Appendix F

Traffic Impact Assessment

Appendix F Traffic Impact Assessment

Sam Mondus

17 December 2009

Document No. 1007tpe

Traffic Impact Assessment

Traffic Impact Assessment

Prepared for

Sam Mondus

Prepared by

AECOM Australia Pty Ltd Level 9, 8 Exhibition Street, Melbourne VIC 3000, Australia T +61 3 9653 1234 F +61 3 9654 7117 www.aecom.com ABN 20 093 846 925

17 December 2009

600 282 55

© AECOM Australia Pty Ltd 2009

The information contained in this document produced by AECOM Australia Pty Ltd is solely for the use of the Client identified on the cover sheet for the purpose for which it has been prepared and AECOM Australia Pty Ltd undertakes no duty to or accepts any responsibility to any third party who may rely upon this document.

All rights reserved. No section or element of this document may be removed from this document, reproduced, electronically stored or transmitted in any form without the written permission of AECOM Australia Pty Ltd.

Quality Information

Document Traffic Impact Assessment

Ref 600 282 55

Date 17 December 2009

Prepared by Kate Butler

Reviewed by Stephen Pelosi

Revision History

Revision	Revision Date	Details	Authorised	
			Name/Position	Signature
0	17/12/2009	Draft Traffic Impact Assessment	Stephen Pelosi	July .

Table of Contents

Executiv	ve Summary	i
1.0	Introduction	1
1.1	Project Background	1
1.2	Purpose	2
1.3	Outline of Investigations	2
1.4	Report Structure	2
2.0	Shepparton in Profile	3
2.1	Demographic Profile	3
2.1.1	Age Structure	3
2.1.2	Household Size	4
2.1.3	Household Types	4
2.1.4	Car Ownership	5
2.1.5	Type of Employment	6
2.1.6	Place of Employment	6
2.1.7	Travel to Work Modal Share	8
2.2	Demographic Conclusions	8
3.0	Existing Conditions	9
3.1	Site Locality	9
3.2	Road Network	9
3.3	Turning Movement Volume Surveys	10
3.4	Crash History	15
3.5	Committed Traffic Improvements and Developments	15
3.5.1	Shepparton Valley Bypass	15
3.5.2	Northern Neighbourhood Centre Extension	16
3.6	Cycle Network	16
4.0	Existing Traffic Operation	18
4.1	Overview of Local Road Network	18
4.2	SIDRA INTERSECTION Analysis	18
4.2.1	Degree of Saturation	18
4.2.2	Level of Service	19
4.2.3	Average Delay	19
4.2.4	Verney Road and Grahamvale Road Intersections	19
4.2.5	Hawkins Street / Goulburn Valley Highway	21
5.0	Proposed Development	23
5.1	Land Use	23
5.2	Car Parking Rates	23

5.2.1	Residential Car Parking	23
5.2.2	Retail Car Parking	23
6.0	Vehicular Traffic Generation and Distribution	25
6.1	Traffic Generation	25
6.1.1	Background Traffic Growth	25
6.1.2	Residential	25
6.1.3	Retail	25
6.1.4	Grahamvale Primary School	26
6.1.5	Primary School Traffic Generation Methodology	27
6.1.6	Total Peak Hour Trips	28
6.2	Vehicular Traffic Distribution	29
6.3	Summary of Forecast Traffic	30
7.0	Traffic Impact	31
7.1	Verney Road and Grahamvale Road Intersections	31
7.1.1	Verney Road Intersections	31
7.1.2	Grahamvale Road Intersections	32
7.2	Goulburn Valley Highway Intersections	33
7.2.1	Hawkins Street/ Goulburn Valley Highway Priority Intersection	33
7.3	Development Entrance Treatments	36
7.3.1	Verney Road Main Entrance	36
7.3.2	Verney Road /Pine Road Site Entrance	37
7.3.3	Grahamvale Road Site Entrance	39
7.3.4	Ford Road Site Entrance	40
7.4	Conclusions	40
7.4.1	Verney Road and Grahamvale Road Intersections	40
7.4.2	Hawkins Street / Goulburn Valley Highway Intersection	41
7.4.3	Development Entrance Treatments	41
8.0	Further Issues	42
8.1	Sustainable Transport Design	42
8.2	Encouraging Shepparton Bypass Development	42
Append		
	Existing Traffic Flows	Α
Append	dix B SIDRA Analysis	В
Append	dix C Additional Traffic Movement Distribution	С
Append		C
, ipperit	Crash History Data	D

ı	ist	οf	Ta	h	وما

Table 2.1:	Projected Population for City of Greater Shepparton	3
Table 2.2:	Household Size, City of Greater Shepparton 2006	4
Table 2.3:	Family Composition, City of Greater Shepparton 2006	5
Table 2.4:	Employment Industries for Residents, City of Shepparton 2006	6
Table 2.5:	Employment Location, City of Greater Shepparton 2006	6
Table 2.6:	Top 5 Local Government Areas of Employment for Residents, City of Greater Shepparton, 2006	7
Table 4.1:	SIDRA Definition of Levels of Service and Delay	19
Table 4.2:	Verney Road / Balaclava Road Existing Peak Hour Intersection Operation (Roundabout)	20
Table 4.3:	Verney Road / Hawkins Street Existing AM Peak Intersection Operation (T-intersection)	20
Table 4.4:	Verney Road / Pine Road Existing AM Peak Intersection Operation (T-intersection)	20
Table 4.5:	Verney Road / Ford Road Existing Peak Hour Intersection Operation (Roundabout)	20
Table 4.6:	Grahamvale Road / Dookie Shepparton Road Existing Peak Hour Intersection Operation (Roundabout)	21
Table 4.7:	Grahamvale Road / Ford Road Existing Peak Hour Intersection Operation (Priority Junction)	21
Table 4.8:	Hawkins Street / Goulburn Valley Highway SIDRA Analysis for 2008 Scenario	21
Table 4.9:	Hawkins Street / Goulburn Valley Highway Signalised Intersection SIDRA Analysis for 2008 Scenario	22
Table 6.1:	RTA Guide Generation Rates (October 2002)	26
Table 6.2:	Total Trips Generated by Students on the External Road Network during the peak hour	27
Table 6.3:	Total Trips Generated on the External Road Network during the peak hour	28
Table 6.4:	Summary of Peak Hour Forecast Traffic Generated by the Development	30
Table 6.5:	Summary of AM Peak Hour Forecast Traffic	30
Table 6.6:	Summary of PM Peak hour Forecast Traffic	30
Table 7.1:	Verney Road / Balaclava Road 2020 Peak Hour Roundabout Operation with Development Traffic	31
Table 7.2:	Verney Road / Hawkins Street 2020 AM Peak Hour T-intersection Operation with Development Traffic	32
Table 7.3:	Verney Road / Ford Road 2020 Peak Hour Roundabout Operation with Development Traffic	32
Table 7.4:	Grahamvale Road / Dookie Shepparton Road 2020 Peak Hour Roundabout Operation with Development Traffic	33
Table 7.5:	Grahamvale Road / Ford Road 2020 Peak Hour Priority Junction Operation with Development Traffic	33
Table 7.6:	Estimated 2020 Traffic Flows	34
Table 7.7:	Hawkins Street / Goulburn Valley Highway SIDRA Analysis for 2020 Scenario without Development Traffic	34
Table 7.8:	Estimated 2020 Traffic Flows with Development Traffic	34
Table 7.9:	Hawkins Street / Goulburn Valley Highway SIDRA Analysis for 2020 Scenario with Forecast Development Traffic	35
Table 7.10	: Hawkins Street / Goulburn Valley Highway Signalised Intersection SIDRA Analysis for 2020 Scenario with Proposed Development	36

Table 7.11:	Verney Road / Main Site Entrance 2020 Peak Hour Priority T-Intersection, with Development Traffic		37
Table 7.12:	Verney Road / Pine Road Site Entrance 2020 Peak Hour Signalised Intersection, with Development Traffic		38
Table 7.13:	Grahamvale Road Site Entrance 2020 Peak Hour Signalised Intersection, with Development Traffic		39
Table 7.14:	Verney Road / Main Site Entrance 2020 Peak Hour Priority T-Intersection, with Development Traffic		40
List of Figu	ıres		
•	Location of the Shepparton North-East Growth Area		1
Figure 2.1:	Age Structure, City of Greater Shepparton 2006		4
Figure 2.2:	Car Ownership Vehicles per Household, City of Greater Shepparton 2006		5
Figure 2.3:	Map of Top Employment Locations, City of Greater Shepparton 2006		7
Figure 2.4:	Residents Travel to Work Modal Share, City of Greater Shepparton 2006		8
Figure 3.1:	Site Location		9
Figure 3.2:	Survey Location		11
-	Verney Road / Balaclava Road AM Peak Hour Verney Road / Balaclava Road PM Peak Hour	12	
-	Verney Road / Ford Road AM Peak Hour Verney Road / Ford Road PM Peak Hour	12	
-	Grahamvale Rd/Dookie Shepprtn Rd AM Pk Hr Grahamvale Rd/Dookie Shepprtn Rd AM Pk Hr	13	
-	Grahamvale Road / Ford Road AM Pk Hr Grahamvale Road / Ford Road PM Pk Hr	13	
•	: Hawkins Road / GV Hwy AM Pk Hr : Hawkins Road / GV Hwy PM Pk Hr	14	
	: Verney Road / Hawkins Street AM Pk Hr : Verney Road / Pine Road AM Pk Hr	14	
Figure 3.15	: Verney Road / Hawkins Street 8:00am to 9:00am		14
Figure 3.16	Valley Bypass Route		16
Figure 3.17:	Shepparton Cycle Network		17
Figure 6.1:	Traffic Movement Distribution		29
Figure 7.1:	Proposed Priority T-Intersection at Verney Road Main Site Intersection		37
Figure 7.2:	Proposed Signalised Intersection at Verney Road / Pine Road Intersection		38
Figure 7.3:	Proposed Signalised Intersection at Grahamvale Road Site Entrance Signalised Intersection		39
Figure 7.4:	Proposed Priority T-Intersection at Ford Road Site Entrance Intersection		40

Executive Summary

AECOM has been requested by Sam Mondous to prepare a Traffic Impact Assessment to support the preparation of the Shepparton North East Growth Area Outline Development Plan.

The site is located approximately four kilometres north east of Shepparton town centre and is bordered to the east and west by Verney Road and Grahamvale Road respectively. These roads are proposed to provide access to the development.

The proposed development of the site comprises a residential with a complimentary retail and community component located at the heart of the development. As part of the development, it is also proposed to extend the Grahamvale Primary School (PS).

This assessment provides the findings from a traffic investigation undertaken to determine whether the existing road network can support the proposed development. It also details the improvements that will be necessary in order to minimise the impact of the development on the surrounding road network based upon the likely future development traffic.

The investigation has included:

- Data collection to establish existing AM and PM traffic volumes;
- A review of existing information pertinent to the investigation, including the current road network and capacity, the expected background traffic growth, committed developments in the area, committed road network improvements, the accident history and traffic patterns;
- The future development traffic generation and assignment has been assessed;
- The operation of the forecast road network with and without the proposed development has been analysed;
- Recommendations have been made based on the current network and improvements necessary to the local road network based on forecast traffic generations.

Turning movement volume surveys were undertaken by Global Workforce on behalf of AECOM on Tuesday 5 August 2008 in the AM peak between 7:30am and 10:30am and in the PM peak between 3:00pm and 6:00pm.

During initial discussions with CGS Engineering Projects department it was agreed that the following four intersections would be most adversely affected by the proposed development (and would require analysis):

- Verney Road and Balaclava Road
- Verney Road and Ford Road
- Grahamvale Road and New Dookie Road
- Grahamvale Road and Ford Road

At the time discussions were carried out it was not apparent that there may be any significant impact on traffic along Hawkins Street and therefore the operation of the intersections of Hawkins Street / Verney Street and Hawkins Street / Goulbourn Valley Highway were not investigated.

However, CGS previously conducted surveys of the Hawkins Street / Goulbourn Valley Highway intersection in 2005 and these surveys have been utilised to analyse an estimation of current (2008) operation and future (2020) operation.

Additional surveys were also carried out by Global Workforce on behalf of AECOM on Thursday 19 November 2009 in the AM peak between 7:30am and 10:30am. The intersections surveyed at this time included:

- Verney Road and Pine Road
- Verney Road and Hawkins Street

Within the local road network the roads that are expected to be most significantly impacted by the development include Verney Road, Grahamvale Road, Hawkins Street, Pine Road and Balaclava Road. Hawkins Street, Pine Road and Balaclava Road form connections to Goulburn Valley Highway.

Analysis using SIDRA INTERSEECTION 3.2 indicated that currently all the other intersections analysed appear to operate well in the AM and PM peak hours.

The forecast traffic generation rates and distribution for the proposed development has been agreed with the City of Greater Shepparton (CGS) Engineering Projects team and the intersections have been analysed based on these traffic generations.

Analysis of the forecast additional development traffic flows on the network generally indicates that most of the intersections are adequate to accommodate the additional forecast traffic.

Grahamvale Road will operate satisfactorily when Heavy Goods Vehicle (HGV) movements are assessed with 7% HGV. However if the HGV usage was expected to remain as high as 20% in the 2020 design forecast, the Grahamvale Road / Dookie Shepparton Road roundabout would experience operational problems in the peak hours. Due to this, CGS should continue to pursue the construction of the Shepparton Bypass as a matter of priority to ensure that no local problems develop.

Whilst the Hawkins Street / Goulburn Valley Highway intersection is estimated to currently operate satisfactorily as a priority intersection, already movements from Hawkins Street are experiencing significant delays in the AM and PM peaks. Further to this, crash history of four collisions has been recorded in the last five years indicating that there are some safety issues with the current operation. Accordingly analysis with of the forecast traffic for the design year 2020 (with and without the proposed development) indicates that without improvement, Hawkins Street will experience unacceptable delays and inevitably an increased safety risk.

Based on these factors the operation of the Hawkins Street / Goulburn Valley Highway intersection was analysed to understand how it could operate as a signalised intersection in 2020 (with and without the forecast development traffic). It was found that the priority was more evenly distributed resulting in acceptable average delays for all arms of the intersection.

Analysis also indicates that the proposed additional forecast traffic flows at the Hawkins Street / Verney Road intersection are likely to result in the requirement of intersection improvements such as signalisation.

As the base traffic flows for this analysis were collected in 2005 it is recommended that further traffic analysis should be carried out (with recent survey data) to ensure the intersection can cater for the future demands. Notwithstanding this, it is highly probable that the flows along Hawkins Street and Goulburn Valley Highway will necessitate improvements (such as signalisation) to this intersection. Discussions with CGS indicate that this intersection will be upgraded as part of the improvements to the adjacent Northern Neighbourhood Centre.

Based on the forecast traffic flows for the proposed development and the expected background flows along Verney Road and Grahamvale Road, it is recommended that the most suitable entrance treatments will include:

Signalised Intersections

- Verney Road / Pine Road / Site Entrance
- Grahamvale Road Site Entrance

Priority T-Intersections

- Verney Road Site Entrance between Ryeland Drive and Hawkins Street
- Ford Road Site Entrance

This should be taken into consideration during the detail design of the development.

Based on the findings of the investigation the following table summarises the likely nexus for the infrastructure development contributions as a result of developing the NE Growth Corridor area.

