Traffic Modelling Report

Casey Central Town Centre

Prepared for Metropolitan Planning Authority

28 September 2015

Document Information

Prepared for Metropolitan Planning Authority
Project Name Casey Central Town Centre
File Reference CG150713REP001F01.docx

Job Reference CG150713

Date 28 September 2015

Contact Information

Cardno Victoria Pty Ltd Trading as Cardno ABN 47 106 610 913

Level 4 501 Swanston Street Melbourne Victoria 3000 Australia

Telephone: (03) 8415 7777 Facsimile: (03) 8415 7788 International: +61 3 8415 7777

victoria@cardno.com.au www.cardno.com

Document Control

Version	Date	Author	Author Initials	Reviewer	Reviewer Initials
F01	28/09/15	Adam Law	A	Manesha Ravji	M

© Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Table of Contents

1	Introd	duction		1
	1.1	Overvie	e w	1
	1.2	Casey (Central Precinct Structure Plan	1
2	Back	ground Ti	raffic Volumes	3
	2.1	The Vic	etorian Integrated Transport Model	3
	2.2	Backgro	ound Traffic Volumes	3
	2.3	Backgro	ound Traffic Volumes on Narre Warren-Cranbourne Road	5
3	Traffi	c Generat	tion	7
	3.1	Adopted	d First Principles Traffic Generation Rates	7
	3.2	Compa	rison of VITM verses the First Principles Traffic Generation	9
4	Traffi	c Distribu	ution	10
	4.1	VITM di	istribution	10
5	Sprea	adsheet A	nalysis	12
	5.1	Spreads	sheet Analysis	12
	5.2	Intersec	ction Volumes	12
6	Propo	sed Inter	rsection Layouts and Analysis Overview	15
	6.1	Intersec	ction Layouts	15
	6.2	Intersec	ction Analysis Overview	17
		6.2.1	General	17
7	Interi	m (2026) l	Intersection Analysis	19
8	Ultim	ate Inters	ection (2046) Analysis	20
	8.1	Operation	on of Proposed Intersection Layouts	20
	8.2	Assessi	ment of Alternative Ultimate Access Arrangements	21
		8.2.2	Scenario 1: Signalisation of Alisma Boulevard	21
		8.2.3	Scenario 2: Capacity Improvements on Glasscocks Road	25
		8.2.4	Scenario 3: Capacity Improvements on Glasscocks Road + Signalised Alisma Boulevard	27
	8.3	Summa	ıry	27
9	Trans	itional Re	etail Area Access	29
	9.1	Overvie	eW	29
	9.2		ads Guidelines	29
	9.3	Access	Management	30
10	Sumn	nary		32

Appendices

Appendix A Future Urban Structure Plan

Appendix B Trip GenerationAppendix C Sidra Outputs

Tables

Table 3-1 Anticipated Ultimate Land Use Yields

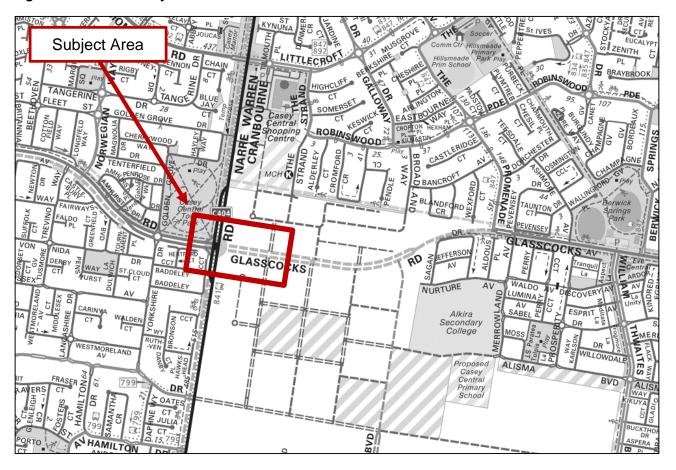
8

Table 3-2	Adopted Traffic Generation Rates and Resulting Traffic Generation	8
Table 3-3	Trip Generation Comparison - 2046	9
Table 4-1	VITM traffic distribution – Casey Town Centre Precinct	10
Table 4-2	Adopted Traffic Distribution – Casey Town Centre Precinct	11
Table 6-1	Rating of Degrees of Saturation	17
Table 7-1	SIDRA Intersection Analysis Summary – 2026 AM Peak Hour	19
Table 7-2	SIDRA Intersection Analysis Summary – 2026 PM Peak Hour	19
Table 8-1	SIDRA Intersection Analysis Summary – 2046 AM Peak Hour	20
Table 8-2	SIDRA Intersection Analysis Summary – 2046 PM Peak Hour	20
Table 8-3	Additional Ultimate Access Scenarios Tested	21
Table 8-4	SIDRA Intersection Analysis Summary – 2046 AM Peak Hour – Scenario 1: Signalisation of Alisma Boulevard	24
Table 8-5	SIDRA Intersection Analysis Summary – 2046 PM Peak Hour Scenario 1: Signalisation of Alisma Boulevard	24
Table 8-6	SIDRA Intersection Analysis Summary – 2046 PM Peak Hour: Scenario 2: Capacity Improvements on Glasscocks Road	26
Table 8-7	SIDRA Intersection Analysis Summary – 2046 PM Peak Hour –Scenario 3 (Scenario 1 + Scenario 2)	27
Table 8-8	Summary Intersection Degree of Saturation	28
Figures		
Figure 1-1	Site Locality	1
Figure 1-2	Casey Central Town Centre PSP: draft Future Urban Structure	2
Figure 2-1	Current VITM zoning	3
Figure 2-2	1-Hour Peak Background Traffic Volumes (Excludes Casey Town Centre Precinct) 2026	4
Figure 2-3	1-Hour Peak Background Traffic Volumes (Excludes Casey Town Centre Precinct) 2046	5
Figure 3-1	PSP Sub-Precincts	7
ŭ	Intersection Volumes – Interim (2026) AM Peak Hour	13
Figure 5-2	Intersection Volumes – Interim (2026) PM Peak Hour	13
Figure 5-3	Intersection Volumes – Ultimate (2046) AM Peak Hour	14
Figure 5-4	Intersection Volumes – Ultimate (2046) PM Peak Hour	14
Figure 6-1	Narre Warren-Cranbourne Road / Glasscocks Road – Interim (2026)	15
Figure 6-2	Narre Warren-Cranbourne Road / Glasscocks Road – Ultimate (2046)	16
Figure 6-3	Glasscocks Road / The Strand – Interim (2026)	16
Figure 6-4	Glasscocks Road / The Strand – Ultimate (2046)	17
Figure 8-1	Intersection Volumes – 2046 AM Peak Hour	22
Figure 8-2	Intersection Volumes – 2046 PM Peak Hour	23
Figure 8-3	Narre Warren-Cranbourne Road / Glasscocks Road – with intersection works	25
Figure 8-4	Glasscocks Road / The Strand – with intersection works	26
Figure 9-1	Location of the Transitional Retail Area	29
Figure 9-2	Wurundjeri Way – Service Vehicle Only Access	30
Figure 9-3	Wurundjeri Way – Service Vehicle Only Access	31

1 Introduction

1.1 Overview

Cardno has been engaged by the Metropolitan Planning Authority to undertake a first principles assessment of two intersections within the Casey Town Centre Precinct Structure Plan (PSP) area. The intersections assessed are as follows:


- Narre Warren-Cranbourne Road / Glasscocks Road; and
- Glasscocks Road / The Strand.

The need for this assessment arose from concerns raised by VicRoads in relation to the impacts on the arterial road network operation resulting from the development of the PSP area. To address the concerns raised by VicRoads both the interim (2026) and ultimate (2046) development scenarios were assessed for the AM and PM commuter peak hours.

In additional Cardno also undertook a review of the suitability of service vehicles accessing the proposed transitional retail area along the Narre Warren-Cranbourne site frontage to the north of Glasscocks Road.

The location of the subject area is shown in Figure 1-1.

Figure 1-1 Site Locality



1.2 Casey Central Precinct Structure Plan

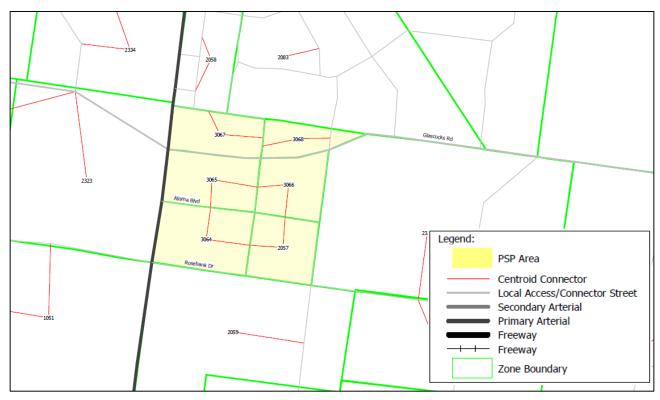
The draft Future Urban Structure for the PSP is outlined in Figure 1-2 with an enlarged copy provided in Appendix A.

Figure 1-2 Casey Central Town Centre PSP: draft Future Urban Structure

As outlined in Figure 1-2, the PSP area is bounded by Narre Warren-Cranbourne Road to the west Rosebank Drive to the south, Bray Boulevard to the east and residential / Casey Central Shopping Centre areas to the north. The area is also bisected by Glasscocks Road (a Secondary Arterial Road) and Alisma Boulevard (a Connector Street).

Information has been provided by the MPA with regards to expected land use and road network layout hierarchy, this information is included in Appendix A.

It is envisaged that in the interim (2026) development scenario that the PSP area to the north of Glasscocks Road only is developed, whilst the ultimate (2046) scenario assumes full development of the PSP site.



2 Background Traffic Volumes

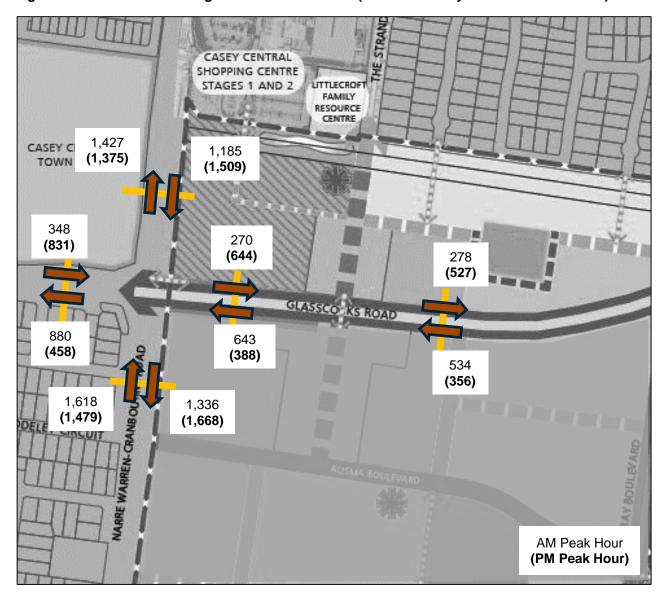
2.1 The Victorian Integrated Transport Model

The subject area has previously been included in the Victorian Integrated Transport Model (VITM) South East Growth Area model. The latest available version of this model, developed to assess the McPherson, Croskell and Minta Farm PSPs was used to extract background traffic volumes and assess traffic distributions for the study area. The current zone structure and node layout of the PSP area as modelled in VITM (for the base case, 2026 and 2046) is shown in Figure 2-1.

Figure 2-1 Current VITM zoning

It is noted that the zone structure in VITM has been set up to best represent the ultimate conditions, land uses in some of the base case and 2026 zones are modelled as "zero" to reflect existing and interim land uses.

2.2 Background Traffic Volumes


A select link analysis was run using VITM to determine the amount of traffic utilising Narre-Warren Cranbourne Road and Glasscocks Road for the years 2026 (the interim development scenario) and 2046 (ultimate development scenario). The select link analysis is able to differentiate between precinct generated traffic (i.e. the traffic to/from the Casey Town Centre Precinct) and non-precinct traffic generation (background traffic volumes).

The background traffic volumes during the AM and PM 1-hour commuter peak¹ for Narre-Warren Cranbourne Road, Glasscocks Road and The Strand are shown in Figure 2-2 and Figure 2-3.

¹ A factor of 0.55 was applied to the 2-hour VITM outputs to determine the 1-hour peak traffic volumes.

Figure 2-2 1-Hour Peak Background Traffic Volumes (Excludes Casey Town Centre Precinct) 2026

STRAI CASEY CENTRAL SHOPPING CENTRE LITTLECROF STAGES 1 AND 2 FAMILY RESOURCE CENTRE 2,635 CASEY CE 1,671 (2,156)TOWN F (2,769)448 379 (1,241)(1,220)390 (1,094)GLASSCO KS ROAD 1,036 918 (550)(534)896 (570)2.717 1,871 (2,341)(2,819)ALISMA BOULEVARD AM Peak Hour (PM Peak Hour)

Figure 2-3 1-Hour Peak Background Traffic Volumes (Excludes Casey Town Centre Precinct) 2046

Figure 2-3 indicates that the background traffic volumes on Narre Warren-Cranbourne Road are expected to be in excess 2,700 vehicles per hour in <u>each</u> direction during the PM peak under ultimate operating conditions.

2.3 Background Traffic Volumes on Narre Warren-Cranbourne Road

As outlined in Section 2.2, by 2046 VITM indicates that the background traffic volumes on Narre Warren-Cranbourne Road are expected to be in excess of 2,700 vehicles per hour in <u>each</u> direction during the PM peak.

The Austroads Guide to Traffic Management Part 3: Traffic Studies and Analysis notes that the typical midblock capacity for urban roads with interrupted flow is in the order of 900-1000 vehicles per hour per lane indicating that Narre-Warren-Cranbourne Road will be operating very to capacity even without the development of the subject PSP area under ultimate conditions.

In addition, recent research² indicates that the capacity of a traffic lane for an urban road in Melbourne operating under interrupted flow conditions is in the order of 850-900 vehicles per hour per lane.

28 September 2015

Cardno

² Measuring and Assessing Traffic Congestion: A Case Study paper (2014) by C. Yumlu, S. Moridpour and R. Akcelik, presented at the AITPM 2014 Nation Conference; and City Road Masterplan: Traffic and Access Study Issues and Opportunities report, prepared for the City of Melbourne by GHD, dated May 2014.

The near-capacity ultimate background traffic volumes on Narre Warren-Cranbourne Road during the PM peak hour are attributed to the expansion of the Urban Growth Boundary rather than the development of the Casey Central Town Centre alone. In order to manage the expected background traffic volume growth on Narre Warren-Cranbourne Road consideration should be given to providing extra capacity (i.e. four through traffic lanes in each direction).

3 Traffic Generation

3.1 Adopted First Principles Traffic Generation Rates

The draft Future Urban Structure Plan for Casey Central Town Centre was sourced from the MPA along with expected floor areas and land use yields for each area. The anticipated ultimate development yields for sub precincts within the PSP are summarised in Figure 3-1 and Table 3-1.

Figure 3-1 PSP Sub-Precincts

Table 3-1 Anticipated Ultimate Land Use Yields

Sub-Precinct	Yield	Sub-Precinct	Yield
TR1	13,865m²	HD2	385 dwelling
CR1	1,865m²	HD3	552 dwelling
CR2	1,865m²	CC3	16,772m ²
CC1	14,045m²	ICF1	1 unit
MD1	174 dwellings	ISF1	1 unit
HD1	107 dwellings	MU1	303 apartments
CC2	30,778m ²	MU2	6,188m ²
CR3	4,452m²	HD4	579 dwelling
CR4	4,452m²	HD5	454 dwelling
CC2	26,020m ²	MD2	46 dwelling

Cardno sourced traffic generation rates for each of the land uses from the New South Wales Road and Traffic Authority "Guide to Traffic Generating Developments" document (the RTA Guide) and case study data held by Cardno. The adopted traffic generation rates are summarised in Table 3-2.

Table 3-2 Adopted Traffic Generation Rates and Resulting Traffic Generation

Use	MPA land use codes	AM Rate	PM Rate
Bulky Goods	TR1	1.35 veh / 100m ² GFA	2.7 veh / 100m² GFA
Specialty Retail	CR2, CR4	4 veh / 100m ² NLA	8 veh / 100m ² NLA
Office	CC1, CC2, CC3	2.1 veh / 100m² NLA	1.75 veh / 100m2 NLA
Shop top office	CR1, CR3	1.6 veh / 100m² NLA	1.3 veh / 100m2
Medium Density Residential	MD1, MD2	0.8 veh / dwelling	0.8 veh / dwelling
High Density Residential	HD1, HD2, HD3, HD4, HD5	0.7 veh / dwelling	0.7 veh / dwelling
Residential - Apartments	MU1, MU2	0.7 veh/dwelling	0.7 veh / dwelling
Community facility	ICF1 and ISF1	15 veh	150 veh

Based on the generation rates outlined in Table 3-2, the PSP area is expected to generated 1,009 trips in the interim and ultimately 4,601 vehicle trips during the PM peak hour (the busiest peak hour for the PSP area).

The traffic generated by each precinct is attached as Appendix B to this report.

3.2 Comparison of VITM verses the First Principles Traffic Generation

The traffic generated by the first principles assessment for the ultimate scenario was compared to VITM trip generation for the PSP area, the results of which are provided in Table 3-3.

Table 3-3 Trip Generation Comparison - 2046

VITM Node	AM Peak			PM Peak		
	VITM trips	1 st Principle Trips	Difference ±	VITM trips	1 st Principle Trips	Difference ±
3067	280	291	+11	459	458	+89
3068	165	508	+343	203	461	+258
3065	499	1169	+670	664	1182	+518
3066	548	930	+382	671	885	+214
3064 + 2057	1081	1483	+402	1320	1552	+232

A review of Table 3-3 indicates that the first principles traffic generation exceeds the VITM trip generation, and as such provides a conservative assessment of the trips generated by the PSP area.

4 Traffic Distribution

4.1 VITM distribution

In order to ascertain the traffic distribution patterns for the PSP area, a VITM select link analysis for each of the VITM zone nodes was undertaken to determine traffic volumes to/from the PSP area to/from Narre Warren – Cranbourne Road, Glasscocks Road and other surrounding areas. The resulting VITM distributions are summarised in Table 4-1.

