

Berwick Waterways Precinct Structure Plan Transport Assessment

transportation planning, design and delivery

Berwick Waterways

Precinct Structure Plan

Transport Assessment

Issue: A 02/05/14

Client: Metropolitan Planning Authority Reference: 14M1235000 GTA Consultants Office: VIC

Quality Record

Issue	Date	Description	Prepared By	Checked By	Approved By	Signed
Α	02/05/14	Final	Erna Sukardi	Reece Humphreys	Reece Humphreys	Repla

Table of Contents

1.	Intro	oduction	1
	1.1	Background	1
	1.2	Purpose of this Report	1
	1.3	Referenced Documents	1
	1.4	South East Growth Corridor	1
2.	PSP	Overview	3
	2.1	PSP Layout and Land Uses	3
3.	Exis	ting and Future Road Network	4
	3.1	Existing Traffic Volumes	4
	3.2	Future Road Network	4
4.	PSP	Road Network	6
	4.1	Road Hierarchy	6
	4.2	Anticipated PSP Cross Sections	7
	4.3	Anticipated Interim and Ultimate Intersection Provisions	7
5.	Tran	sport Modelling	9
	5.1	South-East Growth Corridor Victorian Integrated Transport Model (VITM)	9
	5.2	GTA Road Network Refinements	9
	5.3	Review of Base Year VITM Volumes	10
	5.4	2046 Landuse Refinements	10
	5.5	2046 VITM Traffic Volume Outputs	11
6.	Anti	cipated Traffic Volumes	13
	6.1	GTA VITM Traffic Generation	13
	6.2	Validation of VITM Traffic Generation Rates	13
	6.3	Daily Modelled Volumes	14
7.	Inte	rsection Assessment	16
	7.1	Methodology	16
	7.2	Anticipated Interim and Ultimate Turning Volumes	18
	7.3	Anticipated Intersection Operation	21
	7.4	Review of Internal Intersection Spacing	22
	7.5	Wider Network Impact	24
8.	Cor	nclusions	26
	App	pendices	
	A:	VITM Volume Plots	
	В:	2026 SIDRA INTERSECTION Results	
	C:	2046 SIDRA INTERSECTION Results	
	D:	Internal Roundabout SIDRA INTERSECTION Results	

rigures		
Figure 1.1:	Berwick Waterways PSP Location	2
Figure 1.2:	Site Location	2
Figure 2.1:	Indicative Masterplan	3
Figure 4.1:	PSP Road Network and Connections	6
Figure 5.1:	MPA VITM Coding in the Study Area	9
Figure 5.2:	GTA VITM Coding Refinements	9
Figure 5.3:	GTA VITM Volume Output – 2046 AM 2-Hour Peak	11
Figure 5.4:	GTA VITM Volume Output – 2046 PM 2-Hour Peak	12
Figure 7.1:	Anticipated PSP Traffic Distribution	17
Figure 7.2:	Turning Movement Distribution	18
Figure 7.3:	Anticipated 2026 and 2046 AM Peak-Hour Turning Volumes	19
Figure 7.4:	Anticipated 2026 and 2046 PM Peak-Hour Turning Volumes	20
Figure 7.5:	Internal intersection - Spacing near Greaves Road	23
Figure 7.6:	Internal Roundabout AM Peak Volumes	23
Figure 7.7:	Internal Roundabout PM Peak Volumes	23
Tables		
Table 3.1:	Existing Traffic Volumes	4
Table 3.2:	Existing Road Classifications and Classifications based on Traffic Volumes	4
Table 3.3:	Anticipated Ultimate (2046) Road Network Features	5
Table 4.1:	Berwick Waterways PSP Road Cross Sections (Ultimate)	7
Table 4.2:	Interim and Ultimate Intersection Requirements	8
Table 5.1:	Modelled versus Surveyed Traffic Volumes	10
Table 5.2:	Modelled Land Uses	11
Table 6.1:	Updated VITM Traffic Generation	13
Table 6.2:	First Principals Traffic Generation Assessment	13
Table 6.3:	VITM verses First Principles Assessment	14
Table 6.4:	Summary of Ultimate Daily Volumes on Key Roads (2046)	15
Table 7.1:	Summary of Anticipated Intersection Operation	22
Table 7.2:	Internal Roundabout and Greaves Road Access Intersection Interaction	24
Table 7.4:	2046 AM and PM Traffic Distribution and Proportion	24

1. Introduction

1.1 Background

The Berwick Waterways Precinct Structure Plan (PSP) is in the process of being developed for subsequent adoption into the Casey Planning Scheme via an amendment process. The PSP is currently being prepared by the Metropolitan Planning Authority (MPA previously MPA) in conjunction with Council, VicRoads, other agencies, authorities and major stakeholders.

The precinct is envisaged to cater for some 1,000 residential dwellings and a Local Town Centre (LTC).

1.2 Purpose of this Report

GTA Consultants (GTA) has been engaged to undertake strategic transport modelling and translate the outputs into traffic demands that are used to determine the road cross section and functional intersection design requirements for an interim (2026) and ultimate (2046) scenario. The layouts will then be used as input into the preparation of the Development Contributions Plan (DCP).

This report sets out the methodology undertaken to determine the demand volumes and layout plans.

1.3 Referenced Documents

In preparing this report, reference has been made to a number of sources, including:

- the City of Casey Planning Scheme
- various MPA plans for the PSP
- the MPA Victorian Integrated Transport Model (VITM) for Melbourne's South-East Growth Corridor
- various technical data as referenced in this report
- other documents as nominated.

1.4 South East Growth Corridor

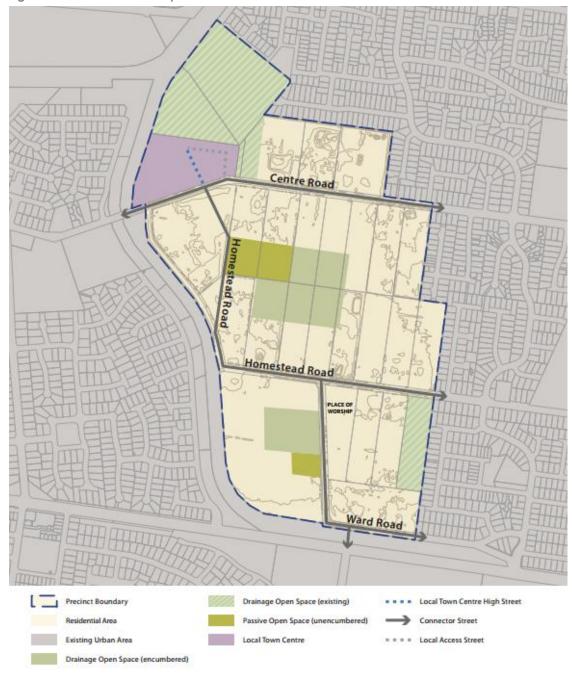
The location of the Berwick Waterways PSP (PSP 09) in relation to the wider South East Growth Corridor is illustrated in Figure 1.1, and the existing road network in the vicinity of the PSP is shown in Figure 1.2.

Figure 1.1: Berwick Waterways PSP Location

Source: MPA website

Figure 1.2: Site Location

Base map courtesy of Google maps



2. PSP Overview

2.1 PSP Layout and Land Uses

The indicative Masterplan for the Berwick Waterways PSP is shown in Figure 2.1.

Figure 2.1: Indicative Masterplan

As shown in Figure 2.1, the PSP includes a Local Town Centre (LTC) which is approximately 8,500sqm in size (located to the north of Centre Road) and approximately 1,000 households. Access to the precinct is proposed via connections to Homestead Road, Ward Road, Centre Road and Greaves Road.

3. Existing and Future Road Network

3.1 Existing Traffic Volumes

The location of the PSP with respect to the wider road network is shown in Figure 1.2.

The PSP connects to the wider arterial road network via intersections with Greaves Road and Centre Road, with Homestead Road and Ward Road running through the PSP area.

Existing traffic volume data for Homestead Road, Centre Road and Greaves Road has been provided by City of Casey Council and is summarised in Table 3.1.

Table 3.1: Existing Traffic Volumes

Road	Location	AM Peak Hour [1]	PM Peak Hour [1]	Daily	Count Date
Greaves Road	East of Moondarra Drive	1,620	1,490	17,770	February 2012
Centre Road	East of County Drive	990	1,050	11,930	March 2012
Centre Road	East of Narre Warren- Cranbourne Road	1,010	860	9,660	March 2012
Homestead Drive	East of Bellevue Drive	180	200	2,030	September 2012

^[1] Weekday average volume based on count data provided by MPA/Council

It is recognised that the traffic data is limited in the vicinity of the development plan area, however for the purposes of assisting with a relative comparison to projected volumes discussed later in this report.

The daily volumes outlined in Table 3.1 indicate that the surveyed roads are currently operating as the MPA classifications outlined in Table 3.2:

Table 3.2: Existing Road Classifications and Classifications based on Traffic Volumes

Road	Current Classification	MPA Classification based on Existing Traffic Volumes	Comments
Homestead Road	Collector Road (local Council)	Access Street – Level 2	Volumes are reflective of the current classification
Centre Road	Major Road (local Council)	higher order Connector Street /lower order Secondary Arterial Road	Volumes are reflective of the current classification
Greaves Road	Major Road (local Council)	Secondary Arterial Road	Existing daily volumes on Greaves Road indicate that it is nearing the capacity of a 2-lane road and will require an upgrade to a 4-lane road.

3.2 Future Road Network

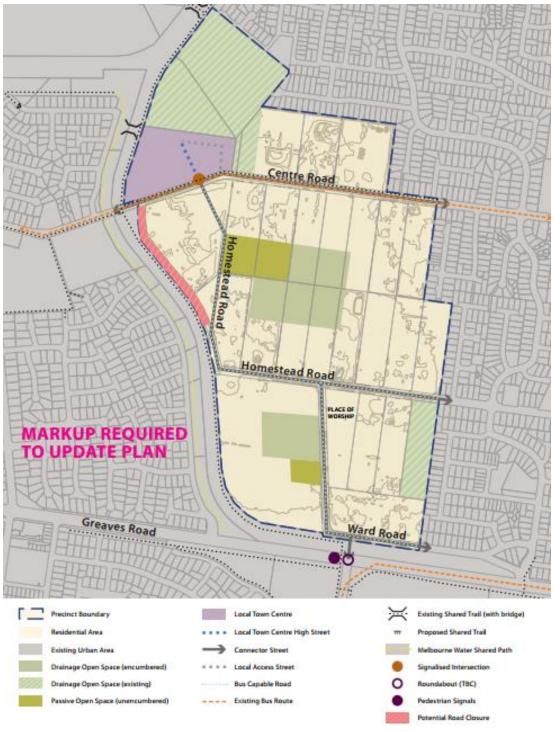
3.2.1 Overview

To support ongoing growth in the South-East Growth Corridor a number of long term road network improvements are proposed, key improvements in the vicinity of the Berwick Waterways PSP are summarised in Table 3.3.

Table 3.3: Anticipated Ultimate (2046) Road Network Features

Road	Location	Existing Configuration	Ultimate Configuration
Greaves Road	Between Clyde Road and Narre Warren- Cranbourne Road	2 lanes	4 lanes
Centre Road	Between Clyde Road and Narre Warren- Cranbourne Road	2 lanes	2 lanes
Narre Warren- Cranbourne Road	North of Greaves Road	4 lanes	6 lanes
Clyde Road	North of Greaves Road	6 lanes	6 lanes

After discussion with Council, it was confirmed that Centre Road is planned to remain in its current configuration of one lane in each direction up to 2046.



4. PSP Road Network

4.1 Road Hierarchy

The anticipated road network, hierarchy and arterial road connections are illustrated in Figure 4.1.

Figure 4.1: PSP Road Network and Connections

The PSP proposes a road hierarchy that utilises existing roads where possible. Both Greaves Road will ultimately be upgraded to an arterial road and controlled by VicRoads, whilst s as outlined in Section 3.2. The interim PSP road network is anticipated to operate satisfactory given the anticipated PSP traffic generation which is discussed in Section 6.

4.2 Anticipated PSP Cross Sections

The MPA has a series of road cross sections for PSPs. These cross sections will be applied to the Berwick Waterways PSP, noting that there will be requirements for flaring/widening at intersections.

Table 4.1 sets out the proposed ultimate road reserve widths by road type and cross section name to link to MPA road cross section terminology with the appropriate Planning Scheme reference.