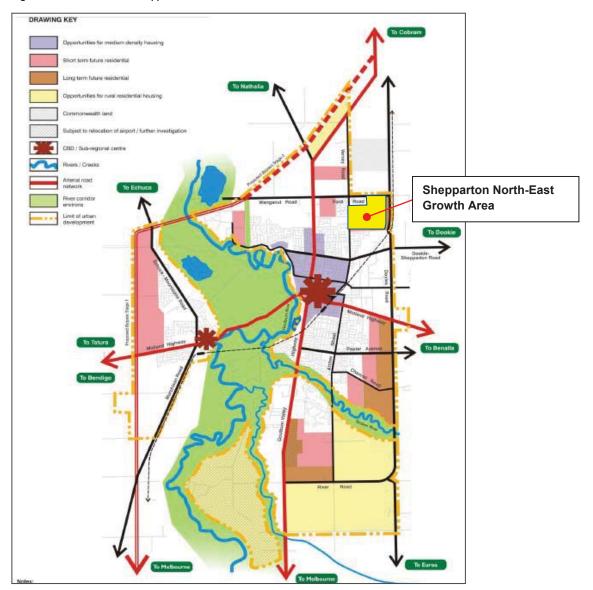
Infrastructure Item	Likely Nexus
Verney Road Main Entrance (priority T-intersection)	High
Grahamvale Road Entrance (signalised intersection)	High
Verney Road / Pine Road (signalisation of intersection)	High
Ford Road Entrance (priority T-intersection)	High
Goulburn Valley Highway / Hawkins Street (signalisation of intersection)	Low
General improvements to the surrounding pedestrian and cycle networks	Low

Further to the findings of this investigation there are issues that may impact the traffic operation of the local road network. These issues include:

- Sustainable Transport Design: Measures to reduce the reliance on the private car should be investigated to
 encourage a reduction in trips made by private cars which ultimately will reduce the pressure on the local
 road network and enable more sustainable transport choices.
- Goulburn Valley Highway Intersections: No analysis has been carried out for the intersections of Goulburn Valley Highway with Balaclava Road, Ford Road or Verney Road. Analysis of these intersections may provide a greater understanding of how they will be affected by the proposed development.

These further investigations should be carried out following the completion of a draft ODP. This investigation would include analysis of the existing road network together with the operation of proposed roads within the ODP area.

1.0 Introduction


1.1 Project Background

AECOM is undertaking numerous specialist studies required to support the preparation of an Outline Development Plan (ODP) and Development Contributions Plan (DCP) reports for Shepparton North-East Growth Corridor, also to be prepared by AECOM.

The Shepparton North-East Growth Corridor has been earmarked by City of Greater Shepparton to be developed as a residential estate to support the growing town. The North-East Growth Corridor has a site area of 168.5 hectares which will be developed by a private developer. Figure 1.1 identifies the subject site which compromises the entire Shepparton North-East Growth Area.

In order to support the preparation of the ODP and DCP, a technical study assessing the demands for community infrastructure is required.

Figure 1.1: Location of the Shepparton North-East Growth Area

1.2 Purpose

This report provides the findings from a traffic investigation undertaken to determine whether the existing road network can support the proposed development. It also details the improvements that will be necessary in order to minimise the impact of the development on the surrounding road network based upon the likely future development traffic.

1.3 Outline of Investigations

AECOM's Traffic Engineers have investigated the overall implications of residential expansion on the existing transport network to the north east of Shepparton including the broader sub-region. The following summarises the key components for this investigation:

- Reviewing existing information pertinent to the investigation, including the current road network and capacity, the expected background traffic growth, committed developments in the area, committed road network improvements, the accident history and traffic patterns;
- Assessment of the existing traffic movements in the area and anticipated traffic generated by the development in the growth area;
- Potential capacity constraints on the existing road network;
- Assessment of access requirements to support future residential development in the growth area;
- Recommendations on necessary improvements to the local road network in order to support the proposed development;
- Opportunities to maximise benefits of existing public transport services and infrastructure requirements.

1.4 Report Structure

The remainder of this report is set out as follows:

- Chapter 2: Describes the demographic characteristics of Greater Shepparton that influence the development of this site.
- Chapter 3: Describes the existing conditions including; site locality, local road network, traffic volume and intersection turning movement volume surveys, local accident history and other committed traffic improvements and developments, cycle network and road network improvements located in the vicinity of the site.
- Chapter 4: Assessment of existing intersection operation using SIDRA INTERSECTION software
- Chapter 5: Details of the proposed development and car parking rates.
- Chapter 6: Details the vehicular traffic generation associated with the site and the expected traffic distribution.
- Chapter 7: Includes a description of the expected traffic impact of the development based on the forecast traffic flows on the local road network and the traffic impact conclusions.
- Chapter 8: Discusses further traffic issues that should be considered as a part of the development process.

Appendix A details the existing traffic flows, Appendix B includes the summaries for the SIDRA analysis, Appendix C includes the details of the traffic distribution and Appendix D includes the VicRoads Crash History Data.

2.0 Shepparton in Profile

It is located approximately 200 kilometres north-east of Melbourne and is the fifth largest city in Victoria. In 2008 it was estimated that the City of Greater Shepparton had a usual residential population of 60,528 residents.

Shepparton largest industries include manufacturing, retail and health and social services. Manufacturing industry has evolved to cater for the needs of local primary producers. Australia's largest processor of canned fruits, SPC Ardmona has production facilities in Shepparton, Mooroopna and nearby Kyabram. Shepparton is a major centre for road transport and also has a variety of educational facilities.

As indicated in the *Greater Shepparton Housing Strategy (Final Draft Version 2, 2008)* Greater Shepparton is experiencing strong population growth (approximately 800 persons per year) ¹, which is particularly being driven by internal and overseas migration and growth in the agricultural sector. The Shepparton North-East Growth Area is therefore well placed to help cater for Greater Shepparton's population growth. Table 2.1 presents the projected population for City of Greater Shepparton up to 2030.

Table 2.1: Projected Population for City of Greater Shepparton

Year	Population
Usual Resident population 2008	60,528
Projected population 2010	61,905
Projected population 2020	69,480
Projected population 2030	78,214

(Source: forecast.id. City of Greater Shepparton)

As shown in Table 2.1, in 2008 there were 60,528 persons in the City of Greater Shepparton. By 2030, the City of Greater Shepparton's projected population is 78,214 persons.

2.1 Demographic Profile

In order to gain a greater understanding of the travel needs of the future residents of the Shepparton North East Growth Area, the following demographic categories will be analysed: age structure, household size, household types, car ownership type and type and place of employment and travel to work modal share. The demographic information is based on Australia of Bureau Statistic (ABS) Census data from Greater Shepparton's Community ID Profile².

2.1.1 Age Structure

Figure 2.1 outlines the age structure in the City of Greater Shepparton in 2001 and 2006. In 2001 15.9% of Greater Shepparton's population was over the age of 60, however in 2006 this had increased to 17.6%. The aging population in Greater Shepparton is a continued trend in Australia, often a result of low fertility and increased life expectancy.³

Figure 2.1 presents the age structure of the residents of Greater Shepparton in 2006.

¹ David Lock Associates (2008) *Greater Shepparton Housing Strategy: Final Draft Version 2.* City of Greater Shepparton, Shepparton.

²(http://profile.id.com.au/Default.aspx?id=272&pg=210&gid=10&type=enum, accessed 25 November 2009)

³ Australian Bureau of Statistics, 2006 Census QuickStats, Australia, viewed 22 September 2008, http://www.censusdata.abs.gov.au.

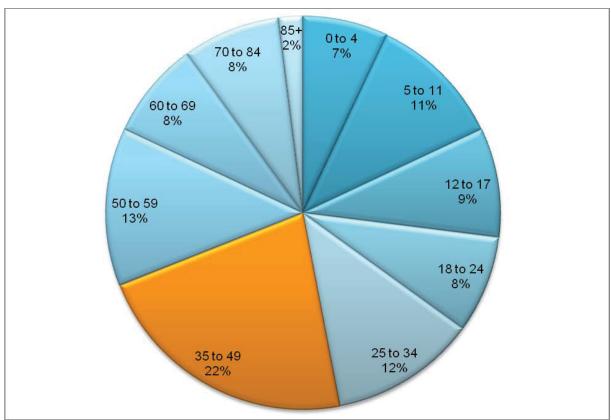


Figure 2.1: Age Structure, City of Greater Shepparton 2006

Figure 2.1 illustrates that the age structure of residents within the City of Greater Shepparton in 2006 was rather evenly spread, with the most populace group being the 35 – 49 category, representing 22% of the population.

Children of primary school age constituted 11.0% of the population and children and teenagers of secondary school age constituted 9% of the population.

2.1.2 Household Size

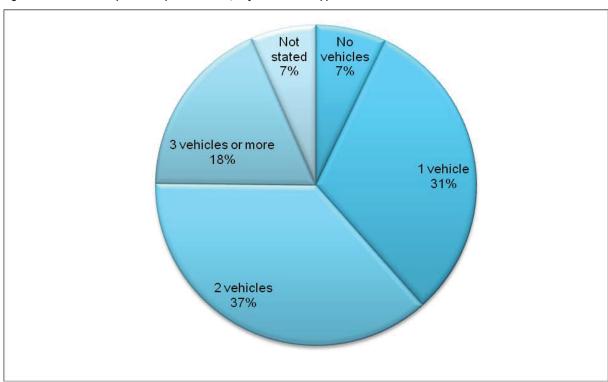
The average household size in the City of Greater Shepparton in 2006 was 2.6 persons. This is reflected below in Table 2.2 which shows 34.2% of household in Greater Shepparton had 2 persons.

Table 2.2: Household Size, City of Greater Shepparton 2006

Household Size	%
1 Person	24.2
2 Persons	34.2
3 Persons	15.2
4 Persons	15.3
5 Persons	7.7
6 or more Persons	3.4
Total	100.0

2.1.3 Household Types

Table 2.3 outlines the household composition types in the City of Greater Shepparton. In 2006 the most common family composition in Greater Shepparton was two parent households with children (45.2%). There were 16.5% one parent families and 37.0% couples without children.


Table 2.3: Family Composition, City of Greater Shepparton 2006

Household Types	%
Couples with child(ren) 15 years and under	32.1
Couples with child(ren) over 15 years	13.1
Total couples with child(ren)	45.2
One parent families with child(ren) 15 years and under	10.6
One parent families with child(ren) over 15 years	5.9
Total one parent families	16.5
Couples without child(ren)	37.0
Other families	1.2
Total families	100.0

2.1.4 Car Ownership

Car ownership at the time of the 2006 census is presented in Figure 2.2.

Figure 2.2: Car Ownership Vehicles per Household, City of Greater Shepparton 2006

(Source: Australian Bureau of Statistics, Census of Population and Housing, 2006)

Figure 2.2 shows that seven percent of households do not have vehicles and that over half of all households have two or more vehicles per household. This indicates that residents of City of Greater Shepparton are highly reliant on private vehicles as a primary mode of transport.

2.1.5 Type of Employment

Table 2.4 describes the employment industries for residents of Shepparton.

Table 2.4: Employment Industries for Residents, City of Shepparton 2006

Industry	%
Agriculture, Forestry & Fishing	10
Manufacturing	13.4
Construction	7.4
Retail Trade	13.2
Wholesale Trade	4.1
Hospitality	4.9
Transport and Warehousing	4.1
Professional and Technical Services	3.7
Administrative and Support Services	2.7
Public Administration and Safety	4
Education and Training	7.3
Health and Social Care	12
Other	13.2
Total	100.0

(Source: Australian Bureau of Statistics, Census of Population and Housing 2006)

Table 2.4 shows that the three most popular industry sectors of the jobs held by the resident population in the City of Greater Shepparton in 2006 were:

- Manufacturing (3,400 persons or 13.5%)
- Retail Trade (3,326 persons or 13.2%)
- Health Care and Social Assistance (3,033 persons or 12.0%)

In combination, these three industries employed 9,759 people in total or 38.7% of the employed resident population. The majority of industries of employment have the opportunity to provide residents with jobs locally, indicating that there is not a great need to travel outside Greater Shepparton for employment. This is discussed further in the following paragraph.

2.1.6 Place of Employment

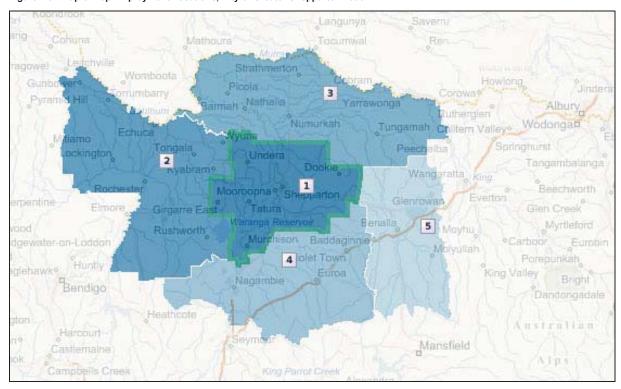
Table 2.5 describes the geographic location of work places for residents of Greater Shepparton in 2006.

Table 2.5: Employment Location, City of Greater Shepparton 2006

Employment location of City of Greater Shepparton's residents, 2006	Residents	Percent (%)
Within the City of Greater Shepparton	21,980	86.1
Outside the City of Greater Shepparton	1,596	6.3
Live within the City of Greater Shepparton, work location unknown	1,938	7.6
Employed residents of the City of Greater Shepparton	25,514	100.0

(Source: Australian Bureau of Statistics, Journey to work, unpublished data, 2006)

As shown in Table 2.5, the majority of residents (86.1%) work within the City of Greater Shepparton. Table 2.5 further describes where the 1,596 (6.3%) of residents that do not work in Shepparton are travelling to work.

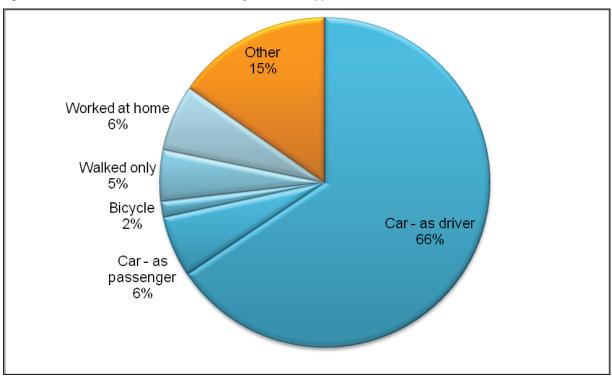

Table 2.6: Top 5 Local Government Areas of Employment for Residents, City of Greater Shepparton, 2006

Rank	Local Government Area	Direction relative to Greater Shepparton	Number of Residents	Percent (%)
1	Greater Shepparton	-	21,980	86.1
2	Campaspe	West	478	1.9
3	Moira	North	339	1.3
4	Strathbogie	South	100	0.4
5	Benalla	East	70	0.3
	Other areas	-	2,547	10.0
Total e	employed residents in the arton	e City of Greater	25,514	100.0

(Source: Australian Bureau of Statistics, Journey to work, unpublished data, 2006.)

Figure 2.3 illustrates the geographic locations of the top employment locations for the City of Greater Shepparton, as detailed in Table 2.6.

Figure 2.3: Map of Top Employment Locations, City of Greater Shepparton 2006


(Map source: http://profile.id.com.au/Default.aspx?id=272&pg=310&gid=10&type=enum, accessed 25 November 2009)

As shown in Table 2.6 and Figure 2.3, the census information concluded that in 2006 there were only a small amount of Greater Shepparton residents that travelled beyond Shepparton to work. This indicates that there are no obvious employers or industries attracting significant volumes of Greater Shepparton residents out of the area for work and the majority (86%) of trips to work are likely to be within the City of Greater Shepparton.

