289	2.8	0.510	21.7	LOS C	8.6	61.3	0.55	0.76	36.5
5	Т	807	0.1	0.710	40.9	LOS D	21.1	148.2	0.95	0.83	27.0
6	R	131	2.3	0.782	70.6	LOS E	8.2	58.4	1.00	0.89	19.7
Approa	ch	1227	1.0	0.782	39.6	LOS D	21.1	148.2	0.86	0.82	27.6
North: 0	Collector I	Road N									
7	L	382	0.3	0.618	43.3	LOS D	18.8	131.6	0.90	0.85	25.4
8	Т	59	0.0	0.158	43.7	LOS D	2.9	20.2	0.87	0.67	23.6
9	R	250	0.0	0.598	52.2	LOS D	13.2	92.7	0.95	0.83	23.1
Approa	ch	691	0.1	0.618	46.6	LOS D	18.8	131.6	0.91	0.82	24.3
West: S	Sneydes F	Road W									
10	L	1	0.0	0.004	19.1	LOS B	0.0	0.2	0.44	0.62	38.2
11	Т	906	0.2	0.798	45.1	LOS D	25.7	180.0	0.99	0.92	25.7
12	R	89	0.0	0.523	65.8	LOS E	5.2	36.3	1.00	0.78	20.5
Approa	ch	996	0.2	0.798	47.0	LOS D	25.7	180.0	0.99	0.90	25.1
All Veh	icles	3340	0.5	0.798	45.3	LOS D	25.7	180.0	0.93	0.85	25.4

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians									
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped		
P1	Across S approach	50	35.3	LOS D	0.1	0.1	0.77	0.77		
P3	Across E approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
P5	Across N approach	50	37.6	LOS D	0.1	0.1	0.79	0.79		
P7	Across W approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
All Pede	estrians	200	45.3	LOS E			0.86	0.86		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

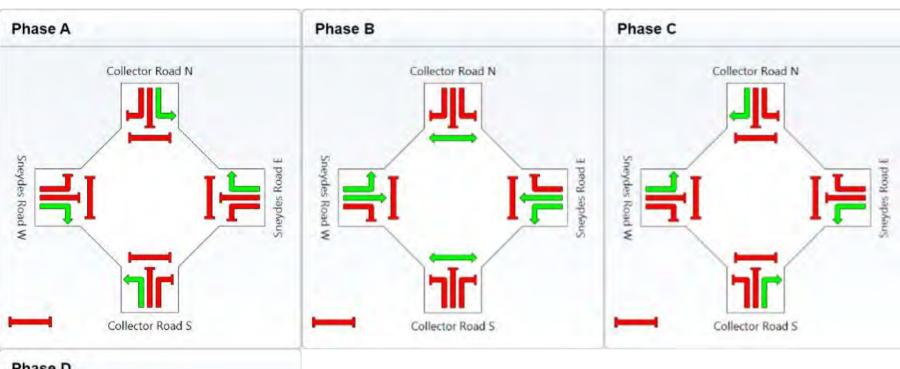
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

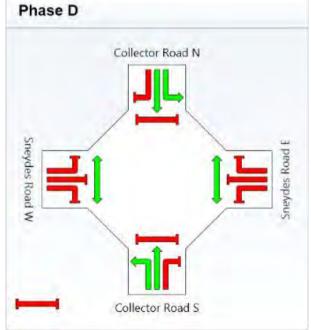
SIDRA --INTERSECTION

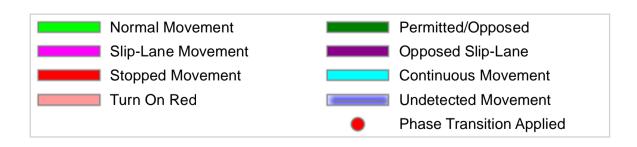
Site: 2046 PM Rev C

PHASING SUMMARY

Intersection 15 - PM Peak Hour

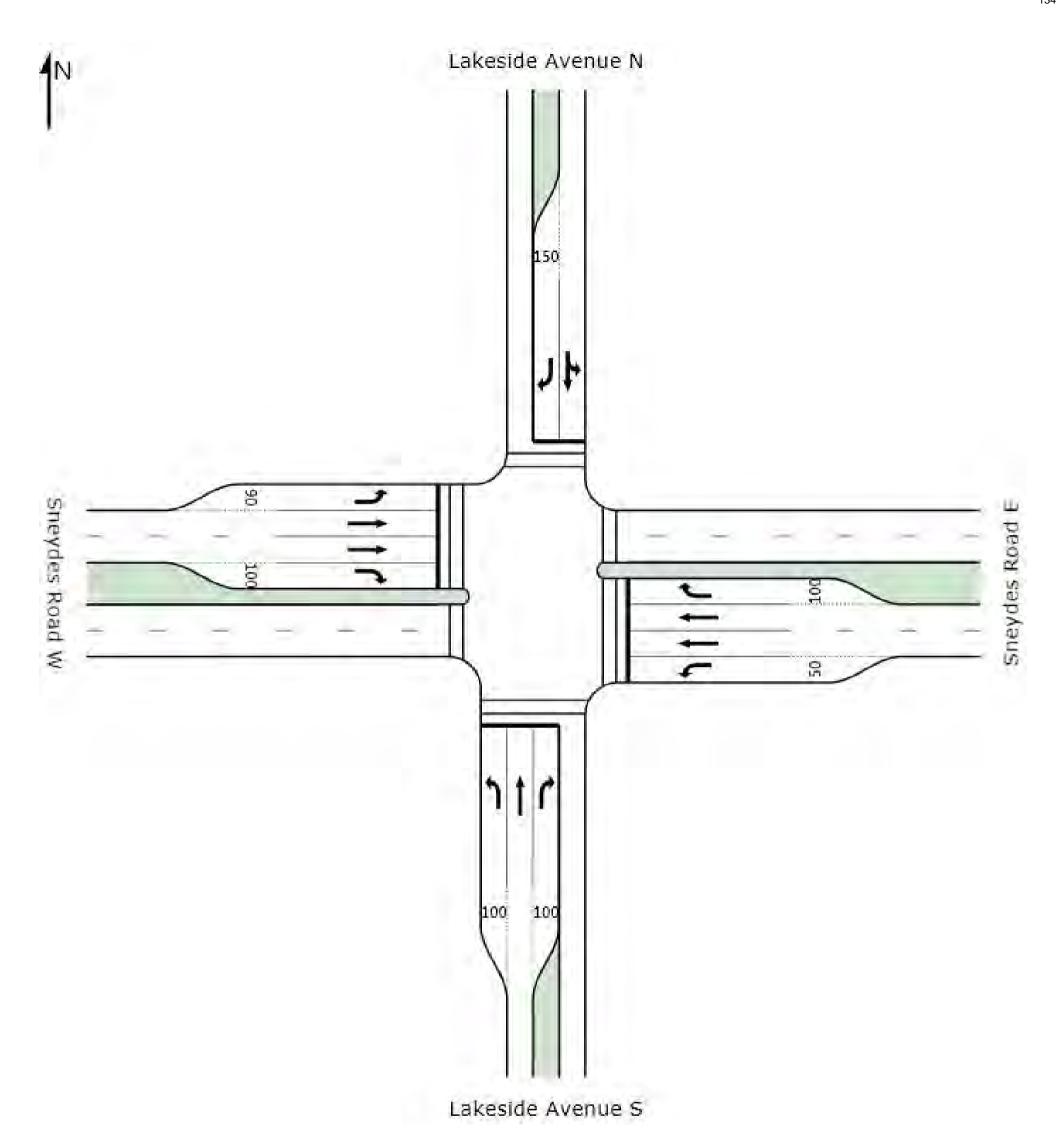

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Diamond-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	11	35	27	23
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	17	41	33	29
Phase Split	14 %	34 %	28 %	24 %



Processed: Wednesday, 20 February 2013 5:36:49 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P: $60277612\4$. Tech work area4.5 Planning $SIDRA\Models\2046\Int #15.sip 8000907, AECOM, ENTERPRISE$

MOVEMENT SUMMARY

Intersection 16 - AM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
		Avenue S									
1	L	86	0.0	0.168	29.2	LOS C	3.0	20.9	0.63	0.74	30.4
2	Т	82	0.0	0.219	44.3	LOS D	4.1	28.5	0.88	0.69	23.4
3	R	64	0.0	0.159	48.0	LOS D	3.0	21.3	0.85	0.75	24.1
Approa	ch	232	0.0	0.219	39.7	LOS D	4.1	28.5	0.78	0.72	25.9
East: S	neydes F	Road E									
4	L	206	0.5	0.648	27.4	LOS C	7.1	49.6	0.63	0.76	33.1
5	Т	610	0.3	0.752	50.3	LOS D	17.5	122.5	1.00	0.89	24.2
6	R	241	0.0	0.708	58.7	LOS E	13.7	95.9	0.99	0.85	22.1
Approa	ch	1057	0.3	0.752	47.8	LOS D	17.5	122.5	0.92	0.86	24.9
North: I	_akeside	Avenue N									
7	L	30	0.0	0.281	51.3	LOS D	5.3	37.4	0.89	0.80	23.7
8	Т	77	0.0	0.281	44.1	LOS D	5.3	37.4	0.89	0.71	23.2
9	R	300	0.0	0.746	56.4	LOS E	17.1	119.4	0.99	0.88	22.1
Approa	ch	407	0.0	0.746	53.7	LOS D	17.1	119.4	0.97	0.84	22.4
West: S	Sneydes I	Road W									
10	L	321	0.0	0.637	28.7	LOS C	11.8	82.4	0.68	0.79	32.5
11	Т	578	0.5	0.714	48.9	LOS D	16.1	113.4	0.99	0.85	24.6
12	R	244	0.4	0.719	59.0	LOS E	14.0	98.0	1.00	0.86	22.1
Approa	ch	1143	0.3	0.719	45.4	LOS D	16.1	113.4	0.90	0.84	25.7
All Vehi	icles	2839	0.2	0.752	47.0	LOS D	17.5	122.5	0.91	0.84	24.9

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians											
Mov ID Description		Demand Flow ped/h	Average Delay sec	Level of Service	el of Average Back of Queue vice Pedestrian Distance ped m		Prop. Queued	Effective Stop Rate per ped				
P1	Across S approach	50	45.9	LOS E	0.1	0.1	0.88	0.88				
P3	Across E approach	50	54.2	LOS E	0.2	0.2	0.95	0.95				
P5	Across N approach	50	43.4	LOS E	0.1	0.1	0.85	0.85				
P7	Across W approach	50	54.2	LOS E	0.2	0.2	0.95	0.95				
All Pede	estrians	200	49.4	LOS E			0.91	0.91				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Wednesday, 20 February 2013 3:47:11 PM SIDRA INTERSECTION 5.1.2.1953

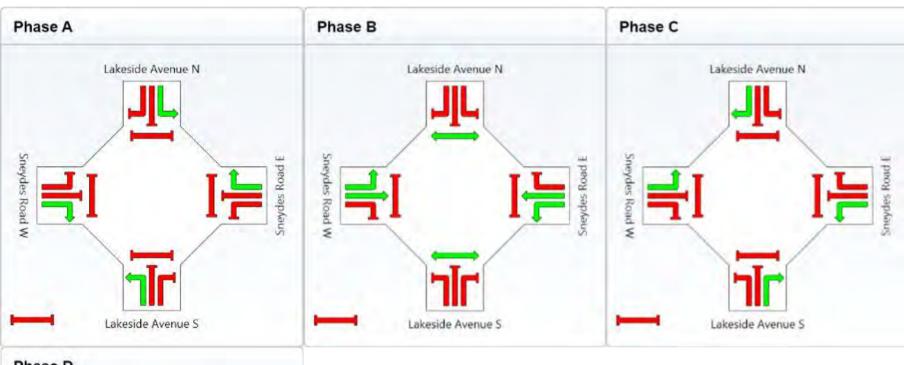
8000907, AECOM, ENTERPRISE

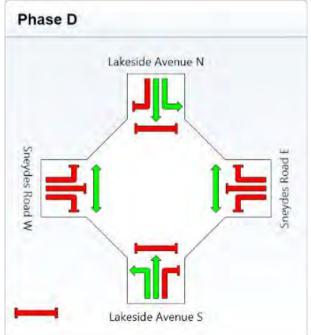
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

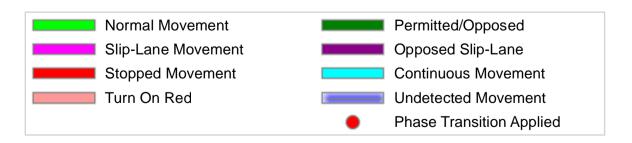
SIDRA INTERSECTION 5.1.2.1953 <u>www.sidrasolutions.com</u> Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #16.sip

PHASING SUMMARY

Intersection 16 - AM Peak Hour

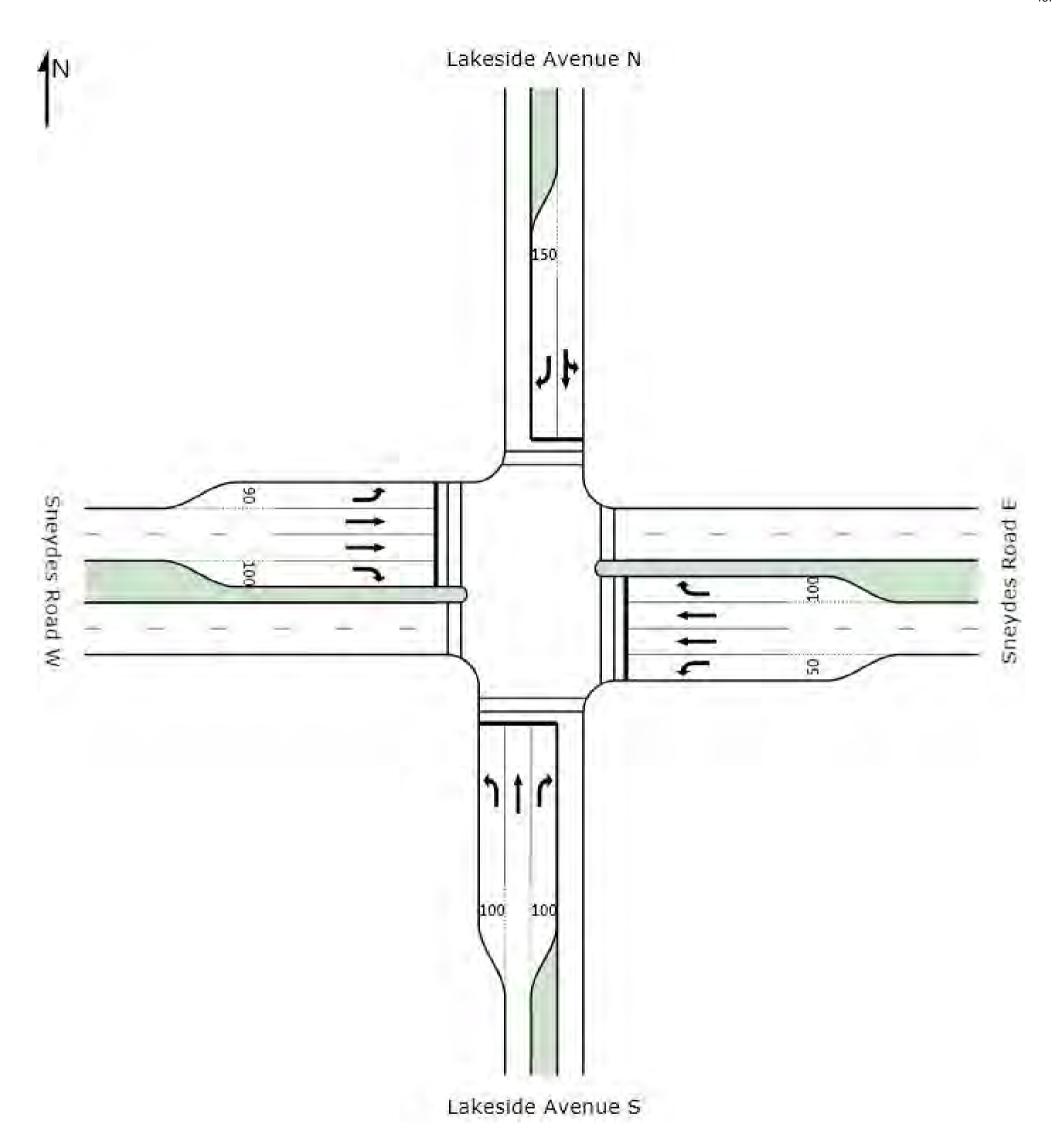

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Diamond-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	22	25	26	23
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	28	31	32	29
Phase Split	23 %	26 %	27 %	24 %