Table 4.1: Berwick Waterways PSP Road Cross Sections (Ultimate)

Road	No. Lanes (two way)	MPA Road Cross- Section Title	Planning Scheme Clause 56.06 Reference	
Greaves Road	6	Primary Arterial Road	Arterial Road	
Centre Road	2	Secondary Arterial Road	Arterial Road	
Homestead Road				
Ward Road	2	Connector Street	Connector Street – Level 2	
N-S Connector (between Greaves Road and Homestead Road)	_	3535.5. 5601	2525.5. 5301	
LTC Main Access Street	2	Connector Street in LTC	Connector Street – Level 2	

It is highlighted that Centre Road is likely to function in accordance with an arterial road which will likely require an ultimate cross section of two lanes in each direction. Nevertheless, at the direction of Council officers, this assessment only considered the operation of the new intersection with Centre Road with one lane in each direction.

4.3 Anticipated Interim and Ultimate Intersection Provisions

4.3.1 Interim verses Ultimate Intersection Provisions

Both the ultimate and interim traffic volumes are presented in this Report (see Section 6). The interim (2026) volumes are used to inform intersection works up to the interim scenario for inclusion into the Development Contributions Plan (DCP), whilst the ultimate volumes are used to validate the provision of ultimate road reserve (including flaring) at intersections.

Table 4.2 summarises the anticipated layouts (based on SIDRA modelling outlined later in Section 7) and differences between the DCP intersections in the interim and ultimate cases.

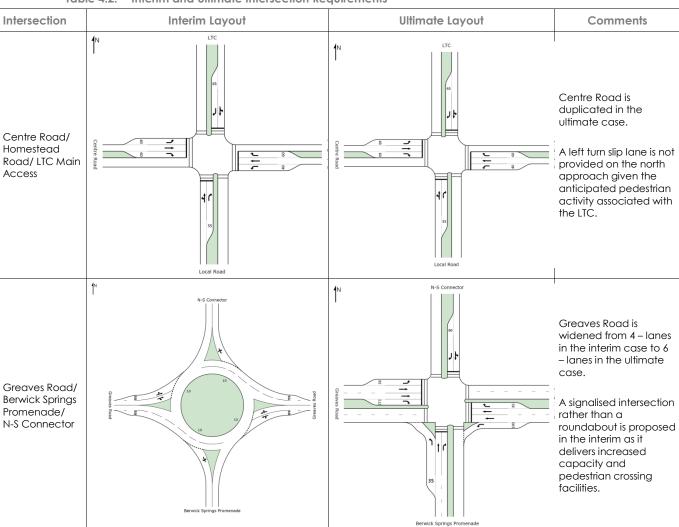


Table 4.2: Interim and Ultimate Intersection Requirements

5. Transport Modelling

5.1 South-East Growth Corridor Victorian Integrated Transport Model (VITM)

In 2012 MPA commissioned AECOM to calibrate and refine the Department of Transport's (DoT) Victorian Integrated Transport Model (VITM) for Melbourne's South-East Growth Corridor. The refinements to VITM included the following:

- disaggregation of the zone system within the growth corridor
- updates to the future modelled land use yields to reflect the level of growth predicted by the MPA within the corridor
- updates to the road network within the corridor.

The purpose of the project was to provide a strategic model of the South-East Growth Corridor which could be to understand the transport needs of the MPA, Casey City Council, Cardinia City Council and VicRoads for projects (such as PSPs) within the corridor.

The result of the analysis looks at the operation of the arterial road network as a result of planned growth and is referred to as the MPA VITM hereafter.

5.2 GTA Road Network Refinements

GTA obtained a copy of MPA VITM and has used it in the assessment of the Berwick Waterways PSP. For the purposes of this assessment the following network refinements were made to the MPA VITM (both the base year and 2046 models):

- the addition of Homestead Drive
- refinement of the zone centroid connection locations for the PSP zones (i.e. zones 2337 and 2447)
- the addition of a new zone (3064) which represents the local activity centre.

The extent of the GTA network refinements are shown in Figure 5.1 and Figure 5.2.

Figure 5.1: MPA VITM Coding in the Study Area

Figure 5.2: GTA VITM Coding Refinements

The GTA refinements were made to enhance how the MPA VITM reflected the likely access arrangements for the Berwick Waterways PSP. It is highlighted that the GTA refinements did not result in any noteworthy changes to the MPA base year and 2046 VITM output volumes beyond the bounds of the local study area, as this was outside of the scope of this study.

5.3 Review of Base Year VITM Volumes

In order to confirm the suitability of the model for testing the future traffic impacts of the Berwick Waterways PSP, GTA undertook an assessment of base year modelled verses surveyed traffic volumes in the vicinity of the PSP area. The findings of this assessment are summarised in Table 5.1.

Table 5.1: Modelled versus Surveyed Traffic Volumes

		Surveyed Two-way Traffic Volume			VITM Two-way Traffic Volume (2011)			% Difference		
Road Name	Location	AM Peak Hour (veh/hr)	PM Peak Hour (veh/hr)	Daily (veh/day)	AM Peak Hour [1] (veh/hr)	PM Peak Hour [1] (veh/hr)	Daily (veh/day)	AM Peak Hour (veh/hr)	PM Peak Hour (veh/hr)	Daily (veh/day)
Greaves Road	East of Moondarra Drive	1,620	1,490	17,770	1,325	1,492	14,000	-22%	0%	-27%
Centre Road	East of County Drive	990	1,050	11,930	1,086	1,238	12,600	9%	15%	5%
Centre Road	East of Narre Warren- Cranbourne Road	1,010	860	9,660	855	993	9,500	-18%	13%	-2%
Homestead Road	East of Bellevue Drive	180	200	2,030	175	207	1,800	-3%	3%	-13%

^{[1] 1-}hour peak volume determined by factoring the 2-hour peak VITM output volumes by 0.55.

Table 5.1 shows that VITM is slightly overestimating volumes during the PM peak and is generally underestimating volumes on a daily and AM peak hour basis. It is however highlighted that VITM is a strategic model for which the base year has been calibrated/validated across the South-East Growth Corridor rather than at a local level.

The notable differences (i.e. greater than 15%) in the surveyed verses modelled volumes have been considered in the intersection assessments (outlined later in Section 7) through the process of determining intersection traffic demands. Nevertheless, from a strategic transport modelling perspective, the volumes generally represent a good correlation to existing volumes.

5.4 2046 Landuse Refinements

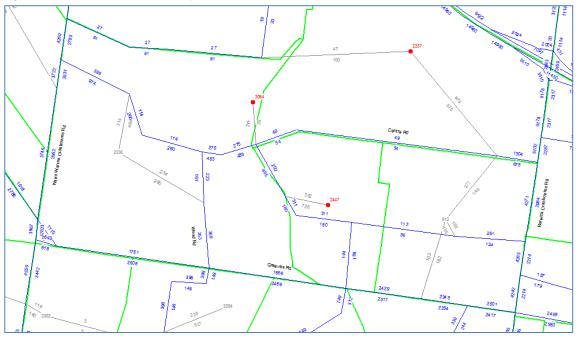
The land uses modelled for the Berwick Waterways zones (zones 2337 and 2447) in the MPA VITM were adjusted to reflect the level of development envisaged by the PSP. The modelled land use inputs are separated out into population, the number of residential dwellings, the number of jobs, and the number of educational enrolments. In addition, a new zone (3064) was added to the model to represent the activity and retail centre on the north side of Centre Road.

The adjustments to the land uses are summarised in Table 5.2.

Table 5.2: Modelled Land Uses

	MPA				GTA Refined VITM Land Uses				
PSP	VITM ZONE	Рор	НН	Emp	Enrol	Pop	НН	Emp	Enrol
	2337	4,119	1,496	539	529	4,119	1,496	0	529
Berwick	2447	1,744	638	211	0	2,575	942	211	0
Waterway	3064	n/a	n/a	n/a	n/a	116	42	539	0
(PSP 9)	Total	5,863	2,134	750	529	6,810	2,480	750	529

^[1] Pop = Population, HH = number of Households, Emp = number of jobs, Enrol = number of education enrolments


As shown in Table 5.2, the GTA land use refinements entailed increasing the number of households in Zone 2447 to reflect the number of households envisaged by the PSP. The population for the zone was also factored by 2.78 people per dwelling¹ accordingly.

The land uses for Zone 2337 (previously shown in Figure 5.2) were adjusted with zone 3066 to account for the activity centre, or local town centre. Zone 2337 also includes Berwick Felids Primary school and residential areas (comprising of some 1,500 households in 2046), which is outside of the PSP area.

5.5 2046 VITM Traffic Volume Outputs

The 2046 GTA VITM volume output maps for the 2-hour AM and PM peaks are shown in Figure 5.3 and Figure 5.4 respectively, with enlarged plots included in Appendix A.

Figure 5.3: GTA VITM Volume Output – 2046 AM 2-Hour Peak

^[2] Enrolments are associated with the Berwick Fields Primary School adjacent to the PSP area

Based on the existing population density coded in VITM for the PSP zones

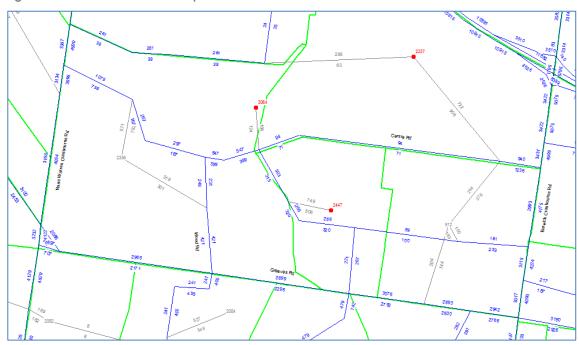


Figure 5.4: GTA VITM Volume Output – 2046 PM 2-Hour Peak

Figure 5.3 and Figure 5.4 indicate that the PSP land uses (and the existing land uses within Zone 2337) will generate some 2,974 and 3,545 vehicles for the AM and PM 2-hour peak periods respectively.

It is highlighted that some of the key roads surrounding the PSP are not anticipated to significantly increase in volumes above their current levels. Review of the model outputs show that these are generally consistent with the entire volumes across the entire VITM network, which are not anticipated to significantly increase.

This is due to an expected increase in mode share by 2046 as well as highlighting that a high proportion of the road network is currently approaching or will be at capacity. Nevertheless, the outputs obtained from VITM for this assessment are considered suitable for the purposes of determining intersection configurations as documented in Section 7.

6. Anticipated Traffic Volumes

6.1 GTA VITM Traffic Generation

Table 6.1 lists the inputs and outputs of the GTA VITM modelling. It shows the AM and PM 2-hour peak and daily traffic generation at the individual zone level along with the corresponding land use inputs.

Table 6.1: Updated VITM Traffic Generation

PSP	VITM		Land Use		AM 2 hr	PM 2 Hr	Daily
	Zone	Residential (hh)	Employment (jobs)	Schools (enrolments)	Trips	Trips	Vehicle Trips
	2337	1,496	0	529	1,692	1,980	10,600
Berwick	2447	942	211	n/a	1,058	1,255	6,800
Waterways (PSP 9)	3064	42	539	0	225	310	1,600
	Total	2,480	750	529	2,974	3,545	19,000

Table 6.1 indicates an expected traffic generation of 19,000 vpd, and 2,974 and 3,545 vehicles for the AM and PM 2-hour peak periods respectively for the PSP area and established residential area to the north of Centre Road.

Adopting a typical (industry standard) two-hour to peak hour factor of 0.55, the zones representing Berwick Waterways are anticipated to generate in the order of 1,640 vehicles in the AM peak hour and 1,950 vehicles in the PM peak hour.

6.2 Validation of VITM Traffic Generation Rates

6.2.1 First Principles Generation Rates

A summary of the individual land uses and the resulting first principles traffic generation for the study area is provided in Table 6.2. This assessment compares the modelled traffic volume outputs to commonly used generation rates as confirmation that VITM is generating realistic traffic demands.

Table 6.2: First Principals Traffic Generation Assessment

			Traffic	Generatio	n Rate	Reduction	Resultant Trips			
Area	Land Use	Yield	AM (1hr)	PM (1hr)	Daily	Factor for Internal Trips	AM (1hr)	PM (1hr)	Daily	
Berwick Waterways PSP (Zone 2447 & 3064)	Residential [1]	984 dwellings	0.45 trips/hh	0.45 trips/hh	4.5 trips/hh	n/a	443	443	4,428	
	Activity Centre (LTC)	5000 sqm	0.5 trips/100 sqm [3]	12.1 trips/100 sqm [3]	121 trips/100 sqm [3]	n/a	25	605	6,050	
Surrounding areas	Residential	1496 dwellings	0.45 trips/hh	0.45 trips/hh	4.5 trips/hh	25% [4]	505	505	5,049	
(Zone 2337)	School	529 enrolments	0.75 trips/ enrol [5]	0 trips/ enrol [5]	1.5 trips/ enrol [5]	n/a	397	-	794	
	Total									

^[1] Daily rate based on VISTA 09 data for the Casey LGA, with the peak hour rates assumed to be 10% of the daily rate.