2.1.7 Travel to Work Modal Share

Figure 2.4 outlines the primary travel modes for 'Journeys to Work' for Greater Shepparton residents.

Figure 2.4: Residents Travel to Work Modal Share, City of Greater Shepparton 2006

(Source: Australian Bureau of Statistics, Census of Population and Housing, 2006)

As shown in Figure 2.4, there is a strong reliance on the private vehicle for trips to work. Out of all travel modes travel by private vehicle constitutes 72% of trips.

2.2 Demographic Conclusions

Demographic analysis concludes that the City of Greater Shepparton has a high reliance on private vehicles for transport and a high vehicle ownership per household. The average household size in the City of Greater Shepparton in 2006 was 2.6 persons and 34.2% of households in Greater Shepparton had 2 persons. Notwithstanding this, over half of all households have two or more vehicles per household.

The majority of industries of employment have the opportunity to provide residents with jobs locally, indicating that there is not a great need to travel outside Greater Shepparton for employment. The census information concluded that in 2006 there were only a small amount of Greater Shepparton residents that travelled beyond Shepparton to work. This indicates that there are no obvious employers or industries attracting significant volumes of Greater Shepparton residents out of the area for work and the majority (86%) of trips to work are likely to be within the City of Greater Shepparton.

Children of primary school age constituted 11.0% of the population and children and teenagers of secondary school age constituted 9.6% of the population.

3.0 Existing Conditions

3.1 Site Locality

The site is located approximately four kilometres north east of Shepparton town centre.

As shown in Figure 3.1, the development site is bordered by Ford Road in the north, Grahamvale Road to the east, private agricultural land to the south and Verney Road to the west.

Figure 3.1: Site Location

(source: maps.google.com)

3.2 Road Network

Verney Road is a local road aligned north south between Goulburn Valley Highway and Balaclava/New Dookie Road. In the vicinity of the site there is one lane in each direction and cycle lanes on both sides. Mainly the shoulders are unsealed, however near some intersections the shoulders are sealed and formal footpaths exist. There is a short length of shared path on the western side of Verney Road in the vicinity of the site.

Balaclava Road is a VicRoads declared road aligned east west between Goulburn Valley Highway (Numurkah Road) and New Dookie Road. There is one lane in each direction, cycle lanes on both sides and parallel car parking on the northern side. There are formal footpaths on both sides.

New Dookie Road is a VicRoads declared road which extends east approximately 400 m where it becomes Dookie Shepparton Road and continues to Dookie. In the vicinity of the site (between Verney Road and Grahamvale Road) this road has one lane in each direction with unsealed shoulders.

Forming the eastern border of the site, **Grahamvale Road** is a local road aligned north south from Katamatite Shepparton Road to the roundabout at Dookie Shepparton Road. In the vicinity of the site Grahamvale Road has one lane in each direction and a narrow sealed shoulder. Grahamvale Road is the current formal town bypass for Heavy Goods Vehicles (HGVs) and accordingly HGVs comprise approximately 20% of all movements along this route.

Forming the northern border of the site, **Ford Road** is a local road aligned east west between Lemnos North Road, Lemnos and Goulburn Valley Highway. In the vicinity of the site there is one lane in each direction (unmarked) and unsealed shoulders.

Hawkins Street is aligned east west between Verney Road and Goulburn Valley Highway and provides the most direct access to Goulburn Valley Highway from the site. Hawkins Street has been designed to act as a an informal collector road with the Northern Neighbourhood (Retail) Centre located on the corner of Hawkins Street and Goulburn Valley Highway and reduced number of houses with frontages (including 18 crossovers on the North side and 12 crossovers on the South side). It is planned that the intersection with Goulburn Valley Highway will be signalised to improve access and safety.

Pine Road comprises one lane in each direction and is primarily aligned east west between Verney Road and Goulburn Valley Highway apart from a short section which is aligned north south (approximately 400 m west of Verney Road). There are formal footpaths on both sides, and parallel car parking on the northern side, of the eastern section of the street. There is a formal footpath on the north side of the western section of the street. The intersection with Goulburn Valley Highway is signalised.

Goulburn Valley Highway (Numurkah Road) is a VicRoads declared road and is defined as a road of national importance. In the area near the site the Goulburn Valley Highway (Numurkah Road) has two lanes in each direction, sealed shoulders and a series of service roads to cater for active frontages.

3.3 Turning Movement Volume Surveys

Turning movement volume surveys were undertaken by Global Workforce on behalf of AECOM on Tuesday 5 August 2008 in the AM peak between 7:30am and 10:30am and in the PM peak between 3:00pm and 6:00pm.

As shown in Figure 3.2, the intersections assessed include:

- Verney Road / Balaclava Road / New Dookie Road
- Verney Road / Ford Road
- Grahamvale Road / Dookie Shepparton Road
- Grahamvale Road / Ford Road

Additional turning movement volume surveys were undertaken by Global Workforce on behalf of AECOM on Thursday 19 November 2009 in the AM peak between 7:30am and 10:30am.

As shown in Figure 3.2, the intersections assessed include:

- Verney Road / Pine Road
- Verney Road / Hawkins Street

For the Hawkins Road / Goulburn Valley Highway priority intersection turning movement surveys were sourced from City of Greater Shepparton (CGS) surveys. These surveys were conducted in 2005. In order to provide a realistic comparison it was agreed with CGS to apply a compound growth factor of 1% per annum (typical for Goulburn Valley Highway) to create a flow scenario for this intersection.

Figure 3.2: Survey Location

(source: maps.google.com)

Figure 3.3 to Figure 3.15 illustrate the AM and PM peak hour traffic volumes for the intersections analysed. Full survey results are contained within Appendix A.

As different roads within the network experience differing AM and PM peak periods each intersection has been analysed based on the intersection specific peak hour as recorded during recent surveys.

Figure 3.3: Verney Road / Balaclava Road AM Peak Hour

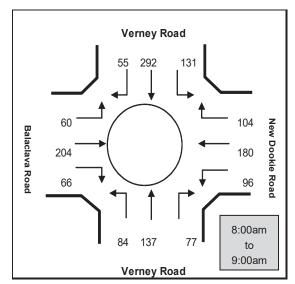


Figure 3.4: Verney Road / Balaclava Road PM Peak Hour

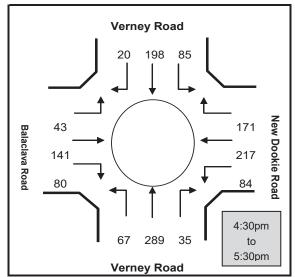


Figure 3.5: Verney Road / Ford Road AM Peak Hour

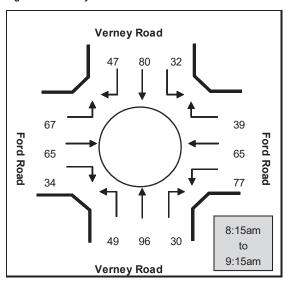


Figure 3.6: Verney Road / Ford Road PM Peak Hour

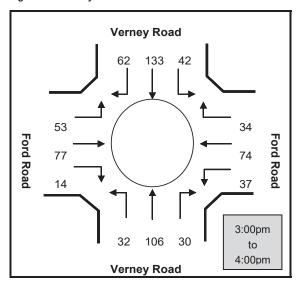


Figure 3.7: Grahamvale Rd/Dookie Shepprtn Rd AM Pk Hr

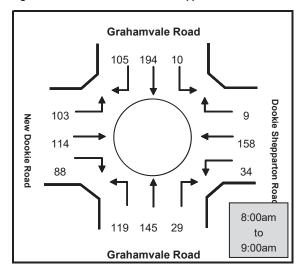


Figure 3.8: Grahamvale Rd/Dookie Shepprtn Rd AM Pk Hr

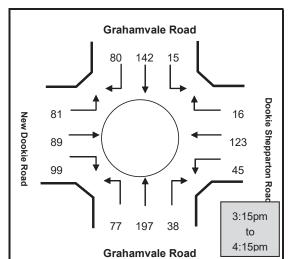


Figure 3.9: Grahamvale Road / Ford Road AM Pk Hr

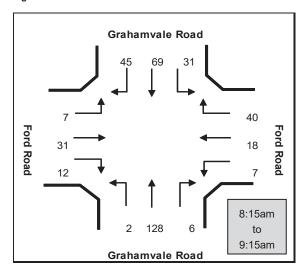


Figure 3.10: Grahamvale Road / Ford Road PM Pk Hr

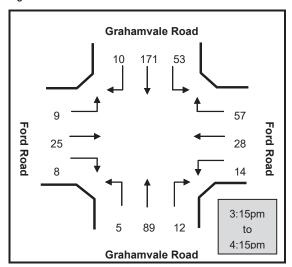


Figure 3.11: Hawkins Road / GV Hwy AM Pk Hr

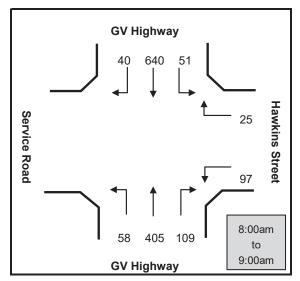


Figure 3.12: Hawkins Road / GV Hwy PM Pk Hr

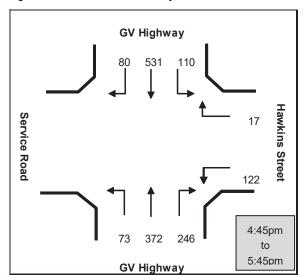


Figure 3.13: Verney Road / Hawkins Street AM Pk Hr

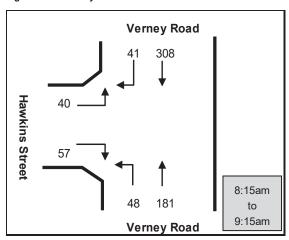


Figure 3.14: Verney Road / Pine Road AM Pk Hr

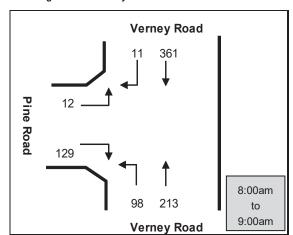


Figure 3.15: Verney Road / Hawkins Street 8:00am to 9:00am

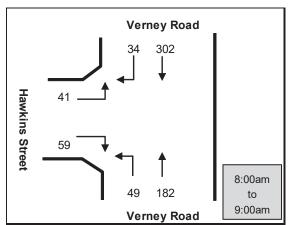


Figure 3.15 illustrates the 8:00am to 9:00am hourly traffic flows recorded at the Verney Road / Hawkins Street intersection. Comparison of the 8:00am to 9:00am hourly traffic flows at the Verney Road / Pine Road intersection and the Verney Road / Hawkins Street intersection shows that the two-way traffic flow on Pine Road (250 vehicles per hour) is 37% higher than on Hawkins Street (183 vehicles per hour). The higher flows on Pine Road may be attributed to the traffic signals at the Pine Road / Goulburn Valley Highway intersection or to the secondary college located east of Goulburn Valley Highway on Parkside Drive.

It is also observed that these high flows along Pine Road are generally due to the dominant right turns of vehicles turning onto Verney Road (south) and the left turns from Verney Road (south) turning into Pine Road. This indicates a preference for vehicles travelling to/from the south to use Pine Road opposed to using Hawkins Street.

3.4 Crash History

An accident review for the area has been performed using the VicRoads CrashStats database.

The roads reviewed included:

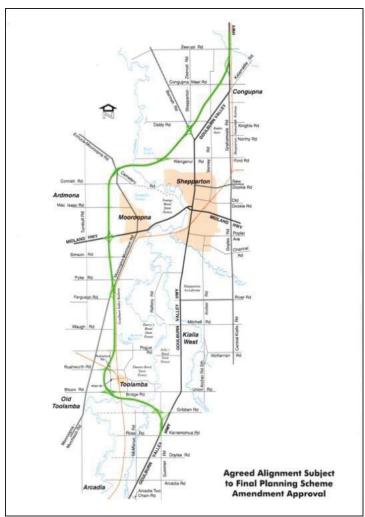
- Verney Road between Balaclava Road and Ford Road
- Grahamvale Road between Dookie Shepparton Road and Ford Road
- Ford Road between Verney Road and Goulburn Valley Highway
- Balaclava Road, New Dookie Road and Dookie Shepparton Road to Grahamvale Road
- Hawkins Street
- Pine Road
- Goulburn Valley Highway at the intersections of Balaclava Road, Hawkins Street, Ford Road, Verney Road and Pine Road.
- Hawdon Street (just south of Verney Road)

In the five year period between January 2004 and December 2008 there were 46 accidents along these roads. This resulted in 16 serious injuries and 30 other injuries. No fatalities were recorded at these locations. Full results can be found in Appendix D.

Between 2004 and 2008 the signalised intersection of Brauman Street (the western extension of Pine Road) and Goulburn Valley Highway experienced seven accidents, which resulted in five serious and two non-serious injuries. Four of these accidents occurred in the twelve month period between January and December 2008. Six of the accidents were collisions between right turning vehicles and vehicles travelling in the lane into which the vehicle was turning. These accidents indicate that there are existing safety issues at this intersection.

Between 2004 and 2008 five accidents were observed at the Goulburn Valley Highway / Goulburn Valley Highway Service Road intersection. The majority of these accidents occurred during light, day and clear conditions and there was no pattern to the classification of these accidents. No serious injuries were sustained.

Between 2004 and 2008 five accidents were observed at the Balaclava Road/ Verney Road roundabout. These accidents comprised cross traffic collisions and incidences where the driver lost control of the vehicle. A serious injury was sustained in one of the accidents. There was no pattern to the time of day or road conditions of these accidents.


3.5 Committed Traffic Improvements and Developments

3.5.1 Shepparton Valley Bypass

The boundaries for the Shepparton Bypass have been finalised and were incorporated into the Greater Shepparton Planning Scheme in late 2006. A program for the construction of the Shepparton Bypass is yet to be agreed with the Australian Federal Government. Figure 3.16 shows the confirmed bypass route which will reduce through traffic on Goulburn Valley Highway and replace the HGV bypass route along Grahamvale Road.

As the timeframe for the Shepparton Bypass has not yet been confirmed it is important to consider that it may not actually be opened prior to completion of the development.

Figure 3.16 Valley Bypass Route

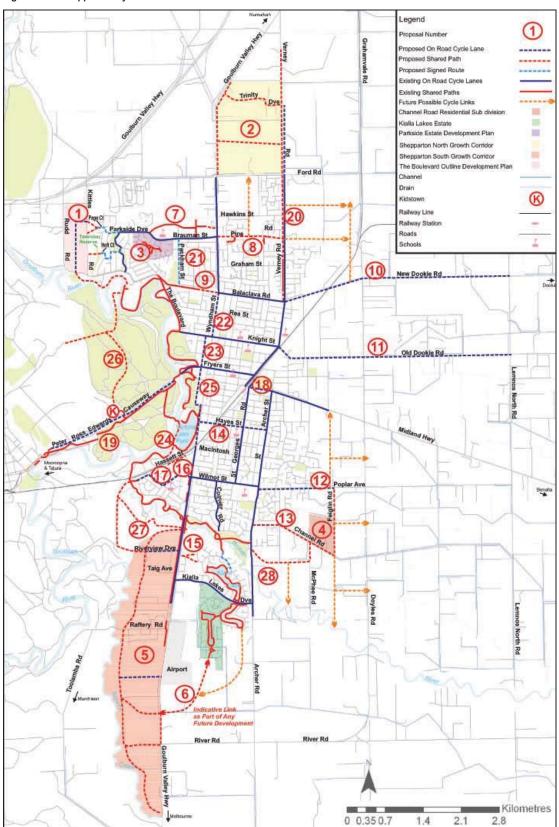
3.5.2 Northern Neighbourhood Centre Extension

The Northern Neighbourhood Centre is a retail development located on the corner of Goulburn Valley Highway and Hawkins Street. It has a committed expansion planned to increase the retail floor space from 3800 sqm to 7300 sqm, resulting in an additional 3500 sqm of retail space.