Processed: Wednesday, 20 February 2013 3:47:11 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #16.sip 8000907, AECOM, ENTERPRISE

Site: 2046 PM Rev C

MOVEMENT SUMMARY

Intersection 16 - PM Peak Hour

Mover	nent Per	formance -	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back (Vehicles veh	Distance	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Lakeside A		/0	V/C	360		Ven	m		per veri	KIII/II
1	L	267	0.0	0.571	38.1	LOS D	11.6	81.5	0.80	0.80	27.0
2	Т	88	0.0	0.235	44.5	LOS D	4.4	30.7	0.89	0.70	23.4
3	R	235	0.0	0.562	51.8	LOS D	12.3	86.3	0.94	0.82	23.2
Approa	ıch	590	0.0	0.571	44.5	LOS D	12.3	86.3	0.87	0.80	24.8
East: S	neydes R	oad E									
4	L	90	0.0	0.379	43.8	LOS D	4.0	28.3	0.81	0.76	26.2
5	Т	854	0.1	0.822	49.2	LOS D	25.2	176.7	1.00	0.95	24.5
6	R	172	0.0	0.794	68.6	LOS E	10.6	74.5	1.00	0.89	20.0
Approa	ıch	1116	0.1	0.822	51.8	LOS D	25.2	176.7	0.98	0.93	23.8
North:	Lakeside <i>A</i>	Avenue N									
7	L	191	0.0	0.740	55.7	LOS E	17.2	120.4	0.99	0.88	22.4
8	Т	114	0.0	0.740	48.5	LOS D	17.2	120.4	0.99	0.87	21.8
9	R	347	0.0	0.830	60.9	LOS E	21.2	148.4	1.00	0.94	21.1
Approa	ıch	652	0.0	0.830	57.2	LOS E	21.2	148.4	0.99	0.91	21.6
West: S	Sneydes R	Road W									
10	L	294	0.0	0.528	23.3	LOS C	9.2	64.5	0.58	0.77	35.4
11	Т	570	0.5	0.550	40.8	LOS D	14.4	101.1	0.91	0.78	27.1
12	R	109	0.9	0.506	62.6	LOS E	6.2	43.7	0.98	0.79	21.3
Approa	ich	973	0.4	0.550	38.0	LOS D	14.4	101.1	0.82	0.77	28.2
All Veh	icles	3331	0.2	0.830	47.5	LOS D	25.2	176.7	0.92	0.86	24.6

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians											
Mov ID Description		Demand Flow ped/h	Average Delay sec	Level of Service	of Average Back of Queue ice Pedestrian Distance ped m		Prop. Queued	Effective Stop Rate per ped				
P1	Across S approach	50	40.0	LOS E	0.1	0.1	0.82	0.82				
P3	Across E approach	50	54.2	LOS E	0.2	0.2	0.95	0.95				
P5	Across N approach	50	37.6	LOS D	0.1	0.1	0.79	0.79				
P7	Across W approach	50	54.2	LOS E	0.2	0.2	0.95	0.95				
All Pede	estrians	200	46.5	LOS E			0.88	0.88				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #16.sip

Processed: Wednesday, 20 February 2013 3:47:20 PM SIDRA INTERSECTION 5.1.2.1953

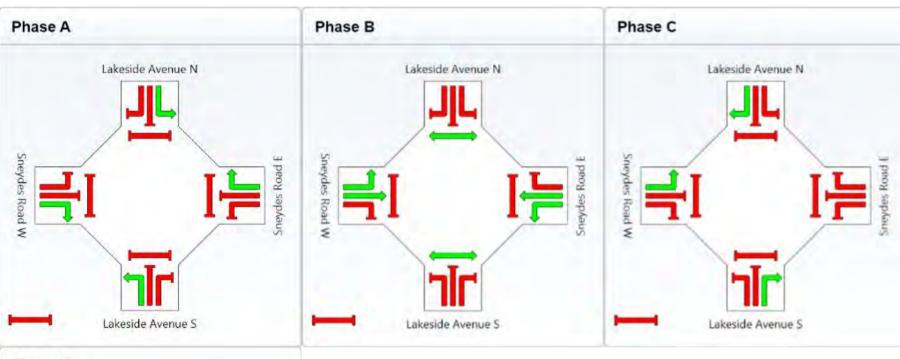
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

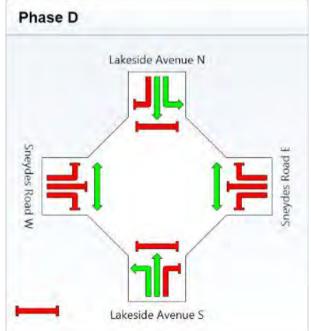
8000907, AECOM, ENTERPRISE

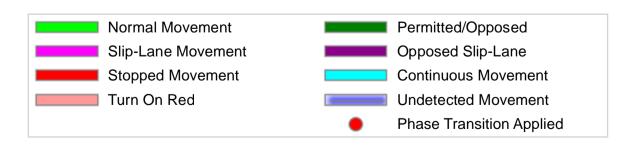
Site: 2046 PM Rev C

PHASING SUMMARY

Intersection 16 - PM Peak Hour

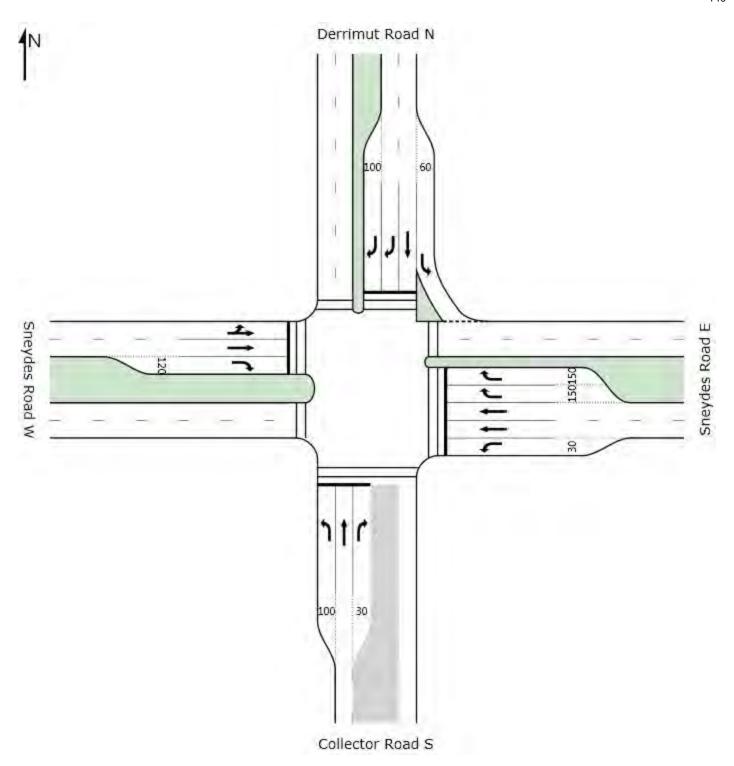

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Diamond-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	14	32	27	23
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	20	38	33	29
Phase Split	17 %	32 %	28 %	24 %



Processed: Wednesday, 20 February 2013 3:47:20 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #16.sip 8000907, AECOM, ENTERPRISE

MOVEMENT SUMMARY

Intersection 17 - AM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delav	Level of Service	95% Back (Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Collector	Road S									
1	L	120	0.0	0.185	18.4	LOS B	3.0	21.0	0.46	0.72	35.7
2	Т	231	0.0	0.418	37.6	LOS D	11.0	76.9	0.86	0.72	25.9
3	R	36	0.0	0.388	70.4	LOS E	2.2	15.3	1.00	0.73	19.4
Approa	ich	387	0.0	0.418	34.7	LOS C	11.0	76.9	0.75	0.72	27.4
East: S	neydes R	oad E									
4	L	62	0.0	0.389	39.1	LOS D	2.6	18.0	0.75	0.73	27.9
5	Т	315	0.3	0.388	44.4	LOS D	8.0	56.2	0.91	0.74	26.0
6	R	619	0.2	0.801	61.0	LOS E	18.5	129.5	1.00	0.91	22.5
Approa	ch	996	0.2	0.801	54.4	LOS D	18.5	129.5	0.96	0.84	23.8
North: [Derrimut F	Road N									
7	L	372	8.0	0.619	13.3	LOS B	7.1	50.4	0.42	0.71	44.0
8	Т	438	0.7	0.796	47.0	LOS D	24.9	175.4	0.99	0.92	24.8
9	R	117	0.0	0.630	73.4	LOS E	3.7	25.6	1.00	0.79	19.9
Approa	ich	927	0.6	0.796	36.8	LOS D	24.9	175.4	0.76	0.82	29.1
West: S	Sneydes R	Road W									
10	L	66	0.0	0.802	56.7	LOS E	23.2	162.8	1.00	0.93	24.4
11	Т	737	0.3	0.802	48.5	LOS D	23.4	164.0	1.00	0.93	24.6
12	R	304	0.0	0.634	50.0	LOS D	15.9	111.2	0.94	0.84	24.4
Approa	ch	1107	0.2	0.802	49.4	LOS D	23.4	164.0	0.98	0.91	24.5
All Vehi	icles	3417	0.3	0.802	45.8	LOS D	24.9	175.4	0.89	0.84	25.7

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

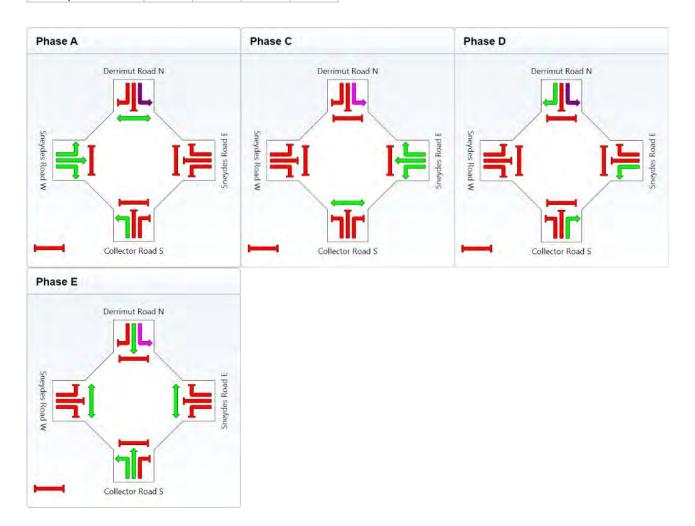
Moven	nent Performance -	Pedestrians	s					
Mov ID	Description	Demand Flow	Average		Average Back Pedestrian	of Queue Distance	Prop.	Effective
WOV ID	Bescription	ped/h	Delay sec	Service	ped	Distance m	Queued	Stop Rate per ped
P1	Across S approach	20	45.9	LOS E	0.1	0.1	0.88	0.88
P3	Across E approach	20	46.8	LOS E	0.1	0.1	0.88	0.88
P5	Across N approach	20	45.1	LOS E	0.1	0.1	0.87	0.87
P7	Across W approach	20	42.5	LOS E	0.1	0.1	0.84	0.84
All Pede	estrians	80	45.1	LOS E			0.87	0.87

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

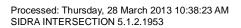
PHASING SUMMARY

Intersection 17 - AM Peak Hour

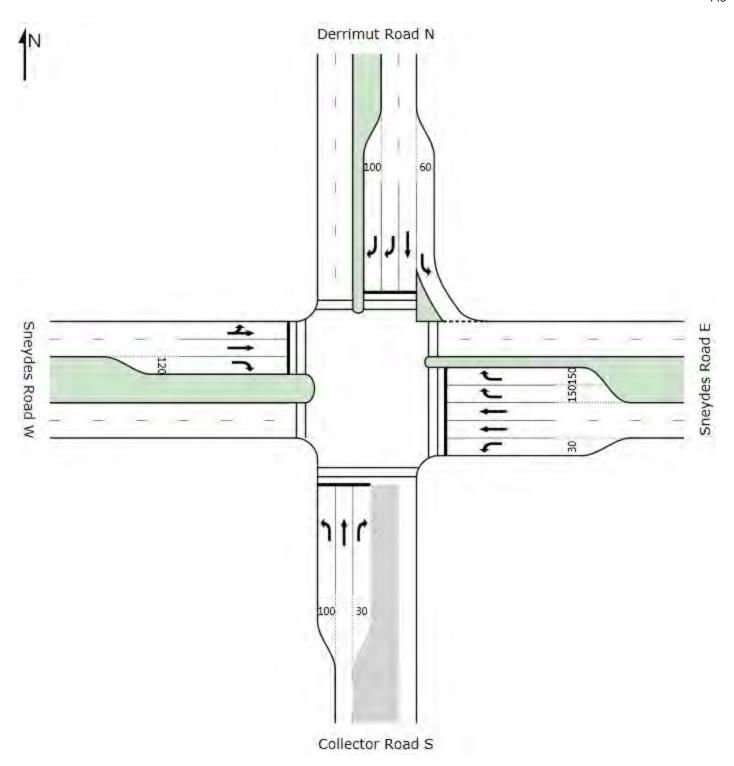
Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Split-phase (phase reduction applied)


Input Sequence: A, B, C, D, E Output Sequence: A, C, D, E

Phase Timing Results


Phase	Α	С	D	E
Green Time (sec)	31	25	6	34
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	37	31	12	40
Phase Split	31 %	26 %	10 %	33 %

Site: 2046 PM Rev C

MOVEMENT SUMMARY

Intersection 17 - PM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
		Demand	1.15.7	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 11 1		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: 0	Collector										
1	L	311	0.0	0.619	33.3	LOS C	12.6	88.4	0.75	0.80	28.7
2	Т	446	0.0	0.946	76.4	LOS E	34.2	239.2	1.00	1.25	17.6
3	R	79	0.0	0.608	56.1	LOS E	4.2	29.3	0.92	0.78	22.2
Approac	ch	836	0.0	0.946	58.4	LOS E	34.2	239.2	0.90	1.04	21.1
East: Sr	neydes R	Road E									
4	L	42	0.0	0.200	24.7	LOS C	1.3	8.9	0.55	0.70	34.6
5	Т	761	0.1	0.710	42.3	LOS D	20.1	141.2	0.96	0.83	26.6
6	R	790	0.1	0.946	86.0	LOS F	30.4	213.0	1.00	1.10	17.9
Approac	ch	1593	0.1	0.946	63.5	LOS E	30.4	213.0	0.97	0.96	21.5
North: D	Derrimut I	Road N									
7	L	424	0.7	0.604	11.2	LOS B	6.6	46.2	0.36	0.70	45.9
8	Т	306	1.0	0.653	45.6	LOS D	16.3	114.7	0.96	0.82	25.2
9	R	538	0.0	0.915	79.1	LOS E	18.9	132.1	1.00	1.04	18.9
Approac	ch	1268	0.5	0.915	48.3	LOS D	18.9	132.1	0.77	0.87	25.5
West: S	neydes f	Road W									
10	L	38	0.0	0.748	61.6	LOS E	14.7	103.4	1.00	0.89	23.1
11	Т	470	0.2	0.748	53.4	LOS D	14.8	104.1	1.00	0.89	23.3
12	R	167	0.0	0.719	64.9	LOS E	9.9	69.5	1.00	0.85	20.8
Approac	ch	675	0.1	0.748	56.7	LOS E	14.8	104.1	1.00	0.88	22.6
All Vehic	cles	4372	0.2	0.946	57.1	LOS E	34.2	239.2	0.90	0.94	22.6

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	nent Performance -	Pedestrians	S					
Mov ID	Description	Demand Flow	Average Delav		Average Back Pedestrian	of Queue Distance	Prop.	Effective
WOV ID	Bescription	ped/h	sec	Service	ped	Distance m	Queued	Stop Rate per ped
P1	Across S approach	20	39.2	LOS D	0.1	0.1	0.81	0.81
P3	Across E approach	20	51.3	LOS E	0.1	0.1	0.93	0.93
P5	Across N approach	20	54.2	LOS E	0.1	0.1	0.95	0.95
P7	Across W approach	20	46.8	LOS E	0.1	0.1	0.88	0.88
All Pede	estrians	80	47.9	LOS E			0.89	0.89