^[2] The LTC is anticipated to provide for some 270 jobs based on information provided by the MPA. The remaining 480 jobs modelled in Zone 2337 and 2447 are assumed to be related with the school, other non-residential use employment and home-based employment.

- [3] Daily rate sourced from the RTANSW "Guide to Traffic Generating Developments" report (dated October 2002) with PM peak hour rate assumed to be 10% of the daily rate. An AM rate of 0.5 trips/100sqm has been adopted for service vehicle movements given that the LTC will not be fully operational during the AM peak hour.
- [4] Based on Section 3.3 of the RTANSW "Guide to Traffic Generating Developments" report. It is assumed that 25% of all trips within Zone 2337 will be internal to the zone given that the zone includes a LTC and school. The reduction factor has not been applied to Zone 2447 as it includes residential uses only.
- [5] Based on a first principals assessment

It is highlighted that the first principles assessment outlined in Table 6.2 takes into consideration the results of the Victorian Integrated Survey of Travel and Activity 2009 (VISTA09) undertaken by the DoT. VISTA09 is a comprehensive survey of how, when and why Victorians travel and is both more recent and locality specific than most other available empirical data sources. The average VISTA09 traffic generation rate of 4.5 movements per dwelling for the Casey LGA is lower than other empirical data sources which generally have a daily generation rate in the order of 8.0 vehicle movements per dwelling. The lower VISTA 09 generation rate can be partially attributed to a shift in mode choice away from private vehicle use, a trend that can be seen in Census data from 1996 to 2011.

6.2.2 Comparison of VITM and First Principals Volume Analysis

A comparison of the GTA VITM generation and first principles generation assessment is provided in Table 6.3.

Table 6.3: VITM verses First Principles Assessment

Traffic Volumes	AM Peak	PM Peak	Daily
VITM	1,640	1,950	19,000
First Principle Assessment	1,369	1,553	16,321
% Difference	119%	126%	116%

Table 6.3 show that the forecast GTA VTIM traffic demands are generally within -30% to those of a first principles assessment, noting that some of the land use rates and yields can vary depending on the ultimate mix and density of development, and the strategic nature of VITM. It is noted that the GTA VITM AM, PM and Daily periods produce conservatively high traffic demands when compared with the first principles assessment.

It is clear that the GTA VITM volumes are conservatively higher than the first principles assessment, as such the GTA VITM outputs **have been used for further testing** to determine the PSP generated demand on the road network at a precinct structure planning level. Utilising the VITM traffic generation, the site will exhibit comparative first principle generation rates closer to 0.6 movements per household in the AM and PM peak periods, and some 6 trips per household over the entire day.

6.3 Daily Modelled Volumes

Based on the outcomes of the GTA VITM modelling, the expected two-way daily traffic volumes on key roads in and around the study area for 2046 are summarised in Table 6.4.

Table 6.4: Summary of Ultimate Daily Volumes on Key Roads (2046)

		idio Daii, i	piorities on key ke	(20.0)			
Road Name	Location	Expected Daily Traffic Volume	Proposed Classification and No. lanes	Daily Traffic Volume Limit Associated with Classification	Austroads Capacity Limit (based on No. lanes) [1]	Proposed Classification is Considered Appropriate?	
Greaves Road	West of Clyde Road	29,800	Primary Arterial (6 lanes)	Greater than 30,000vpd	54,000vpd	Yes	
Greaves Road	East of Narre Warren- Cranbourne Road	27,000	Primary Arterial (6 lanes)	Greater than 30,000vpd	54,000vpd	Yes	
Centre Road	West of Clyde Road	12,500	Secondary Arterial (4 lanes)	12,000 to 40,000vpd	18,000vpd	Yes – noting that VITM appears to be	
Centre Road	East of Narre Warren- Cranbourne Road	10,000	Secondary Arterial (4 lanes)	12,000 to 40,000vpd	18,000vpd	underestimating existing volumes on Centre Road by approximately 25%	
Homestead Road	East of Bellevue Drive	2,300	Connector Street (2 lanes)	3,000 to 7,000vpd	18,000vpd	Yes	
Homestead Road	South of Centre Road	4,300	Connector Street (2 lanes)	3,000 to 7,000vpd	18,000vpd	Yes	
LTC Main Access	North of Centre Road	7,420	Connector Street in Local Town Centre (2 lanes)	3,000 to 7,000vpd	18,000vpd	Yes, given that additional capacity will be provided near the intersection with Centre Road.	
North South Connector	North of Greaves Road	2,500	Connector Street (2 lanes)	3,000 to 7,000vpd	18,000vpd	Yes	
Clyde Road	Between Greaves Road and Centre Road	41,500	Primary Arterial (6 lanes)	Greater than 30,000vpd	54,000vpd	Yes	
Narre Warren- Cranbourne Road	Between Greaves Road and Centre Road	41,400	Primary Arterial (6 lanes)	Greater than 30,000vpd	54,000vpd	Yes	

^[1] Capacity limits scoured from Austroads Standards "Guide to Traffic Management – Part 3 Traffic Studies and Analysis" document from Table 4.3 as follows: 2-lane road: 18,000vpd, 4-lane road: 36,000vpd, 6-lane road 54,000vpd.

As shown in Table 6.4 the proposed road classifications align with the daily traffic volume ranges associated with the classification and Austroads based road capacity limits.

^{[2] 30%} of the traffic generated by VITM zone 2337 is assumed to be non-PSP traffic and is anticipated to use County Drive, Gwendoline Drive and Bellevue Drive to access Centre Road.

7. Intersection Assessment

7.1 Methodology

7.1.1 Overview

The VITM is a strategic network model and hence care needs to be exercised in extracting volumes on individual road links or turning flows at intersections. The approach adopted in arriving at the turning flows for the purpose of intersection modelling is as follows:

- Extract the 2046 AM and PM 2-hour turning volumes at each of the intersections and convert to peak hour volumes using the 0.55 conversion factor.
- Assess each intersection individually to check that the turning volumes are reasonable
 having regard for the surrounding road network, and adjacent activity nodes (schools
 and activity centres) and make changes where appropriate.
- Derive 2026 interim background volumes by factoring the ultimate background volumes by 0.8.
- Create SIDRA intersection models for the interim and ultimate configurations and report outputs such as level of service (LOS), degree of Saturation (DOS), queues, delays and critical approaches.
- Manual adjustments to and from the Local Town Centre have also been undertaken to account for the likely traffic and use/distributions, to the PSP.

7.1.2 Ultimate (2046) verses Interim (2026) Background Volumes

In order to determine the 2026 background volumes, the 2046 volumes have been factored by 0.8 (20% reduction) to take into account traffic growth that is likely to occur between 2026 and 2046.

It is noted that only the background volumes on the arterial road network have been factored. The traffic volumes generated by the PSP have not been reduced in the interim scenario in order to account for all the PSP generated traffic in the DCP analysis. This assumes full development of the site by 2026.

7.1.3 Anticipated Traffic Distribution

The 2046 traffic distributions (based on the zones 2447, 2337 and 3064) determined from the VITM models for the AM and PM peak periods are shown in Figure 7.1.

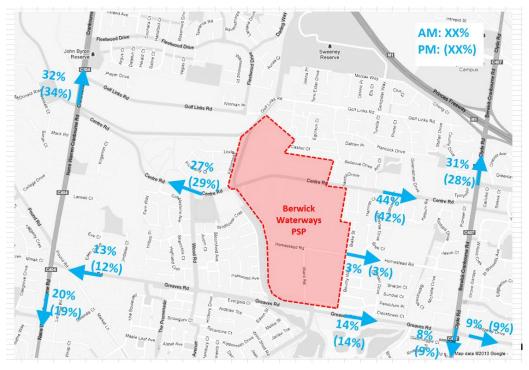


Figure 7.1: Anticipated PSP Traffic Distribution

Base map sourced from Google Maps

The distributions in Figure 7.1 show that a large majority of the site generated traffic travels along Narre Warren-Cranbourne Road and Clyde Road to/from the north (towards the Princess Freeway) and to the south (towards Cranbourne).

The turning movement distribution at Centre Rd / Homestead Rd / LTC Access and Greaves Rd / North-South Connector St / Berwick Springs Promenade is outlined in Figure 7.2. It is recognised that a number of steps have been undertaken to provide a more robust level of distributions at the two intersections. This assessment is based on a number of key assumptions and factors as follows:

- turning movement splits based on the VITM model output as a "starting point"
- percentage split of the turning movements based on volumes outlined in the previous GTA report (13th March 2013)
- a degree of engineering judgement based on assigned land uses, activity centres and major roads within the vicinity of the Berwick Waterways PSP.

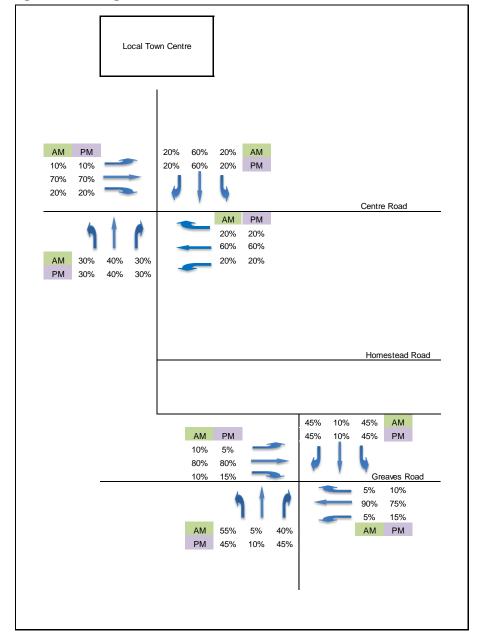
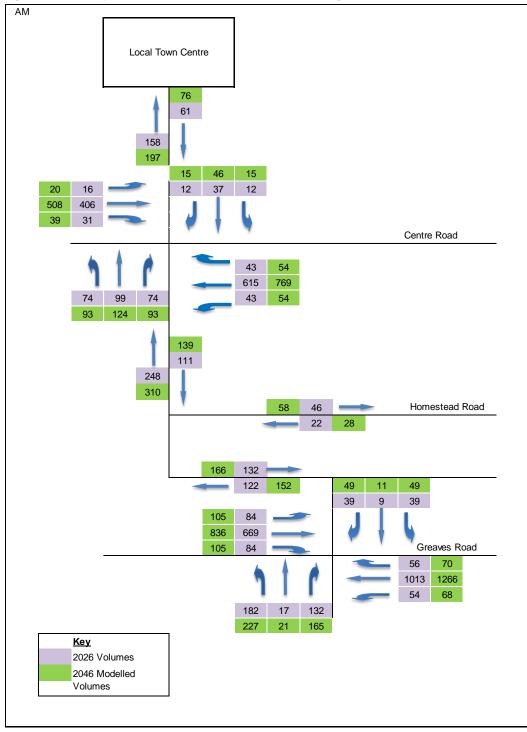


Figure 7.2: Turning Movement Distribution

7.2 Anticipated Interim and Ultimate Turning Volumes

Based on the methodology outlined in Section 7.1, the interim and ultimate AM and PM peak hour turning volumes at the key access intersections to the PSP have been calculated and are shown in Figure 7.3 and Figure 7.4 respectively for the AM and PM peaks.

For this assessment, in addition to the refinements outlined in Section 7.1.3, the following assumptions have been applied to develop a more robust approach to determining the intersection demands:


 It has been assumed that 30% of the traffic generated by Zone 2337 (i.e. north of Centre Road) is non-PSP related and is associated with the existing uses in the zone. This non-PSP traffic is anticipated to access the external road network via County Drive,

Gwendoline Drive and Bellevue Drive rather than use the LTC Access/Centre Road intersection.

- Adoption of the distributions outlined in Figure 7.1 with no further refinements.
- Through volumes on Centre Road have been adopted as a proportion of the existing Greaves Road volumes. The proportion is based on a comparison of daily volumes and is a factor of 0.61.