This is anticipated to place further pressure on the Hawkins Street / Goulburn Valley Highway intersection. Accordingly the intersection will need to be upgraded in the near future as a part of the Northern Neighbourhood extension.

At the time of preparing this report, there were no other known committed developments expected to impact the local traffic network.

3.6 Cycle Network


Shepparton has a well established cycle network that is continuously improving. The Shepparton Cycle network map provided by CGS is included in Figure 3.17: .

As shown in Figure 3.17: , there are currently on-road cycle lanes on Verney Road, Balaclava Road and Goulburn Valley Highway. An on-road cycle lane is proposed to extend from Balaclava Road along Dookie Shepparton Road and past Grahamvale Road.

There is also a shared path along a section of the west side of Verney Road and this is proposed to be extended.

The proposed development is well placed to integrate a safe, convenient cycle network, maximise permeable route and connections to the external road network.

Figure 3.17: Shepparton Cycle Network

4.0 Existing Traffic Operation

4.1 Overview of Local Road Network

During initial discussions with CGS Engineering Projects department⁴ it was agreed that the following four intersections would be most adversely affected by the proposed development and would be sufficient for analysis of impacts on external local road network:

- Verney Road and Balaclava Road
- Verney Road and Ford Road
- Grahamvale Road and Dookie Shepparton Road
- Grahamvale Road and Ford Road

Further to these discussions, in October 2008 further discussions were conducted with CGS Council Officers regarding the likelihood of impacts to Hawkins Street and potentially Pine Road. Additional analysis has been investigated for:

- Goulbourn Valley Highway and Hawkins Street
- Verney Road and Hawkins Street
- Verney Road and Pine Road

The impact of the proposed development on the operation of the Hawkins Street / Goulbourn Valley Highway intersection has been investigated. In 2005 CGS conducted surveys of the intersection to determine whether signalisation was warranted in line with VicRoads requirements. The investigation concluded that signalisation was not warranted, but the intersection was flagged as a potential future location suitable for signalisation. Discussions with CGS suggested that the implementation of signals at this location will be required in the near future to improve existing operational and safety conditions.

Historical traffic growth along Goulburn Valley Highway in this area has averaged 1.0% per annum⁵. Therefore, a growth factor of 1.0% per annum has been applied to the traffic movement flows recorded in 2005 and the Hawkins Street / Goulbourn Valley Highway intersection has been modelled using SIDRA to provide an estimation of current (2008) operation.

4.2 SIDRA INTERSECTION Analysis

The operation of the local intersections described in 4.1 have been analysed using SIDRA INTERSECTION 3.1 (SIDRA).

The SIDRA software package is a computer program that estimates intersection capacity and performance statistics using iterative approximation.

The following three main operational parameters have been detailed to provide a broad understanding of the intersection performance. These are Degree of Saturation, Level of Service and Average Delay. Each is described below.

4.2.1 Degree of Saturation

The level of congestion at an intersection is most commonly measured by the Degree of Saturation (DOS). This is defined as the ratio of arrival flow to capacity and is otherwise known as the volume capacity ratio, and has a theoretical maximum value of one. In practice, a DOS of greater than 0.95 would indicate that the intersection is operating under congested conditions, with lengthening queues and delays. As a guide the operating conditions under various degrees of saturation can be defined as:

⁴ Brendan Walsh, Senior Engineer - Engineering Projects Greater Shepparton City Council, 22 August 2008

⁵ Source: CGS

- DOS < 0.75 Very good operating conditions;
- 0.75 < DOS < 0.90 Good operating conditions;
- 0.90 < DOS < 0.95 Acceptable operating conditions; and
- DOS < 0.95 Congested operating conditions.

When utilising SIDRA to analyse intersections, it is prudent to compare not only the DOS, but also factors such as queues and delays, which are qualitatively captured through assessment of the level of service.

4.2.2 Level of Service

Austroads have developed standards for level of service for urban streets within Australia. Level of Service (LOS) is based on average through-vehicle travel speed for the segment, section, or entire urban street under consideration.

SIDRA uses average control delay, which is the average delay that the driver will experience when waiting at the intersection as a measure of the "level of service" that the intersection is operating as a whole and/or for each movement. The delay levels that apply to different levels of service under SIDRA are summarised in Table 4.1.

Table 4.1: SIDRA Definition of Levels of Service and Delay

Level of Service	Characteristic Flows	Control delay per vehicle in seconds (d)
Α	Primarily free-flow operations at average travel speeds	d<=10
В	Reasonable unimpeded operations at average travel speeds	10 <d<=20< td=""></d<=20<>
С	Stable operations; however, ability to manoeuvre and change lanes in mid block locations may be more restricted	20 <d<=35< td=""></d<=35<>
D	Small increases in flow may cause substantial increases in delay and decreases in travel speed	35 <d<=55< td=""></d<=55<>
Е	Significant delays and average travel speeds of 33 percent or less of the free flow speed	55 <d<=80< td=""></d<=80<>
F	Urban street flow at extremely low speeds, typically one-third to one-fourth of the free flow speed	80 <d< td=""></d<>

4.2.3 Average Delay

The delay to a vehicle is the difference between the interrupted and uninterrupted travel time through the intersection. The reported delay includes the deceleration and acceleration delays for the major stop experienced by queued vehicles as well as the geometric delays experienced by all vehicles negotiating the intersection.

4.2.4 Verney Road and Grahamvale Road Intersections

Table 4.2 to Table 4.7 summarise the existing operational characteristics of the following intersections during the AM and PM weekday peak hours:

- Verney Road and Balaclava Road
- Verney Road and Hawkins Street
- Verney Road and Pine Road
- Verney Road and Ford Road
- Grahamvale Road and New Dookie Road
- Grahamvale Road and Ford Road.

Full SIDRA analysis results are included in Appendix B.

Table 4.2: Verney Road / Balaclava Road Existing Peak Hour Intersection Operation (Roundabout)

Intersection Arm	Degree of Saturation		Average Delay (sec)		Level of Service	
intersection Arm	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
Verney Road						
(South)	0.289	0.4.4	6.3	5.8	LOS A	LOS A
New Dookie Road						
(East)	0.444	0.484	7.1	6.9	LOS A	LOS A
Verney Road						
(North)	0.519	0.310	6.4	4.8	LOS A	LOS A
Balaclava Road						
(West)	0.352	0.326	5.9	7.6	LOS A	LOS A
All Approaches	0.519	0.484	6.4	6.3	LOS A	LOS A

Table 4.3: Verney Road / Hawkins Street Existing AM Peak Intersection Operation (T-intersection)

Intersection Arm	Degree of Saturation	Average Delay (sec)	Level of Service
Verney Road (South)	0.102	1.8	LOS A
Hawkins Street (West)	0.222	14.6	LOS B
Verney Road (North)	0.174	1.1	LOS A
All Approaches	0.221	3.3	-

Table 4.4: Verney Road / Pine Road Existing AM Peak Intersection Operation (T-intersection)

Intersection Arm	Degree of Saturation	Average Delay (sec)	Level of Service
Verney Road (South)	0.121	2.7	LOS A
Pine Road (West)	0.491	24.7	LOS C
Verney Road (North)	0.204	0.3	LOS A
All Approaches	0.500	5.4	-

Table 4.5: Verney Road / Ford Road Existing Peak Hour Intersection Operation (Roundabout)

Interpretion Arms	Degree of Saturation		Average Delay (sec)		Level of Service	
Intersection Arm	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
Verney Road						
(North)	0.157	0.228	6.9	6.7	LOS A	LOS A
Ford Road						
(East)	0.187	0.155	6.7	6.9	LOS A	LOS A
Verney Road						
(South)	0.159	0.155	6.4	6.4	LOS A	LOS A
Ford Road (West)	0.174	0.151	7.0	6.5	LOS A	LOS A
All Approaches	0.187	0.228	6.7	6.6	LOS A	LOS A

Table 4.6: Grahamvale Road / Dookie Shepparton Road Existing Peak Hour Intersection Operation (Roundabout)

Interception Arm	Degree of Saturation		Average Delay (sec)		Level of Service	
Intersection Arm	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
Grahamvale Road						
(South)	0.264	0.269	4.9	4.6	LOS A	LOS A
Dookie Shepparton						
Road (East)	0.228	0.193	4.9	4.8	LOS A	LOS A
Grahamvale Road						
(North)	0.305	0.234	5.9	5.8	LOS A	LOS A
New Dookie Road						
(West)	0.287	0.272	5.9	6.7	LOS A	LOS A
All Approaches	0.306	0.272	5.5	5.5	LOS A	LOS A

Table 4.7: Grahamvale Road / Ford Road Existing Peak Hour Intersection Operation (Priority Junction)

Intersection Arm	Degree of Saturation		Average Delay (sec)		Level of Service	
intersection Arm	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
Grahamvale Road						
(South)	0.080	0.072	1.0	2.6	LOS A	LOS A
Ford Road						
(East)	0.111	0.179	9.3	10.1	LOS A	LOS B
Grahamvale Road						
(North)	0.095	0.137	4.1	2.3	LOS A	LOS A
Ford Road						
(West)	0.078	0.071	8.3	8.8	LOS A	LOS A
All Approaches	0.111	0.179	4.4	4.6	-	-

As shown in Table 4.2, Table 4.5 and Table 4.6 all intersections controlled with roundabouts currently operate with an excellent LOS of 'A' in both peak periods and have very low average delays, of less than 8 seconds. This indicates that there is plenty of additional capacity at these intersections.

Table 4.3 reveals that the Verney Road / Hawkins Street T-intersection currently operates with a good level of service and with short delays. Table 4.4 reveals that the Verney Road / Pine Road intersection is mainly operating satisfactorily however there are medium delays for vehicles turning left and right from Pine Road. These vehicles experienced an average delay of 25 seconds in the AM peak. As shown in Figure 2.14 there was a high volume of vehicles (129 vehicles) turning right from Pine Road into Verney Road in the AM peak.

As shown in Table 4.7 the Grahamvale Road / Ford Road priority junction currently operates with a good level of service and with short delays.

4.2.5 Hawkins Street / Goulburn Valley Highway

Table 4.8 displays the results of the Hawkins Street / Goulburn Valley Highway intersection analysis for 2008 scenario based on the CGS 2005 traffic survey.

Table 4.8: Hawkins Street / Goulburn Valley Highway SIDRA Analysis for 2008 Scenario

Interesetion Avec	Degree of Saturation		Average Delay (sec)		Level of Service	
Intersection Arm	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
Goulburn Valley						
Highway (South)	0.180	0.372	3.3	5.6	LOS A	LOS A
Hawkins Street						
(East)	0.460	0.308	30.0	21.2	LOS D	LOS C
Goulburn Valley						
Highway (North)	0.195	0.179	1.2	2.4	LOS A	LOS A
All Approaches	0.500	0.372	4.5	5.5	-	-

Table 4.8 reveals that the intersection is mainly operating satisfactorily however there are significant delays for vehicles turning right from Hawkins Street. These vehicles experienced an average delay of 92 seconds in the AM peak. The delay is considered excessive and potentially increases the risk of collision.

As detailed the Traffic Engineering Manual Volume 1, Chapter 3 – Edition 3, Revision A, (2001) VicRoads recommend that signalisation may be required under the following circumstances:

Traffic signals may be considered subject to detailed analysis; when the major road carries at least 600 vehicles/hour (two way) and the minor road concurrently carries at least 200 vehicles (one way) on one approach over any 4 hours of an average day.

In the AM and PM peak hours the two way traffic on Goulburn Valley Highway is 1303 vehicles and 1412 vehicles respectively. Hawkins Street (westbound) carries 97 vehicles in the AM peak and 122 vehicles in the PM peak.

The SIDRA analysis for the 2008 scenario indicate that signalisation of the intersection may be necessary to provide safe and efficient operation. Accordingly, the intersection has been analysed to provide an understanding of operation with signalisation for the 2008 scenario based on the CGS 2005 traffic survey.

The following phasing sequence was used to construct the phasing operation for the SIDRA model. In both the AM and PM peaks the phasing sequence used for the SIDRA model included:

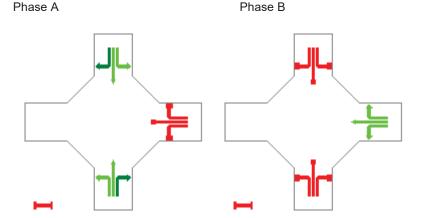


Table 4.9 displays the results of the signalised intersection analysis for the 2008 scenario based on the CGS 2005 traffic survey.

Table 4.9: Hawkins Street / Goulburn Valley Highway Signalised Intersection SIDRA Analysis for 2008 Scenario

Interception Arm	Degree of Saturation		Average Delay (sec)		Level of Service	
Intersection Arm	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
Goulburn Valley						
Highway (South)	0.324	0.693	10.0	12.8	LOS A	LOS B
Hawkins Street						
(East)	0.441	0.545	20.1	20.5	LOS C	LOS C
Goulburn Valley						
Highway (North)	0.510	0.466	8.8	9.8	LOS A	LOS A
All Approaches	0.510	0.693	10.2	12.1	LOS B	LOS B

As shown in Table 4.9, the results of the signalised intersection analysis indicate a more even distribution of traffic flows. The results indicate higher levels of saturation for Goulburn Valley Highway, however the operation of Hawkins Street indicates significant improvement and acceptable operation in both peak periods with average delays ranging from 11 to 21 seconds.

5.0 Proposed Development

The proposed mixed use development is primarily residential with a complimentary retail and community component located adjacent to Verney Road. As part of the development, it is also proposed to extend the Grahamvale Primary School (PS).

Four access points are proposed for the development including:

- Verney Road between Ryeland Drive and Hawkins Street
- · Verney Road extension of Pine Road
- Grahamvale Road and
- Ford Road

5.1 Land Use

The proposed development is primarily residential, with retail and ancillary community facilities. A total of 1677 residential dwellings are proposed.

It is proposed to develop a retail and community hub including 1350sqm gross floor area (GFA), comprising a convenience supermarket with GFA 900sqm and 450sqm of small tenancies. It is recommended that a preschool, childcare, maternal and child health services are included within the community hub.

The retail and community facilities are proposed to be located north east of the primary Verney Road entrance.

It is proposed to extend the existing Grahamvale Primary School located on the western boundary of the site. The extent of the extension is not yet finalised however, for the purpose of this investigation it has been estimated that the enrolments will double, as explained in Section 6.1.4.

5.2 Car Parking Rates

5.2.1 Residential Car Parking

Residential car parking shall be designed in accordance with the Greater Shepparton Planning Scheme and provision for car parking will include parking within property curtilage. This is not examined as a part of this assessment.