Table 4-1 VITM traffic distribution – Casey Town Centre Precinct

Direction	Year 2026		Year 2046	
	AM Peak	PM Peak	AM Peak	PM Peak
North (Narre Warren-Cranbourne Road)	20%	19%	20%	20%
South (Narre Warren-Cranbourne Road)	19%	16%	20%	20%
East (Glasscocks Road)	12%	10%	15%	15%
West (Glasscocks Road)	4%	4%	4%	4%
Other (internal trips and local area trips)	45%	50%	41%	41%

The "other" trips outlined in Table 4-1 represent internal trips, local road trips to the adjoining Cranbourne North Stage 1 PSP (interim and ultimate), and ultimately trips via Bray Boulevard, Rosebank Drive, Alisma Boulevard.

Having consideration for the local and arterial road network, and characteristics of the surrounding and internal land uses, the VITM distributions are considered to be generally representative of the likely traffic distributions of the PSP area.

However, it is noted that Narre Warren-Cranbourne Road is expected to be operating at/close to capacity by 2046 even without the development of the subject PSP area. As such a more balanced distribution between the three key external directions (Narre Warren-Cranbourne Road north and south, Glasscocks Road east) is to be expected.

The following traffic distributions have therefore been adopted for the purposes of spreadsheet modelling (refer to Section 5).

Table 4-2 Adopted Traffic Distribution – Casey Town Centre Precinct

	Direction	Year 2026	Year 2046
	Narre Warren-Cranbourne Road (North)	22.5%	19%
	Narre Warren-Cranbourne Road (South)	22.5%	19%
	Glasscocks Road (East)	24.5%	18%
bs	Glasscocks Road (West)	4.5%	4%
External Trips	Rosebank Drive (West)	1%	1%
terna	Bray Boulevard (South)	0%	1%
Ä	Rosebank Drive (East)	0%	1%
	Alisma Blvd (East)	0%	1%
	Broadland Way (North)	1%	1%
	The Strand (North)	1%	1%
	Precinct 1	3%	3%
	Precinct 2	3%	3%
	Precinct 3	1%	1%
Internal Trips	Precinct 4	3%	3%
nal T	Precinct 5	3%	3%
nter	Precinct 6	0%	3%
_	Precinct 7	0%	1%
	Precinct 8	0%	3%
	Precinct 9	0%	4%
Local Trips	Casey Central Shopping Centre (North)	10%	10%

5 Spreadsheet Analysis

5.1 Spreadsheet Analysis

In order to assess the PSP area traffic generation, a spreadsheet model was prepared. The spreadsheet analysis methodology is summarised as follows:

- The PSP area was divided up into nine precincts total for this study;
- The trip generation rates were input for each land use (as per Table 3-2);
- Trips were split between inbound and outbound based on standard distributions³;
- Trips were distributed to the external or internal destinations (as per Table 4-1);
- Route choice is determined by the modeller based on road hierarchy and intersections constraints (such as banned movements).

In addition other key assumptions used in the development of the spreadsheet models are as follows:

- Each of the land uses is conservatively considered to peak at the same time in each peak hour;
- The two commercial sites which abut Glasscocks Road (east of The Strand) will take access from Glasscocks Road and be restricted to left-in / left-out.
- The unsignalised intersection of Narre Warren-Cranbourne Road / Alisma Boulevard will be restricted to left-in / left-out.
- That infiltration of Casey Central Shopping Centre traffic into the Town Centre will be minor and is included in the background traffic volumes extracted from VITM.

The modelling approach is considered conservative on the basis that the peak traffic generation for all onsite uses is assumed to coincide, and that the analysis is based on empirical traffic generation rates. As the network becomes increasingly busy during peak times, peak spreading, trip linking and people's travel behaviour (time and transport mode) are anticipated to change as is currently being demonstrated in Melbourne Inner suburbs⁴.

5.2 Intersection Volumes

Based on the preceding assumptions and analysis, the traffic volumes at the intersections of Narre Warren-Cranbourne Road / Glasscocks Road and Glasscocks Road / The Strand was determined. The post-development (ie background + development generated) turning movements derived for the commuter peak hours for the interim and ultimate development scenarios are outlined in Figure 5-1 to Figure 5-4.

Use	AM Inbound	AM Outbound	PM Inbound	PM Outbound
Residential	20%	80%	60%	40%
Office	90%	10%	10%	90%
Retail	50%	50%	50%	50%
Community Facilities	50%	50%	50%	50%

⁴ Refer to the VicRoads Traffic Monitor 2012-2013 report, dated September 2014.

Figure 5-1 Intersection Volumes – Interim (2026) AM Peak Hour

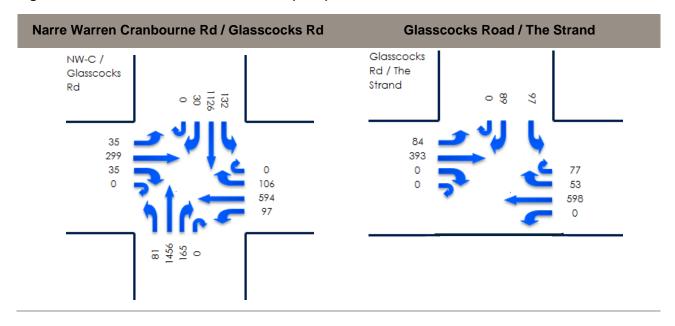


Figure 5-2 Intersection Volumes – Interim (2026) PM Peak Hour

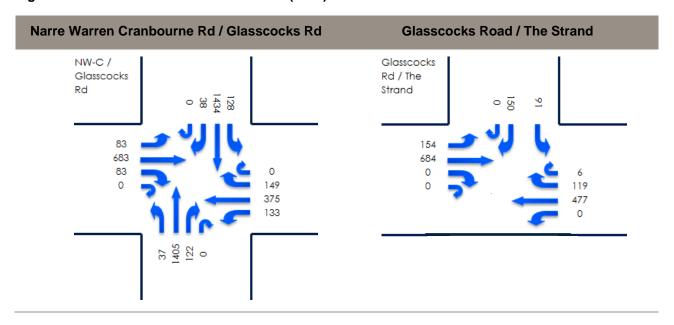


Figure 5-3 Intersection Volumes - Ultimate (2046) AM Peak Hour

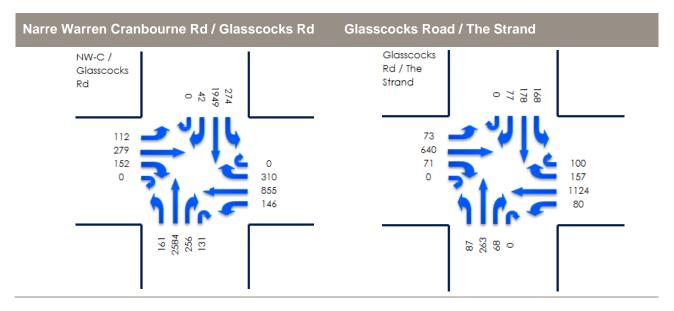
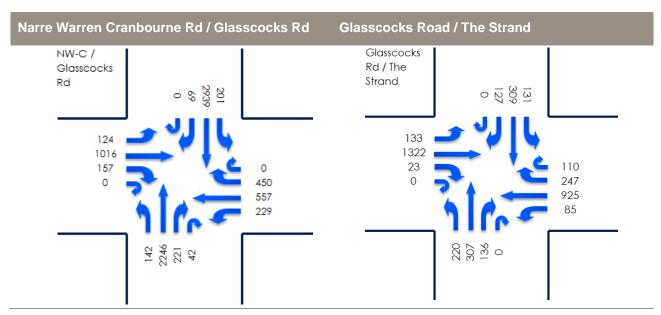



Figure 5-4 Intersection Volumes – Ultimate (2046) PM Peak Hour

6 Proposed Intersection Layouts and Analysis Overview

6.1 Intersection Layouts

The following drawings were provided as part of the project brief:

- VicRoads Interim Alignment drawings Narre Warren-Cranbourne Road (dated 30/10/12);
- MPA template intersection for Glasscocks Road / The Strand.

Cardno was also provided with DCP drawings for the Town Centre PSP. It is noted that the treatment shown for the intersection of Narre Warren-Cranbourne Road / Glasscocks Road was not consistent with what has recently been constructed onsite, Cardno considered the as-built improvements. The adopted intersection layouts are outlined in Figure 6-1 to Figure 6-4.

Figure 6-1 Narre Warren-Cranbourne Road / Glasscocks Road – Interim (2026)

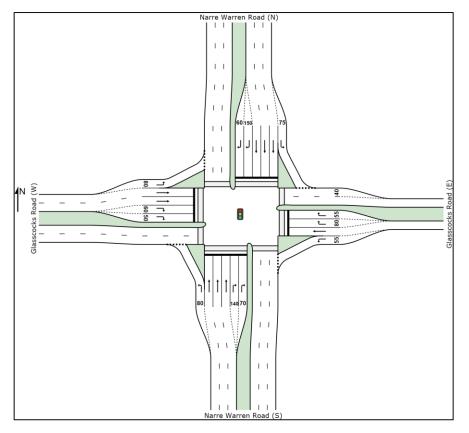


Figure 6-2 Narre Warren-Cranbourne Road / Glasscocks Road - Ultimate (2046)

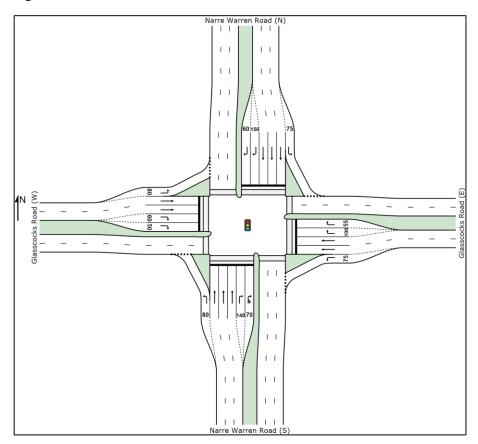


Figure 6-3 Glasscocks Road / The Strand – Interim (2026)

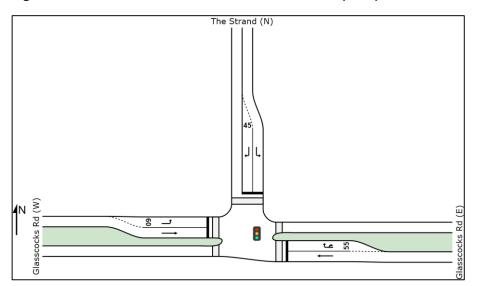
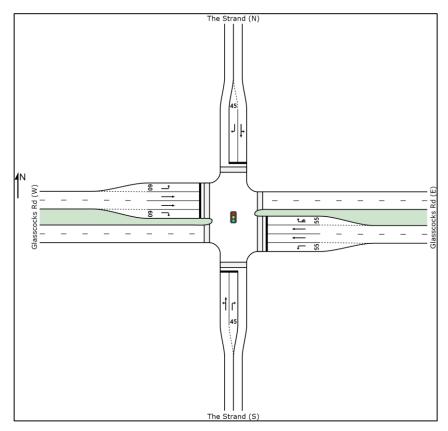



Figure 6-4 Glasscocks Road / The Strand – Ultimate (2046)

6.2 Intersection Analysis Overview

6.2.1 General

The operation of Narre Warren-Cranbourne Road / Glasscocks Road and Glasscocks Road / The Strand intersections were analysed using SIDRA Intersection 6.1. This computer package, originally developed by the Australian Road Research Board, provides information about the capacity of an intersection in terms of a range of parameters, as described below:

Degree of Saturation (DOS.) is the ratio of the volume of traffic observed making a particular movement compared to the maximum capacity for that movement. Various values of degree of saturation and their rating are shown in Table 6-1.

Table 6-1 Rating of Degrees of Saturation

D.O.S.	Rating
Up to 0.6	Excellent
0.6 to 0.7	Very Good
0.7 to 0.8	Good
0.8 to 0.9	Fair
0.9 to 1.0	Poor
Above 1.0	Very Poor

The **95th Percentile (95%ile) Queue** represents the maximum queue length, in metres, that can be expected in 95% of observed queue lengths in the peak hour; and

Average Delay is the delay time, in seconds, which can be expected over all vehicles making a particular movement in the peak hour.

It is noted that a linked network model was adopted for this analysis. SIDRA employs capacity constraints for linked intersections to model the backwards spread of congestion in saturated intersections.

Sidra default values were typically adopted for the analysis with the following exceptions

- Peak Flow Factor was set to 100% (from the default 95%). Given the precinct is mixed use a spreading of peak loading across the peak hour is to be expected.
- In the ultimate scenario (Year 2046) the following through lane capacities have been adopted:
 - o Narre Warren-Cranbourne Road through traffic: 2,300vph
 - o Glasscocks Road through traffic: 2,100vph⁵

It is further noted that a number of major suburban signalised intersections in Melbourne effectively operate with a DOS greater 1.0 during peak times resulting in vehicles taking more than one traffic signal cycle to clear the intersection. The proportion of intersections in Melbourne operating with a DOS greater than 1.0 is only expected to increase as development continues given there is limited available road space to make continual capacity improvements.

⁵ The capacity of Glasscocks Road has been modelled slightly less than that of Narre-Warren Cranbourne Road to reflect that Narre-Warren Cranbourne Road is a higher order road and accordingly have greater SCATS coordination operation at the signalised intersection along its length allowing for greater throughput along the Narre-Warren Cranbourne Road corridor route.

7 Interim (2026) Intersection Analysis

The interim (2026) results of the SIDRA analysis are summarised in Table 7-1 and Table 7-2 with a detailed summary of the results including intersections phasing included in Appendix C.

It should be noted that both intersections were modelled as a linked network with a cycle time of 120 seconds (which must be the same for both intersections when modelling as a linked network in SIDRA).

Table 7-1 SIDRA Intersection Analysis Summary – 2026 AM Peak Hour

	Approach	Degree of Saturation	95 th %ile Queue (m)	Average Delay (sec)
. = 7	Narre Warren-Cranbourne Road (S)	0.61	138	29
Warren- urne Rd cocks Rd	Glasscocks Rd (E)	0.63	105	42
Wa	Narre Warren-Cranbourne Road (N)	0.47	115	26
Narre Warren- Cranboume Rd Glasscocks Rd	Glasscocks Rd (W)	0.33	55	39
250	Intersection	0.63	138	31
Glasscocks Rd / The Strand	Glasscocks Rd (E)	0.84	60	17
	The Strand (N)	0.70	42	66
	Glasscocks Rd (W)	0.32	20	4
St. Zg.	Intersection	0.84	60	19

Table 7-2 SIDRA Intersection Analysis Summary – 2026 PM Peak Hour

	Approach	Degree of Saturation	95 th %ile Queue (m)	Average Delay (sec)
. ~ 7	Narre Warren-Cranbourne Road (S)	0.86	207	51
Warren urne Ro cocks R	Glasscocks Rd (E)	0.61	107	32
Narre Warren- Cranbourne Rd / Glasscocks Rd	Narre Warren-Cranbourne Road (N)	0.91	243	57
Cra Gra	Glasscocks Rd (W)	0.89	232	47
	Intersection	0.91	243	50
	Glasscocks Rd (E)	0.69	93	22
Glasscocks Rd / The Strand	The Strand (N)	0.81	67	67
	Glasscocks Rd (W)	0.55	35	3
Str Str	Intersection	0.81	93	19

Table 7-1 and Table 7-2 indicate that both intersections will operate satisfactorily in the interim assessment year, with acceptable levels of queuing and delay.

8 Ultimate Intersection (2046) Analysis

8.1 Operation of Proposed Intersection Layouts

The ultimate (2046) results of the SIDRA analysis are summarised in Table 8-1 and Table 8-2.

It is noted that both intersections were modelled as a linked network with a cycle time of 140 seconds. A 140 second cycle time was adopted on the basis that the anticipated background traffic volumes will require a longer cycle time than the 120 seconds generally adopted when assessing existing signalised intersections in Metropolitan Melbourne. The adopted cycle time is consistent with the cycle times of 130-150 seconds adopted in the assessments of other PSPs (e.g. Rockbank North and Diggers Rest) where the background traffic volumes also warranted the use of longer cycle times.

In addition it is noted that there are currently a number of signalised intersections within Metropolitan Melbourne currently operating with a cycle time greater than 120 seconds (e.g. intersections along Hoddle Street, Melbourne).

Table 8-1 SIDRA Intersection Analysis Summary – 2046 AM Peak Hour

	Approach	Degree of Saturation	95 th %ile Queue (m)	Average Delay (sec)
Narre Warren- Cranboume Rd / Glasscocks Rd	Narre Warren-Cranbourne Road (S)	1.10	753	118
	Glasscocks Rd (E)	0.91	236	61
	Narre Warren-Cranbourne Road (N)	1.09	613	149
	Glasscocks Rd (W)	0.96	62	65
	Intersection	1.10	753	113
Glasscocks Rd / The Strand	The Strand (S)	0.91	189	75
	Glasscocks Rd (E)	0.91	136	34
	The Strand (N)	0.94	190	80
	Glasscocks Rd (W)	0.91	173	77
Ō	Intersection	0.94	211	57

Table 8-2 SIDRA Intersection Analysis Summary - 2046 PM Peak Hour

	Approach	Degree of Saturation	95 th %ile Queue (m)	Average Delay (sec)
Narre Warren- Cranbourne Rd / Glasscocks Rd	Narre Warren-Cranbourne Road (S)	0.79	325	32
	Glasscocks Rd (E)	1.18	250	148
	Narre Warren-Cranbourne Road (N)	1.22	1155 243	
	Glasscocks Rd (W)	1.69	912	561
	Intersection	1.69	1155	212
Glasscocks Rd / The Strand	The Strand (S)	1.41	734	436
	Glasscocks Rd (E)	1.36	474	129
	The Strand (N)	1.44	421	287
	Glasscocks Rd (W)	0.90	249	54
Ö	Intersection	1.44	736	187

A review of the above tables show that in the AM peak hour that the Glasscocks Road / The Strand will operate with a DOS of less than 1.0. The Narre Warren-Cranbourne Road / Glasscocks Road is expected to operate with a DOS 1.10, a review of the associated average delay times indicate the intersection will still clear within two cycles and not result in the failure of the wider road network.

During the PM peak hour both Narre Warren-Cranbourne Road / Glasscocks Road and Glasscocks Road / The Strand will be oversaturated with a DOS of 1.7 and 1.4, respectively. The PM peak modelling further indicates that through traffic volumes on the Narre Warren-Cranbourne Road north approach will take two cycles to clear the intersection (which is not uncommon for existing busy arterial road intersections during peak times), whilst traffic on the Glasscocks Road approaches are expected to take between two and four cycles to clear the intersection.