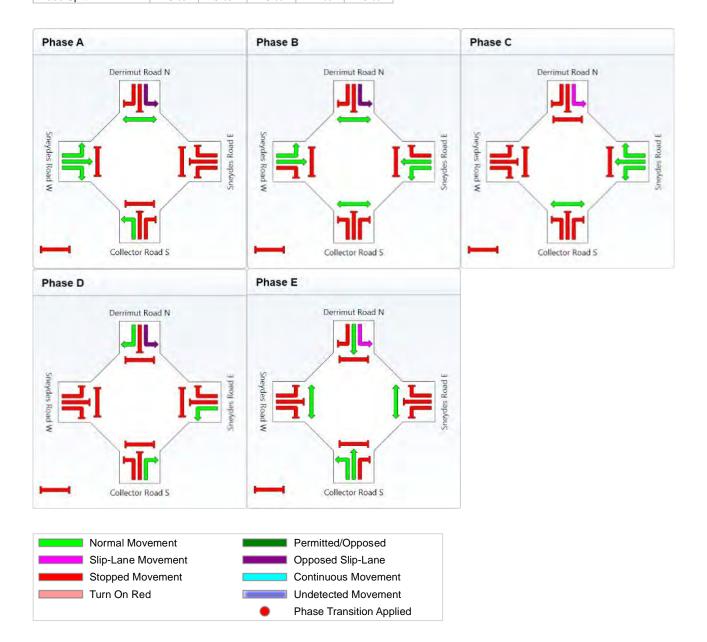
Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

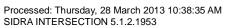
SIDRA ---

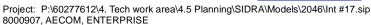
Site: 2046 PM Rev C

PHASING SUMMARY

Intersection 17 - PM Peak Hour

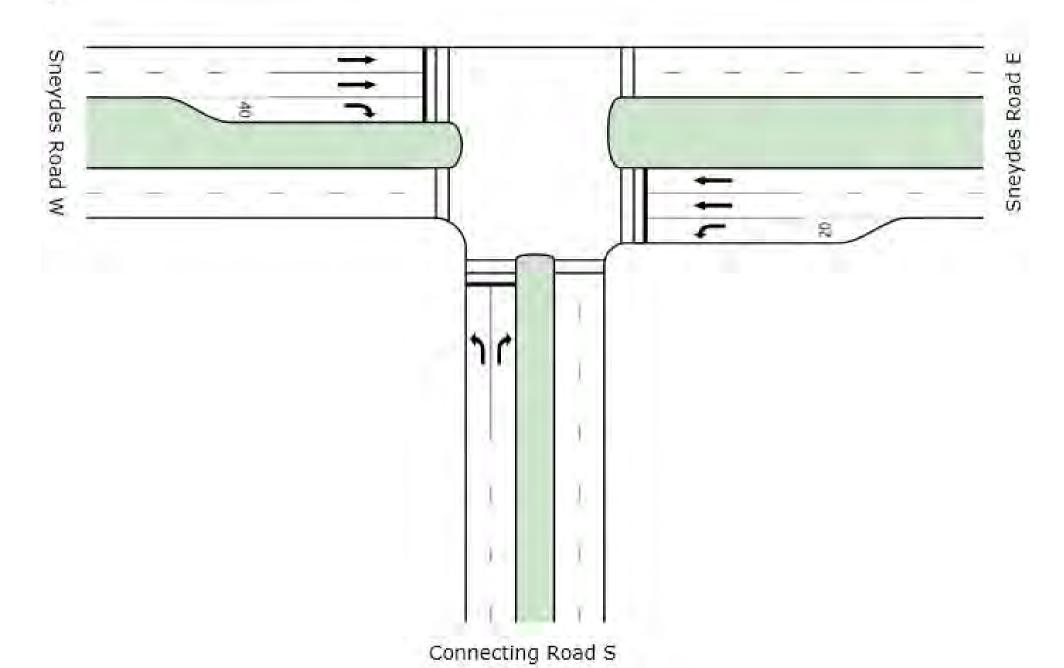

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Split-phase Input Sequence: A, B, C, D, E Output Sequence: A, B, C, D, E

Phase Timing Results

Phase	Α	В	С	D	E
Green Time (sec)	15	0	27	19	29
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	21	6	33	25	35
Phase Split	18 %	5 %	28 %	21 %	29 %



MOVEMENT SUMMARY

Intersection 18a - AM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Moven	nent Per	formance - V	ehicles								
Mov ID	Turn	Demand	HV	Deg.	Average	Level of	95% Back o		Prop.	Effective	Average
טו ייטועו	Tulli	Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Courthy	Camma atim	veh/h	%	v/c	sec		veh	m		per veh	km/h
South: (Connectin	g Road S									
1	L	73	0.0	0.121	38.5	LOS D	3.0	20.8	0.74	0.76	29.1
3	R	12	0.0	0.032	49.0	LOS D	0.6	3.9	0.83	0.69	25.7
Approa	ch	85	0.0	0.121	40.0	LOS D	3.0	20.8	0.75	0.75	28.6
East: Si	neydes R	oad E									
4	L	39	0.0	0.223	19.8	LOS B	1.0	6.7	0.45	0.70	38.8
5	Т	1468	0.1	0.655	18.4	LOS B	28.8	202.0	0.74	0.67	38.0
Approa	ch	1507	0.1	0.655	18.5	LOS B	28.8	202.0	0.73	0.67	38.0
West: S	Sneydes R	toad W									
11	Т	895	0.3	0.400	14.9	LOS B	14.2	99.7	0.59	0.53	40.9
12	R	87	0.0	0.625	69.5	LOS E	5.3	36.8	1.00	0.80	20.7
Approa	ch	982	0.3	0.625	19.7	LOS B	14.2	99.7	0.63	0.55	37.6
All Vehi	cles	2574	0.2	0.655	19.6	LOS B	28.8	202.0	0.69	0.63	37.5

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians										
		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective			
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate			
		ped/h	sec		ped	m		per ped			
P1	Across S approach	50	17.6	LOS B	0.1	0.1	0.54	0.54			
P3	Across E approach	50	40.8	LOS E	0.1	0.1	0.83	0.83			
P7	Across W approach	50	54.2	LOS E	0.2	0.2	0.95	0.95			
All Ped	estrians	150	37.5	LOS D			0.77	0.77			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

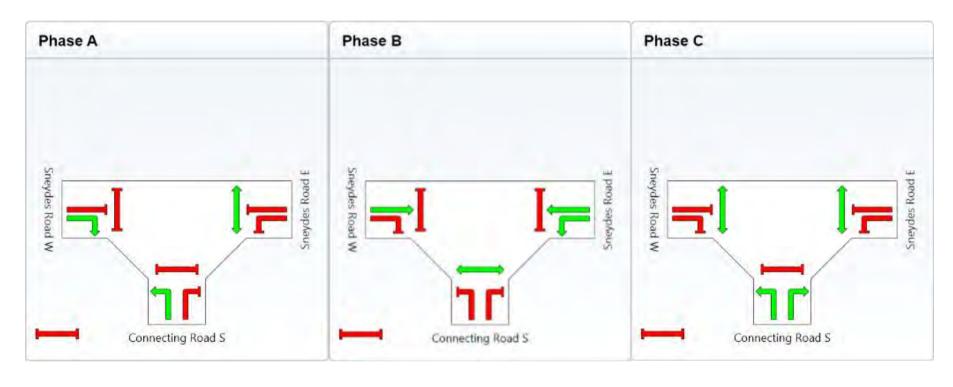
Processed: Wednesday, 20 February 2013 5:31:14 PM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #18a.sip

8000907, AECOM, ENTERPRISE

PHASING SUMMARY

Intersection 18a - AM Peak Hour

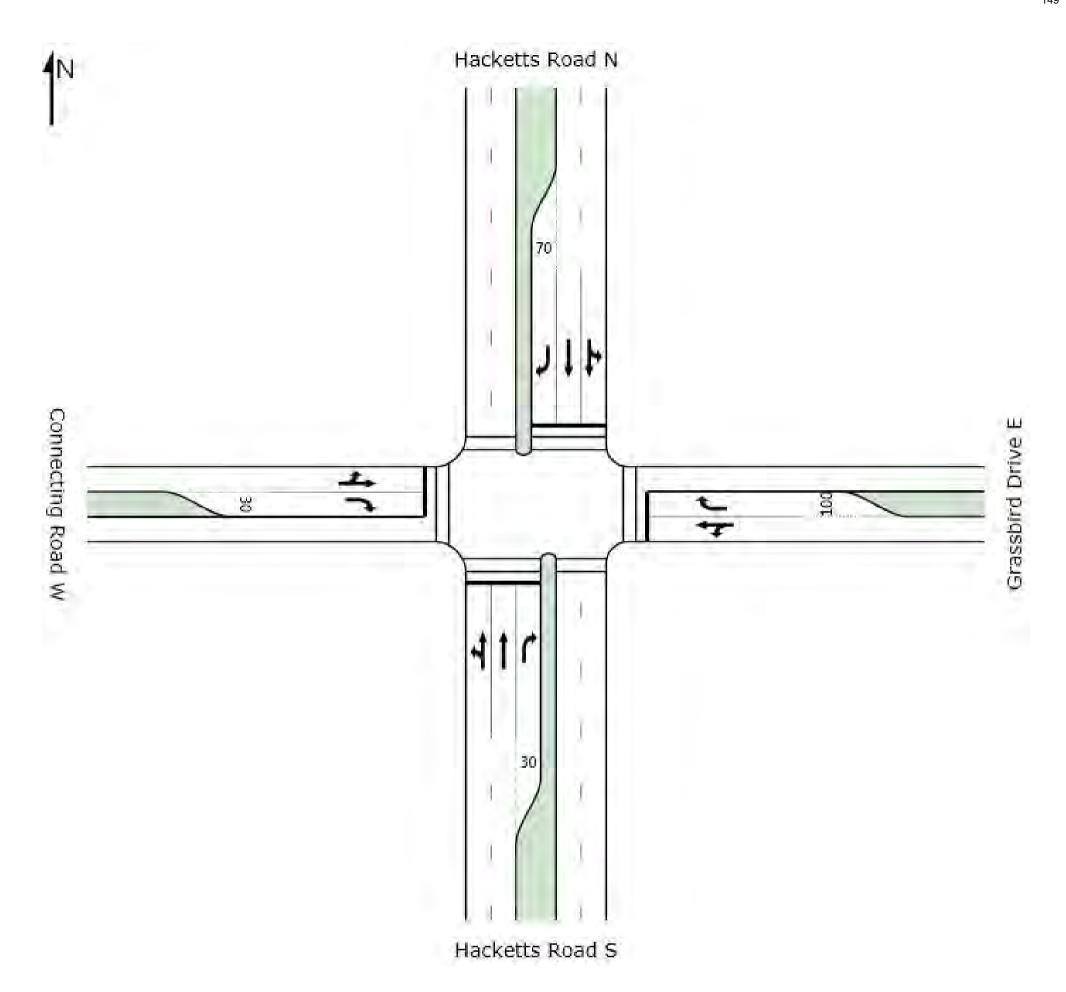

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Two-Phase Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	9	69	24
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	15	75	30
Phase Split	13 %	63 %	25 %



Processed: Wednesday, 20 February 2013 5:31:14 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd $\underline{www.sidrasolutions.com}$

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #18a.sip 8000907, AECOM, ENTERPRISE

MOVEMENT SUMMARY

Intersection 24 - AM Peak Hour

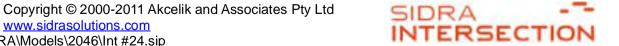
Mover	nent Per	formance -	Vehicles								
Marrie	T	Demand	L1\/	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South:	Hacketts	veh/h Road S	%	v/c	sec		veh	m m		per veh	km/h
1	L	38	0.0	0.639	50.2	LOS D	16.3	114.4	0.95	0.87	25.4
2	Т	585	0.2	0.639	43.2	LOS D	16.4	114.6	0.95	0.81	26.2
3	R	3	0.0	0.023	55.8	LOS E	0.2	1.1	0.89	0.63	22.8
Approa	ich	626	0.2	0.639	43.7	LOS D	16.4	114.6	0.95	0.81	26.2
East: G	Grassbird I	Drive E									
4	L	14	0.0	0.027	38.5	LOS D	0.6	4.3	0.73	0.70	26.9
5	Т	1	0.0	0.027	31.3	LOS C	0.6	4.3	0.73	0.52	26.8
6	R	265	0.0	0.652	50.7	LOS D	13.8	96.9	0.94	0.83	23.4
Approa	ıch	280	0.0	0.652	50.1	LOS D	13.8	96.9	0.93	0.82	23.6
North:	Hacketts I	Road N									
7	L	66	0.0	0.401	47.2	LOS D	9.6	67.4	0.88	0.84	26.0
8	Т	327	0.3	0.401	40.2	LOS D	9.6	67.4	0.88	0.73	27.2
9	R	156	0.0	0.630	62.1	LOS E	8.9	62.5	1.00	0.81	21.3
Approa	ich	549	0.2	0.630	47.2	LOS D	9.6	67.4	0.91	0.77	25.2
West: 0	Connectin	g Road W									
10	L	96	0.0	0.150	35.7	LOS D	3.9	27.0	0.72	0.76	27.9
11	Т	1	0.0	0.150	28.5	LOS C	3.9	27.0	0.72	0.58	27.8
12	R	19	0.0	0.130	44.2	LOS D	0.8	5.9	0.79	0.69	25.1
Approa	ich	116	0.0	0.150	37.0	LOS D	3.9	27.0	0.73	0.74	27.4
All Veh	icles	1571	0.1	0.652	45.6	LOS D	16.4	114.6	0.92	0.79	25.4

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.


Moven	Movement Performance - Pedestrians									
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped		
P1	Across S approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
P3	Across E approach	50	39.2	LOS D	0.1	0.1	0.81	0.81		
P5	Across N approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
P7	Across W approach	50	39.2	LOS D	0.1	0.1	0.81	0.81		
All Pede	estrians	200	46.7	LOS E			0.88	0.88		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 21 February 2013 4:49:20 PM SIDRA INTERSECTION 5.1.2.1953

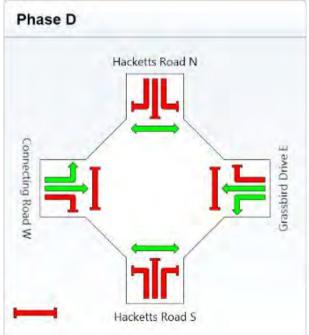
8000907, AECOM, ENTERPRISE

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #24.sip

PHASING SUMMARY

Intersection 24 - AM Peak Hour

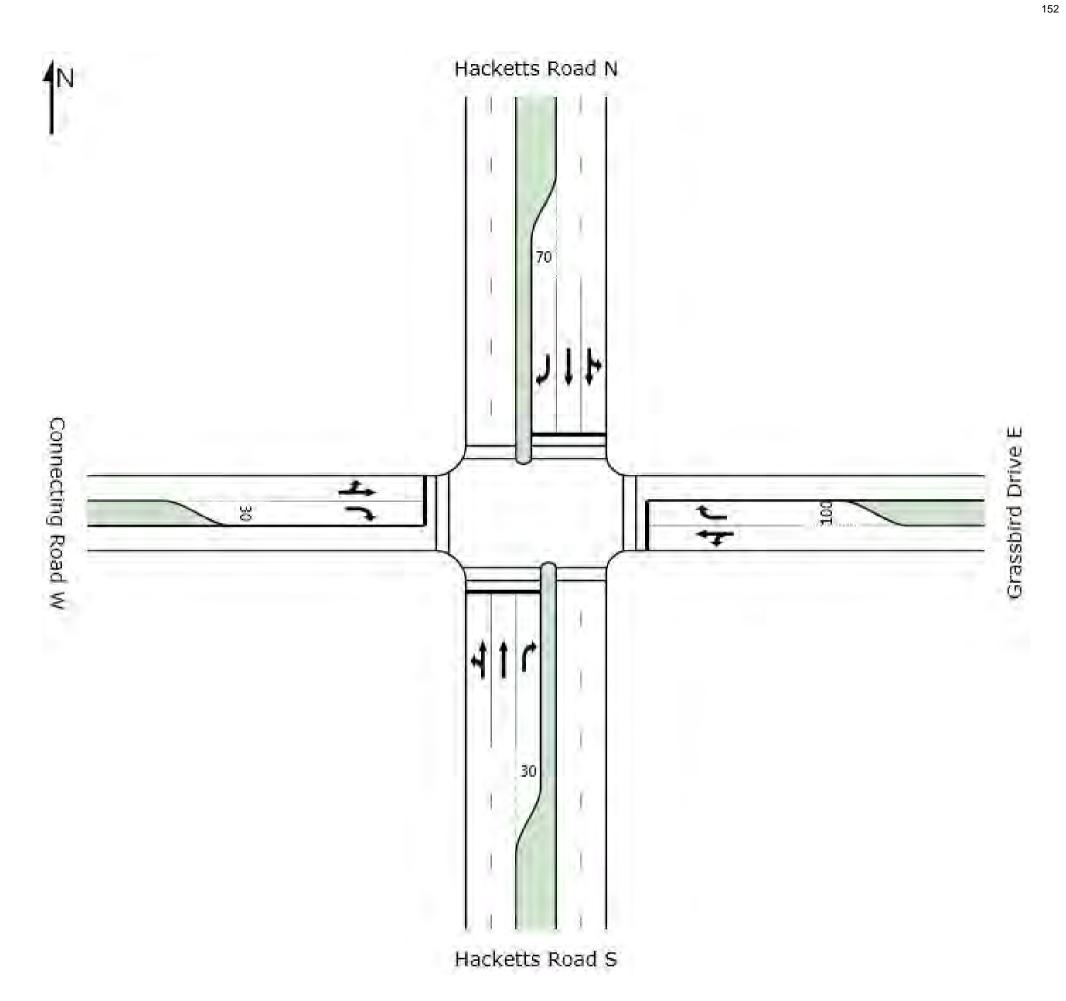

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Diamond-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	16	30	29	21
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	22	36	35	27
Phase Split	18 %	30 %	29 %	23 %