Figure 7.3: Anticipated 2026 and 2046 AM Peak-Hour Turning Volumes

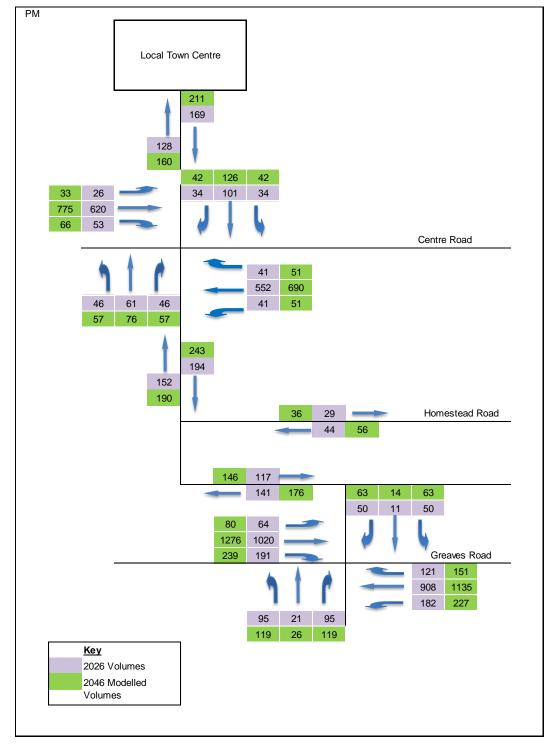


Figure 7.4: Anticipated 2026 and 2046 PM Peak-Hour Turning Volumes

The resultant volumes are considered suitable for assessing the operation of the intersections at the interim and ultimate layout configurations, detailed in Section 4. The volumes are considered a 'worst case' or conservative assessment in that they take into consideration wider 'through' traffic demands and are comparable to higher generation rates than they VISTA average for the City of Casey.

7.3 Anticipated Intersection Operation

7.3.1 Overview

The operation of each external intersection has been assessed using SIDRA INTERSECTION 5.1², a computer based modelling package which calculates intersection performance.

The commonly used measure of intersection performance is referred to as the Degree of Saturation (DOS). The DOS represents the flow-to-capacity ratio for the most critical movement on each leg of the intersection.

For signalised intersections, a DOS of around 0.95 has been typically considered the 'ideal' limit, beyond which queues and delays increase disproportionately³. For unsignalised intersections a DOS of 0.90 is considered the 'ideal' limit.

The following information is provided in Appendix B (interim case) and Appendix C (ultimate case) for each of the assessed intersections for interim and ultimate layouts:

- degree of saturation (DOS) and level of service (LOS)
- intersection average delay across all approaches
- 95%ile queue in terms of the length in metres followed by the approach (E,W, N, S) and movement (L, T, R)
- indicative phase times (noting that the VicRoads desired cycle time of 120s has been adopted in the analysis of all signalised intersections).

7.3.2 Summary of Anticipated Operation

A summary of the anticipated operation of each of the intersections is presented in Table 7.1 (with the full SIDRA outputs included in Appendix B and C).

 $^{^{\}rm 3}$ $\,$ SIDRA INTERSECTION 4.0 adopts the following criteria for Level of Service assessment:

LOS		Intersection Degree of Saturation (DOS) or X value			
LOS		Unsignalised Intersection	Signalised Intersection		
Α	Excellent	<=0.50	<=0.60		
В	Very Good	0.50-0.70	0.60-0.75		
С	Good	0.70-0.80	0.75-0.90		
D	Acceptable	0.80-0.90	0.90-0.95		
E	Poor	0.90-1.00	0.95-1.00		
F	Very Poor	>=1.0	>=1.0		

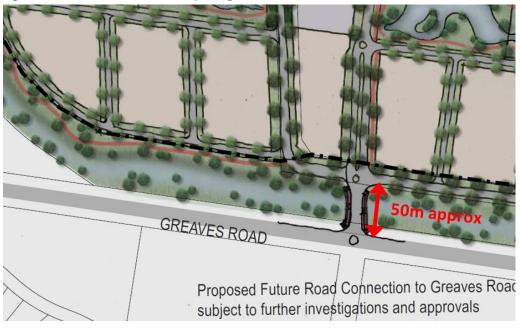
² Program used under license from Akcelik & Associates Pty Ltd.

Table 7.1: Summary of Anticipated Intersection Operation

	Dogle	Intersection Performance					
Intersection	Peak Hour	DOS	Average Delay (s)	95 th Percentile Queue (m)			
Interim Analysis							
Centre Road / LTC Access /	AM	0.48	16	104			
Homestead Road	PM	0.48	15	102			
Greaves Road / North-South	AM	0.64	10	45			
Connector Street/Berwick Springs Promenade	PM	0.81	12	88			
Ultimate Analysis							
Centre Road / LTC Access /	AM	0.60	16.7	149			
Homestead Road	PM	0.60	16.2	146			
Greaves Road / North-South	AM	0.77	31	218			
Connector Street/Berwick Springs Promenade	PM	0.85	37	259			

As shown in Table 7.1 both external intersections to the PSP area are generally anticipated to operate with acceptable delays and queues in both the interim and ultimate cases.

It is highlighted that pedestrians phases have been included in the analysis such that they are called every phase throughout the peak period. Pedestrian phases across both Centre Road and Greaves Road require longer green times than the north south traffic and as such reduce the available green time for the key east-west movements. In reality, the queue lengths depicted on Greaves Road in particular will likely be overstated.


Nevertheless, the results do indicate that this conservative approach demonstrates that the intersections will be able to accommodate the anticipated demands for both the interim and ultimate scenarios.

7.4 Review of Internal Intersection Spacing

It is highlighted that there is a proposed roundabout approximately 50m north of Greaves Road/North-South Connector/ Berwick Springs Promenade intersection. The location of this roundabout and its proximity to the Greaves Road signalised intersection is shown in Figure 7.5.

Figure 7.5: Internal intersection - Spacing near Greaves Road

In order to assess the impacts of the internal roundabout on the Greaves Road access intersection operation turning volumes for the internal roundabout have been derived and are summarised in Figure 7.6 and Figure 7.7.

Figure 7.6: Internal Roundabout AM Peak Volumes

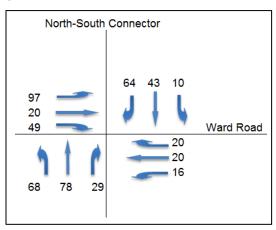
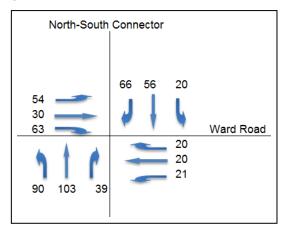



Figure 7.7: Internal Roundabout PM Peak Volumes

Note: the turning volumes are a combination of VITM modelled volumes and an approximation of dwelling yields.

The SIDRA modelling outputs for internal roundabout are included in Appendix D and the results for the critical approach (i.e. the south approach) of the internal roundabout and its interaction with the north approach of the Greaves Road access intersection are summarised in Table 7.2.

Table 7.2: Internal Roundabout and Greaves Road Access Intersection Interaction

Intersection	Critical	DOS		95 th Percentile Queue (m)				
	Approach	AM Peak	PM Peak	AM Peak	PM Peak			
Interim Analysis								
Internal Roundabout	South Approach	0.11	0.14	3.9	5.2			
Greaves Road/ Berwick Springs Promenade/North-South Connector	North Approach	0.12	0.25	3.7	9.2			
Ultimate Analysis								
Internal Roundabout	South Approach	0.14	0.18	5.0	6.9			
Greaves Road/ Berwick Springs Promenade/North-South Connector	North Approach	0.22	0.45	21.1	27.4			

As shown in Table 7.2, the queues on the south approach of the internal roundabout are anticipated to be minimal and therefore are not anticipated to impact on the operation of the Greaves Road/North-South Connector/Berwick Springs Promenade intersection. Likewise the queuing on the north approach of the Greaves Road/North-South Connector/Berwick Springs Promenade intersection is not anticipated in impact on the operation of the internal roundabout.

7.5 Wider Network Impact

It has been requested by VicRoads that the wider impact of the PSP be reviewed. Whilst technically not part of this scope of works, a review of the anticipated proportion of PSP traffic on the following key roads has been assessed:

- Berwick Cranbourne Road, south of the Princes Freeway
- Berwick Cranbourne Road, south of Greaves Road
- Narre Warren Road, South of Princess Freeway
- Narre Warren Road, South of Greaves Road

The proportion of traffic from the two key PSP zones of 3064 and 2447at the nominated locations Two way link volumes in VITM and are presented in Table 7.4.

Table 7.4: 2046 AM and PM Traffic Distribution and Proportion

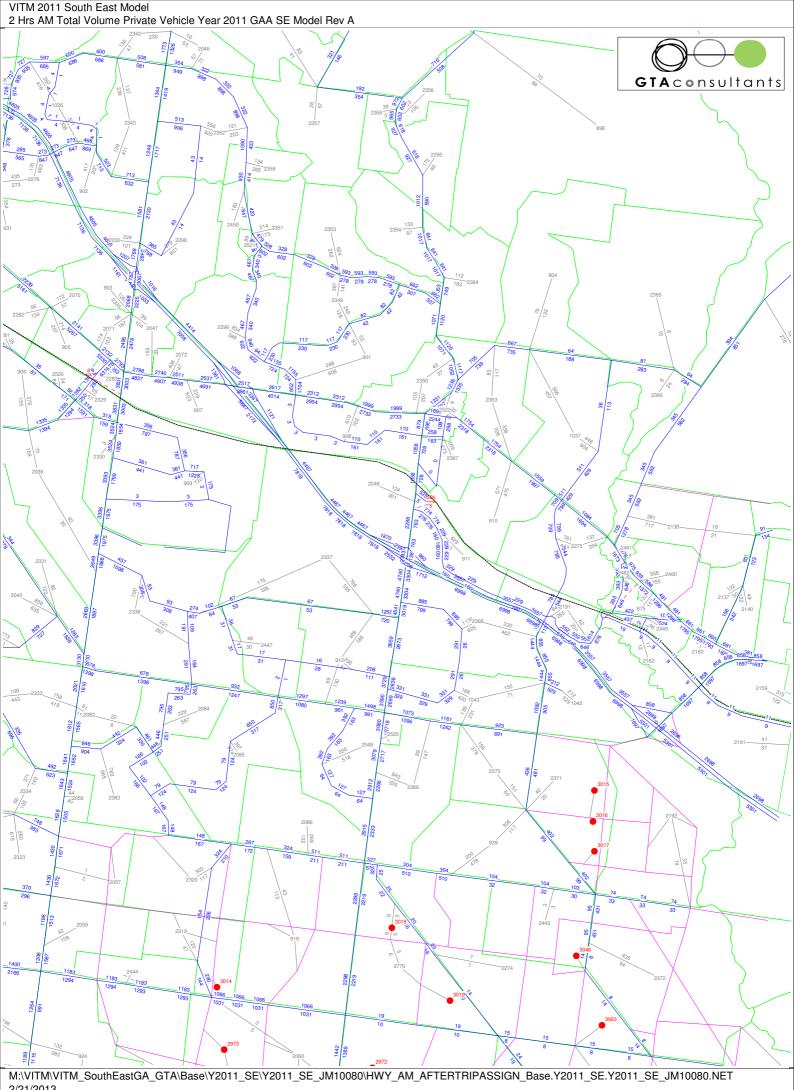
	AM Peak (2hr)			PM peak (2hr)			
Road Name & Location	Total 2 Way Volume	Volume From PSP	%	Total 2 Way Volume	Volume From PSP	%	
Berwick - Cranbourne Road, south of the Princes Freeway	7,495	926	12%	8,498	991	12%	
Berwick - Cranbourne Road, south of Greaves Road	6,190	376	6%	7,273	456	6%	
Narre Warren Road, South of Princess Freeway	7,124	459	6%	8,134	681	8%	
Narre Warren Road, South of Greaves Road	7,991	234	3%	8,958	271	3%	

As stated previously within this report, the south east corridor strategic model developed by DTPLI (formerly DoT) has been used for this assessment. The proportion of traffic on the four sections of road nominated in Table 7.4 show that anticipated proportion of trips from the PSP is less than 10% except for Berwick – Cranbourne Road south of the Princes Freeway, which is 12%. It is highlighted that these volumes are strategic in nature and have been used to demonstrate the outputs of the model and distribution from the PSP as a whole.

Furthermore, as stated in Section 6, the VITM volumes are reflective of traffic generation rates higher than the VISTA average for the City of Casey. Should two way volumes on any of the nominated roads actually be higher than the VITM outputs, then it is likely that the proportion of traffic from this PSP is overstated.