The PM peak results for the Glasscocks Road / The Strand intersection indicate that vehicles on The Strand south approach will take on average three cycles to clear the intersection.

8.2 Assessment of Alternative Ultimate Access Arrangements

Based on the above findings, additional ultimate access scenarios were tested as outlined in Table 8-3:

Table 8-3 Additional Ultimate Access Scenarios Tested

Scenario No	Scenario Name	Scenario Description
1	Signalisation of Alisma Boulevard Scenario	The signalisation of the Alsima Boulevard / Narre Warren-Cranbourne Road intersection in conjunction with the proposed works at the Glasscocks Road / Narre Warren – Cranbourne Road intersection.
2	Capacity Improvements on Glasscocks Road Scenario	Capacity improvements to the intersections along Glasscocks Road and no signalisation of the Alsima Boulevard / Narre Warren-Cranbourne Road intersection
3	Capacity Improvements on Glasscocks Road + Signalised Alisma Boulevard Scenario	Scenario 1 plus Scenario 2.

The outcomes of the scenario testing are outlined in the following sub sections.

8.2.2 <u>Scenario 1: Signalisation of Alisma Boulevard</u>

This scenario tested signalising the intersection of Narre Warren-Cranbourne Road / Alisma Boulevard to provide fully directional turning movements (noting the intersection would only have three legs). For this scenario alternate route choices were modelled, resulting in revised (reduced) turning movements on Glasscocks Road. The resultant turning movement volumes for analysis of the signalised Alisma scenario are provided in Figure 8-1 and Figure 8-2.

Figure 8-1 Intersection Volumes – 2046 AM Peak Hour

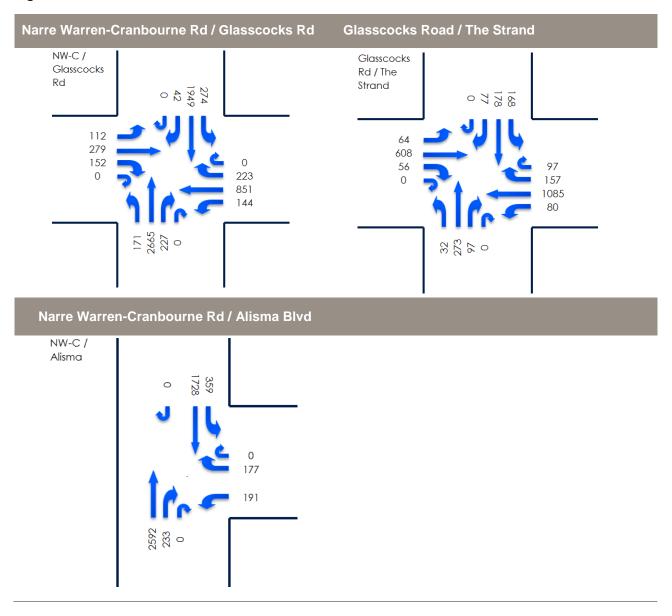
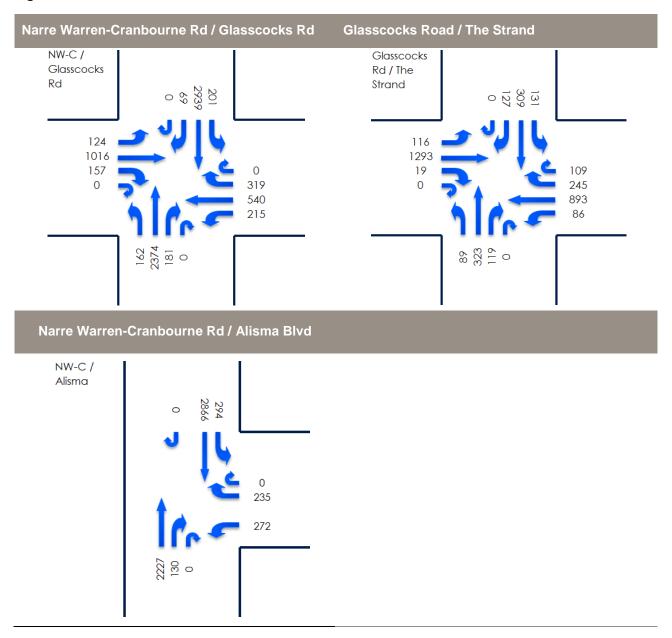



Figure 8-2 Intersection Volumes - 2046 PM Peak Hour

The results of the SIDRA analysis for the Scenario 1 are provided in Table 8-4 and Table 8-5.

Table 8-4 SIDRA Intersection Analysis Summary – 2046 AM Peak Hour – Scenario 1: Signalisation of Alisma Boulevard

	Approach	Degree of Saturation	95 th %ile Queue (m)	Average Delay (sec)
0	Narre Warren – Cranbourne Road (S)	1.02	668	83
e Rc	Glasscocks Rd (E)	1.00	286	65
Narre Warren- Cranboume Rd / Glasscocks Rd	Narre Warren – Cranbourne Road (N)	0.815	299	33
Cra Gi	Glasscocks Rd (W)	0.96	62	64
	Intersection	1.02	668	63
<u> </u>	The Strand (S)	0.82	142	64
ocks Rc Strand	Glasscocks Rd (E)	0.91	248	38
Glasscocks Rd The Strand	The Strand (N)	0.92	189	79
	Glasscocks Rd (W)	0.91	166	79
Ŋ	Intersection	0.92	248	57
Narre Warren- Cranboume Rd / Alisma Boulevard¹	Narre Warren – Cranbourne Road (S)	0.84	379	36
	Alisma Boulevard (E)	0.46	43	40
	Narre Warren – Cranbourne Road (N)	0.57	153	16
Na Cr	Intersection	0.84	379	28

¹Intersection was modelled as an isolated intersection

Table 8-5 SIDRA Intersection Analysis Summary – 2046 PM Peak Hour Scenario 1: Signalisation of Alisma Boulevard

	Approach	Degree of Saturation	95 th %ile Queue (m)	Average Delay (sec)
0	Narre Warren – Cranbourne Road (S)	0.83	353	32
irren e Rc ks R	Glasscocks Rd (E)	1.18	259	145
Narre Warren- Cranboume Rd Glasscocks Rd	Narre Warren – Cranbourne Road (N)	1.22	1147	240
Cra Ca	Glasscocks Rd (W)	1.58	836	488
	Intersection	1.58	1147	199
<u></u>	The Strand (S)	1.25	472	267
Glasscocks Rd The Strand	Glasscocks Rd (E)	1.24	404	101
cock Str	The Strand (N)	1.32	556	362
lassor The	Glasscocks Rd (W)	0.91	226	41
ڻ ن	Intersection	1.32	556	151
Narre Warren- Cranbourne Rd / Alisma Boulevard¹	Narre Warren – Cranbourne Road (S)	0.88	273	28
	Alisma Boulevard (E)	0.60	87	50
	Narre Warren – Cranbourne Road (N)	0.89	424	22
Na Org	Intersection	0.89	424	27

¹Intersection was modelled as an isolated intersection

The PM peak hour results of the Scenario 1 SIDRA modelling indicate that vehicles on the Narre Warren-Cranbourne Road north approach at the Narre Warren-Cranbourne / Glasscocks Road intersection will still take on average two cycles to clear the intersection and that vehicles on the Glasscocks Road west approach would still on average take over three cycles to clear the intersection.

In addition the PM peak results indicate that vehicles on The Strand approaches at its intersection with Glasscocks Road would on average take between two and three cycles to clear the intersection.

The above findings indicate that even with the signalisation of the Alisma Boulevard / Narre Warren-Cranbourne Road intersection that additional capacity is still required at both intersections on Glasscocks Road.

8.2.3 Scenario 2: Capacity Improvements on Glasscocks Road

This scenario involved testing the impact of capacity improvements at the Glasscocks Road intersections with The Strand and Narre Warren-Cranbourne Road. The modelled capacity improvements are outlined in Figure 8-3 and Figure 8-4.

Figure 8-3 Narre Warren-Cranbourne Road / Glasscocks Road – with intersection works

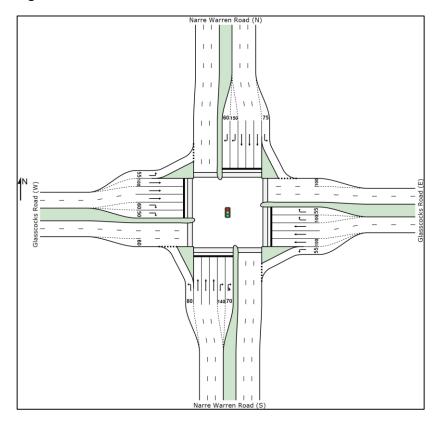


Figure 8-3 shows the provision of an additional through traffic lane (100m length) on both the east and west approaches. A corresponding shortened departure lane is also provided.

Figure 8-4 Glasscocks Road / The Strand – with intersection works

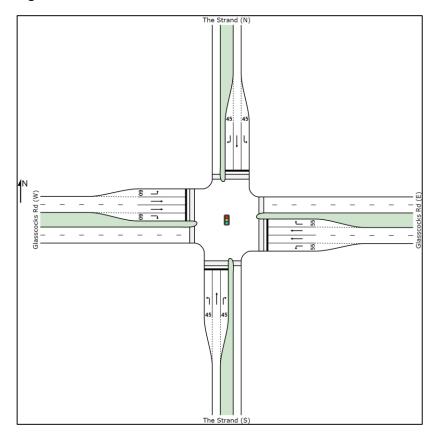


Figure 8-4 shows an additional left turn lane (45m length) provided on both the north and south approaches. The results Scenario 2 SIDRA modelling are summarised in Table 8-6 for the critical PM peak hour.

Table 8-6 SIDRA Intersection Analysis Summary – 2046 PM Peak Hour: Scenario 2: Capacity Improvements on Glasscocks Road

	Approach	Degree of Saturation	95 th %ile Queue (m)	Average Delay (sec)
. = 7	Narre Warren – Cranbourne Road (S)	0.79	327	33
Warren- urne Rd cocks Rc	Glasscocks Rd (E)	1.31	191	116
Narre Warren- Cranboume Rd / Glasscocks Rd	Narre Warren – Cranbourne Road (N)	1.22	1139 238	
	Glasscocks Rd (W)	1.39	581	279
	Intersection	1.39	1139	161
<u> </u>	The Strand (S)	1.30	353	275
Glasscocks Rd The Strand	Glasscocks Rd (E)	1.21	388	91
	The Strand (N)	1.20	314	220
	Glasscocks Rd (W)	0.89	296	51
Ū	Intersection	1.29	388	128

Table 8-6 indicates that the suggested capacity improvements at The Strand/Glasscocks Road intersection result in improved operation during the PM peak hour. Vehicles on The Strand south approach will however on average take two cycles to clear the intersection which is not uncommon for a Local Street or Connector

Street intersection with an Arterial Road in an Activity Centre during peak times. The average delays indicate that vehicles on the Glasscocks Road approaches to the intersection will on average clear every cycle.

Table 8-6 further indicates that vehicles on the north and west approaches to the Glasscocks Road / Narre Warren Road intersection will on average take up to two cycles which is not uncommon for existing busy suburban Arterial Road / Arterial Road intersections.

8.2.4 Scenario 3: Capacity Improvements on Glasscocks Road + Signalised Alisma Boulevard

This scenario involved testing the Scenario 1 plus Scenario 2 improvements. The results Scenario 3 SIDRA modelling are summarised in Table 8-7 for the critical PM peak hour.

Table 8-7 SIDRA Intersection Analysis Summary – 2046 PM Peak Hour – Scenario 3 (Scenario 1 + Scenario 2)

	Approach	Degree of Saturation	95 th %ile Queue (m)	Average Delay (sec)
. = 7	Narre Warren – Cranbourne Road (S)	0.83	352	32
e Rc	Glasscocks Rd (E)	0.81	85	52
Narre Warren- Cranboume Rd Glasscocks Rd	Narre Warren – Cranbourne Road (N)	1.22	1139	238
Sra Gra Gra	Glasscocks Rd (W)	1.13	377	140
	Intersection	1.22	1139	131
	The Strand (S)	1.27	374	260
ocks Rc Strand	Glasscocks Rd (E)	1.27	417	100
Glasscocks Rd The Strand	The Strand (N)	1.22	336	239
	Glasscocks Rd (W)	0.90	233	22
Ō	Intersection	1.27	417	116
Narre Warren- Cranbourne Rd / Alisma Boulevard ¹	Narre Warren – Cranbourne Road (S)	0.88	273	28
	Alisma Boulevard (E)	0.60	87	50
	Narre Warren – Cranbourne Road (N)	0.89	424	22
- O =	Intersection	0.89	424	27

¹Intersection was not modelled as an isolated intersection

When the results outlined in Table 8-5 and Table 8-7 are compared it is evident that there are benefits associated with signalising the Alisma Boulevard / Narre-Warren Cranbourne Road intersection in addition to providing capacity improvements at the Glasscocks Road intersections with The Strand and Narre Warren-Cranbourne Road. The key benefit being that the DOS at the Glasscocks Road / Narre-Warren Cranbourne Road intersection reduces by 0.17, it is however noted that the intersection will still be oversaturated indicated the clear need for additional capacity on the Narre-Warren-Cranbourne Road approaches to the intersection.

8.3 Summary

A summary of the expected 2046 Degree of Saturations for the various scenarios tested is provided in Table 8-8.

Table 8-8 Summary Intersection Degree of Saturation

Year	Scenario	Narre Warren-Cra Glasscocks Road	irre Warren-Cranbourne Road / asscocks Road		Glasscocks Road / The Strand	
		AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour	
Year 2046	Proposed Works	1.10	1.69	0.94	1.44	
	Scenario 1: Signalised Alisma Boulevard	1.02	1.58	0.91	1.32	
	Scenario 2: Capacity Improvements on Glasscocks Road)	-	1.39	-	1.29	
	Scenario 3: Capacity Improvements on Glasscocks Road + Signalised Alisma Boulevard	-	1.22	-	1.27	

Table 8-8 indicates that the DOS at the Narre Warren-Cranbourne Road / Glasscocks Road and the Glasscocks Road / The Strand improve as the various scenario improvements are implemented.

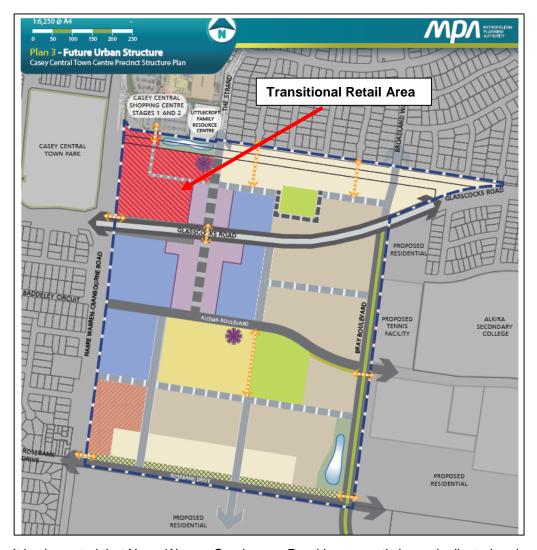
It is however noted that even with all the proposed improvements (i.e. Scenario 3) that vehicles on the Narre Warren-Cranbourne Road north approach will still take on average two cycles to clear the intersection in the PM peak hour.

It is highlighted that the oversaturation of the Narre Warren-Cranbourne Road / Glasscocks Road intersection is driven by the background traffic volumes on Narre Warren-Cranbourne Road. As outlined in Section 2.3, the near /at capacity ultimate background traffic volumes on Narre Warren-Cranbourne Road are attributed to the expansion of the Urban Growth Boundary rather than the development of the Casey Central Town Centre alone. In order to manage the expected background traffic volume growth on Narre Warren-Cranbourne Road consideration should be given to providing extra capacity (i.e. four through traffic lanes in each direction).

In addition it is noted that the signalisation of the Alisma Boulevard / Narre Warren-Cranbourne Road does not result in significant improvements to the operation of the surrounding road network, and moreover would increase delays to through traffic on Narre Warren-Cranbourne Road. The signalisation of this intersection is therefore not warranted.

Furthermore, it is noted that vehicles on The Strand approaches to the intersection with Glasscocks Road will still also take on average two cycles to clear the intersection in the PM peak hour. This delay is not uncommon for a Local Street or Connector Street intersection with an Arterial Road in an Activity Centre during peak times and is considered acceptable given that the oversaturation on The Strand Road to the intersection does not result in the failure of the operation of the surrounding Arterial Road network.

Finally it is noted that a number of major suburban signalised intersections in Melbourne operate with a DOS greater 1.0 during peak times resulting in vehicles taking more than one traffic signal cycle to clear the intersection. The expected performance of the assessed intersections are therefore considered reasonable given the conservative assessment approach and the expected ultimate background traffic volumes on Narre Warren-Cranbourne Road.



9 Transitional Retail Area Access

9.1 Overview

It is understood that there is a desire for service vehicle access to the Transitional Retail area within the PSP from Narre Warren-Cranbourne Road. The location of the PSP area is outlined in Figure 9-1.

Figure 9-1 Location of the Transitional Retail Area

It is also noted that Narre Warren-Cranbourne Road has recently been duplicated and an additional signalised access to Casey Central Shopping Centre has also been constructed.

9.2 AustRoads Guidelines

Part 4A: Unsignalised and Signalised Intersections of Austroads Guide to Road Design provides guidance on intersection types and turn treatments for arterial roads.

It is assumed that Narre Warren-Cranbourne Road will operate at a posted speed limit of 80km/h in the future, and in this regard reference is made to AustRoads Part 4A which indicates a requirement to provide a 95 metre length left turn lane for a possible service vehicle access to the Transitional Retail area from Narre Warren-Cranbourne Road.

A review of the existing offsets between the Casey Central Shopping Centre access (to the north) and the left turn lane at the intersection of Glasscocks Road reveals an uninterrupted midblock section length of 150 metres. As such there is suitable provision for a left turn deceleration lane of 95 metre length to be provided.

9.3 Access Management

In order for access from Narre Warren-Cranbourne Road to be restricted to service vehicles only, appropriate signage will need to be provided along Narre Warren-Cranbourne Road.