Processed: Thursday, 21 February 2013 4:49:20 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #24.sip 8000907, AECOM, ENTERPRISE

Site: 2046 PM Rev B

MOVEMENT SUMMARY

Intersection 24 - PM Peak Hour

Mover	nent Per	formance -	Vehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back of Vehicles	Distance	Prop. Queued	Effective Stop Rate	Average Speed
South:	Hacketts	veh/h Road S	%	v/c	sec		veh	m		per veh	km/h
1	L	46	0.0	0.336	36.7	LOS D	9.8	69.1	0.77	0.88	30.0
2	Т	423	0.5	0.336	29.7	LOS C	9.9	69.8	0.77	0.65	31.6
3	R	10	0.0	0.077	54.3	LOS D	0.5	3.5	0.88	0.67	23.2
Approa	ıch	479	0.4	0.336	30.9	LOS C	9.9	69.8	0.77	0.67	31.2
East: G	Grassbird [Orive E									
4	L	7	0.0	0.016	41.4	LOS D	0.3	2.4	0.76	0.68	26.0
5	Т	1	0.0	0.016	34.3	LOS C	0.3	2.4	0.76	0.52	25.8
6	R	133	0.0	0.614	63.4	LOS E	7.7	53.8	1.00	0.81	20.6
Approa	ıch	141	0.0	0.614	62.1	LOS E	7.7	53.8	0.99	0.80	20.8
North: I	Hacketts F	Road N									
7	L	199	0.0	0.635	40.4	LOS D	21.5	150.4	0.88	0.88	28.2
8	Т	694	0.0	0.635	33.8	LOS C	21.5	150.4	0.89	0.78	29.5
9	R	179	0.0	0.643	60.5	LOS E	10.1	71.0	0.99	0.82	21.7
Approa	ich	1072	0.0	0.643	39.5	LOS D	21.5	150.4	0.90	0.80	27.7
West: 0	Connecting	g Road W									
10	L	273	0.0	0.399	36.6	LOS D	11.7	82.0	0.78	0.81	27.5
11	Т	1	0.0	0.399	29.5	LOS C	11.7	82.0	0.78	0.67	27.3
12	R	76	0.0	0.620	61.9	LOS E	4.3	29.9	0.96	0.80	20.9
Approa	ıch	350	0.0	0.620	42.1	LOS D	11.7	82.0	0.82	0.80	25.7
All Veh	icles	2042	0.1	0.643	39.5	LOS D	21.5	150.4	0.86	0.77	27.4

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians									
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped		
P1	Across S approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
P3	Across E approach	50	29.4	LOS C	0.1	0.1	0.70	0.70		
P5	Across N approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
P7	Across W approach	50	29.4	LOS C	0.1	0.1	0.70	0.70		
All Pede	estrians	200	41.8	LOS E			0.83	0.83		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION www.sidrasolutions.com Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #24.sip

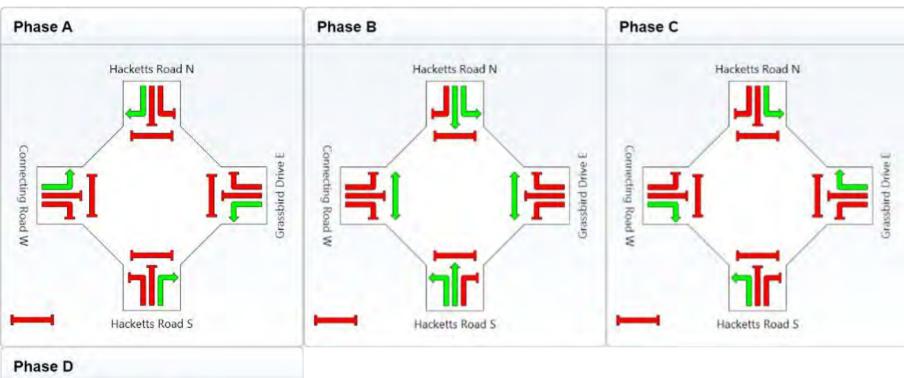
Processed: Thursday, 21 February 2013 4:49:27 PM SIDRA INTERSECTION 5.1.2.1953

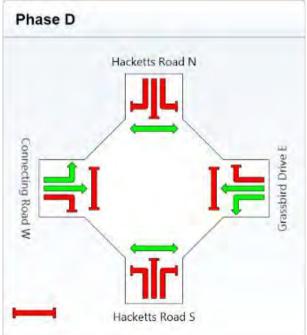
8000907, AECOM, ENTERPRISE

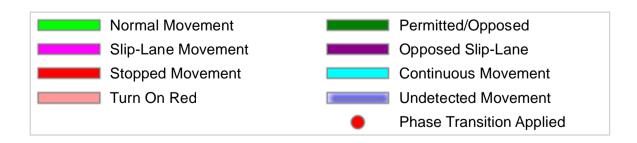
Site: 2046 PM Rev B

PHASING SUMMARY

Intersection 24 - PM Peak Hour

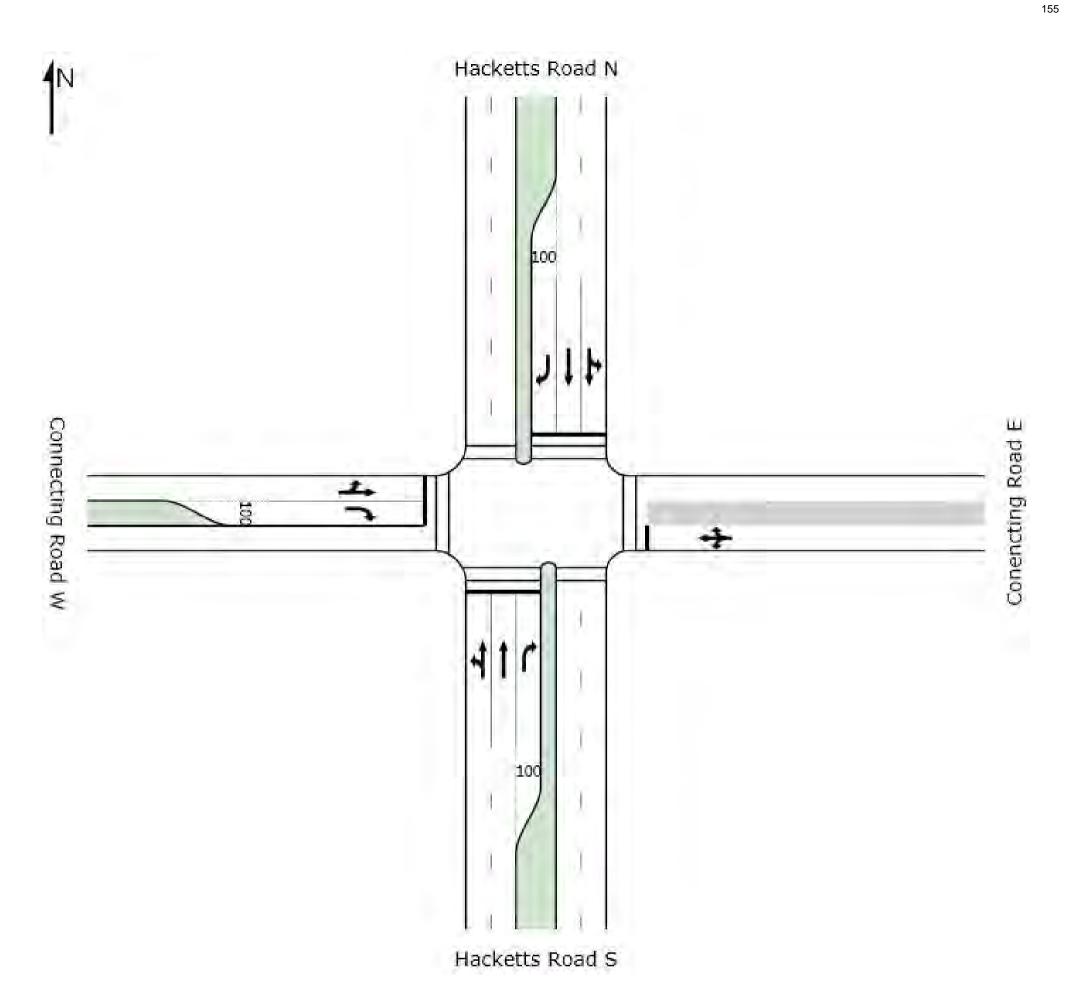

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Diamond-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	18	43	14	21
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	24	49	20	27
Phase Split	20 %	41 %	17 %	23 %



Processed: Thursday, 21 February 2013 4:49:27 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #24.sip 8000907, AECOM, ENTERPRISE

MOVEMENT SUMMARY

Intersection 25 - AM Peak Hour

Mover	nent Per	formance - \	/ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Hacketts I		70	V/ O	300		V 011	- '''		per veri	KITI/TT
1	L	19	0.0	0.420	33.1	LOS C	13.8	96.7	0.75	0.93	31.9
2	Т	662	0.2	0.420	26.0	LOS C	13.9	97.7	0.75	0.65	33.5
3	R	1	0.0	0.003	52.6	LOS D	0.0	0.3	0.86	0.61	23.6
Approa	ch	682	0.1	0.420	26.3	LOS C	13.9	97.7	0.75	0.66	33.4
East: C	onencting	Road E									
4	L	1	0.0	0.022	49.1	LOS D	0.1	1.0	0.82	0.68	24.0
5	Т	1	0.0	0.022	42.0	LOS D	0.1	1.0	0.82	0.55	23.6
6	R	1	0.0	0.022	49.0	LOS D	0.1	1.0	0.82	0.67	24.0
Approa	ch	3	0.0	0.022	46.7	LOS D	0.1	1.0	0.82	0.63	23.9
North: I	Hacketts F	Road N									
7	L	1	0.0	0.280	31.4	LOS C	8.6	60.2	0.69	0.95	32.8
8	Т	454	0.2	0.280	24.2	LOS C	8.7	60.9	0.70	0.59	34.6
9	R	126	0.0	0.429	57.4	LOS E	6.8	47.6	0.95	0.79	22.4
Approa	ch	581	0.2	0.429	31.4	LOS C	8.7	60.9	0.75	0.64	31.1
West: C	Connecting	g Road W									
10	L	242	0.0	0.347	35.3	LOS D	10.0	70.3	0.76	0.80	28.0
11	Т	1	0.0	0.347	28.1	LOS C	10.0	70.3	0.76	0.64	27.9
12	R	29	0.0	0.312	70.3	LOS E	1.8	12.3	1.00	0.72	19.3
Approa	ch	272	0.0	0.347	39.0	LOS D	10.0	70.3	0.78	0.79	26.7
All Vehi	icles	1538	0.1	0.429	30.5	LOS C	13.9	97.7	0.76	0.67	31.1

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians									
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped		
P1	Across S approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
P3	Across E approach	50	23.4	LOS C	0.1	0.1	0.63	0.63		
P5	Across N approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
P7	Across W approach	50	24.7	LOS C	0.1	0.1	0.64	0.64		
All Pede	estrians	200	39.1	LOS D			0.79	0.79		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 21 February 2013 4:51:40 PM SIDRA INTERSECTION 5.1.2.1953

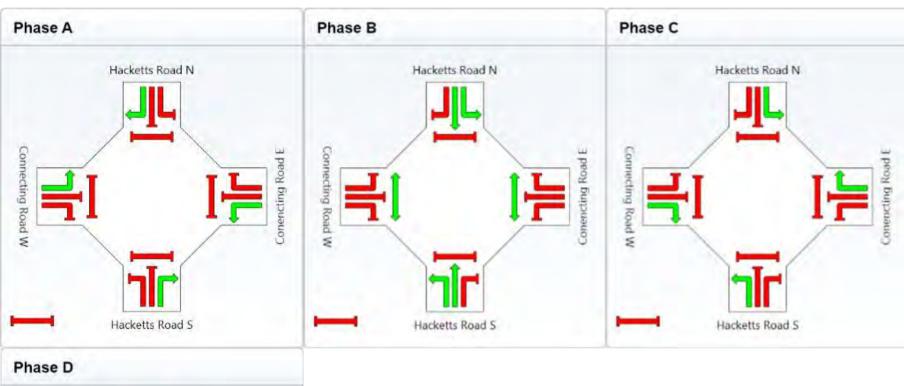
8000907, AECOM, ENTERPRISE

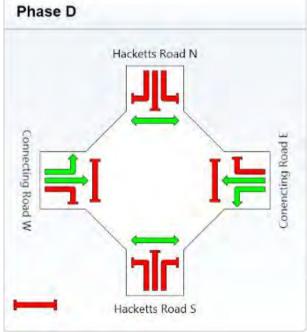
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

SIDRA INTERSECTION 5.1.2.1953 <u>www.sidrasolutions.com</u> Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #25.sip

PHASING SUMMARY

Intersection 25 - AM Peak Hour

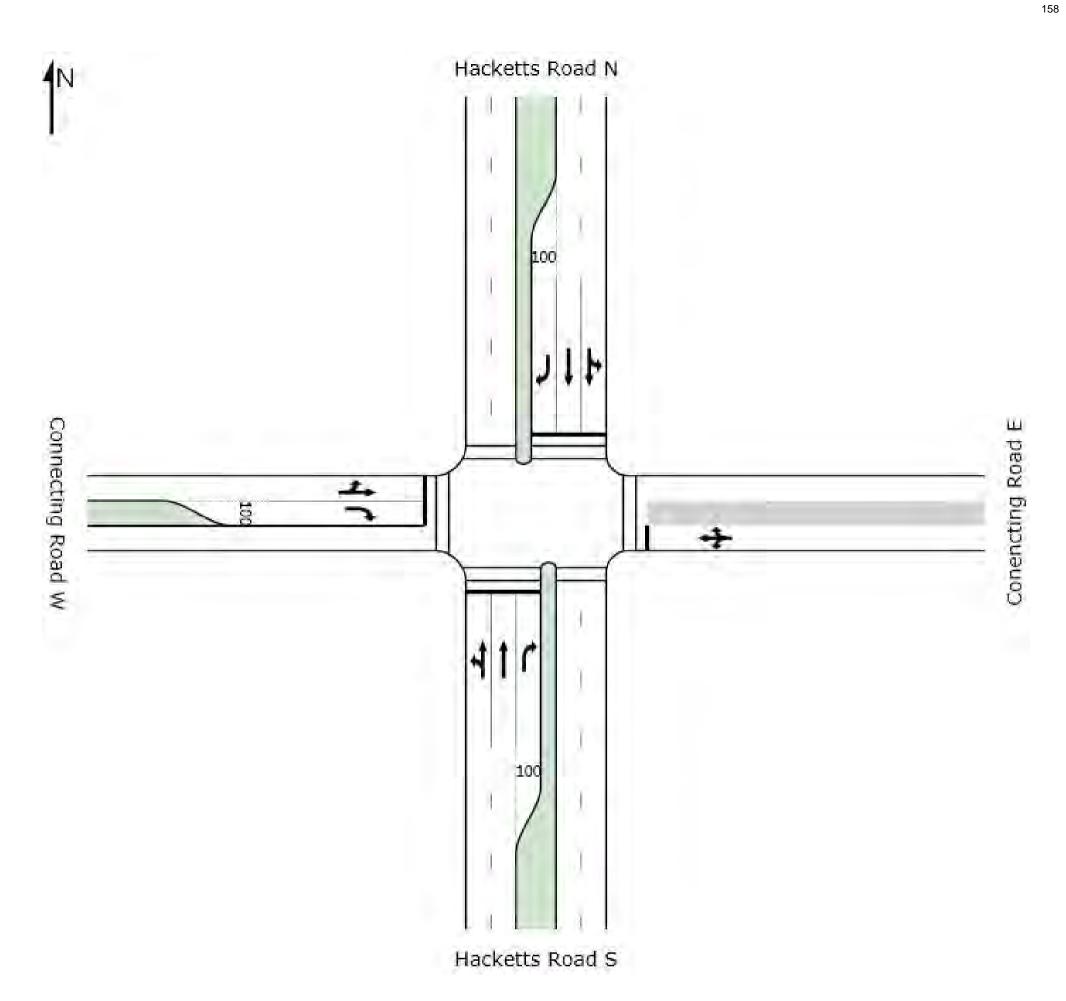

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Diamond-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	19	50	6	21
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	25	56	12	27
Phase Split	21 %	47 %	10 %	23 %