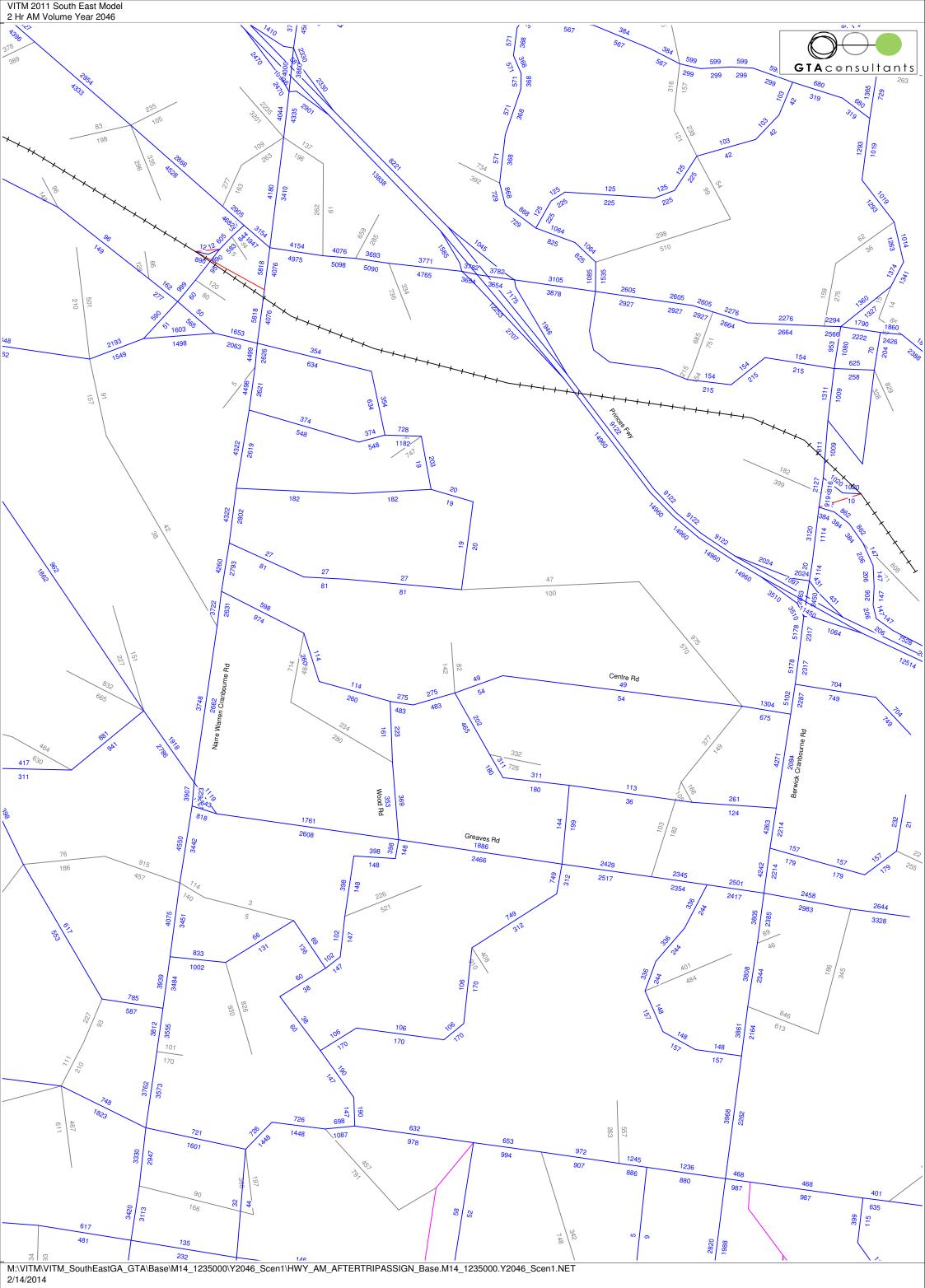
8. Conclusions

This report addresses the land use inputs, traffic demands and resulting road network layout for the Berwick Waterways PSP. It is a thorough review of the outputs of VITM against a 'first principles' assessment and provides a robust base for determining the operation of the interim (2026) and ultimate (2046) intersection layouts.


The following conclusions are provided in relation to the information presented within this report:

- The Berwick Waterways PSP is anticipated to generate some 19,000 daily vehicle movements onto the external road network.
- ii A range of conservative assumptions have been made to determine the anticipated intersection turning movements and layouts. A second set of assumptions have been made in relation to signal timings, pedestrian phases and movements and lane lengths. Further and more detailed analysis may be required as part of the detailed design process, however the analysis is sufficient enough in determining the operation of the intersection for the nominated layouts.
- iii The interim intersection layouts at both Centre Road and Greaves Road contained within this report are considered suitable for incorporation in the DCP.
- iv The intersection analysis presented in this report indicates that the ultimate intersection layouts are appropriate to cater for the anticipated demands and land should be set aside to cater for these layouts.
- v The minimum 50m setback of the internal roundabout from Greaves Road is considered to operate suitably and will not adversely impact on surrounding intersections.

Appendix A

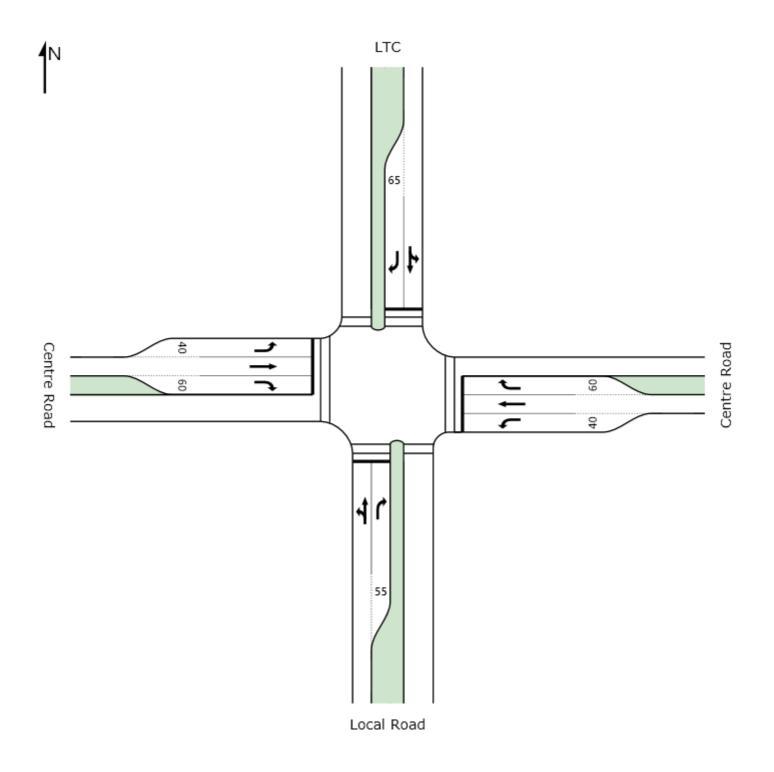

VITM Volume Plots

M:\VITM\VITM_SouthEastGA_GTA\Base\Y2011_SE_JM10080\HWY_AM_AFTERTRIPASSIGN_Base.Y2011_SE_JM10080.NET 2/21/2013

VITM 2011 South East Model 2 Hrs PM Total Volume Private Vehicle Year 2011 GAA SE Model Rev A **GTA**consultants

M:\VITM\VITM_SouthEastGA_GTA\Base\Y2011_SE\Y2011_SE_JM10080\HWY_PM_AFTERTRIPASSIGN_Base.Y2011_SE_Y2011_SE_JM10080.NET 2/21/2013

cube



cube

Appendix B

2026 SIDRA INTERSECTION Results

Signals - Fixed Time Cycle Time = 100 seconds (User-Given Cycle Time)

Moven	nent Pe	rformance -	Vehicles								
	_	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Occution	l a a a l Da	veh/h	%	v/c	sec		veh	m		per veh	km/h
	Local Ro										
1	L	74	0.0	0.472	47.2	LOS D	7.7	53.7	0.94	0.81	25.6
2	Т	99	0.0	0.472	39.6	LOS D	7.7	53.7	0.94	0.77	24.3
3	R	74	0.0	0.281	47.5	LOS D	3.2	22.7	0.91	0.77	25.2
Approa	ch	247	0.0	0.472	44.3	LOS D	7.7	53.7	0.93	0.78	25.0
East: C	entre Ro	ad									
4	L	43	0.0	0.091	13.9	LOS B	0.6	4.5	0.33	0.71	46.9
5	Т	615	10.0	0.482	7.6	LOS A	13.7	104.3	0.50	0.45	54.2
6	R	43	0.0	0.103	17.2	LOS B	0.9	6.0	0.43	0.72	43.7
Approa	ch	701	8.8	0.482	8.6	LOSA	13.7	104.3	0.49	0.49	53.0
North: L	_TC										
7	L	12	0.0	0.132	44.2	LOS D	2.0	14.0	0.87	0.76	26.6
8	Т	37	0.0	0.132	36.6	LOS D	2.0	14.0	0.87	0.65	25.4
9	R	12	0.0	0.069	50.8	LOS D	0.5	3.8	0.92	0.69	24.4
Approa	ch	61	0.0	0.132	40.9	LOS D	2.0	14.0	0.88	0.68	25.4
West: C	Centre Ro	oad									
10	L	16	0.0	0.034	13.8	LOS B	0.2	1.7	0.32	0.69	47.0
11	Т	406	10.0	0.318	6.5	LOS A	7.7	58.8	0.43	0.38	56.0
12	R	31	0.0	0.090	20.5	LOS C	0.7	5.1	0.50	0.72	40.8
Approa		453	9.0	0.318	7.7	LOSA	7.7	58.8	0.43	0.41	54.4
All Vehi	icles	1462	7.0	0.482	15.7	LOS B	13.7	104.3	0.56	0.52	43.5

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Movement Performance - Pedestrians												
		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective				
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate				
		ped/h	sec		ped	m		per ped				
P1	Across S approach	53	9.2	LOS A	0.1	0.1	0.43	0.43				
P3	Across E approach	53	42.3	LOS E	0.1	0.1	0.92	0.92				
P5	Across N approach	53	9.2	LOS A	0.1	0.1	0.43	0.43				
P7	Across W approach	53	43.2	LOS E	0.1	0.1	0.93	0.93				
All Pede	estrians	212	26.0	LOSC			0.68	0.68				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Friday, 2 May 2014 10:00:31 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com Project: P:\14M1200-1299\14M1235000 Berwick Waterways PSP\Sidra Scats\140501 SIDRA\140502sid-

JM10080 - Centre Rd.sip

8000056, GTA CONSULTANTS, ENTERPRISE

Signals - Fixed Time Cycle Time = 100 seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
	_	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0	Lasal Das	veh/h	%	v/c	sec		veh	m		per veh	km/h
	Local Roa										
1	L	46	0.0	0.308	46.7	LOS D	4.6	32.3	0.91	0.79	25.7
2	Т	61	0.0	0.308	39.0	LOS D	4.6	32.3	0.91	0.72	24.5
3	R	46	0.0	0.245	52.2	LOS D	2.1	14.9	0.94	0.75	24.0
Approac	ch	153	0.0	0.308	45.3	LOS D	4.6	32.3	0.92	0.75	24.7
East: C	entre Roa	ad									
4	L	41	0.0	0.084	13.5	LOS B	0.6	4.2	0.32	0.70	47.3
5	T	552	10.0	0.426	6.8	LOS A	11.3	86.1	0.46	0.41	55.5
6	R	41	0.0	0.117	20.3	LOS C	1.0	6.7	0.50	0.73	41.0
Approac	ch	634	8.7	0.426	8.1	LOS A	11.3	86.1	0.45	0.45	53.8
North: L	_TC										
7	L	34	0.0	0.385	47.3	LOS D	5.9	41.5	0.93	0.80	25.7
8	Т	101	0.0	0.385	39.7	LOS D	5.9	41.5	0.93	0.74	24.4
9	R	34	0.0	0.164	49.6	LOS D	1.5	10.6	0.91	0.73	24.7
Approac	ch	169	0.0	0.385	43.2	LOS D	5.9	41.5	0.92	0.75	24.7
West: C	Centre Ro	ad									
10	L	26	0.0	0.053	13.5	LOS B	0.4	2.6	0.32	0.70	47.3
11	Т	620	10.0	0.479	7.2	LOSA	13.4	102.1	0.49	0.44	54.8
12	R	53	0.0	0.143	18.8	LOS B	1.2	8.2	0.47	0.73	42.2
Approac	ch	699	8.9	0.479	8.3	LOSA	13.4	102.1	0.48	0.47	53.5
All Vehi	icles	1655	7.1	0.479	15.2	LOS B	13.4	102.1	0.56	0.52	44.0

Level of Service (LOS) Method: Delay (HCM 2000).