Furthermore the layout of the Transitional Retail site area should be provided such that no through access to customer car parking is provided to prevent 'rat-running' through the loading areas.

Access to Narre Warren-Cranbourne Road will ultimately be subject to the approval of VicRoads. Whilst it is considered that a suitable deccelartion turn lane can be provided into the site, it is noted that the left-out movement will be in-line with the right turn lane at the intersection of Narre Warren-Cranbourne Road / Glasscocks Road. The interaction between the left-out movement and the Narre Warren-Cranbourne Road / Glasscocks Road right turn lane could be managed through "Keep Clear" pavement markings.

Two examples of existing service vehicle only access for loading areas are provided on Wurundjeri Way, which services both Etihad Stadium and 700 Bourke Road. A combination of signage and linemarking is employed to control the service vehicle access.

Figure 9-2 Wurundjeri Way - Service Vehicle Only Access

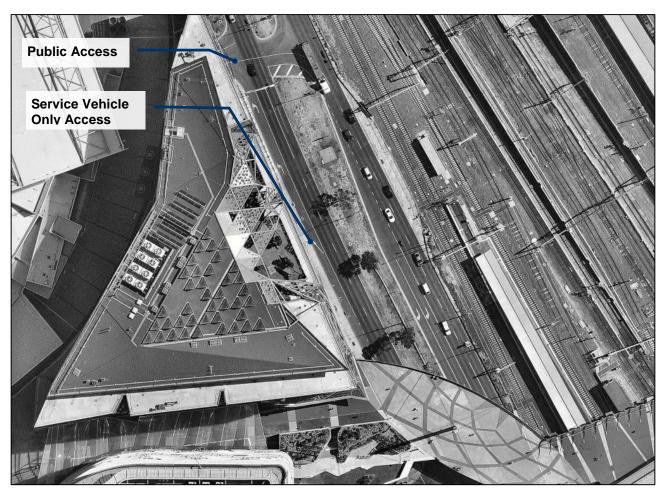
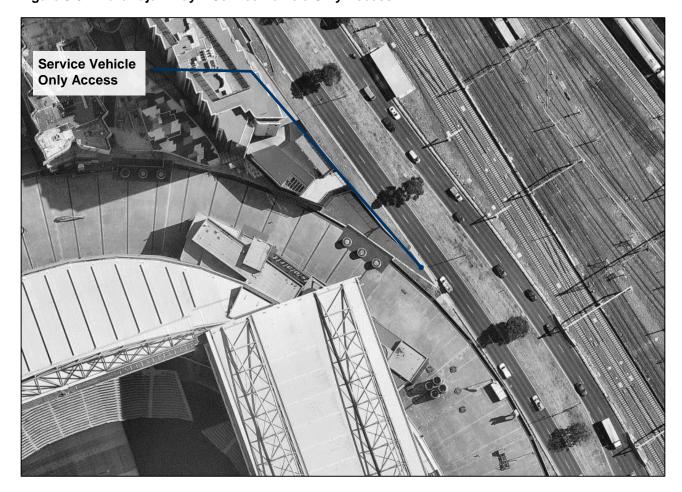



Figure 9-3 Wurundjeri Way – Service Vehicle Only Access

10 Summary

The discussions and analysis presented within this report are summarised as follows:

Interim Analysis

 The proposed interim access intersection layouts of the Narre Warren-Cranbourne Road / Glasscocks Road and the Glasscocks Road / The Strand intersections are suitable for catering for the traffic generated by the interim development of the Casey Central Town Centre PSP area.

Ultimate Analysis

- 1. With the MPA proposed ultimate access arrangements, during the PM peak hour, both Narre Warren-Cranbourne Road / Glasscocks Road and Glasscocks Road / The Strand will be oversaturated with a DOS of 1.7 and 1.4, respectively. The PM peak modelling further indicates that through traffic volumes on the Narre Warren-Cranbourne Road north approach will take two cycles to clear the intersection, whilst traffic on the Glasscocks Road approaches are expected to take between two and four cycles to clear the intersection. The PM peak results for the Glasscocks Road / The Strand intersection indicate that vehicles on The Strand south approach will take on average three cycles to clear the intersection.
- 2. The background traffic volumes on Narre Warren-Cranbourne Road are expected to be in excess 2,700 vehicles per hour in <u>each</u> direction during the PM peak under ultimate operating conditions. The Austroads Guide to Traffic Management Part 3: Traffic Studies and Analysis notes that the typical midblock capacity for urban roads with interrupted flow is in the order of 900-1000 vehicles per hour per lane indicating that Narre-Warren-Cranbourne Road will be operating very at capacity even without the development of the subject PSP area under ultimate conditions. The near /at capacity ultimate background traffic volumes on Narre Warren-Cranbourne Road are attributed to the expansion of the Urban Growth Boundary rather than the development of the Casey Central Town Centre alone. In order to manage the expected background traffic volume growth on Narre Warren-Cranbourne Road consideration should be given to providing extra capacity (i.e. four through traffic lanes in each direction).
- 3. The signalisation of the Alisma Boulevard / Narre Warren-Cranbourne Road does not result in significant improvements to the operation of the surrounding road network, and moreover would increase delays to through traffic on Narre Warren-Cranbourne Road. The signalisation of this intersection is therefore not warranted.
- 4. With the proposed capacity improvements at the Glasscocks Road/The Strand intersection outlined in this report, vehicles on The Strand approaches to the intersection with Glasscocks Road will take on average two cycles to clear the intersection. This delay is not uncommon for a Local Street or Connector Street intersection with an Arterial Road in an Activity Centre during peak times and is considered acceptable given that the oversaturation on The Strand Road to the intersection does not result in the failure of the operation of the surrounding Arterial Road network.
- 5. Finally it is noted that a number of major suburban signalised intersections in Melbourne operate with a DOS greater 1.0 during peak times resulting in vehicles taking more than one traffic signal cycle to clear the intersection. The expected performance of the assessed intersections are therefore considered reasonable given the conservative assessment approach and the expected ultimate background traffic volumes on Narre Warren-Cranbourne Road.

Transitional Retail Area Access

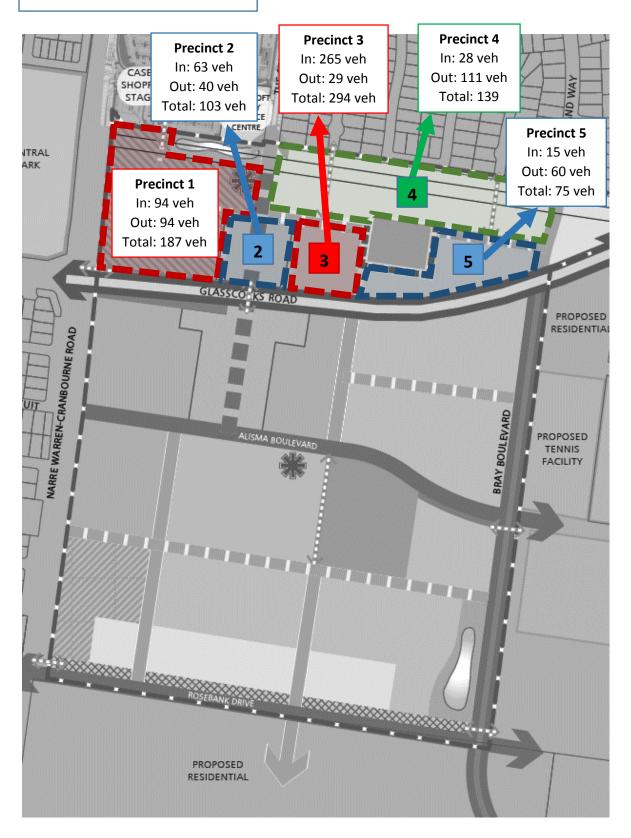
6. Service vehicle access to / from the proposed Transitional Retail Area from Narre Warren-Cranbourne Road will ultimately be subject to the approval of VicRoads. Whilst it is considered that a suitable deccelartion turn lane can be provided into the site, it is noted that the left-out movement will be in-line with the right turn lane at the intersection of Narre Warren-Cranbourne Road / Glasscocks Road, the interaction between the left-out movement and the Narre Warren-Cranbourne Road / Glasscocks Road could howvever be managed through "Keep Clear" pavement markings.


Casey Central Town Centre

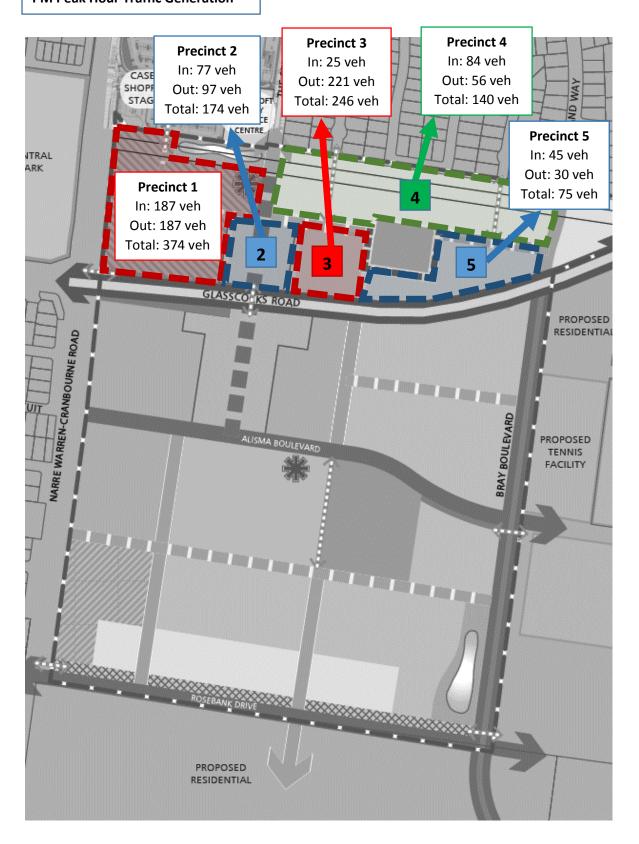
APPENDIX

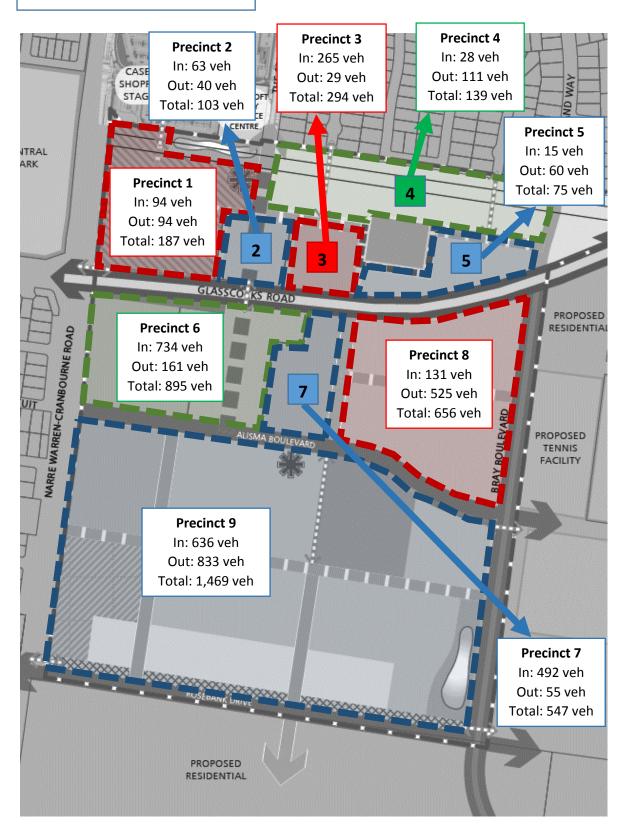
FUTURE URBAN STRUCTURE PLAN

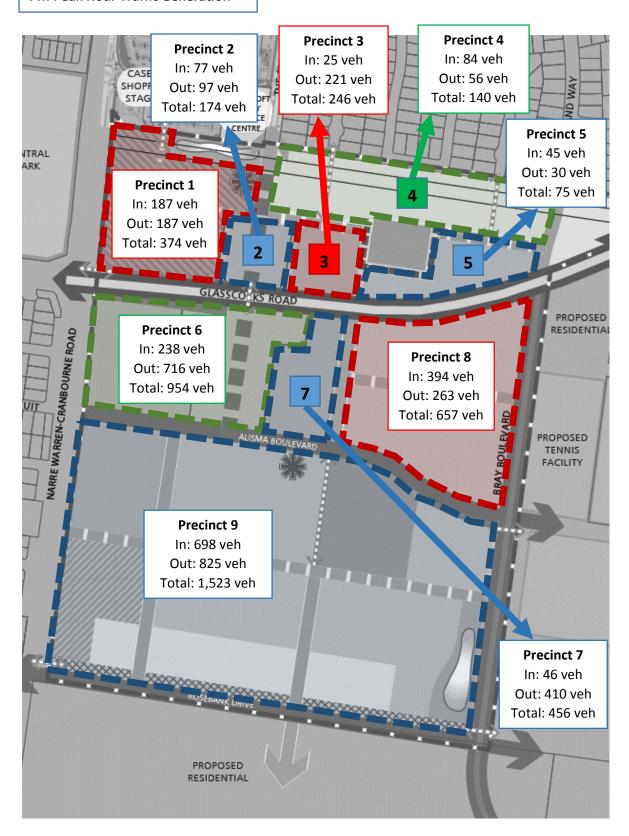
Casey Central Town Centre


APPENDIX

B


TRIP GENERATION


Interim (2026) AM Peak Hour Traffic Generation


Interim (2026) PM Peak Hour Traffic Generation

Ultimate (2046) AM Peak Hour Traffic Generation

Ultimate (2046) PM Peak Hour Traffic Generation

Casey Central Town Centre

APPENDIX

C

SIDRA OUTPUTS

Site: NwcGl-2026-AM - one lane - dcp glass

Narre Warren Road / Glasscocks Roads

Signals - Fixed Time Coordinated Cycle Time = 120 seconds (Network Cycle Time)

Movement Performance - Vehicles													
Mov	OD	Demand			l Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	n: Narre W	larren Road	(S)										
1	L2	81	1.0	81	1.0	0.077	12.4	LOS A	1.6	11.1	0.40	0.65	49.3
2	T1	1456	4.0	1456	4.0	0.940	64.2	LOS D	34.0	246.3	1.00	1.10	29.4
3	R2	165	1.0	165	1.0	0.817	69.3	LOS C	8.0	56.5	0.99	0.87	18.7
Appro	oach	1702	3.6	1702	3.6	0.940	62.3	LOS D	34.0	246.3	0.97	1.05	29.1
East:	Glasscoc	ks Road (E)											
4	L2	97	1.0	97	1.0	0.080	9.4	LOS A	1.4	9.6	0.30	0.62	48.7
5	T1	594	4.0	594	4.0	0.920	46.8	LOS D	35.0	253.4	0.88	0.95	29.5
6	R2	106	1.0	106	1.0	0.575	72.5	LOS A	3.3	23.5	1.00	0.75	22.9
Appro	oach	797	3.2	797	3.2	0.920	45.6	LOS D	35.0	253.4	0.83	0.88	29.8
North	: Narre W	arren Road	(N)										
7	L2	132	1.0	132	1.0	0.114	8.5	LOS A	1.7	11.8	0.28	0.63	47.2
8	T1	1126	4.0	1126	4.0	0.725	42.9	LOS C	20.3	147.1	0.96	0.84	35.4
9	R2	30	1.0	30	1.0	0.098	62.0	LOS A	0.8	5.9	0.95	0.69	29.8
Appro	oach	1288	3.6	1288	3.6	0.725	39.8	LOS C	20.3	147.1	0.89	0.82	35.7
West	: Glasscoo	cks Road (W	/)										
10	L2	35	1.0	35	1.0	0.031	13.0	LOS A	0.7	5.0	0.40	0.63	48.9
11	T1	299	4.0	299	4.0	0.297	26.2	LOS A	8.8	63.8	0.71	0.59	33.0
12	R2	35	1.0	35	1.0	0.190	68.1	LOS A	1.0	7.4	0.99	0.69	28.4
Appro	oach	369	3.4	369	3.4	0.297	28.9	LOS A	8.8	63.8	0.71	0.61	33.9
All Ve	hicles	4156	3.5	4156	3.5	0.940	49.2	LOS D	35.0	253.4	0.90	0.91	31.4

фф Network: 2026AM - one lane

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Vehicle movement LOS values are based on degree of saturation per movement

Intersection and Approach LOS values are based on worst degree of saturation for any vehicle movement.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back of Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	53	38.5	LOS D	0.1	0.1	0.80	0.80
P2	East Full Crossing	53	43.4	LOS E	0.2	0.2	0.85	0.85
P3	North Full Crossing	53	38.5	LOS D	0.1	0.1	0.80	0.80
P4	West Full Crossing	53	45.2	LOS E	0.2	0.2	0.87	0.87
All Pe	destrians	211	41.4	LOS E			0.83	0.83

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

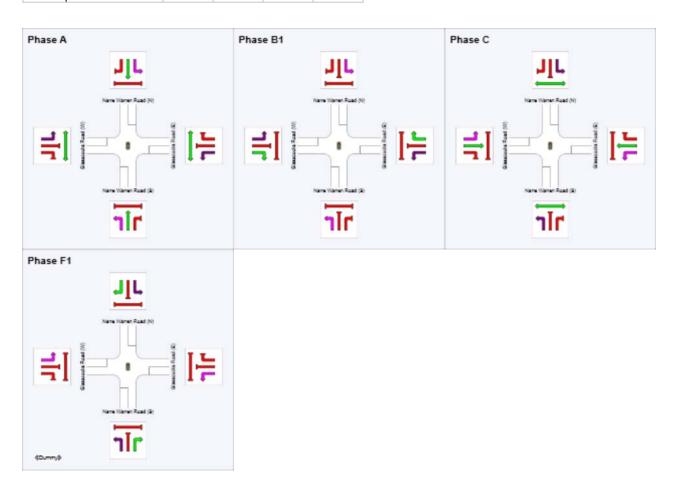
Organisation: CARDNO | Processed: Monday, 28 September 2015 4:10:28 PM
Project: \AUMELCFS01.cardno.corp\Apps\WINDOWS\2015\cg150713\SIDRA\CG150713SID0012046.sip6