Processed: Thursday, 21 February 2013 4:51:40 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #25.sip 8000907, AECOM, ENTERPRISE

MOVEMENT SUMMARY

Intersection 25 - PM Peak Hour

Moven	nent Pe	rformance -	Vehicles								
		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 1		veh/h	%	v/c	sec		veh	m		per veh	km/h
	Hacketts										
1	L	43	0.0	0.498	39.0	LOS D	15.7	110.0	0.83	0.90	29.3
2	Т	652	0.3	0.498	31.9	LOS C	15.8	110.9	0.83	0.72	30.6
3	R	1	0.0	0.002	46.2	LOS D	0.0	0.3	0.80	0.61	25.5
Approa	ch	696	0.3	0.498	32.3	LOS C	15.8	110.9	0.83	0.73	30.5
East: C	onenctin	g Road E									
4	L	1	0.0	0.022	49.1	LOS D	0.1	1.0	0.82	0.68	24.0
5	Т	1	0.0	0.022	42.0	LOS D	0.1	1.0	0.82	0.55	23.6
6	R	1	0.0	0.022	49.0	LOS D	0.1	1.0	0.82	0.67	24.0
Approa	ch	3	0.0	0.022	46.7	LOS D	0.1	1.0	0.82	0.63	23.9
North: H	Hacketts	Road N									
7	L	1	0.0	0.603	40.5	LOS D	19.9	139.6	0.87	0.92	29.0
8	Т	841	0.0	0.603	33.4	LOS C	20.1	140.5	0.87	0.76	29.9
9	R	245	0.0	0.609	53.6	LOS D	13.1	91.7	0.96	0.83	23.4
Approa	ch	1087	0.0	0.609	38.0	LOS D	20.1	140.5	0.89	0.78	28.2
West: C	Connectir	ng Road W									
10	L	174	0.0	0.220	29.8	LOS C	6.3	44.3	0.66	0.77	30.1
11	Т	1	0.0	0.220	22.6	LOS C	6.3	44.3	0.66	0.55	30.4
12	R	31	0.0	0.334	70.4	LOS E	1.9	13.1	1.00	0.72	19.3
Approa	ch	206	0.0	0.334	35.9	LOS D	6.3	44.3	0.71	0.76	27.8
All Vehi	cles	1992	0.1	0.609	35.8	LOS D	20.1	140.5	0.85	0.76	28.9

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians									
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped		
P1	Across S approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
P3	Across E approach	50	28.0	LOS C	0.1	0.1	0.68	0.68		
P5	Across N approach	50	54.2	LOS E	0.2	0.2	0.95	0.95		
P7	Across W approach	50	29.4	LOS C	0.1	0.1	0.70	0.70		
All Pede	estrians	200	41.4	LOS E			0.82	0.82		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 21 February 2013 4:51:48 PM SIDRA INTERSECTION 5.1.2.1953

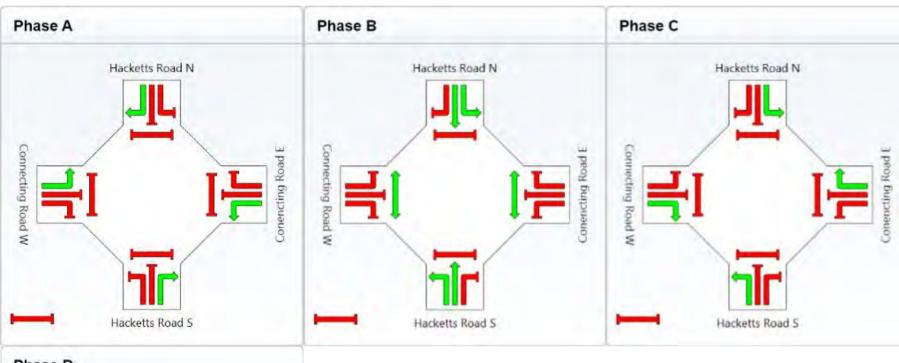
8000907, AECOM, ENTERPRISE

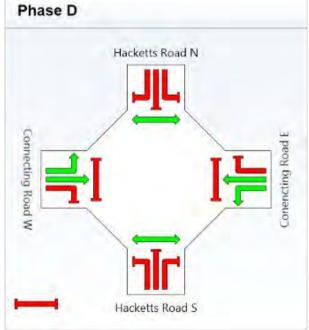
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

SIDRA INTERSECTION 5.1.2.1953 <u>www.sidrasolutions.com</u> Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #25.sip

PHASING SUMMARY

Intersection 25 - PM Peak Hour

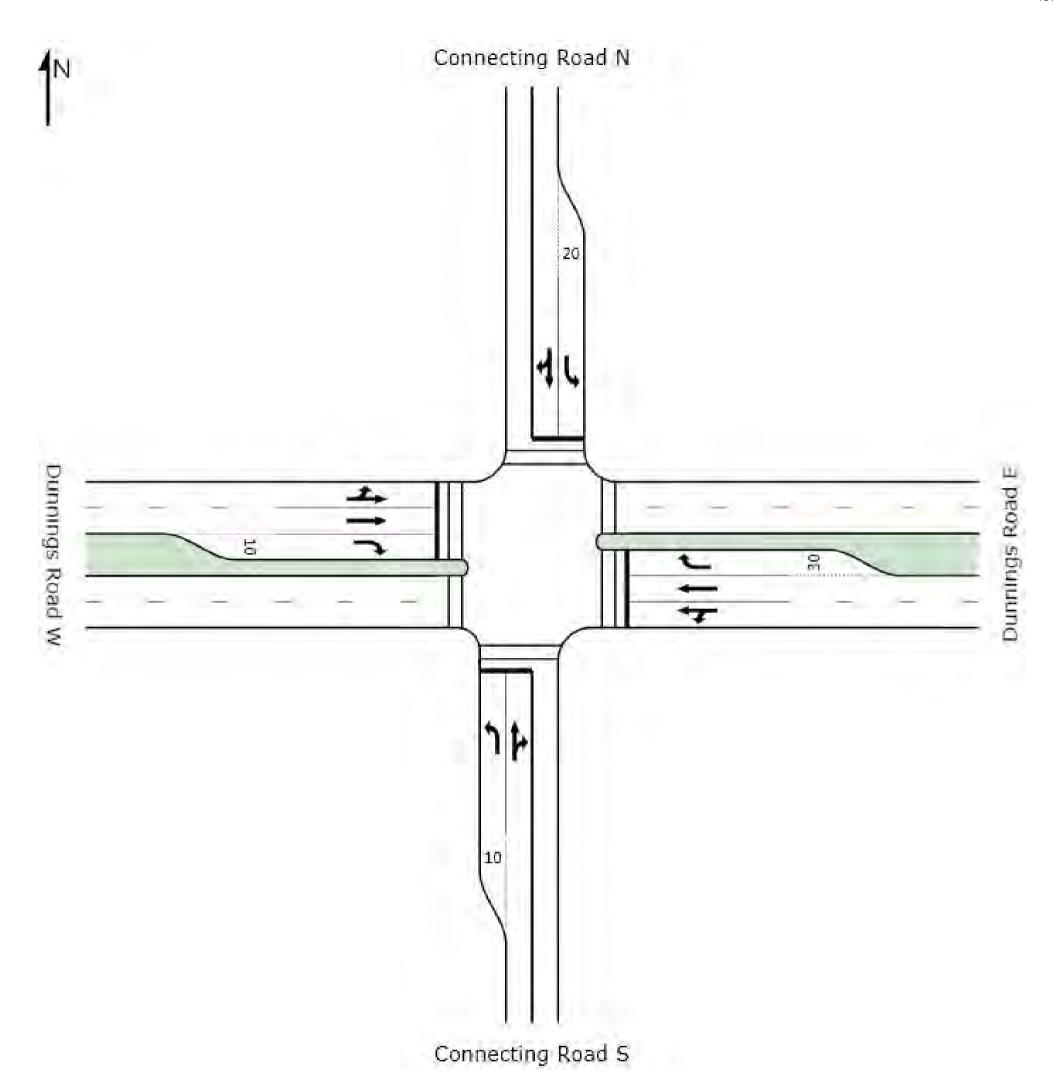

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Diamond-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	26	43	6	21
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	32	49	12	27
Phase Split	27 %	41 %	10 %	23 %



Processed: Thursday, 21 February 2013 4:51:48 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #25.sip 8000907, AECOM, ENTERPRISE

MOVEMENT SUMMARY

Intersection 28 - AM Peak Hour

Mover	nent Per	formance -	Vehicles								
Mov ID		Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back (of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	. km/h
South:	Connectir	ng Road S									
1	L	13	0.0	0.128	16.4	LOS B	0.3	2.0	0.40	0.66	36.9
2	Т	12	8.3	0.083	45.0	LOS D	1.1	8.3	0.87	0.63	22.9
3	R	11	0.0	0.083	52.1	LOS D	1.1	8.3	0.87	0.73	23.4
Approa	nch	36	2.8	0.128	36.8	LOS D	1.1	8.3	0.70	0.67	26.8
East: D	unnings F	Road E									
4	L	43	4.7	0.582	47.4	LOS D	15.9	112.9	0.91	0.87	26.3
5	Т	593	1.0	0.582	39.8	LOS D	16.1	113.6	0.91	0.78	27.4
6	R	105	0.0	0.584	32.6	LOS C	3.9	27.5	0.68	0.74	30.6
Approa	ich	741	1.1	0.584	39.2	LOS D	16.1	113.6	0.88	0.78	27.7
North:	Connectin	g Road N									
7	L	26	0.0	0.135	16.5	LOS B	0.6	4.0	0.41	0.67	36.9
8	Т	12	8.3	0.041	44.2	LOS D	0.6	4.7	0.86	0.60	23.4
9	R	1	0.0	0.041	51.3	LOS D	0.6	4.7	0.86	0.72	23.8
Approa	ich	39	2.6	0.135	25.9	LOS C	0.6	4.7	0.56	0.65	31.1
West: [Dunnings I	Road W									
10	L	1	0.0	0.209	42.2	LOS D	5.1	35.8	0.80	0.86	26.8
11	Т	229	0.4	0.209	35.1	LOS D	5.1	35.8	0.80	0.65	29.4
12	R	21	0.0	0.325	30.7	LOS C	0.7	5.2	0.64	0.67	29.7
Approa	ıch	251	0.4	0.325	34.7	LOS C	5.1	35.8	0.79	0.65	29.4
All Veh	icles	1067	1.0	0.584	37.6	LOS D	16.1	113.6	0.84	0.74	28.2

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians									
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped		
P1	Across S approach	20	36.0	LOS D	0.1	0.1	0.78	0.78		
P3	Across E approach	21	54.2	LOS E	0.1	0.1	0.95	0.95		
P5	Across N approach	21	36.0	LOS D	0.1	0.1	0.78	0.78		
P7	Across W approach	21	54.2	LOS E	0.1	0.1	0.95	0.95		
All Pede	estrians	83	45.2	LOS E			0.86	0.86		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #28.sip

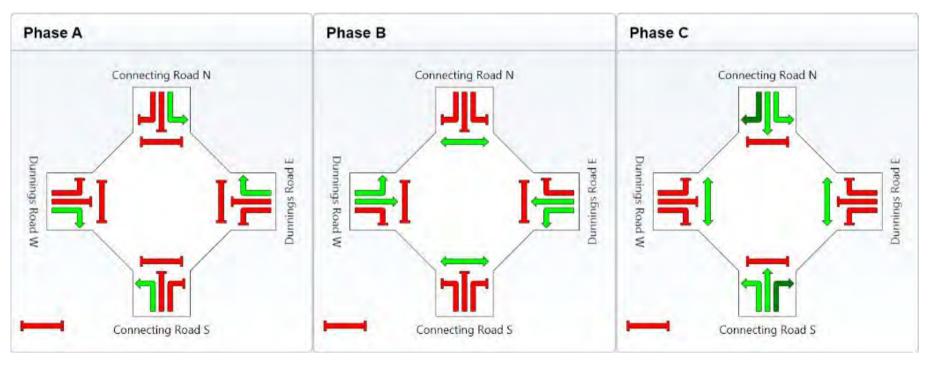
Processed: Thursday, 21 February 2013 4:54:59 PM SIDRA INTERSECTION 5.1.2.1953

www.sidrasolutions.com

8000907, AECOM, ENTERPRISE

PHASING SUMMARY

Intersection 28 - AM Peak Hour

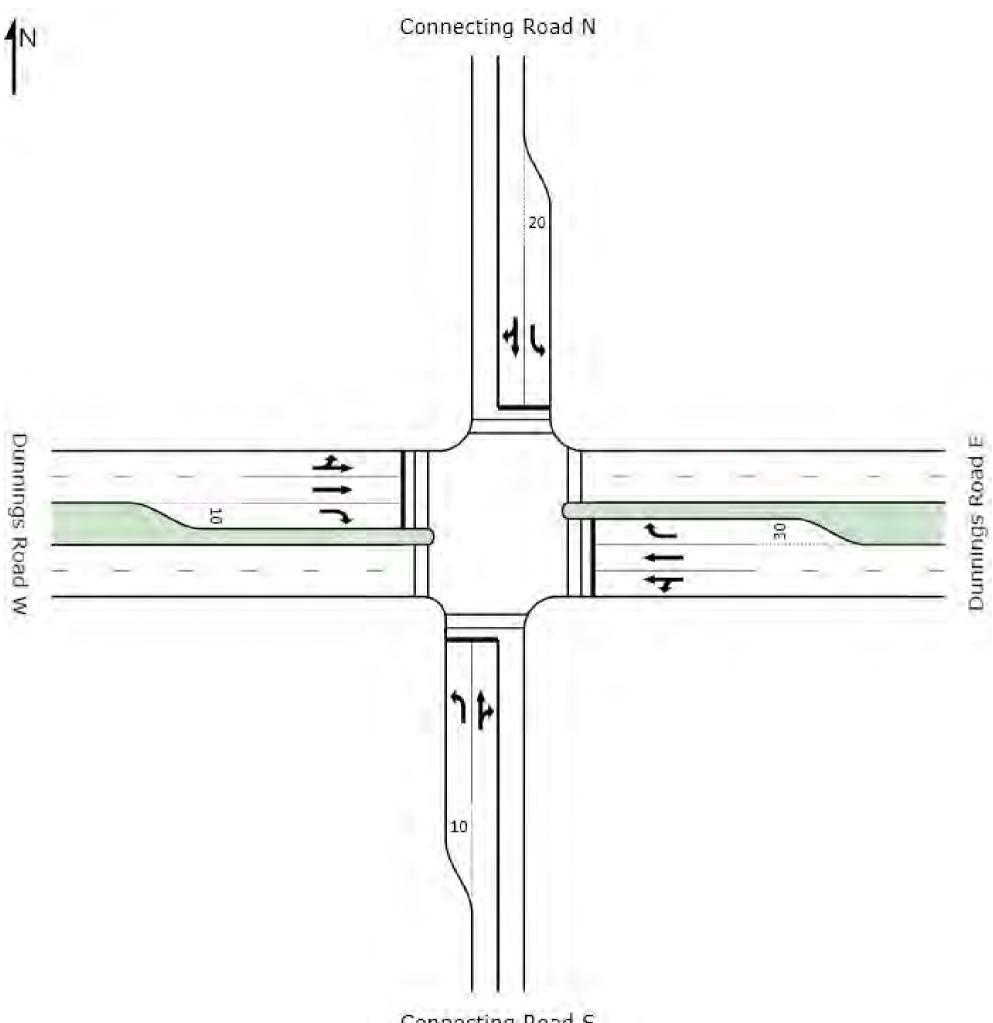

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Split-Phase Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	47	34	21
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	53	40	27
Phase Split	44 %	33 %	23 %



Processed: Thursday, 21 February 2013 4:54:59 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd $\underline{www.sidrasolutions.com}$

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #28.sip 8000907, AECOM, ENTERPRISE