5.2.2 Retail Car Parking

Car parking for the development should be designed in accordance with the most current car parking rates applicable. According to the current Clause 52.06 of the Greater Shepparton Planning Scheme, a provision of 8 car spaces to each 100sqm of leasable floor area is required for the majority of retail developments anticipated to occupy this retail component.

However, recently the Department of Planning and Community Development (DPCD) facilitated a state wide review of planning scheme parking rates. This process culminated in the release of a report by an Advisory Committee (appointed by the Minister for Planning) titled Review of Parking Provisions in the Victoria Planning Provisions, August 2007. This report aims to provide advice on car parking issues and to prepare a new Clause 52.06 suitable for inclusion in the Victoria Planning Provisions (VPP) and planning schemes.

The Advisory Committee report has been prepared following extensive research across Victoria and contribution from numerous stakeholders and experts. If adopted, the report's recommendations will alter the existing parking rates provided in Clause 52.06 of the VPP.

In general the parking rates proposed in the Advisory Committee report are lower or equal to the existing parking rates in Clause 52.06.

However, it is relevant to note that the adoption of this report is, in all likelihood, some months away and there is not necessarily a guarantee that the report's recommendations will be adopted in any form. Comments are currently being sought on the Advisory Committee report and the Advisory Committee is currently analysing the submissions on all the draft documents.

Notwithstanding the uncertainty in respect of the possible adoption of the revised parking rates proposed in the Advisory Committee report, it is still important for the parking rates to be considered for future developments.

The Advisory Committee Report specifies a proposed parking rate of 4.0 car spaces per 100sqm of leasable floor area for retail developments (for standard retail developments, as in this case).

Therefore, even though the current planning scheme rate is 8 spaces per 100sqm of leasable floor area, it is expected that a lower rate of 4.0 spaces per 100sqm of leasable floor area is in line with the recommendations of the recent Advisory Committee Report and will be considered suitable for this future development.

6.0 Vehicular Traffic Generation and Distribution

The following traffic investigation has been undertaken to ascertain the levels of traffic that will be generated and assigned to the existing road network as a result of new residential development in the Shepparton North East Growth Area.

6.1 Traffic Generation

Traffic generation rates have been discussed and agreed with the CGS Engineering Projects department and are presented as follows.

6.1.1 Background Traffic Growth

An annual background traffic growth rate of 1.5% per annum has been applied to surveyed traffic movements. This is based on the historical growth rate of the Verney Road area as monitored by CGS. The growth rate takes into account growth in traffic caused by developments in the greater area, such as other residential and retail developments.

6.1.2 Residential

The Greater Shepparton Infrastructure Design Manual requires a traffic generation of 10 vehicle trips per lot per day⁶. This results in a total of 16,770 vehicle trips per day.

Greater Shepparton Infrastructure Design Manual a weekday peak hour vehicle trip rate of 0.9 movements per dwelling. This factor has been developed to take into account all trips typical of peak hour activity and primarily includes trips to work and trips to schools. For parents, one of the attractions of this residential development is the proximity to educational facilities, including the Grahamvale Primary School located on the eastern boundary of the site, the Christian School located on the western boundary the site and a collection of other schools located in close proximity.

To provide an accurate analysis of external trips generated to and from the site it is important to take into consideration that no external trips will be generated for residents aged between four and 11 travelling to and from the Grahamvale Primary School located within the site. As discussed in section 2.1.1, this age group constitutes 11% of the population. Accordingly the peak hour vehicle trip rate has been reduced by approximately 11% to 0.8 movements per dwelling to take into account the reduced demand for trips external to the site.

This results in a total traffic generation of 1342 movements generated by residential traffic in the AM and PM peak hours.

Vehicle trips are defined as a one-way vehicular movement from one point to another excluding the return journey. Therefore a vehicle entering and leaving a land use is counted as two trips. For residential trips the following profile has been assumed:

- AM Peak: 10% of trips in and 90% of trips out
- PM Peak: 70% of trips in and 30% of trips out

6.1.3 Retail

The RTA "Guide to Traffic Generating Developments" (October 2002) is a widely used, comprehensive guide to covering all aspects of traffic generation relating to developments. It was developed in New South Wales and provides good guidance for Australian conditions generally. The Guide commonly provides generation rates for daily (24 hour) and evening peak hour periods for a wide range of land uses.

The rates detailed in Table 6.1 have been discussed with CGS Engineering Projects department and agreed to be suitable for the land uses envisaged within the NE Growth Corridor Residential/Mixed Use Development:

⁶ City of Greater Shepparton Infrastructure Design Manual V2.5, 2 Nov 2009

Table 6.1: RTA Guide Generation Rates (October 2002)

Land Use	Daily Rate (vehicles per 100sqm GLFA)	Peak Hour Rate (vehicles per 100sqm GLFA)
Supermarket	121 vehicle trips per 100sqm of gross leasable floor area	12.5 vehicle trips per 100sqm of gross leasable floor area
Retail	121 vehicle trips per 100sqm of gross leasable floor area	12.5 vehicle trips per 100sqm of gross leasable floor area

Based on the proposed development of 1350sqm supermarket and retail area the traffic generation is estimated to be 1634 per day and 169 movements in the peak hours.

However it is estimated that only 10% of traffic attracted to the retail site will originate from traffic passing outside the development⁷. Therefore the additional traffic on the external road network is estimated to be 164 movements per day and 17 movements in the peak hours. It is important to note that the volume of retail movements is an overestimate for the AM peak as it is unlikely that the AM peak for trips associated with the retail development will align with the AM peak for trips in the surrounding road network. However to provide a robust analysis the peak hour retail traffic generation of 17 movements has been applied.

For retail trips the following profile has been assumed:

- AM Peak: 50% of trips in and 50% of trips out
- PM Peak: 50% of trips in and 50% of trips out

6.1.4 Grahamvale Primary School

All new resident children will be accommodated within the development and do not constitute external trips.

Access to Grahamvale Primary School from outside the development is proposed to remain available via Grahamvale Road. In order to provide a robust analysis it has been assumed that access to the Grahamvale PS will be relocated off Grahamvale Road and into the local road within the site.

As we do not have information regarding the anticipated growth of the school an estimation has been created based on reasonable assumptions. The current school student population is 300 students.

It is estimated that when the development site is fully occupied in 2020 there will be a projected development population of 4084 people. Based on ABS population statistics it is anticipated that the development site would include approximately 449 primary school-aged children⁸, who are most suitably located for enrolment at Grahamvale PS.

Discussions with the Department of Education revealed that one of the major attractors to the current school is the "country feel", which would change as the area is developed. It considered that the school population will draw fewer children from other areas in Shepparton.

Demand for student placements residing off-site is estimated to include approximately half of current student population, 150 placements. This would result in a total primary school population of approximately 600 children.

Students residing within the development site area would not generate any external trips to/from the site. School trips are actually taken into consideration within the standard residential peak hour traffic generation rate of 0.8 trips per dwelling, as discussed in 6.1.2.

The expansion of the school would therefore be likely to result in a reduction in external trips. For the purpose of this investigation the effect of any potential reduction in trips from the external road network has not been analysed.

⁷ 'Shepparton North East Growth Area Activity Centre Demand' report prepared by Applied Development Research Pty Ltd, October 2008

⁸ Based on Shepparton ABS Population Data (2006) for people aged from 5 to 11.

6.1.5 Primary School Traffic Generation Methodology

As there are no formal guidelines recommended for calculating traffic generation for primary schools a methodology has been formulated and agreed with the CGS Engineering Projects department. The methodology is described in the following paragraphs.

The traffic generation for Grahamvale PS is based on number of students in each vehicle. The 2006 ABS census data for the Shepparton North ABS catchment area demonstrates the family composition includes a total of:

- 35% family households have one child and
- 65% of family households have two or more children.

AECOM estimate that trips to the school made by the students residing externally to the development site include one trip for families with one child and one trip for families with two or more children each way.

Trips generated by staff are estimated based on the following assumptions:

- 600 students
- 35 staff members including: 30 teachers (1 teacher per 20 students) and 5 support staff

Table 6.2 displays the trip generation estimation of the existing Grahamvale PS and the proposed expansion.

Table 6.2: Total Trips Generated by Students on the External Road Network during the peak hour

Children in Family	Percentage of Total	Existing Children	Existing Trip Generation	Proposed Children	Proposed Trip Generation
1 child	35%	105	210	53	106
2 + children	65%	195	195	97	97
Staff	-	-	-	-	35
Total	-	300	405	150	238

^{*} include 2 or more children in each car trip

Therefore a reduction in 167 trips on the external road network is expected⁹. The proposed 238 trips are expected to be distributed as described in section 6.2.

Due to the set down/pick up nature of primary school trips, for trips from external locations the following profile has been assumed:

Students

AM Peak: 50% of trips in and 50% of trips out
PM Peak: 50% of trips in and 50% of trips out

Staff

AM Peak: 100% of trips inPM Peak: 100% of trips out

⁹ For the purposes of this assessment the reduced trips will not be reduced from the road network.

6.1.6 Total Peak Hour Trips

Table 6.3 displays the total trip generation estimation on the external road network during the AM and PM peak hours.

Table 6.3: Total Trips Generated on the External Road Network during the peak hour

Landline	Trips per	AM	Peak	PM Peak		
Land Use	Peak Hour	Trips In	Trips Out	Trips In	Trips Out	
Residential	1342	134	1208	939	403	
Retail	17	9	8	8	9	
Primary School	238	137	101	101	137	
Total	1597	280	1317	1048	549	

6.2 Vehicular Traffic Distribution

A traffic distribution assignment estimate is based on an assessment of the local attractions including locations of neighbouring towns, proximity to locations of employment and schools and 'travel to work' characteristics of the residents of Greater Shepparton. The estimated traffic distribution has been agreed with the CGS Engineering Projects department. The agreed traffic distribution assignment for the North East Growth Area proposed development is estimated to be:

- 10% north
- 10% east
- 60% south and
- 20% west.

This distribution includes a bias toward Shepparton town centre located approximately four kilometres from the site and slightly increased traffic flows to Mooroopna and other local attractors west of the site.

Traffic distribution out of the development site area is divided with 35% of traffic using the main Verney Street access point north of Hawkins Street, 32% utilising the Grahamvale Road access point, 25% utilising the secondary Verney Street access point at the intersection with Pine Road and 8% utilising the Ford Road access point.

The distribution has been further broken down and assigned to the routes as detailed in Figure 6.1. Figure 6.1

A full summary of the volumes added to each intersection analysed in included in Appendix C.

Numurkah 2% Key (30 km) North South East West 15% **Dookie** 10% (26 km) 15% 2% Mooroopna 5% (9 km) 3% Shepparton 20% **Town Centre** 2008 MapData Sciences Pty Ltd, PSMA - Terms of Use

Figure 6.1: Traffic Movement Distribution

(source: maps.google.com)

6.3 Summary of Forecast Traffic

Table 6.4 summarises the peak hour forecast traffic generated by the development.

Table 6.4: Summary of Peak Hour Forecast Traffic Generated by the Development

Site Entrance	Percentage	Peak Hour Trips
Verney Road between Ryeland Drive and Hawkins Street (main)	35%	559
Verney Road extension of Pine Road (minor)	25%	399
Grahamvale Road	32%	511
Ford Road	8%	128
Total Trips		1597

Table 6.4 details that there is a total forecast of 1597 trips generated by the development in the peak hours. The main Verney Road entrance is forecast to accommodate approximately 559 trips in the AM and PM peaks, while the secondary Verney Road entrance is forecast to accommodate approximately 399 trips in the AM and PM peaks. The Grahamvale Road entrance is forecast to accommodate approximately 511 trips in the AM and PM peaks. The Ford Road entrance is forecast to accommodate approximately 128 trips in the AM and PM peaks. The anticipated trip distribution forecast for the external road network is as illustrated in Figure 6.1.

The forecast traffic generated by the development in the AM and PM peak hour is summarised in Table 6.5 and Table 6.6 respectively. Appendix C details the additional forecast traffic for each intersection analysed.

Table 6.5: Summary of AM Peak Hour Forecast Traffic

			Access Points								
	Dist.	Verney	Road (main)	Verney Ro	ad (minor)	Grahamv	ale Road	Ford Road			
Direction	Share	Trips In	Trips Out	Trips In	Trips Out	Trips In	Trips Out	Trips In	Trips Out		
South	60%	56	263	56	263	56	263	0	0		
West	20%	28	132	14	66	14	66	0	0		
East	10%	0	0	0	0	14	66	14	66		
North	10%	14	66	0	0	6	26	8	40		
Total		98	461	70	329	90	421	22	105		

Table 6.6: Summary of PM Peak hour Forecast Traffic

			Access Points								
	Dist.	Verney Roa	ad (main)	Verney Road (minor) Gral		Grahamval	Grahamvale Road				
Direction	Share	Trips In	Trips Out	Trips In	Trips Out	Trips In	Trips Out	Trips In	Trips Out		
South	60%	210	110	210	110	210	110	0	0		
West	20%	105	55	52	27	52	27	0	0		
East	10%	0	0	0	0	52	27	52	27		
North	10%	52	27	0	0	21	11	31	16		
Total		367	192	262	137	335	176	84	44		

7.0 Traffic Impact

The following paragraphs outline the impact of the proposed development on the surrounding road network. The analysis has been estimated for the year the development is expected to be completed (2020) and assumes full occupancy of residential, retail and educational facilities.

As detailed in Chapter 5, four access points are proposed for the development including:

- Verney Road between Ryeland Drive and Hawkins Street (primary) anticipated approximately 560 peak hour trips
- Verney Road extension of Pine Road (secondary) anticipated approximately 400 peak hour trips
- Grahamvale Road and Ford Road (local) anticipated approximately 510 and 130 peak hour trips respectively

It is anticipated that these access points will affect the following external intersections along Verney Road:

- Ford Road
- Hawkins Street
- Pine Road (site entrance) and
- Balaclava Road.

It is anticipated that along Grahamvale Road the following external intersections will be affected:

- Ford Road and
- New Dookie Road.

The impact on the intersection of Grahamvale Road and Hawkins Street has also been analysed.

These ten intersections have been analysed to provide an understanding of the impact on the surrounding road network and to establish any necessary improvements to the local road network for vehicles.

Full SIDRA analysis results are contained within Appendix B.

Recommendations are also provided in Section 7.3 on appropriate treatments at the entrances to the development site on Verney Road and Grahamvale Road.

7.1 Verney Road and Grahamvale Road Intersections

Table 7.1 to Table 7.5 summarise the likely operational characteristics of the six intersections along Verney Road and Grahamvale Road during the AM and PM weekday peak hours in the design year 2020 based on the traffic generation estimated in the previous chapters.

7.1.1 Verney Road Intersections

Table 7.1 summarises the operation of the Verney Road / Balaclava Road roundabout with the forecast traffic.

Table 7.1: Verney Road / Balaclava Road 2020 Peak Hour Roundabout Operation with Development Traffic

Interpretion Arms	Degree of Sa	turation	Average Dela	ay (sec)	Level of Serv	vice
Intersection Arm	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
Hawdon Street						
(South)	0.453	0.688	7.7	10.7	LOS A	LOS B
New Dookie Road						
(East)	0.857	0.692	23.0	10.7	LOS C	LOS B
Verney Road						
(North)	0.863	0.499	15.5	6.0	LOS B	LOS A
Balaclava Road						
(West)	0.487	0.642	7.0	13.6	LOS A	LOS B
All Approaches	0.865	0.692	14.3	10.3	LOS B	LOS B

Table 7.1 indicates that with the inclusion of the development traffic, the roundabout intersection will operate with a satisfactory level of service, but will be highly saturated particularly in the AM peak hour.

