Calculation of Radiation Distances

Inputs:

Outside Diameter of Pipe	D	450 mm
Wall thickness (to determine D_i)*	t_w	7.9 mm
Pressure (choose kPa/MPa/Bar)	P	2.73 MPa

*leave wall thickness blank if unknown

Summary					
Radiation contour for Full Bore Rupture:					
Radiation contour: 12.6kW/m ²	D _{12.6}	152	m		
Radiation contour: 4.7kW/m²	D _{4.7}	245	m		
Hole diameters in order to satisfy maximum heat release requirements:					
Heat release in GJ/s	Q	1	10	GJ/s	
Minimum hole diameter	d	108	278	mm	

The mass flow rate w is calculatedby

$$|w = \rho q|$$

where,

 ρ = the density of the gas at upstream (pressurised conditions)

q = volume flow rate, given by,

$$q = YCA\sqrt{\frac{2\Delta P}{\rho}}$$
 ... Crane, 1999 eqn 2 - 24

where

Y, C =expansion and flow coefficients

A = hole cross - sectional area

 $\Delta P = \text{maximum (critical)}$ pressure drop from upstream to downstream. Then,

$$D = \sqrt{\frac{\tau FQ}{4\pi K}} \dots APIRP 521 eqn 20$$

where,

D = the minimum distance from the source of radiation

|F| =fraction of heat transmitted

Q = heat release

 $K = \text{allowableradiation}(4.7 \text{ or } 12.6 \text{kw/m}^2)$

 $|\tau| = \text{fraction of heat intensity transmitted, given by,}$

$$\tau = 0.79 \left(\frac{100}{r}\right)^{\frac{1}{16}} \left(\frac{30.5}{D}\right)^{\frac{1}{16}} \dots APIRP 521 eqn C - 2$$

where,

r = relative humidity

Pipe Constants			
Outside Diameter of Pipe	D	450	mm
Wall thickness	t_w	7.9	mm
Inside Diameter of Pipe	D_i	434.2	mm
Pressure	P	2.73	MPa
Pressure in pipeline in Bars	P	27.3	Bar

Other Constants		
Fraction of heat radiated	F	0.2
Relative humidity	r	<mark>40</mark> %

(API 521, Table 10)
(Lower bound Ref Bureau of Meteorology)

Constants for Natural Gas¹
Gross Heating Value H_C 40500 kJ/kg

Radiation contour: 4.7kW/m²	D _{4.7}	2	25	15	46	245	m
Radiation contour: 12.6kW/m ²	D _{12.6}	1	15	9	29	152	m
	τ _{4.7}	1.005	0.843	0.870	0.810	0.727	
Fraction of heat intensity transmitted	τ _{12.6}	1.036	0.869	0.898	0.835	0.750	
Unadjusted 4.7kW/m² distance	(D _{4.7})	2	27	16	51	287	m
Unadjusted 12.6kW/m² distance	(D _{12.6})	1	16	10	31	175	m
Heat release	Q	0.001	0.215	0.078	0.778	24.373	GJ/s or GV
Mass flow rate	W	0.02	5.32		19.21	601.81	
Volume Flow rate	q	0.00092	0.26		0.93		
Flow coefficient (square-edged orifices) ⁴	C	0.6	0.6	0.6	0.6	0.9	
Expansion factor ³	Y	0.000007	0.001963	0.000707	0.007088	0.148071	
Hole area (assume circular hole)	A	0.000007	0.001963		0.007088		= -
Ratio of diameters	β	0.003	0.03	0.03	0.093		d ₂ :D _i
Hole diameter	d_2	0.003	0.05	0.03	0.095		
Hole diameter		3	50	30	95	Rupture 434.2	mm
, , , , , , , , , , , , , , , , , , , ,				I		Full Bore	
Maximum (critical) pressure drop	ΔP	1.365	MPa	$P(1-r_c)$			
Calculations Critical pressure ratio ²	r _c	0.5					
	T	288	K				
Assumed temperature	T _{°C}	15	_	gasconstan	1002115/119	,	
Ratio of specific heats	γ	1.32		gas constan	t(83141/kc	ı- molK)	
Individual gas constant	R	456.81	J/kg K	$R = \frac{R_0}{M}$ where R_0 is the universal			
Approximate Molecular Weight	M	18.2					
Approximate specific gravity	$ ho$ S $_g$	0.62	_	(relative to air)			
Density at upstream conditions		20.75	_	(at atmospheric conditions)			
Approx Density of Natural Gas	$ ho$ $_{atmos}$	0.6283	_	(at atmosph	(at atmospheric conditions)		

In order to satisfy T1 and T2 maximum heat release requirements:

Heat release in GJ/s	Q	1	10 GJ/s
Minimum hole diameter	d	107.7	278.1 mm

Notes/references

- 1 Constants for Natural Gas. Reference: AGL Natural Gas Technical Data Book, 1996. Based on the following composition as % by volume: Methane 88.8, Ethane 7.8, Carbon Dioxide 1.9, Nitrogen 1.3, Propane 0.2, Butanes and Pentanes trace.
- The Critical Pressure Ratio (r_C) is the largest ratio of downstream pressure to upstream pressure capable of producing sonic (critical) velocity in the gas (Crane, 1999 page A-22)
- 3 Reference Crane, 1999 page A-22.
- 4 Reference Crane, 1999 page A-20. The Flow Coefficient (C) for square edged orifices is a function of Reynolds number (R_e) and the ratio of orifice to upstream diameter (β). Gas discharged to atmosphere (at high velocity) will have a high R_e and flow will always be in the fully turbulent range, in which the flow factor is constant for each diameter ratio.