Connecting Road S

Site: 2046 PM Rev B

MOVEMENT SUMMARY

Intersection 28 - PM Peak Hour

Mover	nent P <u>er</u>	formance - \	/ehicles								
		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 11		veh/h	%	v/c	sec		veh	m		per veh	km/h
		ng Road S									
1	L	25	0.0	0.272	18.6	LOS B	0.6	4.3	0.45	0.67	35.6
2	Т	21	0.0	0.116	35.0	LOS D	2.1	15.0	0.78	0.60	25.8
3	R	28	0.0	0.116	42.1	LOS D	2.1	15.0	0.78	0.76	26.0
Approa	ch	74	0.0	0.272	32.2	LOS C	2.1	15.0	0.67	0.68	28.6
East: D	unnings f	Road E									
4	L	21	4.8	0.261	39.5	LOS D	7.0	49.5	0.78	0.88	29.1
5	Т	308	0.3	0.261	31.9	LOS C	7.1	49.8	0.78	0.64	30.6
6	R	42	0.0	0.288	45.2	LOS D	1.9	13.3	0.81	0.72	25.8
Approa	ch	371	0.5	0.288	33.8	LOS C	7.1	49.8	0.78	0.67	29.9
North: 0	Connectir	ng Road N									
7	L	87	0.0	0.500	19.3	LOS B	2.2	15.5	0.48	0.70	35.2
8	Т	9	11.1	0.020	32.8	LOS C	0.4	3.2	0.74	0.52	27.0
9	R	1	0.0	0.020	39.9	LOS D	0.4	3.2	0.74	0.73	27.1
Approa	ch	97	1.0	0.500	20.8	LOS C	2.2	15.5	0.50	0.69	34.2
West: D	Dunnings	Road W									
10	L	1	0.0	0.494	42.4	LOS D	14.5	103.2	0.86	0.90	28.2
11	Т	617	1.9	0.494	34.9	LOS C	14.5	103.2	0.86	0.73	29.4
12	R	19	0.0	0.368	44.5	LOS D	0.8	5.9	0.79	0.68	26.0
Approa	ch	637	1.9	0.494	35.2	LOS D	14.5	103.2	0.86	0.73	29.2
All Vehi	icles	1179	1.3	0.500	33.4	LOS C	14.5	103.2	0.79	0.71	29.8

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians									
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped		
P1	Across S approach	20	32.3	LOS D	0.1	0.1	0.73	0.73		
P3	Across E approach	21	42.5	LOS E	0.1	0.1	0.84	0.84		
P5	Across N approach	21	32.3	LOS D	0.1	0.1	0.73	0.73		
P7	Across W approach	21	42.5	LOS E	0.1	0.1	0.84	0.84		
All Pede	estrians	83	37.4	LOS D			0.79	0.79		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

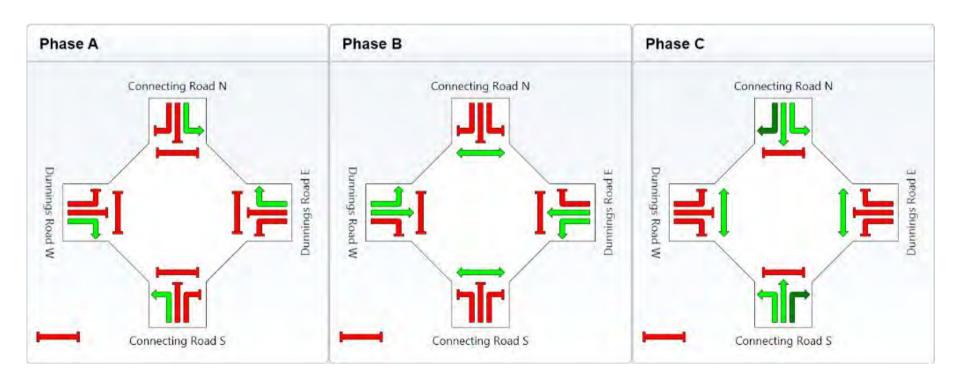
SIDRA INTERSECTION Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #28.sip

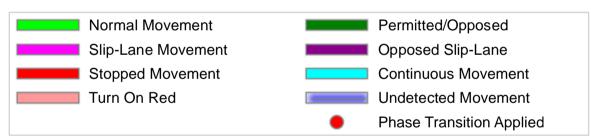
8000907, AECOM, ENTERPRISE

Site: 2046 PM Rev B

PHASING SUMMARY

Intersection 28 - PM Peak Hour

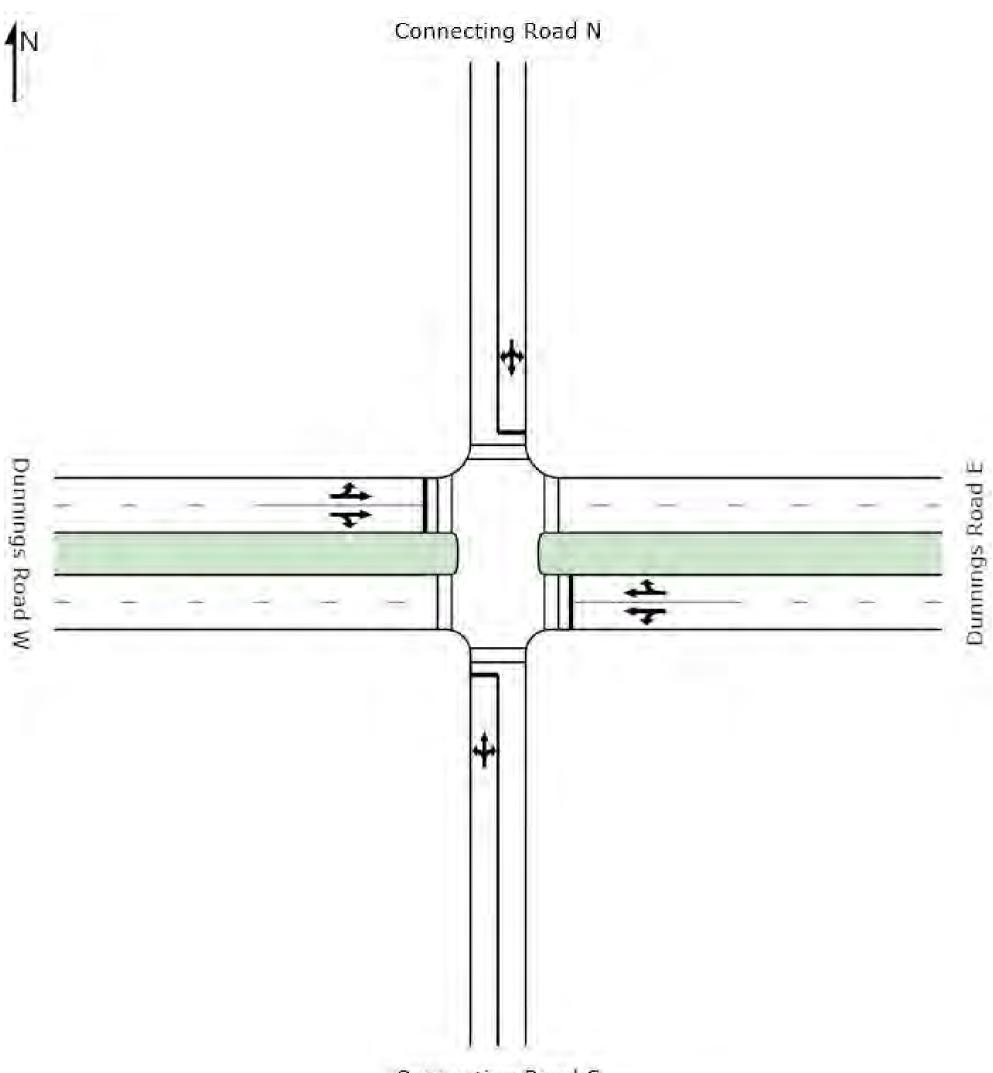

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Split-Phase Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	29	39	34
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	35	45	40
Phase Split	29 %	38 %	33 %



Processed: Thursday, 21 February 2013 4:55:12 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd $\underline{www.sidrasolutions.com}$

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #28.sip 8000907, AECOM, ENTERPRISE

Connecting Road S

MOVEMENT SUMMARY

Intersection 30 - AM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Move	nent Per	formance -	Vehicles								
		Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID) Turn	Flow veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
South:	Connectir	ng Road S	70	V/ G	300		٧٥١١			per veri	KITI/TT
1	L	16	0.0	0.464	51.6	LOS D	10.0	70.1	0.92	0.83	23.8
2	Т	178	0.0	0.464	44.4	LOS D	10.0	70.1	0.92	0.76	23.3
3	R	1	0.0	0.464	51.5	LOS D	10.0	70.1	0.92	0.83	23.8
Approa	ich	195	0.0	0.464	45.0	LOS D	10.0	70.1	0.92	0.77	23.3
East: D	unnings F	Road E									
4	L	1	0.0	0.480	32.1	LOS C	16.5	118.3	0.75	0.95	32.6
5	Т	533	3.0	0.480	26.3	LOS C	16.5	118.3	0.77	0.67	33.1
6	R	114	0.0	0.480	38.9	LOS D	11.0	77.9	0.82	0.85	28.7
Approa	ich	648	2.5	0.480	28.5	LOS C	16.5	118.3	0.78	0.70	32.3
North:	Connectin	g Road N									
7	L	39	0.0	0.477	54.2	LOS D	9.1	63.9	0.94	0.81	22.8
8	Т	70	0.0	0.477	47.1	LOS D	9.1	63.9	0.94	0.77	22.2
9	R	64	0.0	0.477	54.1	LOS D	9.1	63.9	0.94	0.81	22.8
Approa	ich	173	0.0	0.477	51.3	LOS D	9.1	63.9	0.94	0.80	22.6
West: I	Dunnings	Road W									
10	L	73	0.0	0.372	33.8	LOS C	11.7	82.3	0.71	0.94	31.2
11	Т	251	0.4	0.372	26.5	LOS C	11.7	82.3	0.71	0.65	32.9
12	R	101	0.0	0.372	43.9	LOS D	5.0	35.1	0.83	0.80	26.3
Approa	ich	425	0.2	0.372	31.9	LOS C	11.7	82.3	0.74	0.73	30.9
All Veh	icles	1441	1.2	0.480	34.5	LOS C	16.5	118.3	0.80	0.73	28.9

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians									
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped		
P1	Across S approach	50	21.6	LOS C	0.1	0.1	0.60	0.60		
P3	Across E approach	50	51.3	LOS E	0.2	0.2	0.93	0.93		
P5	Across N approach	50	21.6	LOS C	0.1	0.1	0.60	0.60		
P7	Across W approach	50	48.6	LOS E	0.2	0.2	0.90	0.90		
All Pede	estrians	200	35.8	LOS D			0.76	0.76		

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 21 February 2013 4:57:15 PM SIDRA INTERSECTION 5.1.2.1953

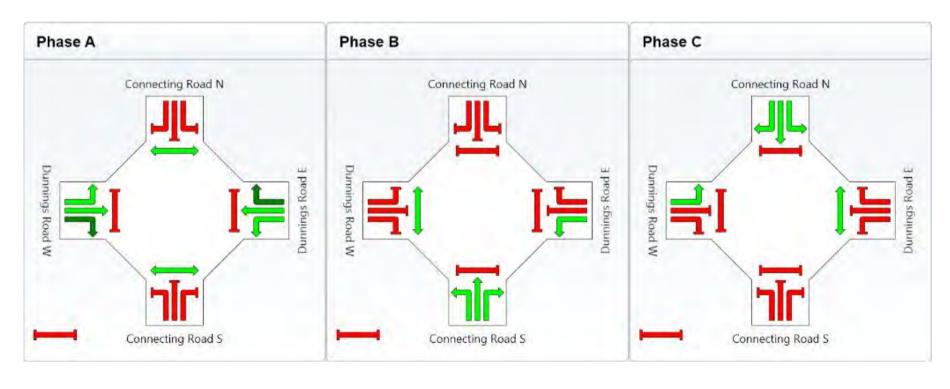
8000907, AECOM, ENTERPRISE

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

SIDRA INTERSECTION 5.1.2.1953 <u>www.sidrasolutions.com</u>
Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #30.sip

PHASING SUMMARY

Intersection 30 - AM Peak Hour

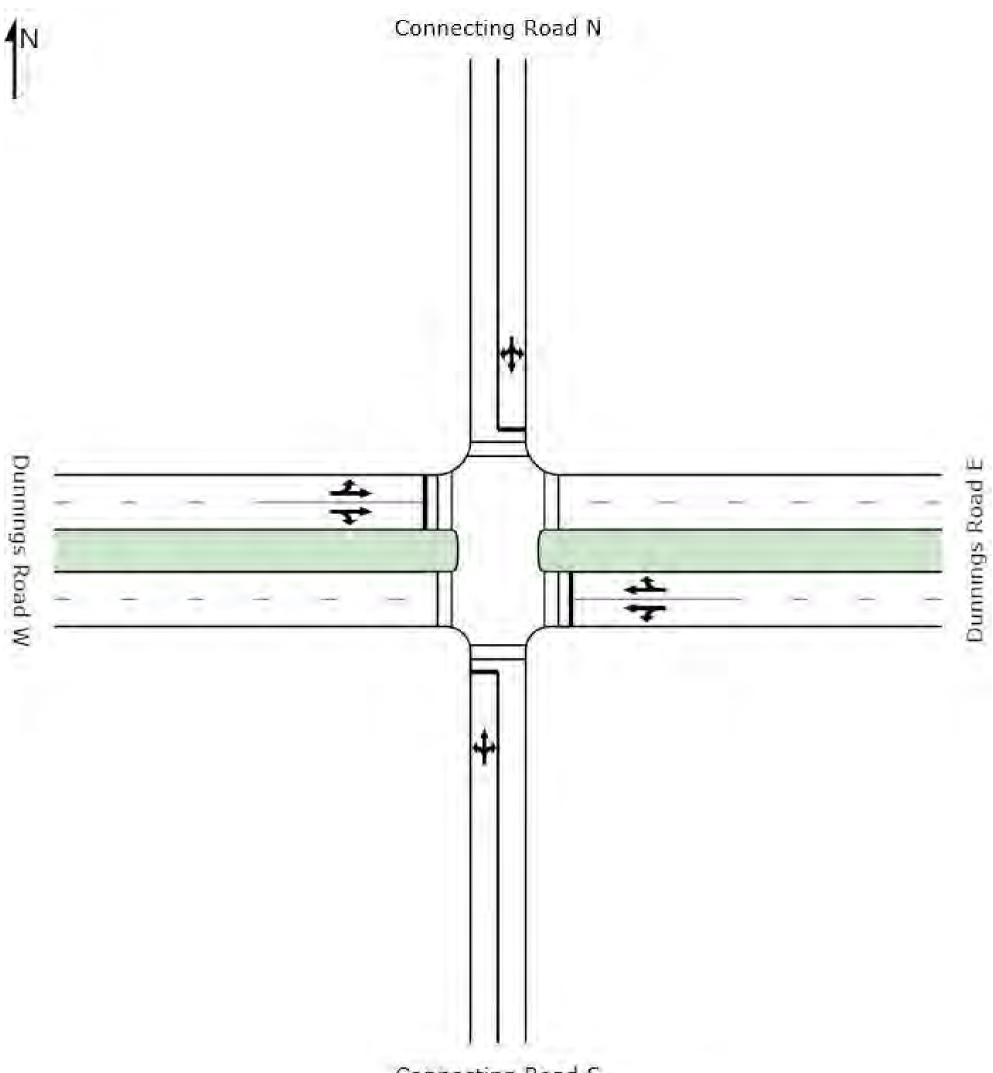

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Split-Phase Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	53	26	23
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	59	32	29
Phase Split	49 %	27 %	24 %



Processed: Thursday, 21 February 2013 4:57:15 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd $\underline{www.sidrasolutions.com}$

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #30.sip 8000907, AECOM, ENTERPRISE