Site: NwcGl-2026-AM - one lane - dcp glass

фф Network: 2026AM - one lane

Narre Warren Road / Glasscocks Roads

Signals - Fixed Time Coordinated Cycle Time = 120 seconds (Network Cycle Time)


Phase times determined by the program

Sequence: Variable Phasing

Movement Class: All Movement Classes

Input Sequence: A, B1, C, F1 Output Sequence: A, B1, C, F1

Phase	Α	B1	С	F1
Reference Phase	No	Yes	No	No
Phase Change Time (sec)	81	0	12	65
Green Time (sec)	33	6	47	10
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	39	12	53	16
Phase Split	33 %	10 %	44 %	13 %

Site: GISt-2026-AM - one lane

Glasscocks Road / The Strand

Move	ement Pe	erformance	e - Veh	icles									
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Arrival Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East:	Glasscoc	ks Rd (E)											
5	T1	598	4.0	598	4.0	0.589	5.6	LOS A	9.4	68.3	0.30	0.27	50.8
6	R2	53	1.0	53	1.0	0.844	72.5	LOS C	8.5	59.9	1.00	0.92	26.8
6u	U	77	1.0	77	1.0	0.844	73.7	LOS C	8.5	59.9	1.00	0.92	26.8
Appro	ach	728	3.5	728	3.5	0.844	17.6	LOS C	9.4	68.3	0.42	0.39	40.0
North:	The Stra	nd (N)											
7	L2	97	1.0	97	1.0	0.701	68.5	LOS C	6.0	42.1	1.00	0.83	27.9
9	R2	89	1.0	89	1.0	0.587	64.3	LOS A	5.3	37.2	1.00	0.79	19.4
Appro	ach	186	1.0	186	1.0	0.701	66.5	LOSC	6.0	42.1	1.00	0.81	24.5
West:	Glasscoo	cks Rd (W)											
10	L2	84	1.0	84	1.0	0.073	14.7	LOS A	1.9	13.1	0.41	0.67	43.7
11	T1	393	4.0	393	4.0	0.318	9.8	LOS A	9.9	71.9	0.47	0.42	49.1
Appro	ach	477	3.5	477	3.5	0.318	10.6	LOS A	9.9	71.9	0.46	0.46	48.1
All Ve	hicles	1391	3.1	1391	3.1	0.844	21.8	LOSC	9.9	71.9	0.51	0.47	38.7

фф Network: 2026AM - one lane

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Vehicle movement LOS values are based on degree of saturation per movement

Intersection and Approach LOS values are based on worst degree of saturation for any vehicle movement.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestrians							
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P2	East Full Crossing	53	54.3	LOS E	0.2	0.2	0.95	0.95
P3	North Full Crossing	53	10.0	LOS B	0.1	0.1	0.41	0.41
P4	West Full Crossing	53	54.3	LOS E	0.2	0.2	0.95	0.95
All Pe	destrians	158	39.5	LOS D			0.77	0.77

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

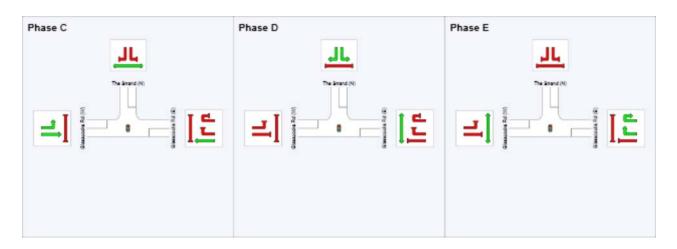
Organisation: CARDNO | Processed: Monday, 28 September 2015 4:10:28 PM

Project: \\AUMELCFS01.cardno.corp\Apps\\WINDOWS\2015\cg150713\SIDRA\CG150713SID0012046.sip6

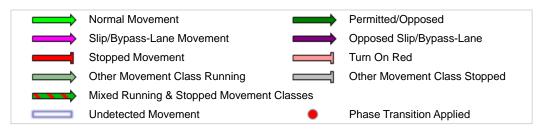
Site: GISt-2026-AM - one lane

Glasscocks Road / The Strand Signals - Fixed Time Coordinated Cycle Time = 120 seconds (Network Cycle Time)

Phase times determined by the program


Sequence: CGR

Movement Class: All Movement Classes


Input Sequence: C, D, E Output Sequence: C, D, E

Phase Timing Results

Phase	С	D	E
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	84	102
Green Time (sec)	78	12	12
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	84	18	18
Phase Split	70 %	15 %	15 %

фф Network: 2026AM - one lane

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CARDNO | Processed: Monday, 28 September 2015 4:10:28 PM

Project: \\AUMELCFS01.cardno.corp\Apps\\WINDOWS\2015\cg150713\SIDRA\CG150713SID0012046.sip6

Site: NwcGl-2026-PM - one lane - dcp glass

фф Network: 2026PM - one lane dcp glass

Narre Warren Road / Glasscocks Roads

Signals - Fixed Time Coordinated Cycle Time = 120 seconds (Network Cycle Time)

Movement Performance - Vehicles													
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Arriva Total veh/h	l Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	n: Narre W	arren Road		VCII/II	70	V/C	300		VCII			per veri	KITI/TI
1	L2	37	1.0	37	1.0	0.026	8.2	LOS A	0.4	2.9	0.26	0.60	52.2
2	T1	1405	4.0	1405	4.0	0.850	49.9	LOS C	28.6	207.1	1.00	0.98	33.2
3	R2	122	1.0	122	1.0	0.863	74.1	LOS C	6.1	43.3	1.00	0.89	17.9
Appro	oach	1564	3.7	1564	3.7	0.863	50.8	LOS C	28.6	207.1	0.98	0.97	32.3
East:	Glasscoc	ks Road (E)											
4	L2	133	1.0	133	1.0	0.117	11.8	LOS A	2.0	14.3	0.30	0.63	46.7
5	T1	375	4.0	375	4.0	0.611	27.9	LOS B	14.8	106.8	0.73	0.63	37.1
6	R2	149	1.0	149	1.0	0.269	62.1	LOS A	4.3	30.6	1.00	0.78	25.1
Appro	oach	657	2.7	657	2.7	0.611	32.4	LOS B	14.8	106.8	0.70	0.66	34.8
North	: Narre W	arren Road	(N)										
7	L2	128	1.0	128	1.0	0.118	14.4	LOS A	2.9	20.6	0.45	0.67	41.1
8	T1	1434	4.0	1434	4.0	0.913	60.9	LOS D	33.6	243.2	1.00	1.09	30.2
9	R2	38	1.0	38	1.0	0.206	68.2	LOS A	1.1	8.0	0.99	0.70	28.3
Appro	oach	1600	3.7	1600	3.7	0.913	57.4	LOS D	33.6	243.2	0.96	1.05	30.5
West	: Glasscoo	cks Road (W	/)										
10	L2	83	1.0	83	1.0	0.071	12.6	LOS A	1.6	11.4	0.40	0.65	49.2
11	T1	683	4.0	683	4.0	0.891	48.8	LOS C	32.0	231.8	0.95	0.95	23.8
12	R2	83	1.0	83	1.0	0.450	69.7	LOS A	2.5	17.9	1.00	0.73	28.1
Appro	oach	849	3.4	849	3.4	0.891	47.3	LOSC	32.0	231.8	0.90	0.90	26.6
All Ve	hicles	4670	3.5	4670	3.5	0.913	49.8	LOS D	33.6	243.2	0.92	0.94	31.0

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Vehicle movement LOS values are based on degree of saturation per movement

Intersection and Approach LOS values are based on worst degree of saturation for any vehicle movement.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians										
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back of Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped			
P1	South Full Crossing	53	36.9	LOS D	0.1	0.1	0.79	0.79			
P2	East Full Crossing	53	42.6	LOS E	0.2	0.2	0.84	0.84			
P3	North Full Crossing	53	46.9	LOS E	0.2	0.2	0.89	0.89			
P4	West Full Crossing	53	43.4	LOS E	0.2	0.2	0.85	0.85			
All Pe	destrians	211	42.5	LOS E			0.84	0.84			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Organisation: CARDNO | Processed: Monday, 28 September 2015 10:55:02 AM

Project: \AUMELCFS01.cardno.corp\Apps\WINDOWS\2015\cg150713\SIDRA\CG150713\SID0012046.sip6

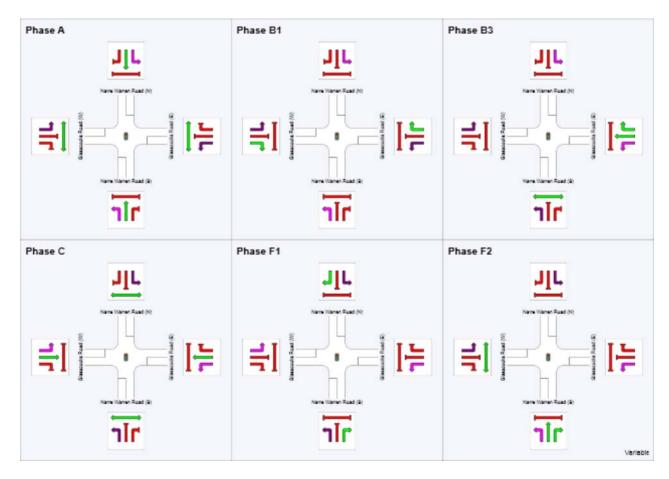
Site: NwcGl-2026-PM - one lane - dcp glass

фф Network: 2026PM - one lane dcp glass

Narre Warren Road / Glasscocks Roads

Signals - Fixed Time Coordinated Cycle Time = 120 seconds (Network Cycle Time)

Phase times determined by the program


Sequence: Variable Phasing


Movement Class: All Movement Classes Input Sequence: A, B1, B2, B3, C, F1, F2 Output Sequence: A, B1, B3, C, F1, F2

Phase Timing Results

Phase	Α	B1	В3	С	F1	F2
Reference Phase	No	No	Yes	No	No	No
Phase Change Time (sec)	68	108	0	12	55	67
Green Time (sec)	34	6	6	37	6	***
Yellow Time (sec)	4	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2	2
Phase Time (sec)	40	12	12	43	12	1
Phase Split	33 %	10 %	10 %	36 %	10 %	1 %

*** No green time has been calculated for this phase because the next phase starts during its intergreen time. This occurs with overlap phasing where there is no single movement connecting this phase to the next, or where the only such movement is a dummy movement with zero minimum green time specified. If a green time is required for this phase, specify a dummy movement with a non-zero minimum green time.

Site: GISt-2026-PM - one lane

фф Network: 2026PM - one lane dcp glass

Glasscocks Road / The Strand

Signals - Fixed Time Coordinated Cycle Time = 120 seconds (Network Cycle Time)

Move	ement Po	erformance	- Ver	nicles									
Mov ID	OD Mov	Demand I Total veh/h	Flows HV %	Arrival Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East:	Glasscoo	ks Rd (E)											
5	T1	477	4.0	477	4.0	0.386	10.3	LOS A	12.8	92.5	0.50	0.45	44.9
6	R2	119	1.0	119	1.0	0.689	65.3	LOS B	7.5	53.0	1.00	0.83	28.5
6u	U	6	1.0	6	1.0	0.689	66.5	LOS B	7.5	53.0	1.00	0.83	28.4
Appro	ach	602	3.4	602	3.4	0.689	21.8	LOS B	12.8	92.5	0.61	0.53	37.5
North	: The Stra	and (N)											
7	L2	91	1.0	91	1.0	0.493	62.8	LOS A	5.2	37.0	0.99	0.78	29.1
9	R2	150	1.0	150	1.0	0.813	69.3	LOS C	9.5	66.8	1.00	0.90	18.5
Appro	ach	241	1.0	241	1.0	0.813	66.8	LOSC	9.5	66.8	1.00	0.85	23.1
West:	Glassco	cks Rd (W)											
10	L2	154	1.0	154	1.0	0.128	7.2	LOS A	0.6	4.3	0.07	0.59	49.9
11	T1	684	4.0	684	4.0	0.554	2.4	LOS A	4.9	35.4	0.13	0.12	56.9
Appro	ach	838	3.4	838	3.4	0.554	3.3	LOS A	4.9	35.4	0.12	0.21	55.5
All Ve	hicles	1681	3.1	1681	3.1	0.813	19.0	LOS C	12.8	92.5	0.42	0.42	40.8

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Vehicle movement LOS values are based on degree of saturation per movement

Intersection and Approach LOS values are based on worst degree of saturation for any vehicle movement.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians										
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back of Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped			
P2	East Full Crossing	53	54.3	LOS E	0.2	0.2	0.95	0.95			
P3	North Full Crossing	53	10.0	LOS B	0.1	0.1	0.41	0.41			
P4	West Full Crossing	53	54.3	LOS E	0.2	0.2	0.95	0.95			
All Pe	destrians	158	39.5	LOS D			0.77	0.77			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright @ 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO | Processed: Monday, 28 September 2015 10:55:02 AM

Project: \\AUMELCFS01.cardno.corp\Apps\\WINDOWS\2015\cg150713\\SIDRA\CG150713SID0012046.sip6

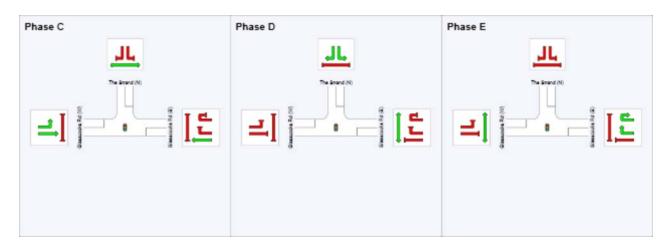
Site: GISt-2026-PM - one lane

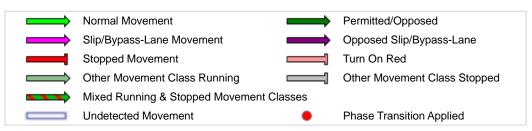
фф Network: 2026PM - one lane dcp glass

Glasscocks Road / The Strand

Signals - Fixed Time Coordinated Cycle Time = 120 seconds (Network Cycle Time)

Phase times determined by the program


Sequence: CGR


Movement Class: All Movement Classes

Input Sequence: C, D, E Output Sequence: C, D, E

Phase Timing Results

Phase	С	D	E
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	84	102
Green Time (sec)	78	12	12
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	84	18	18
Phase Split	70 %	15 %	15 %

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CARDNO | Processed: Monday, 28 September 2015 10:55:02 AM

Project: \AUMELCFS01.cardno.corp\Apps\WINDOWS\2015\cg150713\SIDRA\CG150713\SID0012046.sip6

Site: NwcGI-2046-AM

Narre Warren Road / Glasscocks Roads

Movement Performance - Vehicles													
Mov	OD	Demand			I Flows	Deg.	Average	Level of		of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	· Norro M	veh/h Varren Road	% (S)	veh/h	%	v/c	sec		veh	m		per veh	km/h
	L2	161	1.0	161	1.0	0.132	11.9	LOS A	3.4	23.9	0.36	0.65	49.6
1													
2	T1	2584	4.0	2584	4.0	1.063	124.8	LOS F	104.0	753.2	1.00	1.41	19.8
3	R2	256	1.0	256	1.0	0.810	71.0	LOS C	18.0	127.1	1.00	0.90	18.5
3u	U	131	1.0	131	1.0	1.104	196.0	LOS F	16.0	112.9	1.00	1.21	14.2
Appro	oach	3132	3.5	3132	3.5	1.104	117.6	LOS F	104.0	753.2	0.96	1.32	20.1
East:	Glasscoo	ks Road (E))										
4	L2	146	1.0	146	1.0	0.175	27.3	LOS A	5.5	38.6	0.60	0.70	36.8
5	T1	855	4.0	855	4.0	0.908	67.1	LOS D	32.6	235.9	0.98	1.05	24.1
6	R2	310	1.0	310	1.0	0.588	58.1	LOS A	9.4	66.2	0.91	0.79	26.0
Appro	oach	1311	3.0	1311	3.0	0.908	60.6	LOS D	32.6	235.9	0.92	0.95	25.5
North	: Narre W	arren Road	(N)										
7	L2	274	1.0	274	1.0	0.223	11.2	LOS A	5.7	40.3	0.37	0.66	44.2
8	T1	1949	4.0	1949	4.0	1.091	169.3	LOS F	84.7	613.2	1.00	1.57	16.0
9	R2	42	1.0	42	1.0	0.266	80.0	LOS A	1.5	10.4	1.00	0.70	26.0
Appro	ach	2265	3.6	2265	3.6	1.091	148.5	LOS F	84.7	613.2	0.92	1.44	16.8
West	Glassco	cks Road (W	/)										
10	L2	112	1.0	112	1.0	0.191	37.1	LOS A	5.5	38.8	0.75	0.75	37.1
11	T1	279	4.0	279	4.0	0.411	55.3	LOS A	8.5	61.6	0.93	0.76	22.0
12	R2	152	1.0	152	1.0	0.962	102.3	LOS E	6.4	45.0	1.00	1.02	22.5
Appro	ach	543	2.5	543	2.5	0.962	64.7	LOS E	8.5	61.6	0.91	0.83	25.0
All Ve	hicles	7251	3.3	7251	3.3	1.104	113.0	LOS F	104.0	753.2	0.94	1.25	19.7

фф Network: 2046AM

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Vehicle movement LOS values are based on degree of saturation per movement

Intersection and Approach LOS values are based on worst degree of saturation for any vehicle movement.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ment Performance - Pedestrians							
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P11	South Stage 1	53	45.7	LOS E	0.2	0.2	0.81	0.81
P12	South Stage 2	53	41.7	LOS E	0.2	0.2	0.77	0.77
P2	East Full Crossing	53	43.3	LOS E	0.2	0.2	0.79	0.79
P3	North Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P4	West Full Crossing	53	30.3	LOS D	0.1	0.1	0.66	0.66
All Pe	destrians	263	45.1	LOS E			0.80	0.80

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

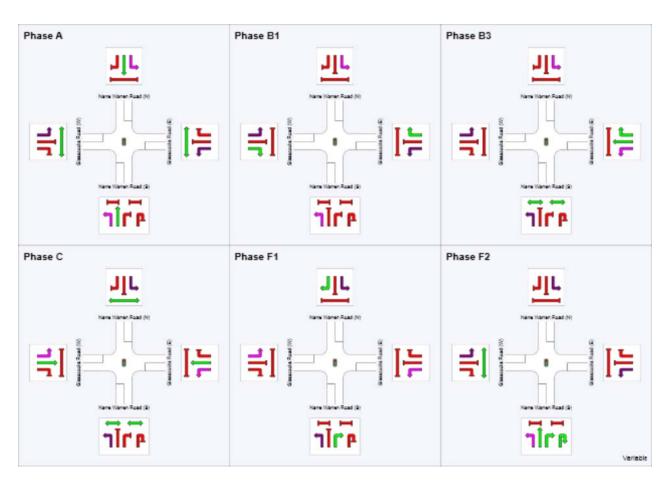
Pedestrian movement LOS values are based on average delay per pedestrian movement.