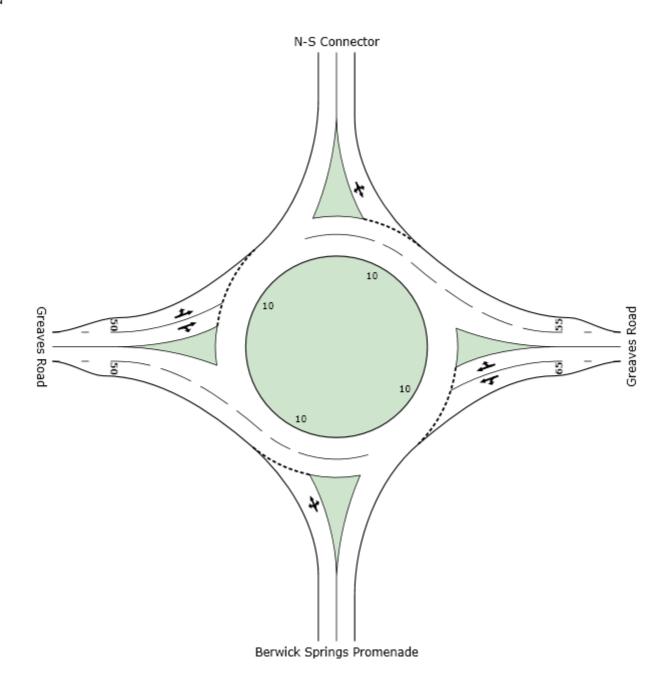
Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Movement Performance - Pedestrians												
		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective				
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate				
		ped/h	sec		ped	m		per ped				
P1	Across S approach	53	8.8	LOS A	0.1	0.1	0.42	0.42				
P3	Across E approach	53	43.2	LOS E	0.1	0.1	0.93	0.93				
P5	Across N approach	53	8.8	LOS A	0.1	0.1	0.42	0.42				
P7	Across W approach	53	44.2	LOS E	0.1	0.1	0.94	0.94				
All Pede	estrians	212	26.3	LOS C			0.68	0.68				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.


Processed: Friday, 2 May 2014 10:04:03 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14M1200-1299\14M1235000 Berwick Waterways PSP\Sidra Scats\140501 SIDRA\140502sid-.IM10080 - Centre Rd sin

JM10080 - Centre Rd.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Greaves Road/N-S Connector/Berwick Springs Promenade Roundabout

		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	· km/l
South: B	erwick Sp	orings Promei	nade								
1	L	182	0.0	0.548	14.7	LOS B	3.5	24.3	0.80	1.00	42.
2	T	17	0.0	0.548	13.9	LOS B	3.5	24.3	0.80	0.98	42.
3	R	132	0.0	0.548	18.2	LOS B	3.5	24.3	0.80	1.04	40.
Approac	h	331	0.0	0.548	16.1	LOS B	3.5	24.3	0.80	1.01	41.
East: Gr	eaves Ro	ad									
4	L	54	0.0	0.229	9.3	LOSA	1.3	9.0	0.39	0.69	47.
5	T	1013	0.0	0.642	7.7	LOSA	6.4	45.0	0.50	0.57	47.
6	R	56	0.0	0.642	11.9	LOS B	6.4	45.0	0.52	0.73	45
Approac	h	1123	0.0	0.642	8.0	LOSA	6.4	45.0	0.50	0.58	47
North: N	-S Conne	ctor									
7	L	39	0.0	0.124	10.5	LOS B	0.5	3.7	0.60	0.80	46.
8	Т	9	0.0	0.124	9.7	LOSA	0.5	3.7	0.60	0.76	46.
9	R	39	0.0	0.124	14.0	LOS B	0.5	3.7	0.60	0.87	43.
Approac	h	87	0.0	0.124	12.0	LOS B	0.5	3.7	0.60	0.83	45.
West: G	reaves Ro	ad									
10	L	84	0.0	0.198	9.9	LOSA	1.1	7.6	0.48	0.71	47.
11	T	669	0.0	0.524	8.0	LOSA	4.4	30.8	0.55	0.61	47
12	R	84	0.0	0.524	12.2	LOS B	4.4	30.8	0.56	0.76	45.
Approac	h	837	0.0	0.524	8.6	LOSA	4.4	30.8	0.55	0.64	47
All Vehic	eles	2378	0.0	0.642	9.5	LOSA	6.4	45.0	0.56	0.67	46.

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Friday, 2 May 2014 3:16:00 PM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA IN LERSECTION 5.1.13.2093 www.sidrasolutions.com
Project: P:\14M1200-1299\14M1235000 Berwick Waterways PSP\Sidra Scats\140501 SIDRA\140502sid-JM10080 - Greaves Rd.sip
8000056, GTA CONSULTANTS, ENTERPRISE

Greaves Road/N-S Connector/Berwick Springs Promenade Roundabout

Moven	nent Pe	rformance - \	Vehicles								
		Demand	107	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Couth	Donuiek (veh/h Springs Prome	%	v/c	sec		veh	m		per veh	km/h
				0.404	440	1 00 D	0.0	40.4	0.04	0.00	40.0
1	L	95	0.0	0.424	14.6	LOS B	2.6	18.4	0.84	0.98	42.6
2	Т	21	0.0	0.424	13.8	LOS B	2.6	18.4	0.84	0.96	42.8
3	R	95	0.0	0.424	18.1	LOS B	2.6	18.4	0.84	1.01	40.6
Approa	ch	211	0.0	0.424	16.1	LOS B	2.6	18.4	0.84	0.99	41.7
East: G	reaves R	toad									
4	L	182	0.0	0.284	10.5	LOS B	1.7	11.7	0.56	0.73	46.5
5	Т	908	0.0	0.796	10.9	LOS B	12.3	86.4	0.87	0.77	45.8
6	R	121	0.0	0.796	15.3	LOS B	12.3	86.4	0.88	0.81	43.5
Approa	ch	1211	0.0	0.796	11.3	LOS B	12.3	86.4	0.82	0.77	45.7
North: N	N-S Conn	ector									
7	L	50	0.0	0.252	13.6	LOS B	1.3	9.2	0.81	0.93	43.4
8	Т	11	0.0	0.252	12.8	LOS B	1.3	9.2	0.81	0.91	43.6
9	R	50	0.0	0.252	17.2	LOS B	1.3	9.2	0.81	0.96	41.4
Approa	ch	111	0.0	0.252	15.1	LOS B	1.3	9.2	0.81	0.94	42.5
West: C	Greaves F	Road									
10	L	64	0.0	0.305	10.5	LOS B	1.8	12.5	0.54	0.75	47.0
11	Т	1020	0.0	0.806	10.6	LOS B	12.6	88.4	0.80	0.74	46.1
12	R	191	0.0	0.806	15.2	LOS B	12.6	88.4	0.86	0.80	43.5
Approa	ch	1275	0.0	0.806	11.3	LOS B	12.6	88.4	0.80	0.75	45.7
All Vehi	icles	2808	0.0	0.806	11.8	LOS B	12.6	88.4	0.81	0.78	45.2

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

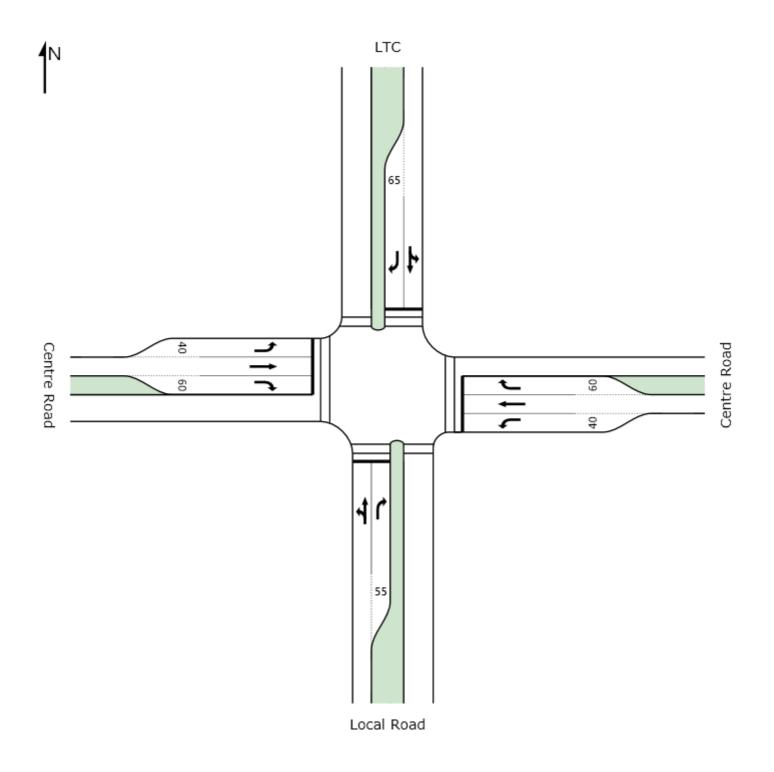
Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Friday, 2 May 2014 3:17:01 PM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd


SIDRA IN LERSECTION 5.1.13.2093 www.sidrasolutions.com
Project: P:\14M1200-1299\14M1235000 Berwick Waterways PSP\Sidra Scats\140501 SIDRA\140502sid-JM10080 - Greaves Rd.sip
8000056, GTA CONSULTANTS, ENTERPRISE

Appendix C

2046 SIDRA INTERSECTION Results

Signals - Fixed Time Cycle Time = 100 seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
5	_	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
O a cottle c	Lasal Das	veh/h	%	v/c	sec		veh	m		per veh	km/h
	Local Roa										
1	L	93	0.0	0.592	48.3	LOS D	9.9	69.2	0.96	0.82	25.3
2	Т	124	0.0	0.592	40.7	LOS D	9.9	69.2	0.96	0.80	23.9
3	R	93	0.0	0.366	48.3	LOS D	4.2	29.1	0.93	0.78	25.0
Approa	ch	310	0.0	0.592	45.3	LOS D	9.9	69.2	0.95	0.80	24.7
East: C	entre Roa	ad									
4	L	54	0.0	0.114	13.9	LOS B	0.8	5.7	0.33	0.71	46.9
5	T	769	10.0	0.602	8.7	LOS A	19.6	149.2	0.58	0.53	52.5
6	R	54	0.0	0.141	18.8	LOS B	1.2	8.3	0.47	0.73	42.2
Approa	ch	877	8.8	0.602	9.7	LOS A	19.6	149.2	0.55	0.55	51.4
North: L	_TC										
7	L	15	0.0	0.165	44.5	LOS D	2.5	17.6	0.87	0.77	26.5
8	T	46	0.0	0.165	36.9	LOS D	2.5	17.6	0.87	0.67	25.3
9	R	15	0.0	0.105	54.4	LOS D	0.7	4.9	0.95	0.70	23.5
Approa	ch	76	0.0	0.165	41.8	LOS D	2.5	17.6	0.89	0.69	25.1
West: C	Centre Ro	ad									
10	L	20	0.0	0.042	13.8	LOS B	0.3	2.1	0.33	0.69	47.0
11	Т	508	10.0	0.398	7.0	LOS A	10.4	79.2	0.46	0.41	55.2
12	R	39	0.0	0.133	25.0	LOS C	1.1	7.7	0.59	0.74	37.5
Approa	ch	567	9.0	0.398	8.5	LOSA	10.4	79.2	0.46	0.44	53.3
All Vehi	icles	1830	7.0	0.602	16.7	LOS B	19.6	149.2	0.61	0.57	42.6

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	nent Performance -	Pedestrian	s					
		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	Across S approach	53	9.2	LOS A	0.1	0.1	0.43	0.43
P3	Across E approach	53	42.3	LOS E	0.1	0.1	0.92	0.92
P5	Across N approach	53	9.2	LOS A	0.1	0.1	0.43	0.43
P7	Across W approach	53	43.2	LOS E	0.1	0.1	0.93	0.93
All Ped	estrians	212	26.0	LOSC			0.68	0.68

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Friday, 2 May 2014 10:04:47 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14M1200-1299\14M1235000 Berwick Waterways PSP\Sidra Scats\140501 SIDRA\140502sid-.IM10080 - Centre Rd sin