Connecting Road S

MOVEMENT SUMMARY

Intersection 30 - PM Peak Hour

Moyer	nont Por	formance - \	/ohiclos								
IMOVEI	nent Per	Demand	remidles	Deg.	Average	Level of	95% Back o	of Ouelle	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec	0011100	veh	m	4.0000	per veh	km/h
South:	Connectir	ng Road S									
1	L	66	0.0	0.475	56.7	LOS E	8.1	57.0	0.95	0.81	22.3
2	Т	84	0.0	0.475	49.6	LOS D	8.1	57.0	0.95	0.77	21.7
3	R	1	0.0	0.475	56.6	LOS E	8.1	57.0	0.95	0.81	22.3
Approa	ch	151	0.0	0.475	52.7	LOS D	8.1	57.0	0.95	0.79	22.0
East: D	unnings F	Road E									
4	L	1	0.0	0.471	37.9	LOS D	14.6	104.9	0.81	0.92	30.0
5	Т	385	3.1	0.471	33.1	LOS C	14.6	104.9	0.83	0.71	30.0
6	R	53	0.0	0.471	56.1	LOS E	5.9	41.7	0.94	0.81	23.3
Approa	ich	439	2.7	0.471	35.9	LOS D	14.6	104.9	0.84	0.72	29.0
North:	Connectin	ng Road N									
7	L	112	0.0	0.649	45.1	LOS D	19.6	137.4	0.92	0.86	25.2
8	Т	181	0.0	0.649	37.9	LOS D	19.6	137.4	0.92	0.80	24.7
9	R	97	0.0	0.649	45.0	LOS D	19.6	137.4	0.92	0.86	25.2
Approa	ch	390	0.0	0.649	41.8	LOS D	19.6	137.4	0.92	0.83	25.0
West: [Dunnings	Road W									
10	L	99	0.0	0.648	43.0	LOS D	21.9	153.3	0.89	0.92	27.7
11	Т	581	0.2	0.648	38.4	LOS D	21.9	153.3	0.91	0.81	27.6
12	R	63	0.0	0.648	50.4	LOS D	14.8	103.4	0.95	0.86	25.2
Approa	ich	743	0.1	0.648	40.0	LOS D	21.9	153.3	0.91	0.83	27.4
All Veh	icles	1723	0.8	0.649	40.5	LOS D	21.9	153.3	0.90	0.80	26.7

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped			Effective Stop Rate per ped				
P1	Across S approach	50	27.3	LOS C	0.1	0.1	0.68	0.68				
P3	Across E approach	50	38.4	LOS D	0.1	0.1	0.80	0.80				
P5	Across N approach	50	27.3	LOS C	0.1	0.1	0.68	0.68				
P7	Across W approach	50	54.2	LOS E	0.2	0.2	0.95	0.95				
All Pede	estrians	200	36.8	LOS D			0.78	0.78				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 21 February 2013 4:57:06 PM SIDRA INTERSECTION 5.1.2.1953

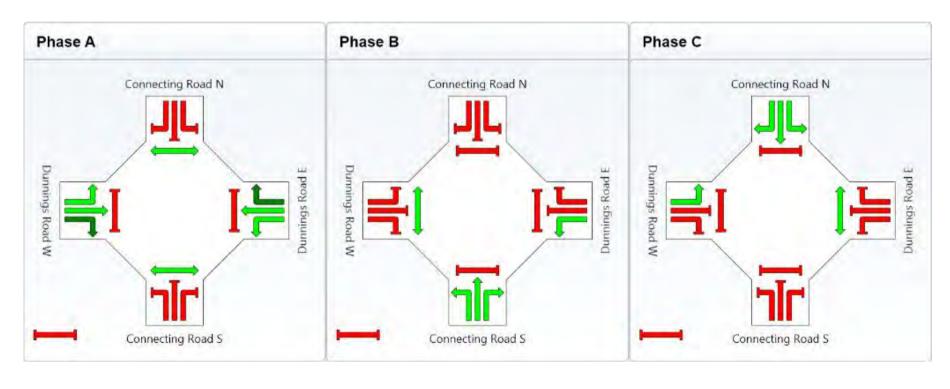
8000907, AECOM, ENTERPRISE

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #30.sip

PHASING SUMMARY

Intersection 30 - PM Peak Hour

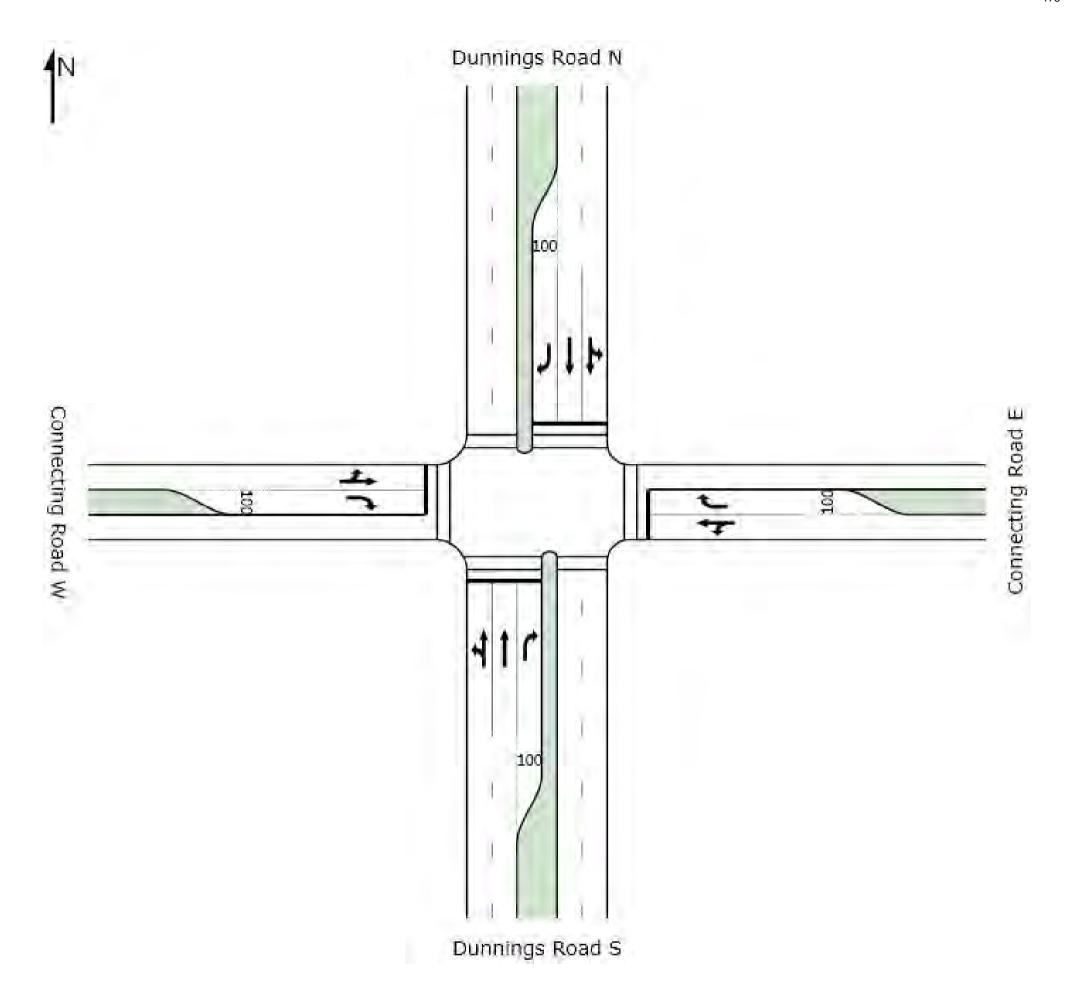

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Split-Phase Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	44	20	38
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	50	26	44
Phase Split	42 %	22 %	37 %



Processed: Thursday, 21 February 2013 4:57:06 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #30.sip 8000907, AECOM, ENTERPRISE

MOVEMENT SUMMARY

Intersection 31 - AM Peak Hour

Movement Performance - Vehicles											
		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Dunnings	s Road S									
1	L	1	0.0	0.596	63.6	LOS E	7.3	50.9	1.00	0.80	22.1
2	Т	251	0.0	0.596	56.5	LOS E	7.3	51.0	1.00	0.80	22.6
3	R	64	0.0	0.118	26.0	LOS C	2.0	14.2	0.58	0.72	33.9
Approa	ch	316	0.0	0.596	50.4	LOS D	7.3	51.0	0.91	0.78	24.2
East: C	onnecting	g Road E									
4	L	30	0.0	0.062	39.0	LOS D	1.4	9.8	0.74	0.73	26.8
5	Т	4	0.0	0.062	31.8	LOS C	1.4	9.8	0.74	0.56	26.6
6	R	9	0.0	0.097	68.7	LOS E	0.5	3.7	0.98	0.67	19.6
Approa	ch	43	0.0	0.097	44.6	LOS D	1.4	9.8	0.79	0.70	24.8
North: [Dunnings	Road N									
7	L	39	5.1	0.542	63.1	LOS E	6.8	48.3	0.99	0.79	21.8
8	Т	194	0.5	0.542	56.1	LOS E	6.8	48.3	0.99	0.78	22.6
9	R	325	1.8	0.614	29.5	LOS C	12.2	86.6	0.69	0.79	32.1
Approa	ch	558	1.6	0.614	41.1	LOS D	12.2	86.6	0.82	0.79	27.1
West: C	Connectin	ng Road W									
10	L	126	0.0	0.162	28.5	LOS C	4.6	32.0	0.64	0.76	30.7
11	Т	6	0.0	0.162	21.3	LOS C	4.6	32.0	0.64	0.52	31.1
12	R	1	0.0	0.011	67.0	LOS E	0.1	0.4	0.97	0.59	19.9
Approa	ch	133	0.0	0.162	28.5	LOS C	4.6	32.0	0.64	0.75	30.6
All Vehi	cles	1050	0.9	0.614	42.4	LOS D	12.2	86.6	0.82	0.78	26.4

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians											
Mov ID Description		Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped			Effective Stop Rate per ped				
P1	Across S approach	50	54.2	LOS E	0.2	0.2	0.95	0.95				
P3	Across E approach	50	54.2	LOS E	0.2	0.2	0.95	0.95				
P5	Across N approach	50	54.2	LOS E	0.2	0.2	0.95	0.95				
P7	Across W approach	50	54.2	LOS E	0.2	0.2	0.95	0.95				
All Pede	estrians	200	54.2	LOS E			0.95	0.95				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

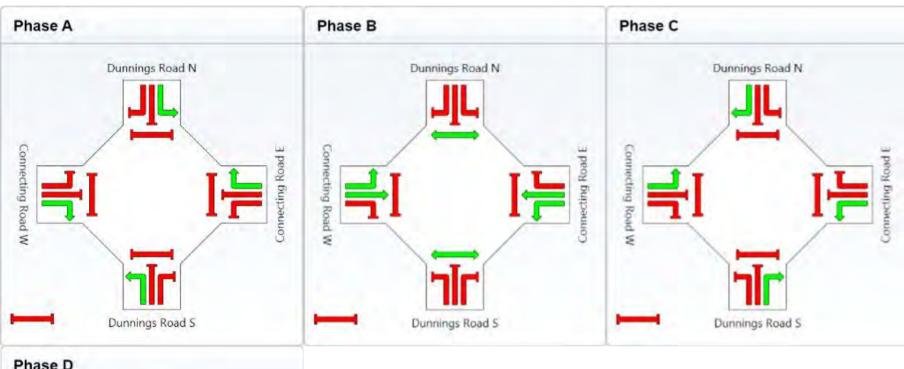
Processed: Thursday, 21 February 2013 4:59:11 PM

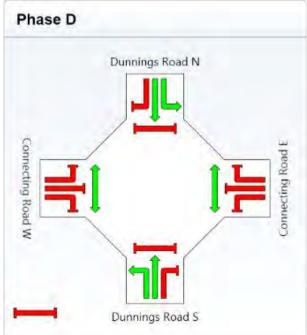
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

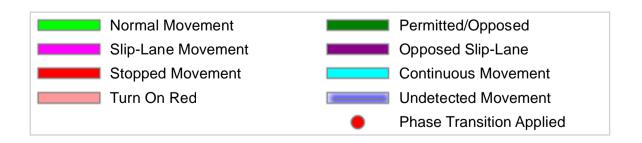
SIDRA INTERSECTION 5.1.2.1953 <u>www.sidrasolutions.com</u>
Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #31.sip
8000907, AECOM, ENTERPRISE

PHASING SUMMARY

Intersection 31 - AM Peak Hour

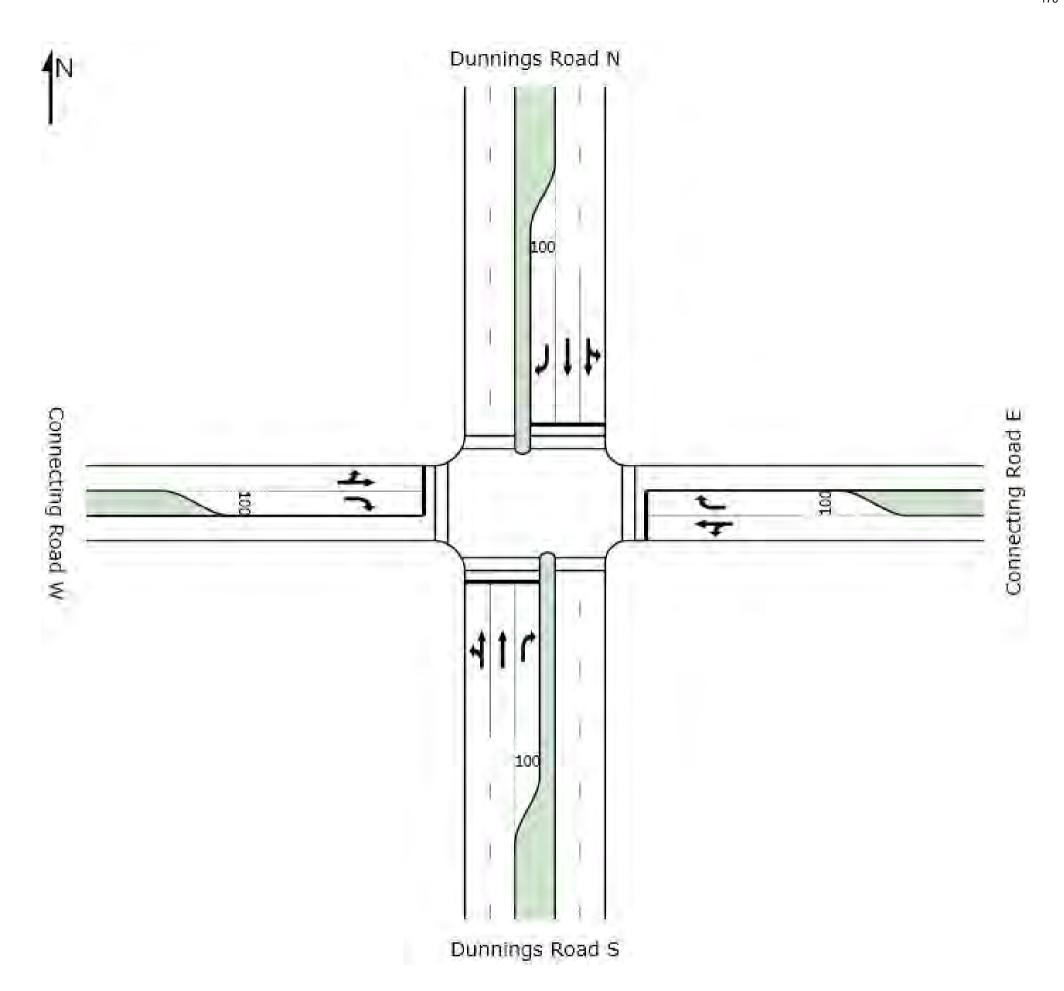

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Diamond-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	6	21	56	13
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	12	27	62	19
Phase Split	10 %	23 %	52 %	16 %



Processed: Thursday, 21 February 2013 4:59:11 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #31.sip 8000907, AECOM, ENTERPRISE

MOVEMENT SUMMARY

Intersection 31 - PM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Move	ment P <u>er</u>	formance -	Vehicles								
Mov IC) Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back (Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
South	Dunnings	veh/h	%	v/c	sec		veh	m		per veh	km/h
	•	1	0.0	0.586	59.9	LOS E	9.0	63.4	0.98	0.82	22.0
1	L T										23.0
2		322	0.3	0.586	52.8	LOS D	9.1	63.6	0.98	0.80	23.6
3	R	31	0.0	0.065	33.2	LOS C	1.1	8.0	0.67	0.71	30.3
Approa	ach	354	0.3	0.586	51.1	LOS D	9.1	63.6	0.96	0.79	24.0
East: C	Connecting	Road E									
4	L	88	0.0	0.146	35.6	LOS D	3.8	26.4	0.72	0.76	27.9
5	Т	7	0.0	0.146	28.4	LOS C	3.8	26.4	0.72	0.58	27.9
6	R	23	0.0	0.106	59.0	LOS E	1.2	8.6	0.93	0.71	21.5
Approa	ach	118	0.0	0.146	39.7	LOS D	3.8	26.4	0.76	0.74	26.4
North:	Dunnings	Road N									
7	L	22	9.1	0.450	58.8	LOS E	6.8	48.3	0.96	0.81	23.0
8	Т	227	0.0	0.450	51.6	LOS D	6.8	48.3	0.96	0.77	23.8
9	R	269	1.9	0.579	37.6	LOS D	11.6	82.6	0.79	0.80	28.5
Approa	ach	518	1.4	0.579	44.6	LOS D	11.6	82.6	0.87	0.79	25.9
West: 0	Connecting	g Road W									
10	L	355	0.0	0.390	27.0	LOS C	13.0	90.9	0.67	0.80	31.4
11	Т	7	0.0	0.390	19.8	LOS B	13.0	90.9	0.67	0.58	31.7
12	R	124	0.0	0.572	62.9	LOS E	7.1	49.8	0.99	0.79	20.7
Approa	ach	486	0.0	0.572	36.0	LOS D	13.0	90.9	0.75	0.79	27.7
All Veh	icles	1476	0.5	0.586	43.0	LOS D	13.0	90.9	0.84	0.79	26.0