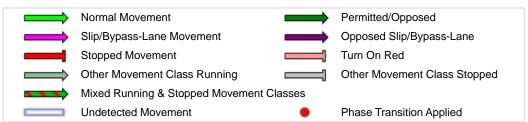
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: NwcGI-2046-AM

Narre Warren Road / Glasscocks Roads

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network Cycle Time)


фф Network: 2046AM


Phase times determined by the program

Sequence: Variable Phasing

Movement Class: All Movement Classes Input Sequence: A, B1, B2, B3, C, F1, F2 Output Sequence: A, B1, B3, C, F1, F2

Phase	Α	B1	В3	С	F1	F2
Reference Phase	No	No	Yes	No	No	No
Phase Change Time (sec)	75	128	0	14	45	57
Green Time (sec)	47	6	8	25	6	12
Yellow Time (sec)	4	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2	2
Phase Time (sec)	53	12	14	31	12	18
Phase Split	38 %	9 %	10 %	22 %	9 %	13 %

ቔ Site: GISt-2046-AM 中中 Network: 2046AM

Glasscocks Road / The Strand

Movement Performance - Vehicles													
Mov	OD	Demand			I Flows	Deg.	Average	Level of		of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: The Str	veh/h	%	veh/h	%	v/c	sec		veh	m		per veh	km/h
1	L2	87	1.0	87	1.0	0.908	77.4	LOS D	26.8	189.4	1.00	1.05	18.0
		-		_									
2	T1	263	1.0	263	1.0	0.908	71.8	LOS D	26.8	189.4	1.00	1.05	27.3
3	R2	68	1.0	68	1.0	0.738	82.9	LOS C	5.0	35.2	1.00	0.84	25.3
Appro	ach	418	1.0	418	1.0	0.908	74.8	LOS D	26.8	189.4	1.00	1.02	25.4
East:	Glasscoo	ks Rd (E)											
4	L2	80	1.0	80	1.0	0.089	25.9	LOS A	2.9	20.2	0.57	0.70	41.3
5	T1	1124	4.0	1124	4.0	0.794	24.0	LOS C	29.2	211.2	0.68	0.62	33.7
6	R2	157	1.0	157	1.0	0.909	77.0	LOS D	19.3	136.1	0.93	0.96	26.1
6u	U	100	1.0	100	1.0	0.909	78.1	LOS D	19.3	136.1	0.93	0.96	26.0
Appro	ach	1461	3.3	1461	3.3	0.909	33.5	LOS D	29.2	211.2	0.72	0.69	31.6
North	: The Stra	and (N)											
7	L2	168	1.0	168	1.0	0.917	79.3	LOS D	26.8	189.5	1.00	1.04	26.3
8	T1	178	1.0	178	1.0	0.917	73.7	LOS D	26.8	189.5	1.00	1.04	26.7
9	R2	77	1.0	77	1.0	0.942	98.5	LOS D	6.3	44.8	1.00	1.00	14.4
Appro	ach	423	1.0	423	1.0	0.942	80.4	LOS D	26.8	189.5	1.00	1.04	24.4
West	Glassco	cks Rd (W)											
10	L2	73	1.0	73	1.0	0.198	63.2	LOS A	4.7	32.9	0.98	0.78	24.3
11	T1	640	4.0	640	4.0	0.905	77.5	LOS D	23.9	172.9	1.00	0.97	21.7
12	R2	71	1.0	71	1.0	0.599	81.4	LOS A	5.1	35.9	1.00	0.77	20.8
Appro	ach	784	3.4	784	3.4	0.905	76.5	LOS D	23.9	172.9	1.00	0.93	21.9
All Ve	hicles	3086	2.7	3086	2.7	0.942	56.5	LOS D	29.2	211.2	0.87	0.84	26.2

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Vehicle movement LOS values are based on degree of saturation per movement

Intersection and Approach LOS values are based on worst degree of saturation for any vehicle movement.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Pedestrians							
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back of Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	53	23.5	LOS C	0.1	0.1	0.58	0.58
P2	East Full Crossing	53	56.8	LOS E	0.2	0.2	0.90	0.90
P3	North Full Crossing	53	52.4	LOS E	0.2	0.2	0.87	0.87
P4	West Full Crossing	53	56.8	LOS E	0.2	0.2	0.90	0.90
All Pe	destrians	211	47.4	LOS E			0.81	0.81

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Project:

Site: GISt-2046-AM

Glasscocks Road / The Strand Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network Cycle Time) ቀቀ Network: 2046AM

Phase times determined by the program

Sequence: CGR

Movement Class: All Movement Classes Input Sequence: A, B1, B2, C, F1 Output Sequence: A, B1, B2, C, F1

Phase	Α	B1	B2	С	F1
Reference Phase	No	No	No	Yes	No
Phase Change Time (sec)	32	70	85	125	19
Green Time (sec)	32	9	34	28	7
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	38	15	40	34	13
Phase Split	27 %	11 %	29 %	24 %	9 %

Site: NwcGI-2046-PM

Narre Warren Road / Glasscocks Roads

Movement Performance - Vehicles													
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Arrival Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Narre V	Varren Road	(S)										
1	L2	142	1.0	142	1.0	0.097	8.0	LOS A	1.7	12.1	0.24	0.61	52.4
2	T1	2246	4.0	2246	4.0	0.790	29.3	LOS C	44.8	324.6	0.86	0.78	40.7
3	R2	221	1.0	221	1.0	0.653	70.6	LOS B	9.4	66.4	1.00	0.82	18.5
3u	U	42	1.0	42	1.0	0.653	72.4	LOS B	8.4	59.2	1.00	0.83	27.4
Appro	ach	2651	3.5	2651	3.5	0.790	32.3	LOS C	44.8	324.6	0.84	0.78	38.8
East:	Glasscoo	ks Road (E)											
4	L2	229	1.0	211	1.1	0.467	34.3	LOS A	9.7	68.6	0.74	0.79	33.5
5	T1	557	4.0	515	4.2	1.176	219.8	LOS F	34.4	249.6	1.00	1.44	10.2
6	R2	450	1.0	415	1.1	1.051	118.0	LOS F	19.9	140.8	1.00	1.08	16.5
Appro	ach	1236	2.4	1141 ^{N1}	2.5	1.176	148.4	LOS F	34.4	249.6	0.95	1.19	13.9
North	: Narre W	arren Road	(N)										
7	L2	201	1.0	201	1.0	0.189	14.3	LOS A	5.2	36.5	0.42	0.67	41.2
8	T1	2939	4.0	2939	4.0	1.222	261.8	LOS F	159.6	1155.2	1.00	1.96	11.4
9	R2	69	1.0	69	1.0	0.437	81.0	LOS A	2.5	17.4	1.00	0.72	25.8
Appro	ach	3209	3.7	3209	3.7	1.222	242.5	LOS F	159.6	1155.2	0.96	1.85	11.9
West:	Glassco	cks Road (W	/)										
10	L2	124	1.0	124	1.0	0.209	30.3	LOS A	5.8	41.3	0.72	0.77	39.8
11	T1	1016	4.0	1016	4.0	1.687	703.4	LOS F	126.0	912.4	1.00	2.70	2.6
12	R2	157	1.0	157	1.0	0.238	59.0	LOS A	4.6	32.6	0.90	0.76	30.6
Appro	ach	1297	3.4	1297	3.4	1.687	561.0	LOS F	126.0	912.4	0.96	2.28	3.8
All Ve	hicles	8393	3.4	8298 ^{N1}	3.5	1.687	212.2	LOS F	159.6	1155.2	0.92	1.48	12.2

фф Network: 2046PM

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Vehicle movement LOS values are based on degree of saturation per movement

Intersection and Approach LOS values are based on worst degree of saturation for any vehicle movement.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Move	ment Performance - Pedestrians							
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P11	South Stage 1	53	64.3	LOS F	0.2	0.2	0.96	0.96
P12	South Stage 2	53	62.4	LOS F	0.2	0.2	0.94	0.94
P2	East Full Crossing	53	35.1	LOS D	0.1	0.1	0.71	0.71
P3	North Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P4	West Full Crossing	53	35.1	LOS D	0.1	0.1	0.71	0.71
All Ped	destrians	263	52.2	LOS E			0.86	0.86

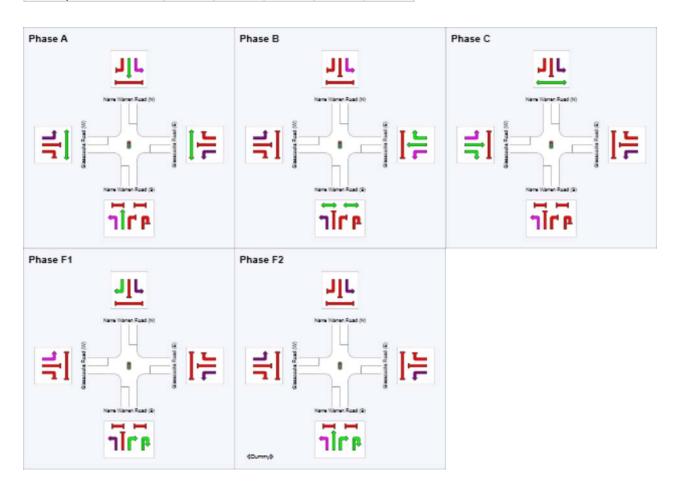
Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: NwcGI-2046-PM

Narre Warren Road / Glasscocks Roads


Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network Cycle Time)

фф Network: 2046PM

Phase times determined by the program Sequence: Split Phasing - glass **Movement Class: All Movement Classes** Input Sequence: A, B, C, F1, F2

Output Sequence: A, B, C, F1, F2

i mase imming results					
Phase	Α	В	С	F1	F2
Reference Phase	No	Yes	No	No	No
Phase Change Time (sec)	76	0	21	52	64
Green Time (sec)	58	15	25	6	6
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	64	21	31	12	12
Phase Split	46 %	15 %	22 %	9 %	9 %

Glasscocks Road / The Strand

Move	Movement Performance - Vehicles												
Mov	OD	Demand			Flows	Deg.	Average	Level of		of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Courth	: The Sti	veh/h	%	veh/h	%	v/c	sec		veh	m		per veh	km/h
		` '	4.0	000	4.0	4 400	404.0	100 5	404.0	705.5	4.00	0.00	0.0
1	L2	220	1.0	220	1.0	1.408	461.0	LOS F	104.2	735.5	1.00	2.20	3.8
2	T1	307	1.0	307	1.0	1.408	455.5	LOS F	104.2	735.5	1.00	2.20	7.1
3	R2	136	1.0	136	1.0	1.291	353.1	LOS F	23.0	162.4	1.00	1.54	8.8
Appro	ach	663	1.0	663	1.0	1.408	436.3	LOS F	104.2	735.5	1.00	2.06	6.3
East:	Glassco	cks Rd (E)											
4	L2	85	1.0	85	1.0	0.095	25.9	LOS A	3.1	21.6	0.57	0.71	41.3
5	T1	925	4.0	925	4.0	0.573	21.3	LOS A	18.0	130.3	0.59	0.53	35.5
6	R2	247	1.0	247	1.0	1.363	430.9	LOS F	67.1	473.6	1.00	1.60	7.4
6u	U	110	1.0	110	1.0	1.363	432.0	LOS F	67.1	473.6	1.00	1.60	7.4
Appro	ach	1367	3.0	1367	3.0	1.363	128.6	LOS F	67.1	473.6	0.70	0.82	14.3
North	: The Str	and (N)											
7	L2	131	1.0	131	1.0	1.144	232.5	LOS F	59.7	421.3	1.00	1.64	12.6
8	T1	309	1.0	309	1.0	1.144	226.9	LOS F	59.7	421.3	1.00	1.64	12.7
9	R2	127	1.0	127	1.0	1.442	490.1	LOS F	25.7	181.6	1.00	1.67	3.6
Appro	ach	567	1.0	567	1.0	1.442	287.2	LOS F	59.7	421.3	1.00	1.65	9.6
West:	Glassco	cks Rd (W)											
10	L2	133	1.0	96	1.0	0.187	46.0	LOS A	4.9	34.6	0.79	0.75	28.8
11	T1	1322	4.0	955	3.9	0.895	54.1	LOS C	34.4	249.1	0.98	0.98	26.9
12	R2	23	1.0	17	1.0	0.210	81.2	LOS A	1.2	8.4	1.00	0.69	20.8
Appro	ach	1478	3.7	1068 ^{N1}	3.6	0.895	53.8	LOS C	34.4	249.1	0.97	0.95	27.0
All Ve	hicles	4075	2.7	3665 ^{N1}	3.0	1.442	187.0	LOS F	104.2	735.5	0.88	1.21	11.8

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Vehicle movement LOS values are based on degree of saturation per movement

Intersection and Approach LOS values are based on worst degree of saturation for any vehicle movement.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Move	ment Performance - Pedestrians							
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back of Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	53	23.5	LOS C	0.1	0.1	0.58	0.58
P2	East Full Crossing	53	55.0	LOS E	0.2	0.2	0.89	0.89
P3	North Full Crossing	53	43.3	LOS E	0.2	0.2	0.79	0.79
P4	West Full Crossing	53	55.0	LOS E	0.2	0.2	0.89	0.89
All Ped	destrians	211	44.2	LOS E			0.79	0.79

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

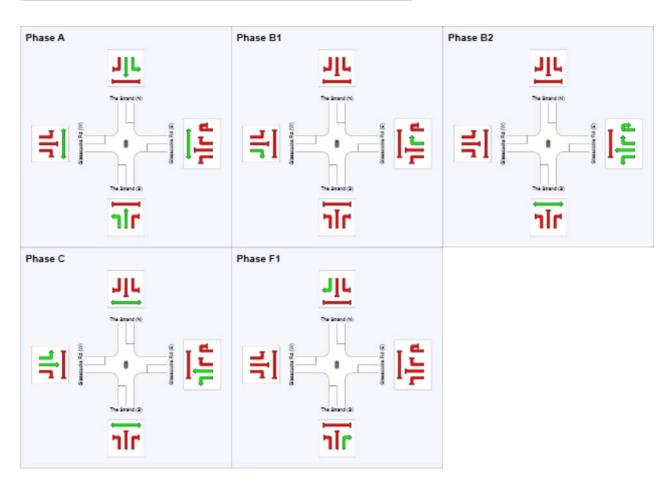
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Organisation: CARDNO | Processed: Monday, 7 September 2015 10:43:43 AM Project: \AUMELCFS01.cardno.corp\Apps\WINDOWS\2015\cg150713\SIDRA\CG150713SID0012046.sip6

Site: GISt-2046-PM

Glasscocks Road / The Strand

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network Cycle Time)


фф Network: 2046PM


Phase times determined by the program

Sequence: CGR

Movement Class: All Movement Classes Input Sequence: A, B1, B2, C, F1 Output Sequence: A, B1, B2, C, F1

. made imming module					
Phase	Α	B1	B2	С	F1
Reference Phase	No	No	Yes	No	No
Phase Change Time (sec)	73	113	125	14	59
Green Time (sec)	34	6	23	39	8
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	40	12	29	45	14
Phase Split	29 %	9 %	21 %	32 %	10 %

Site: NwcGl-2046-PM - alisma

Narre Warren Road / Glasscocks Roads

Movement Performance - Vehicles													
Mov	OD	Demand		Arrival I		Deg.	Average	Level of		of Queue	Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Narre W	arren Road		veh/h	%	v/c	sec		veh	m		per veh	km/h
1	L2	162	1.0	162	1.0	0.111	8.0	LOS A	2.0	14.0	0.24	0.62	52.4
2	T1	2374	4.0	2374	4.0	0.830	30.9	LOS C	48.7	352.7	0.89	0.82	40.0
3	R2	181	1.0	181	1.0	0.406	67.4	LOS A	5.9	41.6	0.96	0.78	19.2
Appro	ach	2717	3.6	2717	3.6	0.830	31.9	LOS C	48.7	352.7	0.85	0.80	39.0
East:	Glasscoc	ks Road (E)											
4	L2	215	1.0	206	1.0	0.298	30.1	LOS A	9.5	67.3	0.78	0.78	35.4
5	T1	540	4.0	519	4.1	1.183	236.0	LOS F	35.8	259.4	1.00	1.51	9.6
6	R2	319	1.0	306	1.0	0.775	68.5	LOS C	10.4	73.8	1.00	0.85	23.6
Appro	ach	1074	2.5	1031 ^{N1}	2.6	1.183	145.1	LOS F	35.8	259.4	0.96	1.17	14.2
North	: Narre W	arren Road	(N)										
7	L2	201	1.0	201	1.0	0.176	12.5	LOS A	4.7	32.8	0.39	0.66	42.8
8	T1	2939	4.0	2939	4.0	1.219	259.1	LOS F	158.4	1146.6	1.00	1.95	11.5
9	R2	69	1.0	69	1.0	0.437	81.0	LOS A	2.5	17.4	1.00	0.72	25.8
Appro	ach	3209	3.7	3209	3.7	1.219	239.8	LOS F	158.4	1146.6	0.96	1.84	12.0
West:	Glasscoo	ks Road (W	')										
10	L2	124	1.0	124	1.0	0.199	28.2	LOS A	5.3	37.7	0.68	0.75	40.7
11	T1	1016	4.0	1016	4.0	1.584	610.7	LOS F	115.5	836.4	1.00	2.58	3.0
12	R2	157	1.0	157	1.0	0.238	59.0	LOS A	4.6	32.6	0.90	0.76	30.6
Appro	ach	1297	3.4	1297	3.4	1.584	488.2	LOS F	115.5	836.4	0.96	2.19	4.4
All Ve	hicles	8297	3.5	8254 ^{N1}	3.5	1.584	198.6	LOS F	158.4	1146.6	0.92	1.47	12.9

фф Network: 2046PM - alisma

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Vehicle movement LOS values are based on degree of saturation per movement