JM10080 - Centre Rd.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Signals - Fixed Time Cycle Time = 100 seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
	_	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
O a cottle cott	l a sal Da	veh/h	%	v/c	sec		veh	m		per veh	km/h
	Local Roa										
1	L	57	0.0	0.383	47.3	LOS D	5.8	40.8	0.93	0.80	25.6
2	Т	76	0.0	0.383	39.7	LOS D	5.8	40.8	0.93	0.74	24.3
3	R	57	0.0	0.346	54.1	LOS D	2.7	19.0	0.96	0.76	23.5
Approa	ch	190	0.0	0.383	46.3	LOS D	5.8	40.8	0.94	0.76	24.4
East: C	entre Roa	ad									
4	L	51	0.0	0.105	13.6	LOS B	0.7	5.2	0.32	0.71	47.2
5	Т	690	10.0	0.533	7.6	LOS A	15.9	120.6	0.52	0.47	54.1
6	R	51	0.0	0.170	24.2	LOS C	1.4	9.9	0.58	0.75	38.1
Approa	ch	792	8.7	0.533	9.1	LOSA	15.9	120.6	0.51	0.50	52.4
North: L	_TC										
7	L	42	0.0	0.480	48.1	LOS D	7.5	52.6	0.95	0.81	25.5
8	Т	126	0.0	0.480	40.5	LOS D	7.5	52.6	0.95	0.77	24.2
9	R	42	0.0	0.223	52.0	LOS D	1.9	13.5	0.94	0.74	24.1
Approa	ch	210	0.0	0.480	44.3	LOS D	7.5	52.6	0.94	0.77	24.4
West: C	Centre Ro	ad									
10	L	33	0.0	0.068	13.5	LOS B	0.5	3.3	0.32	0.70	47.3
11	Т	775	10.0	0.598	8.2	LOS A	19.2	146.3	0.56	0.51	53.1
12	R	66	0.0	0.204	22.0	LOS C	1.7	11.9	0.55	0.75	39.7
Approa		874	8.9	0.598	9.5	LOSA	19.2	146.3	0.55	0.54	51.7
All Vehi	icles	2066	7.1	0.598	16.2	LOS B	19.2	146.3	0.61	0.57	43.0

Level of Service (LOS) Method: Delay (HCM 2000).

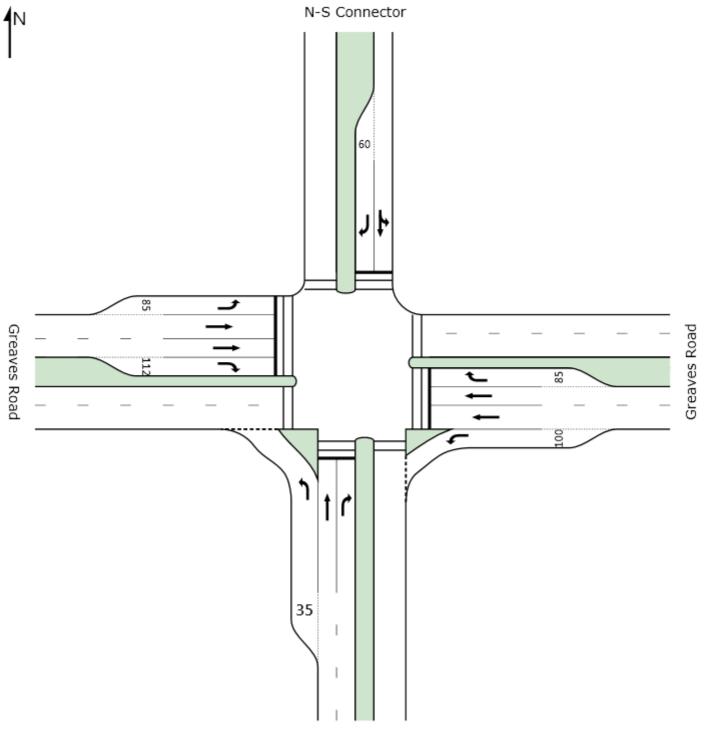
Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	nent Performance -	Pedestrians	s					
		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	Across S approach	53	8.8	LOS A	0.1	0.1	0.42	0.42
P3	Across E approach	53	43.2	LOS E	0.1	0.1	0.93	0.93
P5	Across N approach	53	8.8	LOS A	0.1	0.1	0.42	0.42
P7	Across W approach	53	44.2	LOS E	0.1	0.1	0.94	0.94
All Ped	estrians	212	26.3	LOSC			0.68	0.68

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.


Processed: Friday, 2 May 2014 10:05:18 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14M1200-1299\14M1235000 Berwick Waterways PSP\Sidra Scats\140501 SIDRA\140502sid-

JM10080 - Centre Rd.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Berwick Springs Promenade

Greaves Road/N-S Connector/Berwick Springs Promenade Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Movement Performance - Vehicles												
Mov ID	Turn	Demand	LIV/	Deg.	Average	Level of	95% Back		Prop.	Effective	Average	
Mov ID	Turn	Flow veh/h	HV %	Satn v/c	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed km/h	
South: E	Berwick S	prings Prome		V/C	sec		veh	m		per veh	KIII/II	
1	L	227	0.0	0.754	25.5	LOS C	7.2	50.1	0.50	0.80	36.8	
2	T	21	0.0	0.061	44.4	LOS D	1.0	7.2	0.86	0.62	26.0	
3	R	165	0.0	0.754	68.0	LOS E	10.0	70.0	1.00	0.88	22.0	
Approac	ch	413	0.0	0.754	43.5	LOS D	10.0	70.0	0.72	0.82	28.6	
East: G	reaves Ro	ad										
4	L	68	0.0	0.044	8.9	LOS A	0.1	1.0	0.05	0.64	53.6	
5	Т	1266	10.0	0.770	26.5	LOS C	28.7	217.8	0.82	0.74	36.9	
6	R	70	0.0	0.497	69.2	LOS E	4.1	28.6	0.99	0.76	21.7	
Approac	ch	1404	9.0	0.770	27.8	LOS C	28.7	217.8	0.79	0.73	36.2	
North: N	I-S Conne	ector										
7	L	49	0.0	0.181	54.7	LOS D	3.0	21.1	0.89	0.76	25.1	
8	T	11	0.0	0.181	45.8	LOS D	3.0	21.1	0.89	0.68	24.6	
9	R	49	0.0	0.224	61.5	LOS E	2.7	18.7	0.94	0.75	23.4	
Approac	ch	109	0.0	0.224	56.9	LOS E	3.0	21.1	0.91	0.75	24.3	
West: G	reaves R	oad										
10	L	105	0.0	0.187	27.6	LOS C	2.8	19.3	0.48	0.74	36.7	
11	T	836	10.0	0.508	22.6	LOS C	14.8	112.8	0.64	0.56	39.8	
12	R	105	0.0	0.746	72.1	LOS E	6.4	45.1	1.00	0.83	21.1	
Approac	ch	1046	8.0	0.746	28.0	LOS C	14.8	112.8	0.66	0.61	36.4	
All Vehic	cles	2972	7.1	0.770	31.1	LOS C	28.7	217.8	0.74	0.70	34.4	

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	nent Performance -	Pedestrians	5					
		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	Across S approach	53	25.4	LOS C	0.1	0.1	0.65	0.65
P3	Across E approach	53	52.3	LOS E	0.2	0.2	0.93	0.93
P5	Across N approach	53	24.7	LOS C	0.1	0.1	0.64	0.64
P7	Across W approach	53	54.2	LOS E	0.2	0.2	0.95	0.95
All Ped	estrians	212	39.1	LOS D			0.79	0.79

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Friday, 2 May 2014 10:26:27 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com Project: P:\14M1200-1299\14M1235000 Berwick Waterways PSP\Sidra Scats\140501 SIDRA\140502sid-

JM10080 - Greaves Rd.sip

8000056, GTA CONSULTANTS, ENTERPRISE

Greaves Road/N-S Connector/Berwick Springs Promenade Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Move	ment Per	formance - '	Vehicles								
		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov II) Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
	Berwick S	Springs Prome									
1	L	119	0.0	0.398	15.5	LOS B	2.5	17.5	0.42	0.71	43.7
2	T	26	0.0	0.075	44.6	LOS D	1.3	8.9	0.87	0.63	26.0
3	R	119	0.0	0.846	76.3	LOS E	7.7	54.0	1.00	0.94	20.4
Approa	ach	264	0.0	0.846	45.8	LOS D	7.7	54.0	0.73	0.80	27.6
East: 0	Greaves R	oad									
4	L	227	0.0	0.167	9.2	LOS A	0.6	4.2	0.06	0.64	53.2
5	Т	1135	10.0	0.748	29.5	LOS C	26.3	199.7	0.84	0.75	35.1
6	R	151	0.0	0.536	60.7	LOS E	8.1	56.8	0.94	0.80	23.7
Approa	ach	1513	7.5	0.748	29.6	LOS C	26.3	199.7	0.73	0.74	35.2
North:	N-S Conn	ector									
7	L	63	0.0	0.232	55.2	LOS E	3.9	27.4	0.90	0.77	25.0
8	Т	14	0.0	0.232	46.3	LOS D	3.9	27.4	0.90	0.70	24.5
9	R	63	0.0	0.448	68.6	LOS E	3.7	26.0	1.00	0.76	21.9
Approa	ach	140	0.0	0.448	60.4	LOS E	3.9	27.4	0.94	0.76	23.4
West:	Greaves F	Road									
10	L	80	0.0	0.153	30.4	LOS C	2.3	16.0	0.52	0.74	35.0
11	Т	1276	10.0	0.841	34.7	LOS C	34.1	259.1	0.91	0.86	32.4
12	R	239	0.0	0.849	68.8	LOS E	14.8	103.4	1.00	0.91	21.8
Approa	ach	1595	8.0	0.849	39.6	LOS D	34.1	259.1	0.91	0.86	30.4
All Veh	nicles	3512	6.9	0.849	36.6	LOS D	34.1	259.1	0.82	0.80	31.7

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Movement Performance - Pedestrians												
		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective				
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate				
		ped/h	sec		ped	m		per ped				
P1	Across S approach	53	28.0	LOS C	0.1	0.1	0.68	0.68				
P3	Across E approach	53	52.3	LOS E	0.2	0.2	0.93	0.93				
P5	Across N approach	53	27.3	LOS C	0.1	0.1	0.68	0.68				
P7	Across W approach	53	54.2	LOS E	0.2	0.2	0.95	0.95				
All Pede	estrians	212	40.4	LOS E			0.81	0.81				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

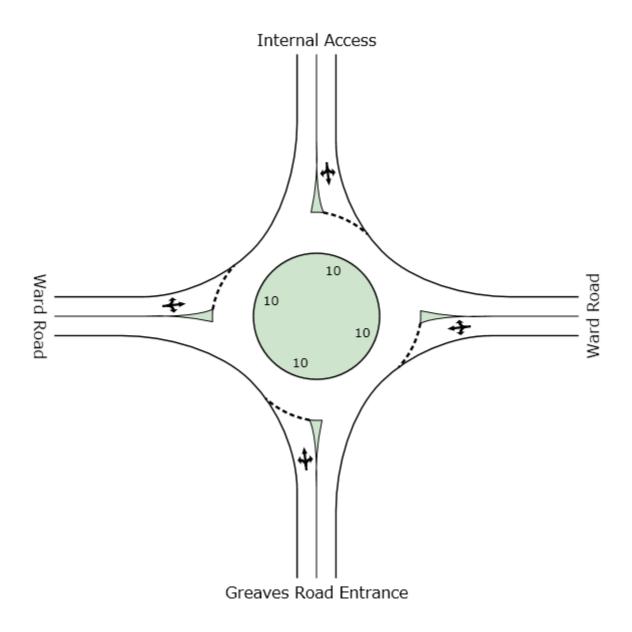
Processed: Friday, 2 May 2014 10:26:51 AM

Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com

Project: P:\14M1200-1299\14M1235000 Berwick Waterways PSP\Sidra Scats\140501 SIDRA\140502sid-