Table 7.2 summarises the operation of the Verney Road / Hawkins Street T-intersection with the forecast traffic. The intersection has been analysed assuming the installation of a 30 m slip lane to accommodate the high number of vehicles turning right out of Hawkins Street. There is a large utility pole approximately 35 m from the intersection which will limit the length of the left hand turn slot.

Table 7.2: Verney Road / Hawkins Street 2020 AM Peak Hour T-intersection Operation with Development Traffic

Intersection Arm	Degree of Saturation	Average Delay (sec)	Level of Service
Verney Road			
(South)	0.128	1.7	LOS A
Hawkins Street			
(West)	0.627	28.8	LOS D
Verney Road			
(North)	0.383	5.0	LOS A
All Approaches	0.628	7.7	-

Table 7.2 reveals that there are significant delays for vehicles turning right from Hawkins Street. The SIDRA analysis shows that these vehicles will experience an average delay of approximately one minute in the AM peak. However, the analysis does not account for the beneficial effects of the platooned arrivals generated by the proposed traffic signals at the Verney Road / Pine Road intersection. It is likely that the platooning of northbound traffic on Verney Road will create gaps for right turning vehicles to exit Hawkins Street and assist vehicles to turn out of Hawkins Street. Furthermore if right turning vehicles do experience significant delays these vehicles are likely to reroute and access Verney Road via the proposed signalised intersection at Pine Road. The assumed 2020 traffic distribution forecasts only 67 right turning vehicles at the Verney Road / Hawkins Street intersection. The Verney Road / Pine Road signalised intersection has adequate capacity to accommodate these additional right turn movements.

Table 7.3 summarises the operation of the Verney Road / Ford Road roundabout with the forecast traffic.

Table 7.3: Verney Road / Ford Road 2020 Peak Hour Roundabout Operation with Development Traffic

Interpostion Arms	Degree of Sa	turation	Average Delay (sec)		Level of Service	
Intersection Arm	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
Verney Road						
(North)	0.229	0.286	7.0	6.8	LOS A	LOS A
Ford Road						
(East)	0.240	0.193	7.3	7.3	LOS A	LOS A
Verney Road						
(South)	0.222	0.254	6.6	6.6	LOS A	LOS A
Ford Road						
(West)	0.239	0.201	7.7	7.1	LOS A	LOS A
All Approaches	0.240	0.286	7.1	6.9	LOS A	LOS A

Table 7.3 indicates that the Verney Road / Ford Road intersection has plenty of capacity, even with the additional movements forecast by the development.

7.1.2 Grahamvale Road Intersections

The Grahamvale Road intersections have been assessed with a theoretical HGV profile of 7%. This is based on the assumption that the proportion of HGV movements will decrease due to the increased number of cars movements as a result of the development site and also a reduction in HGV movements as a result of the opening of the Shepparton Bypass.

Table 7.4 summarises the operation of the Grahamvale Road / Dookie Shepparton Road roundabout with the forecast traffic.

Table 7.4: Grahamvale Road / Dookie Shepparton Road 2020 Peak Hour Roundabout Operation with Development Traffic

Intersection Arm	Degree of Sa	turation	Average Dela	ay (sec)	Level of Service	
intersection Arm	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
Doyles Road						
(South)	0.414	0.553	5.9	5.8	LOS A	LOS A
Dookie Shepparton						
Road (East)	0.470	0.346	10.7	7.5	LOS B	LOS A
Grahamvale Road						
(North)	0.755	0.458	8.7	6.1	LOS A	LOS A
Dookie Shepparton						
Road (West)	0.398	0.512	6.7	10.1	LOS A	LOS B
All Approaches	0.755	0.554	7.9	7.1	LOS A	LOS A

Table 7.4 indicates that the additional westbound and southbound movements in the AM peak hour (and northbound movements in the PM peak hour) at the Grahamvale Road / Dookie Shepparton Road roundabout result in a high degree of saturation on most arms, however the roundabout is still operating well.

Table 7.5 summarises the operation of the Grahamvale Road / Ford Road priority junction with the forecast traffic.

Table 7.5: Grahamvale Road / Ford Road 2020 Peak Hour Priority Junction Operation with Development Traffic

Intonocation Auna	Degree of Sa	turation	Average Delay (sec)		Level of Service	
Intersection Arm	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
Grahamvale Road						
(South)	0.110	0.093	1.0	3.0	LOS A	LOS A
Ford Road						
(East)	0.210	0.387	12.1	14.3	LOS B	LOS B
Grahamvale Road						
(North)	0.129	0.202	4.5	2.9	LOS A	LOS A
Ford Road						
(West)	0.272	0.177	9.5	10.3	LOS A	LOS B
All Approaches	0.273	0.387	5.9	6.5	-	-

Table 7.5 indicates that the Grahamvale Road / Ford Road intersection has plenty of capacity, even with the additional movements forecast by the development.

7.2 Goulburn Valley Highway Intersections

7.2.1 Hawkins Street/ Goulburn Valley Highway Priority Intersection

For the Hawkins Street / Goulburn Valley Highway intersection two scenarios for 2020 have been analysed these include:

- 2020 Scenario without forecast development traffic
- 2020 Scenario with forecast development traffic

2020 Scenario Without Forecast Development Traffic

The estimated 2020 scenario peak hour traffic flows (without forecast development traffic) set out in Table 7.6.

Table 7.6: Estimated 2020 Traffic Flows 10

	Left	Left			Right	
Intersection Arm	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
Goulburn Valley Highway						
(Southbound)	58	124	721	598	45	90
Goulburn Valley Highway						
(Northbound)	65	82	456	519	123	277
Hawkins Street	109	137	0	0	28	19

As shown in Table 7.6 in the AM Peak Goulburn Valley Highway is projected to experience 721 southbound and 456 northbound movements in the peak hour. Hawkins Street is expected to experience approximately 181 eastbound and 137 westbound movements in the AM Peak hour.

In the PM Peak Goulburn Valley Highway is projected to experience 598 southbound and 404 northbound movements in the peak hour. Hawkins Street is expected to experience approximately 402 eastbound and 157 westbound movements in the PM Peak hour.

Table 7.7 displays the results of the intersection analysis for a 2020 scenario without forecast traffic for the proposed development. Full SIDRA results are included in Appendix B.

Table 7.7: Hawkins Street / Goulburn Valley Highway SIDRA Analysis for 2020 Scenario without Development Traffic

Interneties Aus	Degree of Sa	aturation	Average De	lay (sec)	Level of Ser	vice
Intersection Arm	AM Peak PM Peak		AM Peak PM Peak		AM Peak	PM Peak
Goulburn Valley						
Highway (South)	0.229	0.466	3.5	6.3	LOS A	LOS A
Hawkins Street						
(East)	0.843	0.501	61.0	28.9	LOS F	LOS F
Goulburn Valley						
Highway (North)	0.220	0.201	1.2	2.4	LOS A	LOS A
All Approaches	1.000	0.500	7.3	6.5	_	-

The results of the 2020 intersection analysis suggest that the intersection would require improvements, especially due to the significant delays for vehicles turning right from Hawkins Street. These vehicles experienced an average delay of almost 4 minutes in the AM peak and over 2 minutes in the PM peak. The delay is considered excessive and warrants signalisation.

As detailed the Traffic Engineering Manual Volume 1, Chapter 3 – Edition 3, Revision A, (2001) VicRoads recommend that signalisation may be required under the following circumstances:

Traffic signals may be considered subject to detailed analysis; when the major road carries at least 600 vehicles/hour (two way) and the minor road concurrently carries at least 200 vehicles (one way) on one approach over any 4 hours of an average day.

Based on the 2020 forecast SIDRA analysis, previous consideration of signalisation and accident history, it is considered that this intersection would operate more efficiently and safely with signalisation even without the proposed development.

2020 Scenario with development traffic

The estimated 2020 scenario peak hour traffic flows with forecast development traffic are set out in Table 7.8. Table 7.8: Estimated 2020 Traffic Flows 11 with Development Traffic

¹⁰ CGS 2005 survey information plus 1.0% growth per annum (except for movements to the service road which are not expected to attract additional growth

	Left		Through		Right		
	AM				AM		
Intersection Arm	Peak	PM Peak	AM Peak	PM Peak	Peak	PM Peak	
Goulburn Valley Highway							
(Southbound)	58	124	721	598	45	90	
Goulburn Valley Highway							
(Northbound)	65	82	456	519	193	489	
Hawkins Street	439	274	0	0	28	19	

As shown in Table 7.8 the through movements along Goulburn Valley Highway are expected to remain the same with the addition of the development traffic.

The inclusion of the development traffic is expected to further increase the number of eastbound and westbound movements along Hawkins Street to approximately 251 eastbound and 467 westbound movements in the AM peak and approximately 614 eastbound and 294 westbound movements in the PM peak.

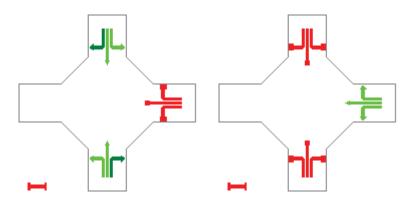
Table 7.9 displays the results of the intersection analysis for a 2020 scenario with forecast flows for the proposed development. Full SIDRA results are included in Appendix B.

Table 7.9: Hawkins Street / Goulburn Valley Highway SIDRA Analysis for 2020 Scenario with Forecast Development Traffic

Interposition Arm	Degree of Sa	ituration	Average Dela	ay (sec)	Level of Service		
Intersection Arm	AM Peak PM Peak		AM Peak	PM Peak	AM Peak	PM Peak	
Goulburn Valley							
Highway (South)	0.360	0.825	4.9	12.3	LOS A	LOS B	
Hawkins Street							
(East)	1.345	0.912	52.8	40.9	LOS F	LOS E	
Goulburn Valley							
Highway (North)	0.220	0.201	1.2	2.4	LOS A	LOS A	
All Approaches	1.418	1.000	14.6	12.5	-	-	

The results of the 2020 intersection analysis suggest that in the 2020 scenario with development traffic the intersection would require improvements to enable safe and efficient operation, especially due to the significant delays for vehicles turning right from Hawkins Street. These vehicles experienced an average delay of over 9.5 minutes in the AM peak and over 6.0 minutes in the PM peak.

The results of the estimated traffic generation indicate that signalisation of the intersection may be necessary to provide safe and efficient operation. Accordingly, the intersection has been analysed to provide an understanding of operation with signalisation based on the estimated flows.


The following phasing sequence was used to construct the phasing operation for the SIDRA model.

35

¹¹ As described for Table 7.6.

In both the AM and PM peaks the phasing sequence used for the SIDRA model included:

The SIDRA models were set to optimised phase times and the results reflected a reasonable distribution of time for the particular volume of movements.

Table 7.10 displays the results of the intersection analysis for a 2020 scenario with the proposed development estimated traffic flows.

Table 7.10: Hawkins Street / Goulburn Valley Highway Signalised Intersection SIDRA Analysis for 2020 Scenario with Proposed Development

Intersection Arm	Degree of Sa	turation	Average Dela	ay (sec)	Level of Service		
intersection Arm	AM Peak PM Peak		AM Peak	PM Peak	AM Peak	PM Peak	
Goulburn Valley							
Highway (South)	0.904	1.000	19.3	24.9	LOS B	LOS C	
Hawkins Street							
(East)	1.000	1.000	11.1	16.3	LOS B	LOS B	
Goulburn Valley							
Highway (North)	0.707	0.358	15.9	17.6	LOS B	LOS B	
All Approaches	0.999	1.000	16.0	20.9	LOS B	LOS C	

As shown in Table 7.10, the results of the signalised intersection analysis indicate a more even distribution of traffic flows. The results indicate higher levels of saturation for Goulburn Valley Highway, however the operation of Hawkins Street indicates significant improvement and acceptable operation in both peak periods with average delays ranging from 19 to 52 seconds.

7.3 Development Entrance Treatments

7.3.1 Verney Road Main Entrance

It is anticipated that the main 'gateway' entrance to the development will be located on Verney Road, north of the Christian School, between Ryeland Drive and Hawkins Street. This will be located adjacent to the local retail and community hub.

Based on the anticipated traffic distribution and flows as estimated in sections 6.2 and 6.3, the main entrance would operate well with a priority T-Intersection as shown in Figure 7.1.

Verney Road South

Figure 7.1: Proposed Priority T-Intersection at Verney Road Main Site Intersection

As shown in Figure 7.1, the intersection will require dedicated left turn lanes to promote continuous flow of traffic on Verney Road.

Table 7.11 details the SIDRA analysis for the main Verney Road site entrance located between Ryeland Drive and Hawkins Street.

Table 7.11: Verney Road / Main Site Entrance 2020 Peak Hour Priority T-Intersection, with Development Traffic

Interesetion Arm	Degree of Sa	ituration	Average Dela	ay (sec)	Level of Service		
Intersection Arm	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	
Verney Road							
South	0.147	0.409	2.6	7.0	Α	Α	
Main Site Entrance	0.586	0.261	15.9	15.8	С	С	
Verney Road North	0.232	0.247	0.3	0.9	Α	Α	
Total Intersection	0.586	0.409	6.8	6.0	-	-	

As shown in Table 7.11, the intersection will operate well in the peak hours with average delays of less than seven seconds and low degrees of saturation.

7.3.2 Verney Road /Pine Road Site Entrance

The Verney Road / Pine Road / site entrance will create a cross intersection with the existing eastern end of Pine Road and provide access to the southern part of the site.

The results of the 2020 intersection analysis of the Verney Road / Pine Road priority intersection (contained within Appendix B) suggest that in the 2020 scenario with development traffic the intersection would require improvements to enable safe and efficient operation, especially due to the significant delays for through and right turning vehicles exiting Pine Road and the development entry. These vehicles experienced an average delay of over 2.5 minutes in the AM peak.

As detailed the Traffic Engineering Manual Volume 1, Chapter 3 – Edition 3, Revision A, (2001) VicRoads recommend that signalisation may be required under the following circumstances:

Traffic signals may be considered subject to detailed analysis; when the major road carries at least 600 vehicles/hour (two way) and the minor road concurrently carries at least 200 vehicles (one way) on one approach over any 4 hours of an average day.

As detailed in Appendix B, Verney Road is projected to experience 491 southbound and 265 northbound movements in the AM peak hour. Pine Road is expected to experience approximately 214 eastbound movements in the AM Peak hour and the road leading to the development entry is expected to experience approximately 330 westbound movements in the AM Peak hour.

The results of the estimated traffic generation indicate that signalisation of the intersection may be necessary to provide safe and efficient operation. Accordingly, the intersection has been analysed to provide an understanding of operation with signalisation based on the estimated flows. The layout of the proposed signalised intersection analysed is shown in Figure 7.2.

Figure 7.2: Proposed Signalised Intersection at Verney Road / Pine Road Intersection

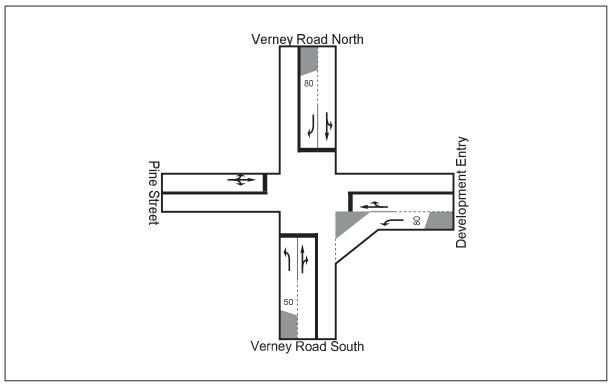


Table 7.12 summarises the SIDRA analysis of the operation of the Verney Road / Pine Road signalised intersection with the forecast traffic.