Intersection and Approach LOS values are based on worst degree of saturation for any vehicle movement.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

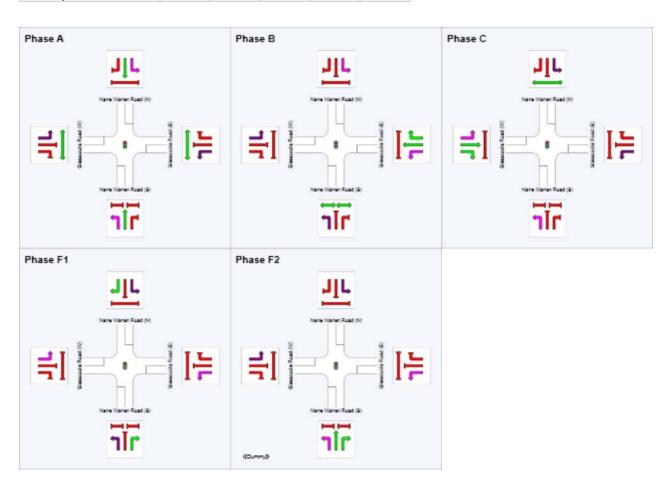
Move	ment Performance - Pedestrians							
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P11	South Stage 1	53	64.3	LOS F	0.2	0.2	0.96	0.96
P12	South Stage 2	53	62.4	LOS F	0.2	0.2	0.94	0.94
P2	East Full Crossing	53	35.1	LOS D	0.1	0.1	0.71	0.71
P3	North Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P4	West Full Crossing	53	35.1	LOS D	0.1	0.1	0.71	0.71
All Ped	destrians	263	52.2	LOS E			0.86	0.86

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: NwcGl-2046-PM - alisma


Narre Warren Road / Glasscocks Roads

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network Cycle Time)

фф Network: 2046PM - alisma

Phase times determined by the program Sequence: Split Phasing - glass **Movement Class: All Movement Classes** Input Sequence: A, B, C, F1, F2 Output Sequence: A, B, C, F1, F2

Phase	Α	В	С	F1	F2
Reference Phase	No	Yes	No	No	No
Phase Change Time (sec)	76	0	21	52	64
Green Time (sec)	58	15	25	6	6
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	64	21	31	12	12
Phase Split	46 %	15 %	22 %	9 %	9 %

Site: GISt-2046-PM - alimsa

Glasscocks Road / The Strand

Movement Performance - Vehicles													
Mov	OD	Demand			Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0	. Th - 04-	veh/h	%	veh/h	%	v/c	sec		veh	m		per veh	km/h
	: The Stra	` ,											
1	L2	89	1.0	89	1.0	1.250	322.2	LOS F	66.8	471.7	1.00	1.91	5.4
2	T1	323	1.0	323	1.0	1.250	316.6	LOS F	66.8	471.7	1.00	1.91	9.7
3	R2	119	1.0	119	1.0	0.903	89.4	LOS D	9.3	65.6	1.00	0.98	24.2
Appro	ach	531	1.0	531	1.0	1.250	266.6	LOS F	66.8	471.7	1.00	1.70	10.4
East:	Glasscoo	ks Rd (E)											
4	L2	86	1.0	86	1.0	0.092	24.3	LOS A	3.0	20.9	0.55	0.70	42.1
5	T1	893	4.0	893	4.0	0.551	18.8	LOS A	15.9	115.3	0.55	0.49	37.3
6	R2	245	1.0	245	1.0	1.243	327.3	LOS F	57.2	403.7	1.00	1.45	9.4
6u	U	109	1.0	109	1.0	1.243	328.4	LOS F	57.2	403.7	1.00	1.45	9.4
Appro	ach	1333	3.0	1333	3.0	1.243	101.1	LOS F	57.2	403.7	0.67	0.76	17.2
North	: The Stra	and (N)											
7	L2	131	1.0	131	1.0	1.323	389.4	LOS F	78.7	555.8	1.00	2.08	8.2
8	T1	309	1.0	309	1.0	1.323	383.8	LOS F	78.7	555.8	1.00	2.08	8.2
9	R2	127	1.0	127	1.0	1.204	278.5	LOS F	18.9	133.4	1.00	1.43	6.0
Appro	ach	567	1.0	567	1.0	1.323	361.5	LOS F	78.7	555.8	1.00	1.94	7.9
West:	Glassco	cks Rd (W)											
10	L2	116	1.0	86	1.0	0.171	38.2	LOS A	3.6	25.3	0.65	0.72	31.5
11	T1	1293	4.0	954	3.9	0.909	40.7	LOS D	31.3	226.1	0.92	0.90	31.2
12	R2	19	1.0	14	1.0	0.177	81.0	LOS A	1.0	7.0	1.00	0.69	20.9
Appro		1428	3.7	1053 ^{N1}		0.909	41.0	LOS D	31.3	226.1	0.90	0.89	31.0
All Ve	hicles	3859	2.7	3484 ^{N1}	3.0	1.323	150.6	LOS F	78.7	555.8	0.84	1.13	14.1

фф Network: 2046PM - alisma

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Vehicle movement LOS values are based on degree of saturation per movement

Intersection and Approach LOS values are based on worst degree of saturation for any vehicle movement.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Move	ment Performance - Pedestrians							
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	South Full Crossing	53	21.8	LOS C	0.1	0.1	0.56	0.56
P2	East Full Crossing	53	59.6	LOS E	0.2	0.2	0.92	0.92
P3	North Full Crossing	53	44.1	LOS E	0.2	0.2	0.79	0.79
P4	West Full Crossing	53	59.6	LOS E	0.2	0.2	0.92	0.92
All Pe	destrians	211	46.3	LOS E			0.80	0.80

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

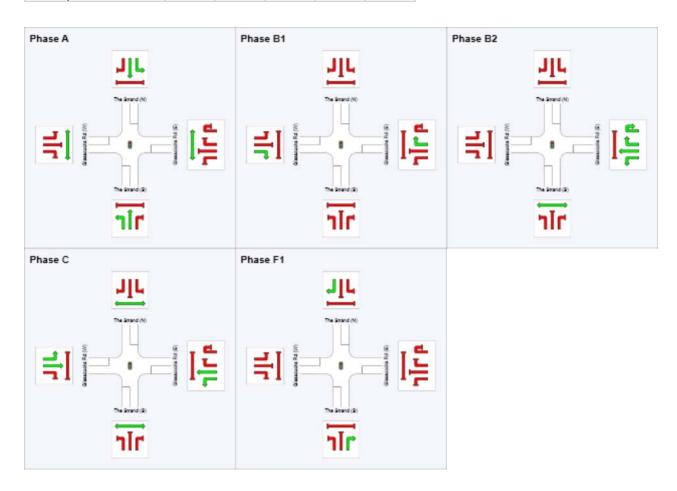
Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: GISt-2046-PM - alimsa

Glasscocks Road / The Strand

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network Cycle Time)


фф Network: 2046PM - alisma


Phase times determined by the program

Sequence: CGR

Movement Class: All Movement Classes Input Sequence: A, B1, B2, C, F1 Output Sequence: A, B1, B2, C, F1

i mase imming results					
Phase	Α	B1	B2	С	F1
Reference Phase	No	No	Yes	No	No
Phase Change Time (sec)	83	118	130	23	67
Green Time (sec)	29	6	27	38	10
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	35	12	33	44	16
Phase Split	25 %	9 %	24 %	31 %	11 %

Site: NwcGI-2046-PM - works

Narre Warren Road / Glasscocks Roads

Movement Performance - Vehicles													
Mov	OD	Demand			Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued		Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		per veh	km/h
		larren Road	` '										
1	L2	142	1.0	142	1.0	0.097	7.9	LOS A	1.7	12.1	0.24	0.61	52.4
2	T1	2246	4.0	2246	4.0	0.793	29.3	LOS C	45.1	326.7	0.86	0.78	40.8
3	R2	221	1.0	221	1.0	0.739	73.8	LOS C	10.0	70.7	1.00	0.87	18.0
3u	U	42	1.0	42	1.0	0.739	75.9	LOS C	8.5	60.3	1.00	0.87	26.7
Appro	oach	2651	3.5	2651	3.5	0.793	32.6	LOS C	45.1	326.7	0.84	0.78	38.7
East:	Glasscoo	ks Road (E)											
4	L2	229	1.0	227	1.0	0.514	36.2	LOS A	11.0	77.7	0.78	0.80	32.7
5	T1	557	4.0	552	4.0	1.031	91.5	LOS F	20.2	146.3	0.98	1.01	19.8
6	R2	450	1.0	446	1.0	1.129	187.2	LOS F	26.9	189.7	1.00	1.26	11.6
Appro	oach	1236	2.4	1226 ^{N1}	2.4	1.129	116.1	LOS F	26.9	189.7	0.95	1.06	16.7
North	: Narre W	arren Road	(N)										
7	L2	201	1.0	201	1.0	0.171	14.4	LOS A	5.1	36.2	0.42	0.67	41.1
8	T1	2939	4.0	2939	4.0	1.217	256.7	LOS F	157.4	1139.4	1.00	1.94	11.7
9	R2	69	1.0	69	1.0	0.437	81.0	LOS A	2.5	17.4	1.00	0.72	25.9
Appro	oach	3209	3.7	3209	3.7	1.217	237.8	LOS F	157.4	1139.4	0.96	1.84	12.1
West	: Glassco	cks Road (W	/)										
10	L2	124	1.0	124	1.0	0.209	30.5	LOS A	5.9	41.7	0.73	0.77	39.7
11	T1	1016	4.0	1016	4.0	1.394	343.4	LOS F	80.4	582.0	1.00	1.86	5.1
12	R2	157	1.0	157	1.0	0.238	59.0	LOS A	4.6	32.6	0.90	0.76	30.6
Appro	oach	1297	3.4	1297	3.4	1.394	279.1	LOS F	80.4	582.0	0.96	1.62	7.3
All Ve	hicles	8393	3.4	8383 ^{N1}	3.4	1.394	161.5	LOS F	157.4	1139.4	0.92	1.36	15.1

фф Network: 2046PM - works

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Vehicle movement LOS values are based on degree of saturation per movement

Intersection and Approach LOS values are based on worst degree of saturation for any vehicle movement.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Move	ment Performance - Pedestrians							
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back of Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P11	South Stage 1	53	64.3	LOS F	0.2	0.2	0.96	0.96
P12	South Stage 2	53	62.4	LOS F	0.2	0.2	0.94	0.94
P2	East Full Crossing	53	39.5	LOS D	0.2	0.2	0.75	0.75
P3	North Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P4	West Full Crossing	53	39.5	LOS D	0.2	0.2	0.75	0.75
All Pe	destrians	263	54.0	LOS E			0.87	0.87

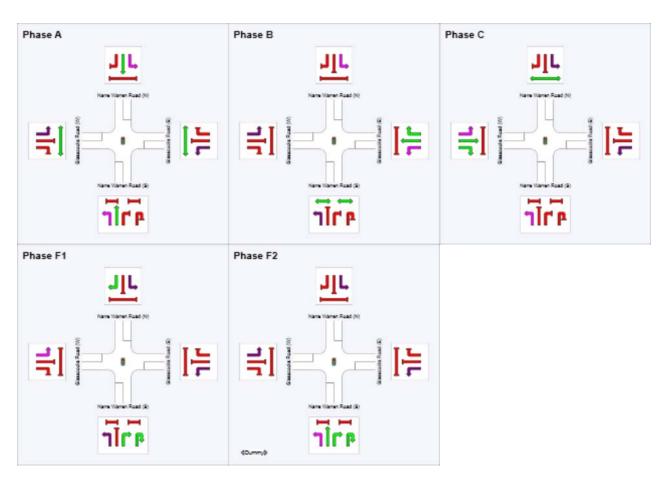
Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

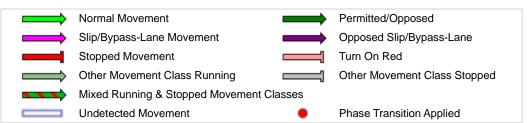
Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Organisation: CARDNO | Processed: Monday, 7 September 2015 10:50:08 AM
Project: \AUMELCFS01.cardno.corp\Apps\WINDOWS\2015\cg150713\SIDRA\CG150713SID0012046.sip6

Site: NwcGI-2046-PM - works


Narre Warren Road / Glasscocks Roads


Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network Cycle Time)

фф Network: 2046PM - works

Phase times determined by the program Sequence: Split Phasing - glass **Movement Class: All Movement Classes** Input Sequence: A, B, C, F1, F2 Output Sequence: A, B, C, F1, F2

i nasc inining itesuits					
Phase	Α	В	С	F1	F2
Reference Phase	No	Yes	No	No	No
Phase Change Time (sec)	76	0	21	52	64
Green Time (sec)	58	15	25	6	6
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	64	21	31	12	12
Phase Split	46 %	15 %	22 %	9 %	9 %

Site: GISt-2046-PM - works

Glasscocks Road / The Strand

Move	ement Po	erformance	e - Veh	icles									
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Arrival Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: The Stra	and (S)											
1	L2	220	1.0	220	1.0	1.009	146.4	LOS F	21.6	152.5	1.00	1.11	10.5
2	T1	307	1.0	307	1.0	1.258	332.1	LOS F	49.9	352.6	1.00	1.80	9.4
3	R2	136	1.0	136	1.0	1.291	353.1	LOS F	23.0	162.4	1.00	1.54	8.8
Appro	ach	663	1.0	663	1.0	1.291	274.8	LOS F	49.9	352.6	1.00	1.52	9.4
East:	Glasscoo	ks Rd (E)											
4	L2	85	1.0	85	1.0	0.081	19.7	LOS A	2.5	17.9	0.47	0.68	44.4
5	T1	925	4.0	925	4.0	0.409	17.5	LOS A	17.9	129.3	0.60	0.53	38.4
6	R2	247	1.0	247	1.0	1.212	298.0	LOS F	55.0	388.0	1.00	1.43	10.2
6u	U	110	1.0	110	1.0	1.212	299.1	LOS F	55.0	388.0	1.00	1.43	10.1
Appro	ach	1367	3.0	1367	3.0	1.212	91.0	LOS F	55.0	388.0	0.69	0.77	18.5
North	: The Stra	and (N)											
7	L2	131	1.0	131	1.0	0.452	64.0	LOS A	8.2	58.1	0.95	0.80	28.9
8	T1	309	1.0	309	1.0	1.183	261.5	LOS F	44.4	313.6	1.00	1.65	11.4
9	R2	127	1.0	127	1.0	1.205	277.7	LOS F	18.8	132.4	1.00	1.42	6.1
Appro	ach	567	1.0	567	1.0	1.205	219.5	LOS F	44.4	313.6	0.99	1.40	11.9
West:	Glassco	cks Rd (W)											
10	L2	133	1.0	115	1.0	0.185	26.2	LOS A	3.4	24.1	0.47	0.69	36.7
11	T1	1322	4.0	1140	3.9	0.894	52.8	LOS C	40.9	295.7	0.95	0.94	27.3
12	R2	23	1.0	20	1.0	0.251	81.6	LOS A	1.4	10.0	1.00	0.70	20.9
Appro	ach	1478	3.7	1275 ^{N1}	3.6	0.894	50.9	LOS C	40.9	295.7	0.90	0.91	27.8
All Ve	hicles	4075	2.7	3872 ^{N1}	2.8	1.291	128.1	LOS F	55.0	388.0	0.86	1.04	15.7

фф Network: 2046PM - works

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Vehicle movement LOS values are based on degree of saturation per movement

Intersection and Approach LOS values are based on worst degree of saturation for any vehicle movement.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P1	South Full Crossing	53	39.5	LOS D	0.2	0.2	0.75	0.75				
P2	East Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96				
P3	North Full Crossing	53	39.5	LOS D	0.2	0.2	0.75	0.75				
P4	West Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96				
All Ped	destrians	211	51.9	LOS E			0.86	0.86				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

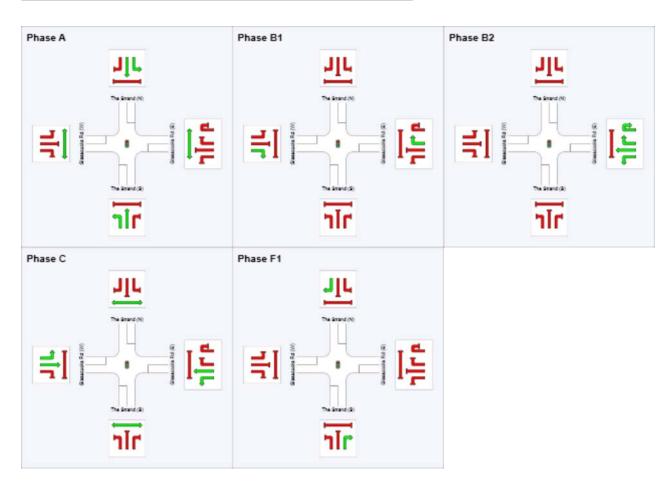
Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Site: GISt-2046-PM - works

Glasscocks Road / The Strand

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network Cycle Time)


фф Network: 2046PM - works

Phase times determined by the program

Sequence: CGR

Movement Class: All Movement Classes Input Sequence: A, B1, B2, C, F1 Output Sequence: A, B1, B2, C, F1

Phase	Α	B1	B2	С	F1
Reference Phase	No	No	Yes	No	No
Phase Change Time (sec)	85	113	125	18	71
Green Time (sec)	22	6	27	47	8
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	28	12	33	53	14
Phase Split	20 %	9 %	24 %	38 %	10 %

Site: NwcGI-2046-PM - alisma - work

фф Network: 2046PM - alisma works

Narre Warren Road / Glasscocks Roads

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network Cycle Time)