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped			Effective Stop Rate per ped				
P1	Across S approach	50	54.2	LOS E	0.2	0.2	0.95	0.95				
P3	Across E approach	50	50.4	LOS E	0.2	0.2	0.92	0.92				
P5	Across N approach	50	54.2	LOS E	0.2	0.2	0.95	0.95				
P7	Across W approach	50	50.4	LOS E	0.2	0.2	0.92	0.92				
All Pede	estrians	200	52.3	LOS E			0.93	0.93				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

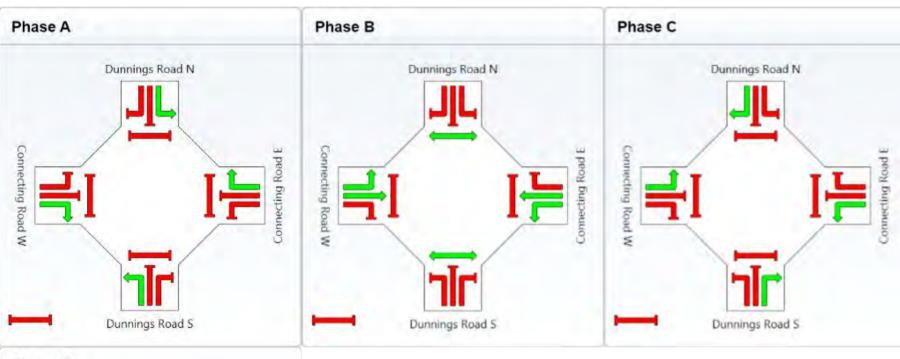
Processed: Thursday, 21 February 2013 4:59:03 PM SIDRA INTERSECTION 5.1.2.1953

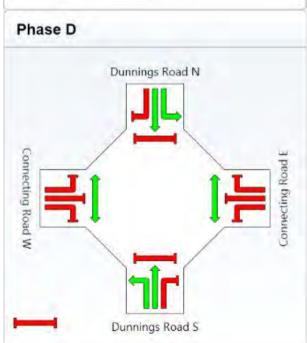
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

SIDRA INTERSECTION 5.1.2.1953 www.sidrasolutions.com
Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #31.sip
8000907, AECOM, ENTERPRISE

PHASING SUMMARY

Intersection 31 - PM Peak Hour

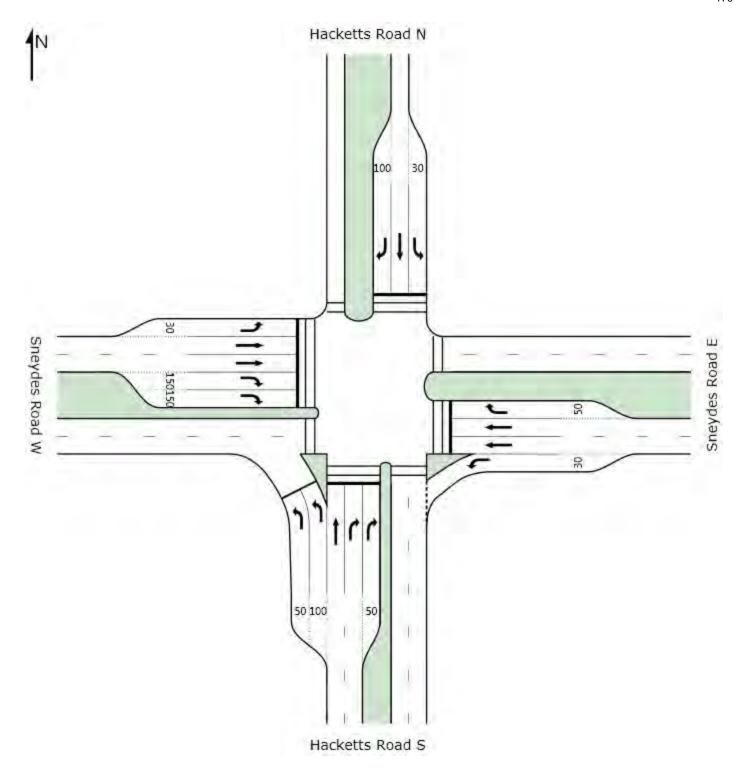

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Diamond-Phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	14	21	44	17
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	20	27	50	23
Phase Split	17 %	23 %	42 %	19 %


Processed: Thursday, 21 February 2013 4:59:03 PM SIDRA INTERSECTION 5.1.2.1953

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\60277612\4. Tech work area\4.5 Planning\SIDRA\Models\2046\Int #31.sip

8000907, AECOM, ENTERPRISE

MOVEMENT SUMMARY

Intersection 32 - AM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Moven	nent Pe	rformance - \	Vehicles								
		Demand	1.0.7	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Caudhal	l la alcatta	veh/h	%	v/c	sec		veh	m		per veh	km/h
	Hacketts										
1	L	662	0.0	0.783	33.8	LOS C	13.0	90.7	0.96	0.88	31.3
2	Т	50	0.0	0.171	48.4	LOS D	2.6	18.1	0.91	0.69	24.8
3	R	129	0.0	0.267	57.0	LOS E	3.9	27.4	0.92	0.76	23.5
Approac	ch	841	0.0	0.783	38.2	LOS D	13.0	90.7	0.95	0.85	29.4
East: Sr	neydes F	Road E									
4	L	139	0.0	0.270	9.4	LOS A	1.4	9.5	0.23	0.65	47.7
5	Т	1103	0.4	0.872	50.1	LOS D	34.4	241.6	1.00	1.01	24.3
6	R	47	0.0	0.304	66.0	LOS E	2.7	18.9	0.98	0.74	21.4
Approac	ch	1289	0.3	0.872	46.2	LOS D	34.4	241.6	0.92	0.96	25.5
North: F	Hacketts	Road N									
7	L	57	0.0	0.488	66.7	LOS E	3.3	23.1	0.98	0.75	21.1
8	Т	69	0.0	0.425	58.7	LOS E	4.0	28.0	0.99	0.75	22.1
9	R	125	0.0	0.808	72.9	LOS E	7.9	55.5	1.00	0.92	20.1
Approac	ch	251	0.0	0.808	67.6	LOS E	7.9	55.5	0.99	0.83	20.8
West: S	Sneydes I	Road W									
10	L	79	0.0	0.216	14.8	LOS B	1.3	8.9	0.47	0.72	42.6
11	Т	637	1.1	0.340	20.3	LOS C	11.4	80.2	0.66	0.57	37.0
12	R	318	0.0	0.354	48.5	LOS D	7.8	54.3	0.88	0.79	25.9
Approac	ch	1034	0.7	0.354	28.6	LOS C	11.4	80.2	0.71	0.65	32.9
All Vehi	cles	3415	0.3	0.872	40.5	LOS D	34.4	241.6	0.87	0.83	27.9

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

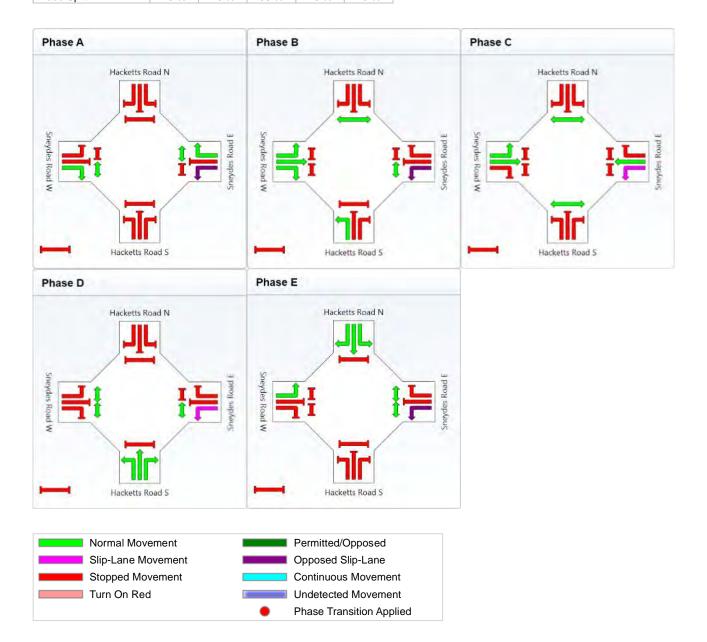
Mover	Movement Performance - Pedestrians										
		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective			
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate			
		ped/h	sec		ped	m		per ped			
P1	Across S approach	50	38.4	LOS D	0.1	0.1	0.80	0.80			
P3	Across E approach	50	31.5	LOS D	0.1	0.1	0.73	0.73			
P4	Across E approach	50	40.0	LOS E	0.1	0.1	0.82	0.82			
P5	Across N approach	50	22.8	LOS C	0.1	0.1	0.62	0.62			
P7	Across W approach	50	54.2	LOS E	0.2	0.2	0.95	0.95			
P8	Across W approach	50	41.7	LOS E	0.1	0.1	0.83	0.83			
All Ped	estrians	300	38.1	LOS D			0.79	0.79			

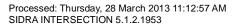
Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

PHASING SUMMARY

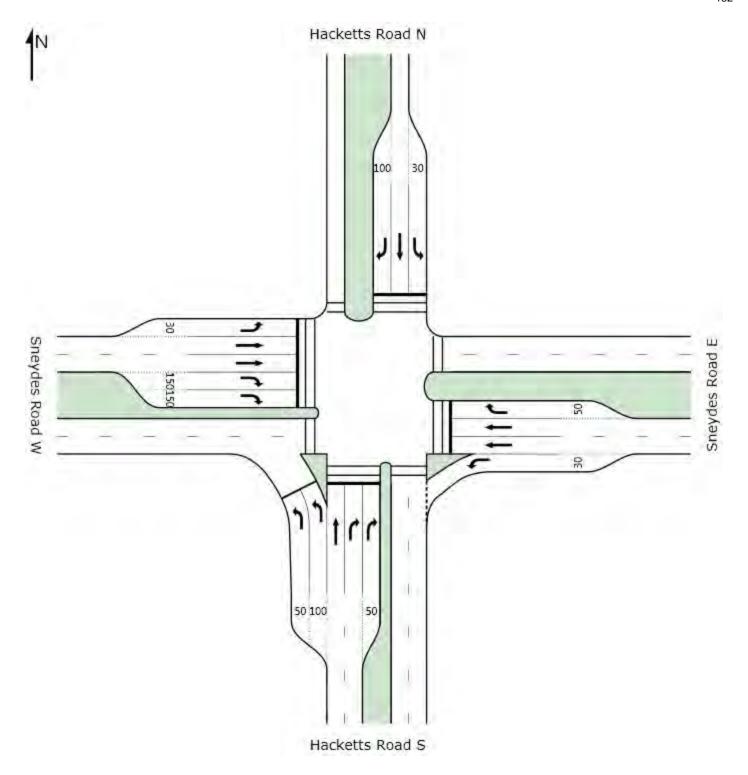
Intersection 32 - AM Peak Hour


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Split-Phase Input Sequence: A, B, C, D, E Output Sequence: A, B, C, D, E

Phase Timing Results


Phase	Α	В	С	D	E
Green Time (sec)	10	13	39	18	10
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	16	19	45	24	16
Phase Split	13 %	16 %	38 %	20 %	13 %

MOVEMENT SUMMARY

Intersection 32 - PM Peak Hour

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Moven	nent Per	formance - \	Vehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back (Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: Hacketts Road S											
1	L	331	0.0	0.352	26.0	LOS C	4.9	34.3	0.82	0.77	35.2
2	Т	93	0.0	0.318	49.8	LOS D	4.9	34.6	0.94	0.73	24.4
3	R	319	0.6	0.664	61.0	LOS E	10.5	74.1	0.98	0.83	22.5
Approa	ch	743	0.3	0.664	44.0	LOS D	10.5	74.1	0.91	0.79	27.2
East: S	neydes R	oad E									
4	L	198	0.0	0.575	12.9	LOS B	3.6	24.9	0.38	0.69	44.4
5	Т	806	0.7	0.733	42.4	LOS D	21.6	152.0	0.97	0.85	26.5
6	R	67	0.0	0.433	66.9	LOS E	3.9	27.3	0.99	0.76	21.2
Approa		1071	0.6	0.733	38.5	LOS D	21.6	152.0	0.86	0.81	28.2
North: I	Hacketts I	Road N									
7	L	65	0.0	0.549	65.8	LOS E	3.7	26.2	0.98	0.76	21.3
8	Т	65	0.0	0.364	57.2	LOS E	3.7	26.0	0.98	0.74	22.5
9	R	120	0.0	0.705	68.7	LOS E	7.3	50.9	1.00	0.85	20.9
Approa	ch	250	0.0	0.705	65.0	LOS E	7.3	50.9	0.99	0.80	21.4
West: S	Sneydes F	Road W									
10	L	115	0.0	0.314	15.0	LOS B	1.9	13.2	0.49	0.73	42.5
11	Т	1211	0.1	0.654	25.5	LOS C	26.7	187.0	0.82	0.74	33.7
12	R	754	0.0	0.738	51.4	LOS D	20.5	143.4	0.97	0.87	25.0
Approa	ch	2080	0.0	0.738	34.3	LOS C	26.7	187.0	0.86	0.79	30.2
All Vehi	icles	4144	0.2	0.738	39.0	LOS D	26.7	187.0	0.87	0.79	28.4

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	Across S approach	50	42.5	LOS E	0.1	0.1	0.84	0.84
P3	Across E approach	50	28.0	LOS C	0.1	0.1	0.68	0.68
P4	Across E approach	50	39.2	LOS D	0.1	0.1	0.81	0.81
P5	Across N approach	50	23.4	LOS C	0.1	0.1	0.63	0.63
P7	Across W approach	50	54.2	LOS E	0.2	0.2	0.95	0.95
P8	Across W approach	50	41.7	LOS E	0.1	0.1	0.83	0.83
All Pedestrians		300	38.2	LOS D			0.79	0.79

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

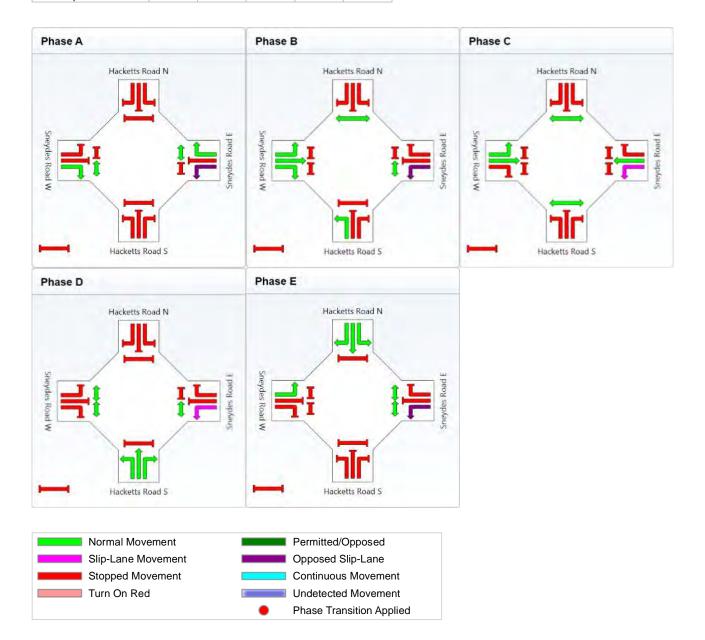
Pedestrian movement LOS values are based on average delay per pedestrian movement.

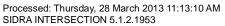
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

8000907, AECOM, ENTERPRISE

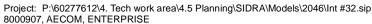
PHASING SUMMARY

Intersection 32 - PM Peak Hour


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Split-Phase Input Sequence: A, B, C, D, E Output Sequence: A, B, C, D, E


Phase Timing Results

Phase	Α	В	С	D	E
Green Time (sec)	10	17	34	18	11
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	16	23	40	24	17
Phase Split	13 %	19 %	33 %	20 %	14 %

AECOM Level 9 8 Exhibition Street Melbourne VIC 3000 Australia T+61 3 9653 1234 www.aecom.com ABN 20 093 846 925