JM10080 - Greaves Rd.sip

8000056, GTA CONSULTANTS, ENTERPRISE


ix D

Appendix D

Internal Roundabout SIDRA INTERSECTION Results

Appendix D

Site: Internal Roundabout 2026 -AM - Updated 02/05/2014

Internal Roundabout Roundabout

Movem	ent Per	formance - V	ehicles								
		Demand	107	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: 0	Progyoe F	veh/h Road Entrance	%	v/c	sec		veh	m		per veh	km/h
1	JI CAVES I	55	0.0	0.111	7.6	LOSA	0.6	3.9	0.23	0.58	48.9
2	T	63	0.0	0.111	7.0 6.8	LOSA	0.6	3.9	0.23	0.50	49.4
	-										
3	R	23	0.0	0.111	11.3	LOS B	0.6	3.9	0.23	0.75	46.0
Approac	ch	141	0.0	0.111	7.9	LOSA	0.6	3.9	0.23	0.57	48.6
East: Wa	ard Road										
4	L	13	0.0	0.044	7.7	LOSA	0.2	1.4	0.27	0.57	48.7
5	Т	20	0.0	0.044	7.0	LOSA	0.2	1.4	0.27	0.50	49.1
6	R	20	0.0	0.044	11.5	LOS B	0.2	1.4	0.27	0.72	45.8
Approac	ch	53	0.0	0.044	8.9	LOSA	0.2	1.4	0.27	0.60	47.7
N											
	nternal Ac			0.074		1.00.4			2.24	0.50	40.0
7	L	10	0.0	0.071	7.5	LOSA	0.3	2.4	0.21	0.56	49.0
8	Т	34	0.0	0.071	6.8	LOSA	0.3	2.4	0.21	0.48	49.5
9	R	47	0.0	0.071	11.3	LOS B	0.3	2.4	0.21	0.72	45.9
Approac	ch	91	0.0	0.071	9.2	LOSA	0.3	2.4	0.21	0.62	47.5
West: W	lard Road	d									
10	L	84	0.0	0.108	7.7	LOSA	0.5	3.8	0.27	0.57	48.6
11	Т	10	0.0	0.108	6.9	LOS A	0.5	3.8	0.27	0.50	49.1
12	R	39	0.0	0.108	11.4	LOS B	0.5	3.8	0.27	0.71	45.8
Approac	ch	133	0.0	0.108	8.8	LOSA	0.5	3.8	0.27	0.61	47.8
All Vehic	cles	418	0.0	0.111	8.6	LOSA	0.6	3.9	0.24	0.60	48.0

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Friday, 2 May 2014 3:26:02 PM Copyright © 2000-2011 Akcelik and Associates F SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com
Project: P:\14M1200-1299\14M1235000 Berwick Waterways PSP\Sidra Scats\140501 SIDRA\140502sid-Copyright © 2000-2011 Akcelik and Associates Pty Ltd

Site: Internal Roundabout 2026 -PM - Updated 02/05/2014

Internal Roundabout Roundabout

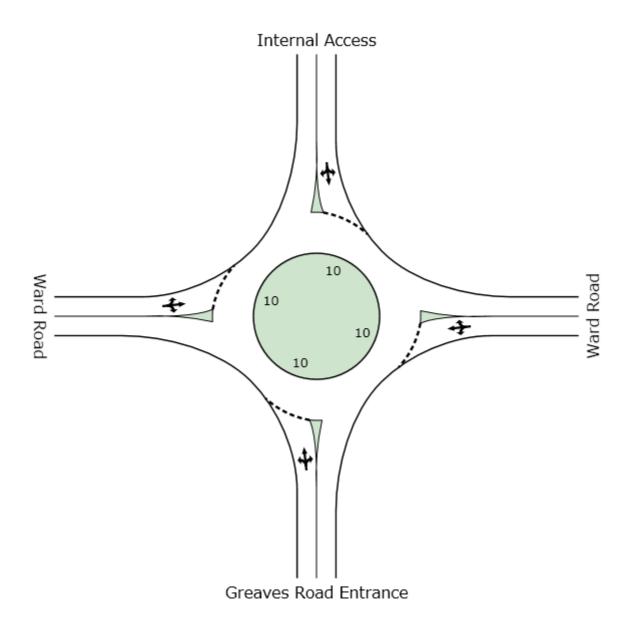
Mover	ment Per	formance - V	ehicles								
		Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID) Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	Groaves I	veh/h Road Entrance	%	v/c	sec		veh	m		per veh	km/h
1	ı	72	0.0	0.141	7.6	LOSA	0.7	5.2	0.23	0.58	48.9
2	T	82	0.0	0.141	7.0 6.8	LOSA	0.7	5.2	0.23	0.50	49.4
	·=										
3	R	31	0.0	0.141	11.3	LOS B	0.7	5.2	0.23	0.75	46.0
Approa	ich	185	0.0	0.141	7.9	LOSA	0.7	5.2	0.23	0.57	48.6
East: V	Vard Road	I									
4	L	17	0.0	0.031	7.9	LOSA	0.1	1.0	0.30	0.57	48.5
5	Т	10	0.0	0.031	7.1	LOSA	0.1	1.0	0.30	0.50	48.9
6	R	10	0.0	0.031	11.6	LOS B	0.1	1.0	0.30	0.71	45.8
Approa	ich	37	0.0	0.031	8.7	LOSA	0.1	1.0	0.30	0.59	47.8
North:	Internal Ad	ccess									
7	L	20	0.0	0.100	7.7	LOSA	0.5	3.5	0.26	0.57	48.7
8	Т	45	0.0	0.100	6.9	LOS A	0.5	3.5	0.26	0.50	49.2
9	R	59	0.0	0.100	11.4	LOS B	0.5	3.5	0.26	0.72	45.8
Approa	nch	124	0.0	0.100	9.2	LOSA	0.5	3.5	0.26	0.62	47.4
West: \	Ward Road	d									
10	L	47	0.0	0.097	7.8	LOSA	0.5	3.4	0.29	0.57	48.5
11	Т	20	0.0	0.097	7.0	LOS A	0.5	3.4	0.29	0.50	48.9
12	R	50	0.0	0.097	11.5	LOS B	0.5	3.4	0.29	0.71	45.7
Approa	ich	117	0.0	0.097	9.3	LOSA	0.5	3.4	0.29	0.62	47.3
All Veh	icles	463	0.0	0.141	8.6	LOSA	0.7	5.2	0.26	0.60	47.9

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.


Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Friday, 2 May 2014 3:27:15 PM Copyright © 2000-2011 Akcelik and Associates F SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com
Project: P:\14M1200-1299\14M1235000 Berwick Waterways PSP\Sidra Scats\140501 SIDRA\140502sid-Copyright © 2000-2011 Akcelik and Associates Pty Ltd

Site: Internal Roundabout 2046 -AM - Updated 02/05/2014

Internal Roundabout Roundabout

Movem	ent Per	formance - V	ehicles								
		Demand	HV	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
טו ייטואו	Turri	Flow veh/h	пv %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
South: 0	Greaves F	Road Entrance								p 6. v 6	
1	L	68	0.0	0.139	7.7	LOSA	0.7	5.0	0.27	0.59	48.7
2	Т	78	0.0	0.139	6.9	LOSA	0.7	5.0	0.27	0.51	49.2
3	R	29	0.0	0.139	11.4	LOS B	0.7	5.0	0.27	0.75	45.9
Approac	ch	175	0.0	0.139	8.0	LOSA	0.7	5.0	0.27	0.58	48.4
East: W	ard Road										
4	L	16	0.0	0.048	7.9	LOSA	0.2	1.6	0.31	0.58	48.5
5	Т	20	0.0	0.048	7.1	LOSA	0.2	1.6	0.31	0.51	48.8
6	R	20	0.0	0.048	11.6	LOS B	0.2	1.6	0.31	0.72	45.7
Approac	ch	56	0.0	0.048	9.0	LOSA	0.2	1.6	0.31	0.60	47.6
North: Ir	nternal Ad	ccess									
7	L	10	0.0	0.094	7.7	LOSA	0.5	3.3	0.25	0.57	48.7
8	Т	43	0.0	0.094	6.9	LOSA	0.5	3.3	0.25	0.49	49.2
9	R	64	0.0	0.094	11.4	LOS B	0.5	3.3	0.25	0.72	45.8
Approac	ch	117	0.0	0.094	9.4	LOSA	0.5	3.3	0.25	0.62	47.2
West: W	ard Road	d									
10	L	97	0.0	0.137	7.8	LOSA	0.7	5.0	0.30	0.58	48.5
11	Т	20	0.0	0.137	7.1	LOSA	0.7	5.0	0.30	0.51	48.8
12	R	49	0.0	0.137	11.6	LOS B	0.7	5.0	0.30	0.72	45.7
Approac	ch	166	0.0	0.137	8.9	LOSA	0.7	5.0	0.30	0.61	47.6
All Vehic	cles	514	0.0	0.139	8.7	LOSA	0.7	5.0	0.28	0.60	47.8

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

Processed: Friday, 2 May 2014 3:27:37 PM Copyright © 2000-2011 Akcelik and Associates F SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com
Project: P:\14M1200-1299\14M1235000 Berwick Waterways PSP\Sidra Scats\140501 SIDRA\140502sid-

Site: Internal Roundabout 2046 -PM - Updated 02/05/2014

Internal Roundabout Roundabout

Movem	ent Per	formance - V	ehicles								
		Demand	1.07	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: 0	Progyoe F	veh/h Road Entrance	%	v/c	sec		veh	m		per veh	km/h
1	Ji caves i	90	0.0	0.182	7.7	LOSA	1.0	6.9	0.28	0.59	48.7
2	T	103	0.0	0.182	7.7	LOSA	1.0	6.9	0.28	0.59	49.1
3	r R	39	0.0	0.182	11.5	LOS A	1.0	6.9	0.28	0.75	45.9
Approac)II	232	0.0	0.182	8.0	LOSA	1.0	6.9	0.28	0.58	48.4
East: Wa	ard Road										
4	L	21	0.0	0.053	8.1	LOSA	0.3	1.8	0.34	0.59	48.3
5	Т	20	0.0	0.053	7.3	LOSA	0.3	1.8	0.34	0.52	48.6
6	R	20	0.0	0.053	11.8	LOS B	0.3	1.8	0.34	0.72	45.7
Approac	ch	61	0.0	0.053	9.0	LOSA	0.3	1.8	0.34	0.61	47.5
North: Ir	nternal Ad										
		cess 20	0.0	0.118	7.9	LOSA	0.6	4.2	0.30	0.58	40.5
7	L						0.6	4.3			48.5
8	T	56	0.0	0.118	7.1	LOSA	0.6	4.3	0.30	0.51	48.9
9	R	66	0.0	0.118	11.6	LOS B	0.6	4.3	0.30	0.72	45.7
Approac	ch	142	0.0	0.118	9.3	LOSA	0.6	4.3	0.30	0.62	47.3
West: W	ard Road	d									
10	L	54	0.0	0.126	8.0	LOSA	0.7	4.6	0.34	0.59	48.3
11	Т	30	0.0	0.126	7.2	LOSA	0.7	4.6	0.34	0.52	48.6
12	R	63	0.0	0.126	11.7	LOS B	0.7	4.6	0.34	0.72	45.6
Approac	ch	147	0.0	0.126	9.5	LOSA	0.7	4.6	0.34	0.63	47.1
All Vehic	cles	582	0.0	0.182	8.8	LOSA	1.0	6.9	0.31	0.61	47.7

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Friday, 2 May 2014 3:28:11 PM Copyright © 2000-2011 Akcelik and Associates F SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com
Project: P:\14M1200-1299\14M1235000 Berwick Waterways PSP\Sidra Scats\140501 SIDRA\140502sid-Copyright © 2000-2011 Akcelik and Associates Pty Ltd

Melbourne

A Level 25, 55 Collins Street
PO Box 24055
MELBOURNE VIC 3000
P +613 9851 9600
F +613 9851 9610
E melbourne@gta.com.au

Sydney

A Level 6, 15 Help Street
CHATSWOOD NSW 2067
PO Box 5254
WEST CHATSWOOD NSW 1515
P +612 8448 1800

F +612 8448 1810 E sydney@gta.com.au

Brisbane

A Level 4, 283 Elizabeth Street
BRISBANE QLD 4000
GPO Box 115
BRISBANE QLD 4001
P +617 3113 5000
F +617 3113 5010
E brisbane@gta.com.au

Canberra

A Unit 4, Level 1, Sparta Building, 55 Woolley Street PO Box 62 PO Box 1064

DICKSON ACT 2602 TOWNSVILLE QLD 4810

P +612 6243 4826 P +617 4722 2765

F +612 6243 4848 F +617 4722 2761

E canberra@gta.com.au E townsville@gta.com.au

Townsville

Adelaide

A Suite 4, Level 1, 136 The Parade PO Box 3421 NORWOOD SA 5067 P +618 8334 3600 F +618 8334 3610 E adelaide@gta.com.au

Gold Coast

A Level 9, Corporate Centre 2
Box 37
1 Corporate Court
BUNDALL QLD 4217
P +617 5510 4800
F +617 5510 4814
E goldcoast@gta.com.au