Movement Performance - Vehicles													
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Arrival Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	n: Narre W	arren Road	(S)										
1	L2	162	1.0	162	1.0	0.108	7.3	LOS A	1.6	11.6	0.21	0.61	52.9
2	T1	2374	4.0	2374	4.0	0.828	30.8	LOS C	48.6	351.8	0.89	0.82	40.1
3	R2	181	1.0	181	1.0	0.402	67.3	LOS A	6.1	43.1	0.96	0.78	19.2
Appro	oach	2717	3.6	2717	3.6	0.828	31.8	LOS C	48.6	351.8	0.85	0.80	39.2
East:	Glasscoc	ks Road (E)											
4	L2	215	1.0	211	1.0	0.309	27.4	LOS A	8.8	61.9	0.70	0.76	36.7
5	T1	540	4.0	530	4.1	0.805	56.4	LOS C	11.7	84.9	0.98	0.82	26.7
6	R2	319	1.0	313	1.0	0.791	62.0	LOS C	10.4	73.1	0.98	0.82	25.2
Appro	oach	1074	2.5	1053 ^{N1}	2.5	0.805	52.3	LOSC	11.7	84.9	0.92	0.81	27.7
North	: Narre W	arren Road	(N)										
7	L2	201	1.0	201	1.0	0.166	12.3	LOS A	4.5	31.8	0.38	0.66	43.0
8	T1	2939	4.0	2939	4.0	1.217	256.7	LOS F	157.4	1139.4	1.00	1.94	11.7
9	R2	69	1.0	69	1.0	0.437	81.0	LOS A	2.5	17.4	1.00	0.72	25.9
Appro	oach	3209	3.7	3209	3.7	1.217	237.6	LOS F	157.4	1139.4	0.96	1.84	12.1
West	Glasscoo	cks Road (W	')										
10	L2	124	1.0	124	1.0	0.210	30.8	LOS A	6.0	42.2	0.73	0.77	39.5
11	T1	1016	4.0	1016	4.0	1.126	165.8	LOS F	52.1	377.1	1.00	1.40	9.7
12	R2	157	1.0	157	1.0	0.238	59.0	LOS A	4.6	32.6	0.90	0.76	30.6
Appro	oach	1297	3.4	1297	3.4	1.126	140.0	LOS F	52.1	377.1	0.96	1.26	12.9
All Ve	hicles	8297	3.5	8276 ^{N1}	3.5	1.217	131.2	LOS F	157.4	1139.4	0.92	1.28	17.7

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Vehicle movement LOS values are based on degree of saturation per movement

Intersection and Approach LOS values are based on worst degree of saturation for any vehicle movement.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Mov ID	Description	Demand Flow	Average Delay	Level of Service	Average Back o Pedestrian	f Queue Distance	Prop. Queued	Effective Stop Rate
		ped/h	sec	0011100	ped	m	Quouou	per ped
P11	South Stage 1	53	64.3	LOS F	0.2	0.2	0.96	0.96
P12	South Stage 2	53	62.4	LOS F	0.2	0.2	0.94	0.94
P2	East Full Crossing	53	39.5	LOS D	0.2	0.2	0.75	0.75
P3	North Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96
P4	West Full Crossing	53	39.5	LOS D	0.2	0.2	0.75	0.75
All Ped	destrians	263	54.0	LOS E			0.87	0.87

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

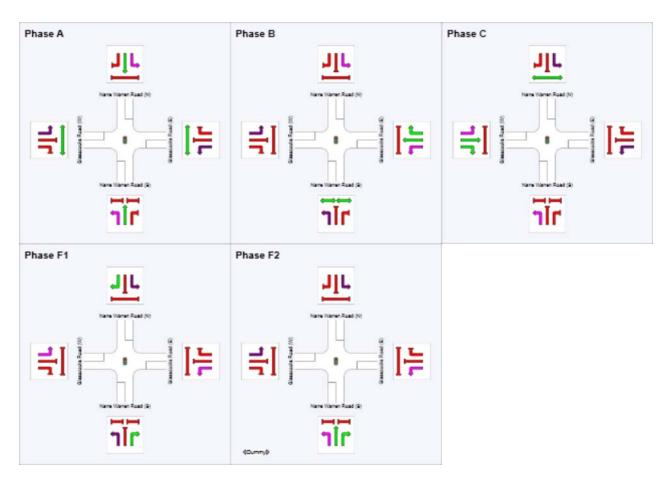
Pedestrian movement LOS values are based on average delay per pedestrian movement.

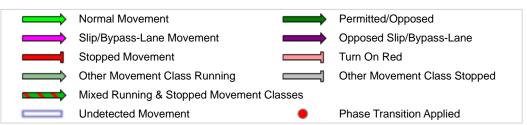
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Organisation: CARDNO | Processed: Monday, 7 September 2015 10:36:15 AM

Project: \\AUMELCFS01.cardno.corp\Apps\\WINDOWS\2015\cg150713\SIDRA\CG150713SID0012046.sip6

фф Network: 2046PM - alisma works


Narre Warren Road / Glasscocks Roads


Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network Cycle Time)

Phase times determined by the program Sequence: Split Phasing - glass

Movement Class: All Movement Classes Input Sequence: A, B, C, F1, F2 Output Sequence: A, B, C, F1, F2

Phase	Α	В	С	F1	F2
Reference Phase	No	Yes	No	No	No
Phase Change Time (sec)	76	0	21	52	64
Green Time (sec)	58	15	25	6	6
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	64	21	31	12	12
Phase Split	46 %	15 %	22 %	9 %	9 %

Site: GISt-2046-PM - alimsa - work

фф Network: 2046PM - alisma works

Glasscocks Road / The Strand

Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network Cycle Time)

Movement Performance - Vehicles													
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Arrival Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: The Stra	and (S)											
1	L2	89	1.0	89	1.0	0.322	63.5	LOS A	5.5	38.8	0.94	0.77	19.7
2	T1	323	1.0	323	1.0	1.265	331.4	LOS F	53.0	374.4	1.00	1.83	9.4
3	R2	119	1.0	119	1.0	1.129	212.2	LOS F	15.1	106.4	1.00	1.30	13.4
Appro	ach	531	1.0	531	1.0	1.265	259.8	LOS F	53.0	374.4	0.99	1.53	10.7
East:	Glasscoc	ks Rd (E)											
4	L2	86	1.0	86	1.0	0.081	19.2	LOS A	2.5	17.8	0.47	0.68	44.7
5	T1	893	4.0	893	4.0	0.377	10.4	LOS A	9.6	69.5	0.35	0.31	44.9
6	R2	245	1.0	245	1.0	1.266	346.7	LOS F	59.1	416.9	1.00	1.50	8.9
6u	U	109	1.0	109	1.0	1.266	347.8	LOS F	59.1	416.9	1.00	1.50	8.9
Appro	ach	1333	3.0	1333	3.0	1.266	100.4	LOS F	59.1	416.9	0.53	0.65	17.3
North	: The Stra	ind (N)											
7	L2	131	1.0	131	1.0	0.474	65.1	LOS A	8.3	58.7	0.96	0.80	28.6
8	T1	309	1.0	309	1.0	1.224	296.3	LOS F	47.6	336.2	1.00	1.74	10.3
9	R2	127	1.0	127	1.0	1.205	277.7	LOS F	18.8	132.4	1.00	1.42	6.1
Appro	oach	567	1.0	567	1.0	1.224	238.7	LOS F	47.6	336.2	0.99	1.45	11.1
West:	Glasscoo	cks Rd (W)											
10	L2	116	1.0	108	1.0	0.168	20.7	LOS A	2.4	17.2	0.35	0.66	39.8
11	T1	1293	4.0	1206	4.0	0.896	21.3	LOS C	32.1	232.6	0.75	0.71	40.5
12	R2	19	1.0	18	1.0	0.224	81.4	LOS A	1.3	8.9	1.00	0.70	20.9
Appro	ach	1428	3.7	1332 ^{N1}	3.7	0.896	22.1	LOSC	32.1	232.6	0.72	0.70	39.9
All Ve	hicles	3859	2.7	3763 ^{N1}	2.8	1.266	116.0	LOS F	59.1	416.9	0.73	0.91	17.1

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Vehicle movement LOS values are based on degree of saturation per movement

Intersection and Approach LOS values are based on worst degree of saturation for any vehicle movement.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Move	Movement Performance - Pedestrians										
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective			
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate			
		ped/h	sec		ped	m		per ped			
P1	South Full Crossing	53	18.0	LOS B	0.1	0.1	0.51	0.51			
P2	East Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96			
P3	North Full Crossing	53	38.0	LOS D	0.2	0.2	0.74	0.74			
P4	West Full Crossing	53	64.3	LOS F	0.2	0.2	0.96	0.96			
All Pe	destrians	211	46.1	LOS E			0.79	0.79			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

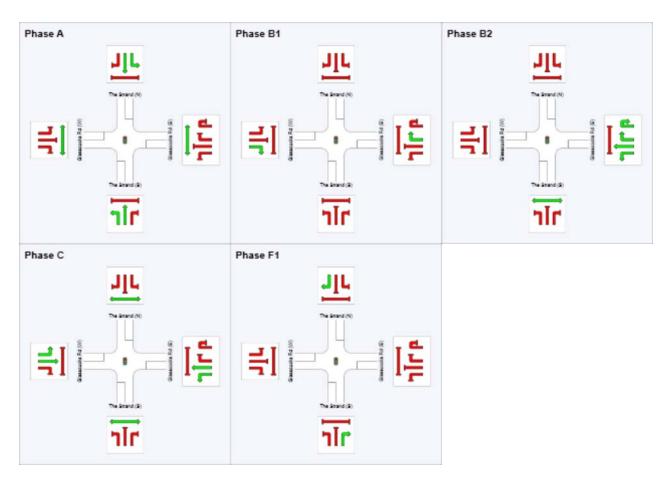
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

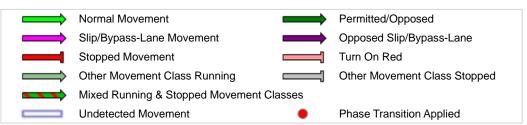
Organisation: CARDNO | Processed: Monday, 7 September 2015 10:36:15 AM
Project: \AUMELCFS01.cardno.corp\Apps\WINDOWS\2015\cg150713\SIDRA\CG150713SID0012046.sip6

Site: GISt-2046-PM - alimsa - work

фф Network: 2046PM - alisma works

Glasscocks Road / The Strand


Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Network Cycle Time)


Phase times determined by the program

Sequence: CGR

Movement Class: All Movement Classes Input Sequence: A, B1, B2, C, F1 Output Sequence: A, B1, B2, C, F1

Phase	Α	B1	B2	С	F1
Reference Phase	No	No	Yes	No	No
Phase Change Time (sec)	86	113	125	17	72
Green Time (sec)	21	6	26	49	8
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	27	12	32	55	14
Phase Split	19 %	9 %	23 %	39 %	10 %

Narre Warren Road / Alisma

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Move	ment Perf	ormance - V	ehicles								
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South:	Narre Warr	veh/h en Road (S)	%	v/c	sec		veh	m		per veh	km/h
2	T1	2592	4.0	0.837	31.0	LOS C	52.4	379.1	0.91	0.84	44.8
3	R2	233		0.833	85.2	LOS C	8.9		1.00		27.8
3	K2		1.0					63.1		0.91	
Approa	ach	2825	3.8	0.837	35.5	LOS C	52.4	379.1	0.92	0.84	43.0
East: A	Nisma (E)										
4	L2	191	1.0	0.229	9.1	LOS A	3.3	23.0	0.30	0.65	52.9
6	R2	177	1.0	0.464	73.3	LOS A	6.1	42.8	0.99	0.78	22.4
Approa	ach	368	1.0	0.464	40.0	LOS A	6.1	42.8	0.63	0.71	35.7
North:	Narre Warre	en Road (N)									
7	L2	359	1.0	0.223	6.7	LOS A	3.1	22.0	0.17	0.59	51.1
8	T1	1728	4.0	0.567	18.4	LOS A	21.2	153.4	0.54	0.48	49.9
Approa	ach	2087	3.5	0.567	16.4	LOS A	21.2	153.4	0.47	0.50	50.0
All Veh	nicles	5280	3.5	0.837	28.2	LOS C	52.4	379.1	0.72	0.70	45.0

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Vehicle movement LOS values are based on degree of saturation per movement

Intersection and Approach LOS values are based on worst degree of saturation for any vehicle movement.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

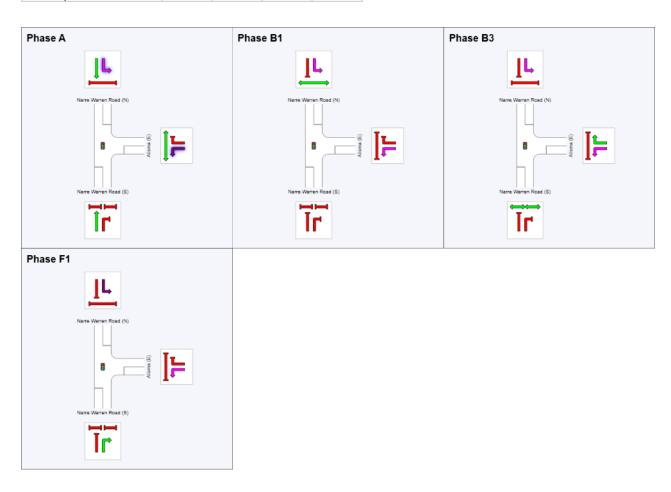
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians										
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped			
P11	South Stage 1	53	66.8	LOS F	0.2	0.2	0.96	0.96			
P12	South Stage 2	53	64.9	LOS F	0.2	0.2	0.95	0.95			
P2	East Full Crossing	53	23.2	LOS C	0.1	0.1	0.57	0.57			
P3	North Full Crossing	53	66.8	LOS F	0.2	0.2	0.96	0.96			
All Pe	destrians	211	55.4	LOS E			0.86	0.86			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO | Processed: Monday, 7 September 2015 10:23:59 AM Project: \AUMELCFS01.cardno.corp\Apps\WINDOWS\2015\cg150713\SIDRA\CG150713SID0012046.sip6


Site: NwcAl-2046-AM - redist


Narre Warren Road / Alisma


Signals - Fixed Time Coordinated Cycle Time = 145 seconds (Optimum Cycle Time - Minimum Degree of Saturation) Variable Sequence Analysis applied. The results are given for the selected output sequence.

Phase times determined by the program Sequence: Variable Phasing - Split Glass Movement Class: All Movement Classes Input Sequence: A, B1, B3, F1, F2 Output Sequence: A, B1, B3, F1

Phase	Α	B1	B3	F1
Reference Phase	No	Yes	No	No
Phase Change Time (sec)	64	0	26	47
Green Time (sec)	75	20	15	11
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	81	26	21	17
Phase Split	56 %	18 %	14 %	12 %

Narre Warren Road / Alisma

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Move	ment Perfo	ormance - V	ehicles								
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South:	Narre Warr	veh/h en Road (S)	%	v/c	sec		veh	m		per veh	km/h
2	T1	2227	4.0	0.660	24.0	LOS B	37.8	273.3	0.75	0.69	47.5
3	R2	130	1.0	0.881	95.6	LOS C	5.4	38.0	1.00	0.92	26.1
_											
Approa	ach	2357	3.8	0.881	27.9	LOS C	37.8	273.3	0.76	0.70	45.8
East: A	lisma (E)										
4	L2	272	1.0	0.414	26.8	LOS A	12.3	87.0	0.70	0.78	43.7
6	R2	235	1.0	0.597	76.3	LOS A	8.4	59.5	1.00	0.80	21.9
Approa	ach	507	1.0	0.597	49.7	LOS A	12.3	87.0	0.84	0.79	32.7
North:	Narre Warre	en Road (N)									
7	L2	294	1.0	0.175	6.1	LOS A	1.6	11.3	0.12	0.58	51.7
8	T1	2866	4.0	0.894	23.4	LOS C	58.6	424.2	0.76	0.73	47.7
Approa	ach	3160	3.7	0.894	21.8	LOS C	58.6	424.2	0.70	0.72	47.9
All Veh	nicles	6024	3.5	0.894	26.6	LOS C	58.6	424.2	0.74	0.72	45.8

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Vehicle movement LOS values are based on degree of saturation per movement

Intersection and Approach LOS values are based on worst degree of saturation for any vehicle movement.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

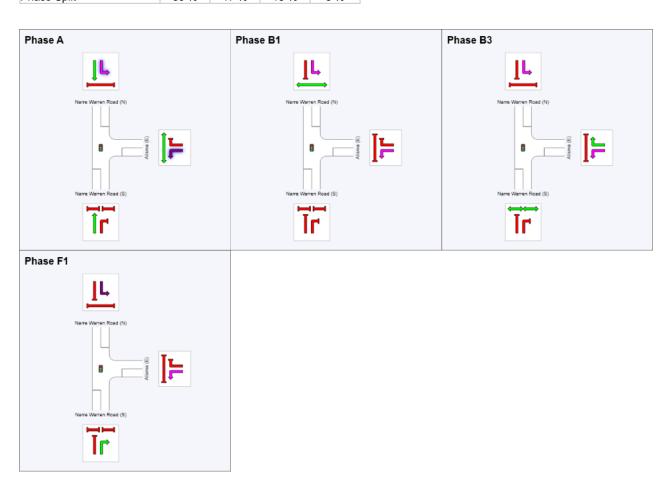
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

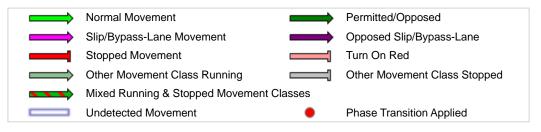
Move	Movement Performance - Pedestrians										
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped			
P11	South Stage 1	53	69.3	LOS F	0.2	0.2	0.96	0.96			
P12	South Stage 2	53	66.4	LOS F	0.2	0.2	0.94	0.94			
P2	East Full Crossing	53	20.3	LOS C	0.1	0.1	0.52	0.52			
P3	North Full Crossing	53	69.3	LOS F	0.2	0.2	0.96	0.96			
All Pe	destrians	211	56.3	LOS E			0.85	0.85			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO | Processed: Monday, 7 September 2015 10:32:11 AM Project: \AUMELCFS01.cardno.corp\Apps\WINDOWS\2015\cg150713\SIDRA\CG150713SID0012046.sip6


Site: NwcAl-2046-PM - redist


Narre Warren Road / Alisma

Signals - Fixed Time Coordinated Cycle Time = 150 seconds (Optimum Cycle Time - Minimum Degree of Saturation) Variable Sequence Analysis applied. The results are given for the selected output sequence.

Phase times determined by the program Sequence: Variable Phasing - Split Glass Movement Class: All Movement Classes Input Sequence: A, B1, B3, F1, F2 Output Sequence: A, B1, B3, F1

. made imming module				
Phase	Α	B1	B3	F1
Reference Phase	No	Yes	No	No
Phase Change Time (sec)	60	0	26	48
Green Time (sec)	84	20	16	6
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	90	26	22	12
Phase Split	60 %	17 %	15 %	8 %