Table 7.12: Verney Road / Pine Road Site Entrance 2020 Peak Hour Signalised Intersection, with Development Traffic

Intersection Arm	Degree of Saturation	Average Delay (sec)	Level of Service
Verney Road			
(South)	0.504	11.5	LOS B
Development Entry			
(East)	0.522	11.8	LOS B
Verney Road			
(North)	0.757	12.1	LOS B
Pine Road			
(West)	0.755	21.4	LOSC
All Approaches	0.757	13.2	LOSB

As shown in Table 7.12, the results of the signalised intersection analysis indicate that the signalised intersection will operate with a 'Very Good' to 'Good' Level of Service. The results indicate higher levels of saturation for Verney Road, however the operation of both Pine Road and the development entry indicates significant improvement and acceptable operation in the AM peak period (which is anticipated to be the critical peak period) with average delays ranging from 12 to 24 seconds.

7.3.3 Grahamyale Road Site Entrance

The Grahamvale Road site entrance is anticipated to be located near Grahamvale Primary School. For the purpose of this investigation, it has been estimated that the Grahamvale Primary School will relocate their entrance to within the site, which would provide a safer access point for the high frequency of children.

Based on the anticipated traffic distribution and flows as estimated in sections 6.2 and 6.3, the results of the 2020 intersection analysis of the Grahamvale Road site entrance priority intersection (contained within Appendix B) suggest that in the 2020 scenario with development traffic the intersection would require an intersection treatment greater than a priority intersection to enable safe and efficient operation, especially due to the significant delays for vehicles travelling south from the site. These vehicles experienced an average delay of seven minutes in the AM peak.

This intersection could potentially operate sufficiently as a roundabout; however the flows are not closely balanced enough to support good operation using a roundabout. Furthermore, as Grahamvale Road is a VicRoads designated road it is not expected that a roundabout would be preferred by VicRoads at this location. In addition to these two factors, there may be space constraints due to the drain on the west side that would prohibit the inclusion of a roundabout at this location.

Accordingly the Grahamvale Road site entrance has been analysed to be controlled by a signalised intersection with a layout as shown in Figure 7.3.

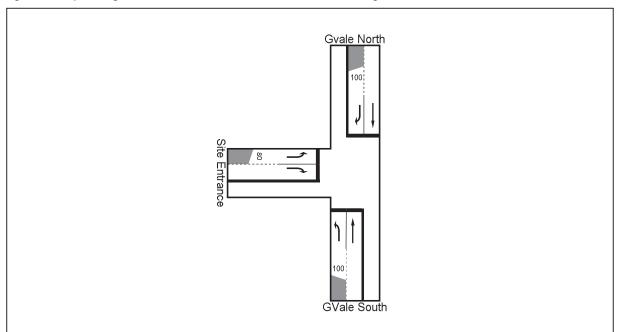


Figure 7.3: Proposed Signalised Intersection at Grahamvale Road Site Entrance Signalised Intersection

Table 7.13 details the SIDRA analysis for the Grahamvale Road site entrance intersection.

Table 7.13: Grahamvale Road Site Entrance 2020 Peak Hour Signalised Intersection, with Development Traffic

Intersection Arm	Degree of Sa	turation	Average Dela	ay (sec)	Level of Service		
intersection Arm	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	
Grahamvale Road							
South	0.745	0.734	15.5	13.8	В	В	
Grahamvale Road							
North	0.604	0.392	12.7	8.2	В	Α	
Site Entrance	0.683	0.637	18.6	27.3	В	С	
Total Intersection	0.745	0.735	16.1	14.5	В	В	

As shown in Table 7.13: , the intersection will operate with a 'Very Good' Level of Service in the peak hours with average delays of less than seventeen seconds.

7.3.4 Ford Road Site Entrance

The Ford Road site entrance is anticipated to be located west of Grahamvale Road. Based on the anticipated traffic distribution and flows as estimated in sections sections 6.2 and 6.3, the Ford Road site entrance would operate well with a priority T-Intersection as shown in Figure 7.4.

Figure 7.4: Proposed Priority T-Intersection at Ford Road Site Entrance Intersection

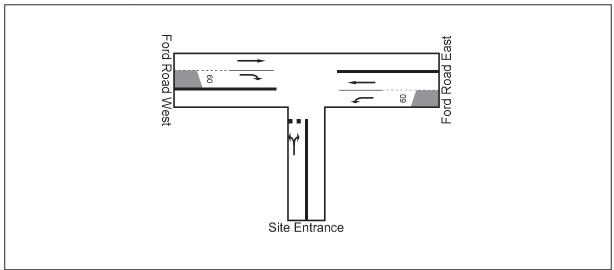


Table 7.14 details the SIDRA analysis for the Ford Road site entrance.

Table 7.14: Verney Road / Main Site Entrance 2020 Peak Hour Priority T-Intersection, with Development Traffic

Intersection Arm	Degree of Sa	ituration	Average Dela	ay (sec)	Level of Service		
Intersection Arm	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	
Site Entrance	0.163	0.068	10.4	10.1	В	В	
Ford Road East	0.044	0.050	1.9	5.2	Α	Α	
Ford Road West	0.034	0.028	0.3	0.4	Α	Α	
Total Intersection	0.167	0.069	4.9	5.1	-		

As shown in Table 7.14, the intersection will operate very well in the peak hours with average delays of five seconds and a very good Level of Service.

7.4 Conclusions

The following paragraphs discuss the conclusions of the traffic impact on the local road network as a result of the proposed development of the North East Growth Area in Shepparton.

7.4.1 Verney Road and Grahamvale Road Intersections

Generally the intersections are adequate to accommodate the additional forecast traffic as proposed in Chapter 5.

However, the analysis indicates that the proposed additional forecast traffic flows at the Hawkins Street / Verney Road intersection are likely to result in the requirement of intersection improvements such as signalisation.

Grahamvale Road will operate satisfactorily when HGV movements are assessed with 7% HGV. However if the HGV usage was expected to remain as high as 20% in the 2020 design forecast the Grahamvale Road / Dookie Shepparton Road roundabout would experience operational problems. Due to this CGS should continue to pursue the construction of the Shepparton Bypass as a matter of priority to ensure that no local problems develop.

7.4.2 Hawkins Street / Goulburn Valley Highway Intersection

Whilst the Hawkins Street / Goulburn Valley Highway is currently operating generally well as a priority intersection, already movements from Hawkins Street are experiencing significant delays which are potentially dangerous.. CGS are aware of this safety issue and are monitoring the intersection.

Accordingly analysis of the forecast traffic for the design year 2020 (with and without the proposed development) indicate that without improvement, Hawkins Street will experience excessive delays and inevitably an increased safety risk.

Based on these factors the operation of the Hawkins Street / Goulburn Valley Highway intersection was analysed to understand how it could operate as a signalised intersection in 2020 (with the forecast development traffic). It was found that the priority was more evenly distributed resulting in acceptable average delays for all arms of the intersection.

As the base traffic flows for this analysis were collected in 2005 it is recommended that further traffic analysis should be carried out (with recent survey data) to ensure the intersection can cater for the future demands. Notwithstanding this, it is highly probable that the flows along Hawkins Street and Goulburn Valley Highway will necessitate improvements (such as signalisation) to this intersection.

7.4.3 Development Entrance Treatments

Based on the forecast traffic flows for the proposed development and the expected background flows along Verney Road and Grahamvale Road, it is recommended that the most suitable entrance treatments will include:

Signalised Intersections

- Verney Road / Pine Road / Site Entrance
- Grahamvale Road Site Entrance

Priority T-Intersections

- Verney Road Site Entrance between Ryeland Drive and Hawkins Street
- Ford Road Site Entrance

This should be taken into consideration during the detail design of the development.

8.0 Further Issues

Further to the findings of this investigation there are issues that may impact the traffic operation of the local road network. These issues have been summarised in the following paragraphs.

8.1 Sustainable Transport Design

Measures to reduce the reliance on the private car should be investigated for this development. This will enable a reduction in trips made by private cars reducing the pressure on the local road network. This will also enable residents and employers travel options other than the private car.

Well planned and strategically placed bus routes and links to existing services should be explored for trips to Shepparton, Mooroopna, other civic attractions, employment areas and secondary colleges. This will enable sustainable transport choice, reduction in vehicle trips on the local road network and increase the accessibility of residents that do not drive (including senior citizens and teenagers).

A well planned, permeable cycle network with strategic links should also be designed to assist the reduction in vehicle trips on the local road network. There is already a good cyclist network infrastructure established in the local area and there is opportunity to strengthen this as a part of the proposed development.

In addition safe, well planned permeable pedestrian network should be established to encourage local trips by foot and reduce vehicle trips on the local road network.

Other sustainable travel planning initiatives such as local travel plans and car sharing clubs should also be considered to reduce the reliance of the private car, reduce vehicle trips on the local road network and increase accessibility of the future residents and employees of the North East Growth Area development.

The development should be designed in accordance with the Public Transport: Guidelines for Land Use and Development.

8.2 Encouraging Shepparton Bypass Development

The development and opening of the Shepparton Bypass will directly impact the local road network of the North East Growth Area development.

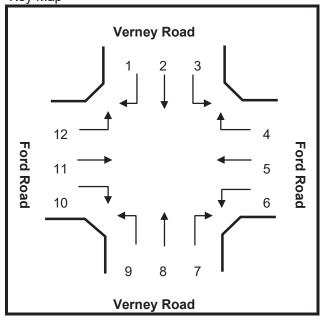
As discussed previously, Grahamvale Road is currently the bypass route for HGVs and accordingly experiences a high proportion of HGV traffic. It is estimated that the traffic operation with forecast development flows is likely fit comfortably within the existing intersections with Ford Road and New Dookie Road however, if Grahamvale Road was to experience 20% HGV traffic these two intersections may experience operational difficulties and increase the risk of accidents.

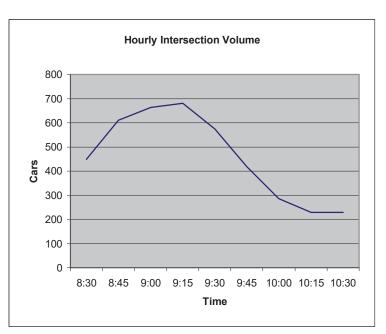
In addition, there are considerable safety issues as Grahamvale Road will also accommodate the secondary access point for the development likely to carry approximately 32% of all trips to/from the site.

It is recommended that CGS continue to pursue the timely development of the Shepparton Bypass in order to reduce the risk and enable satisfactory traffic operation along Grahamvale Road.

Appendix A

Existing Traffic Flows

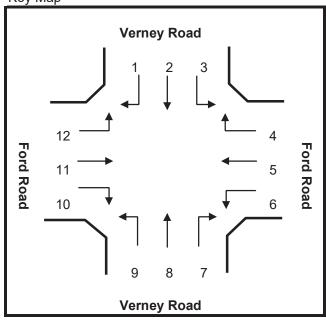

Location: Verney/Ford Peak Hour Ends: 9:15

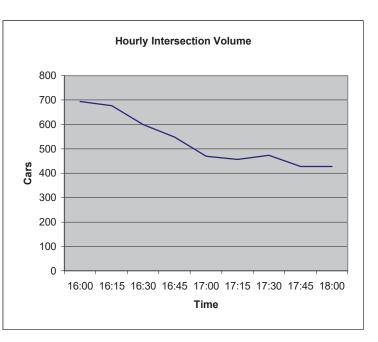

Date: 5 August 2008

Time: 7:30-10:30

Surveyor:

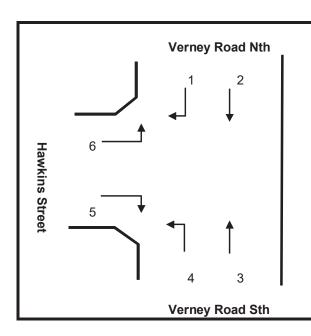
Weather Conditions:

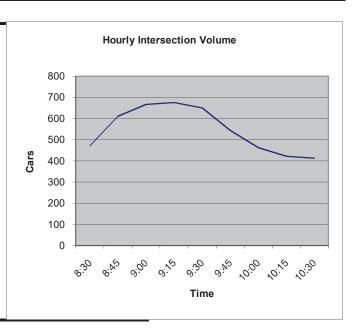




Road	V	ornov	Road	1		Ford	Road		V	/ornov	y Roa	Ч		Ford	Road			
Movement	R	T	L		R	Т	L		R	T	L		R	Т	L		15	
ID	1	2	3	Total	1	2	3	Total	1	2	3	Total	1	2	3	Total	min total	hour total
7:30 to 7:45	3	11	4	18	5	9	0	14	1	- 8	0	9	2	6	1	9	50	_
7:45 to 8:00	2	23	14	39	10	24	11	45	1	21	3	25	3	17	6	26	135	_
8:00 to 8:15	0	9	3	12	7	14	6	27	2	21	9	32	2	17	5	24	95	-
8:15 to 8:30	3	21	10	34	10	16	21	47	7	31	4	42	10	25	11	46	169	449
8:30 to 8:45	10	25	5	40	10	25	34	69	7	34	10	51	13	19	19	51	211	610
8:45 to 9:00	27	17	10	54	14	18	13	45	12	25	9	46	8	17	18	43	188	663
9:00 to 9:15	7	17	7	31	5	6	9	20	4	6	26	36	3	4	19	26	113	681
9:15 to 9:30	7	6	11	24	6	5	0	11	0	17	0	17	0	7	4	11	63	575
9:30 to 9:45	1	8	10	19	6	3	1	10	0	19	1	20	0	4	2	6	55	419
9:45 to 10:00	2	8	5	15	5	3	1	9	0	17	2	19	0	9	3	12	55	286
10:00 to 10:15	2	12	5	19	5	3	3	11	0	15	0	15	2	6	3	11	56	229
10:15 to 10:30	5	6	12	23	4	10	0	14	1	8	7	16	1	5	4	10	63	229
AM Peak	47	80	32	159	39	65	77	181	30	96	49	175	34	65	67	166	681	

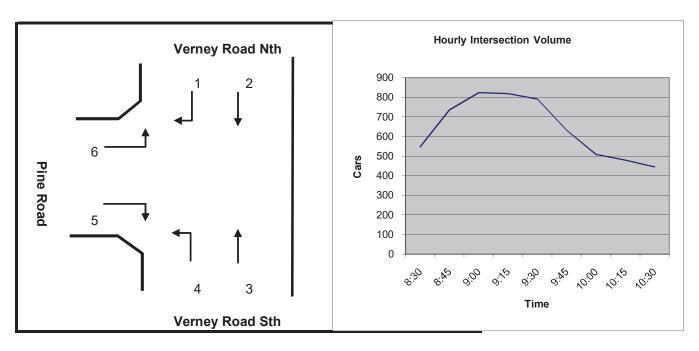
Location:	Verney/Ford	Peak Hour Ends: 16:00
Date:	5 August 2008	
Time:	15:00-18:00	
Surveyor:		


Weather Conditions:



Road	٧	erney	Road	t		Ford	Road		٧	erney	Road	t		Ford	Road			
Movement	R	Т	L		R	Т	L		R	т	L		R	Т	L		15	
ID	1	2	3	Total	1	2	3	Total	1	2	3	Total	1	2	3	Total	min total	
15:00 to 15:15	16	30	6	52	15	11	6	32	2	13	4	19	1	17	9	27	130	-
15:15 to 15:30	13	40	11	64	7	28	16	51	8	28	10	46	4	9	5	18	179	-
15:30 to 15:45	18	32	6	56	6	18	8	32	14	38	13	65	3	26	23	52	205	-
15:45 to 16:00	15	31	19	65	6	17	7	30	6	27	5	38	6	25	16	47	180	694
16:00 to 16:15	4	16	8	28	6	8	7	21	10	25	3	38	1	14	11	26	113	677
16:15 to 16:30	5	6	10	21	11	8	7	26	10	13	7	30	10	6	8	24	101	599
16:30 to 16:45	7	17	10	34	18	20	16	54	11	10	12	33	14	5	14	33	154	548
16:45 to 17:00	7	11	10	28	5	11	8	24	9	10	6	25	8	9	7	24	101	469
17:00 to 17:15	9	18	9	36	6	10	3	19	3	13	3	19	0	11	15	26	100	456
17:15 to 17:30	3	30	6	39	9	9	8	26	3	13	10	26	2	19	6	27	118	473
17:30 to 17:45	6	13	6	25	10	7	5	22	4	15	4	23	18	13	8	39	109	428
17:45 to 18:00	7	22	10	39	2	4	6	12	3	18	5	26	4	12	7	23	100	427
PM Peak	62	133	42	237	34	74	37	145	30	106	32	168	14	77	53	144	694	

Location:	Verney/Hawkins	Peak Hour Ends:	9:15							
Date:	Thursday 19 November 2009									
Time:	7:30 - 10:30am									
Surveyor:	Shirlene Clarke									
Weather Con	ditions: 34deg									

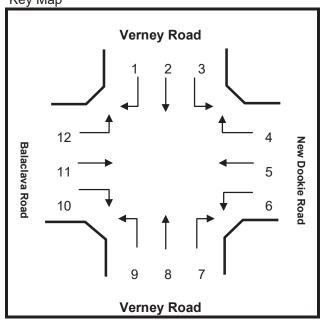


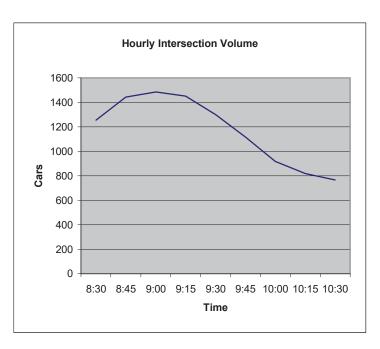
Road	Vern	ney Road	l Nth	Verr	ey Road	Sth	Hav	vkins St	reet	15 min total	hour total
Movement	R	Т		Т	L		R	L			
ID	1	2	Total	3	4	Total	5	6	Total		
7:30 to 7:45	3	39	42	23	8	31	4	6	10	83	-
7:45 to 8:00	4	64	68	38	15	53	7	6	13	134	-
8:00 to 8:15	3	46	49	38	13	51	10	6	16	116	-
8:15 to 8:30	7	65	72	39	8	47	11	9	20	139	472
8:30 to 8:45	8	103	111	56	19	75	22	14	36	222	611
8:45 to 9:00	16	88	104	49	9	58	16	12	28	190	667
9:00 to 9:15	10	52	62	37	12	49	8	5	13	124	675
9:15 to 9:30	4	44	48	31	18	49	10	7	17	114	650
9:30 to 9:45	4	44	48	33	18	51	13	4	17	116	544
9:45 to 10:00	4	43	47	22	18	40	15	7	22	109	463
10:00 to 10:15	4	30	34	25	13	38	9	2	11	83	422
10:15 to 10:30	3	29	32	35	19	54	13	6	19	105	413
AM Peak	41	308	349	181	48	229	57	40	97	675	
8:00 to 9:00	34	302	336	182	49	231	59	41	100	667	

Location:	Verney/Pine	Peak Hour Ends:	9:00
Date:	Thursday 19 November 2009		
Time:	7:30 - 10:30am		
Surveyor:	Dinny Adem		

Weather Conditions: 34deg

Road	Vern	ey Road	l Nth	Vern	ey Road	l Sth	Р	ine Roa	d	15 min total	hour total
Movement	R	Т		Т	L		R	L			
ID	1	2	Total	3	4	Total	5	6	Total		
7:30 to 7:45	0	41	41	31	2	33	4	1	5	79	-
7:45 to 8:00	0	70	70	50	7	57	16	1	17	144	-
8:00 to 8:15	0	58	58	53	11	64	21	1	22	144	-
8:15 to 8:30	2	79	81	45	20	65	31	3	34	180	547
8:30 to 8:45	7	120	127	60	35	95	42	3	45	267	735
8:45 to 9:00	2	104	106	55	32	87	35	5	40	233	824
9:00 to 9:15	3	54	57	47	18	65	14	3	17	139	819
9:15 to 9:30	0	63		49	11	60	25	4	29	152	791
9:30 to 9:45	0	47	47	44	9	53	7	0	7	107	631
9:45 to 10:00	0	57	57	38	10	48	5	1	6	111	509
10:00 to 10:15	0	45	45	38	15	53	10	1	11	109	479
10:15 to 10:30	0	41	41	53	9	62	13	1	14	117	444
AM Peak	11	361	372	213	98	311	129	12	141	824	444

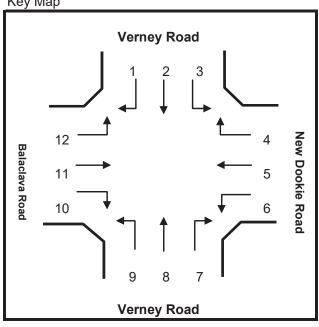

Location: Balaclava/Verney Peak Hour Ends 9:00

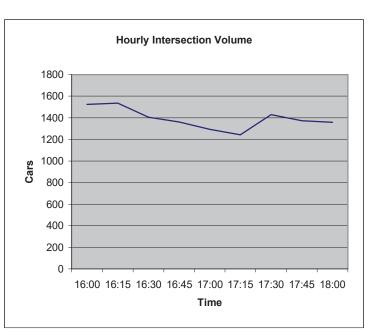

Date: 5 August 2008

Time: 7:30-10:30

Surveyor:

Weather Conditions:



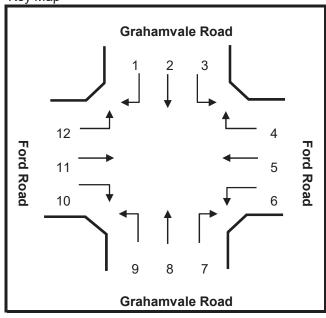


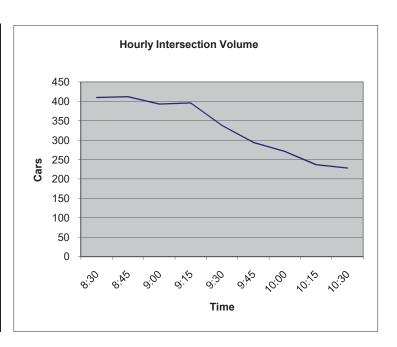
Road	٧	erney	Roa	d	New Dookie Road			٧	erney	Roa	d	Ва	lacla	va Ro	ad			
Movement	R	Т	L	al	R	Т	L	a	R	Т	L	al	R	Т	L	a	15 min	hour
ID	1	2	3	Total	1	2	3	Total	1	2	3	Total	1	2	3	Total	total	
7:30 to 7:45	6	46	28	80	19	18	10	47	18	23	2	43	7	50	3	60	230	-
7:45 to 8:00	9	70	47	126	17	31	14	62	22	24	10	56	17	70	1	88	332	-
8:00 to 8:15	9	46	34	89	23	44	19	86	13	23	24	60	13	51	8	72	307	-
8:15 to 8:30	14	78	28	120	21	55	21	97	20	38	25	83	24	48	14	86	386	1255
8:30 to 8:45	18	91	32	141	28	35	36	99	29	35	20	84	18	60	16	94	418	1443
8:45 to 9:00	14	77	37	128	32	46	20	98	15	41	15	71	11	45	22	78	375	1486
9:00 to 9:15	12	47	26	85	27	50	18	95	7	25	18	50	12	24	7	43	273	1452
9:15 to 9:30	10	37	20	67	15	31	12	58	11	36	4	51	13	38	6	57	233	1299
9:30 to 9:45	6	41	10	57	20	44	8	72	6	39	12	57	12	29	9	50	236	1117
9:45 to 10:00	8	41	24	73	8	19	11	38	3	19	7	29	8	23	4	35	175	917
10:00 to 10:15	4	26	14	44	13	23	7	43	11	28	7	46	11	23	7	41	174	818
10:15 to 10:30	2	37	16	55	16	17	10	43	7	24	9	40	5	30	7	42	180	765
AM Peak	55	292	131	478	104	180	96	380	77	137	84	298	66	204	60	330	1486	

Location:	Balaclava/Verney	Peak Hour Ends 17:30
Date:	5 August 2008	
Time:	15:00-18:00	
Surveyor:		

Weather Conditions:

Road	V	erney	Roa	d	Nev	v Doo	kie R	oad	V	erney	Roa	d	Ва	lacla	va Ro	ad		
Movement	R	т	L		R	Т	L		R	Т	L		R	т	L		15	
ID	1	2	3	Total	1	2	3	Total	1	2	3	Total	1	2	3	Total		hour total
15:00 to 15:15	9	55	30	94	23	50	14	87	19	41	17	77	21	38	15	74	332	-
15:15 to 15:30	14	66	35	115	40	56	21	117	18	49	18	85	13	36	13	62	379	-
15:30 to 15:45	12	68	24	104	30	60	29	119	15	60	16	91	30	42	14	86	400	-
15:45 to 16:00	9	60	32	101	46	48	29	123	15	73	15	103	26	50	11	87	414	1525
16:00 to 16:15	10	66	19	95	32	53	21	106	13	48	22	83	24	29	6	59	343	1536
16:15 to 16:30	12	41	20	73	20	30	13	63	14	41	16	71	12	23	7	42	249	1406
16:30 to 16:45	7	53	22	82	35	56	17	108	6	68	18	92	21	43	10	74	356	1362
16:45 to 17:00	5	43	28	76	41	49	16	106	8	69	13	90	21	39	12	72	344	1292
17:00 to 17:15	3	39	15	57	40	47	27	114	8	52	17	77	14	26	6	46	294	1243
17:15 to 17:30	5	63	20	88	55	65	24	144	13	100	19	132	24	33	15	72	436	1430
17:30 to 17:45	9	49	13	71	27	40	13	80	20	76	6	102	10	24	11	45	298	1372
17:45 to 18:00	8	57	21	86	22	39	10	71	14	89	22	125	5	28	14	47	329	1357
PM Peak	20	198	85	303		217	84	472	35	289	67	391	80	141		264	1430	

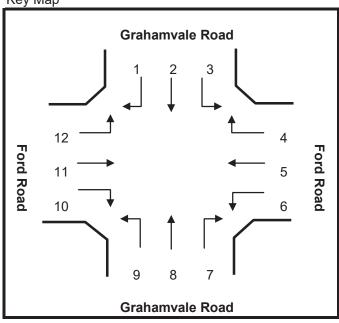

Location: Grahamvale/Ford Peak Hour Ends: 9:15

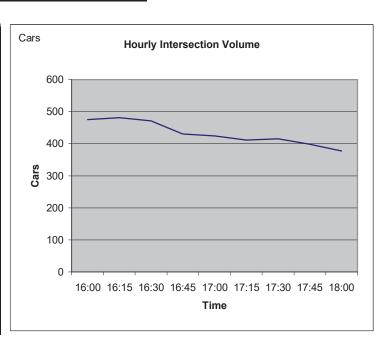

Date: 5 August 2008

Time: 7:30-10:30

Surveyor:

Weather Conditions:



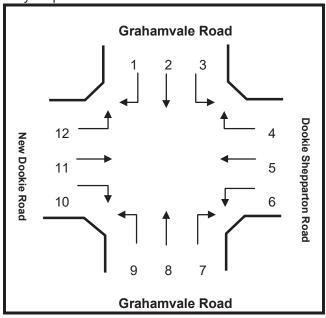

Road	Gra	hamv	ale R	oad		Ford	Road		Gra	hamv	ale R	oad		Ford	Road			
Movement	R	Т	L	<u></u>	R	Т	L	<u> </u>	R	Т	L	<u> </u>	R	Т	L		15 min	hour
ID	1	2	3	Total	1	2	3	Total	1	2	3	Total	1	2	3	Total		total
7:30 to 7:45	5	21	3	29	9	7	2	18	4	43	1	48	0	4	2	6	101	-
7:45 to 8:00	2	10	8	20	8	11	4	23	1	50	0	51	2	10	2	14	108	-
8:00 to 8:15	2	23	4	29	5	5	1	11	2	30	0	32	2	7	0	9	81	-
8:15 to 8:30	14	24	3	41	13	2	1	16	3	38	2	43	6	11	3	20	120	410
8:30 to 8:45	12	11	10	33	17	4	2	23	1	32	0	33	4	8	2	14	103	412
8:45 to 9:00	12	17	9	38	5	6	2	13	1	29	0	30	1	6	1	8	89	393
9:00 to 9:15	7	17	9	33	5	6	2	13	1	29	0	30	1	6	1	8	84	396
9:15 to 9:30	2	15	4	21	2	2	3	7	2	20	1	23	3	6	2	11	62	338
9:30 to 9:45	2	16	4	22	2	4	1	7	1	22	1	24	1	3	2	6	59	294
9:45 to 10:00	3	13	6	22	2	2	2	6	1	30	1	32	1	4	1	6	66	271
10:00 to 10:15	3	15	1	19	3	2	1	6	2	16	1	19	1	4	1	6	50	237
10:15 to 10:30	1	15	1	17	3	3	1	7	3	20	1	24	1	3	1	5	53	228
AM Peak	45	69	31	145	40	18	7	65	6	128	2	136	12	31	7	50	396	

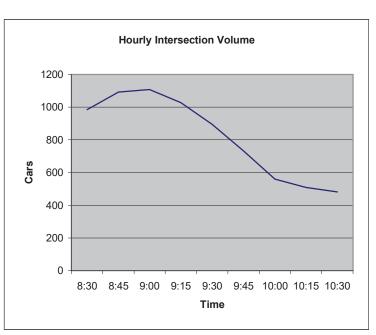
Location:	Grahamvale/Ford	Peak Hour Ends:	16:15
Date:	5 August 2008		
Time:	15:00-18:00		

Surveyor:

Weather Conditions:

Road	Gra	hamv	ale Ro	ad	Ford Road				Gra	hamv	ale Ro	ad		Ford	Road			
Movement	R	Т	L		R	Т	L		R	Т	L		R	Т	L		15	
ID	1	2	3	Total	1	2	3	Total	1	2	3	Total	1	2	3	Total	min total	hour total
15:00 to 15:15	2	29	7	38	15	4	1	20	1	26	1	28	3	13	5	21	107	-
15:15 to 15:30	2	30	6	38	18	6	3	27	1	23	1	25	3	7	4	14	104	-
15:30 to 15:45	6	61	20	87	23	9	6	38	4	20	1	25	2	6	2	10	160	
15:45 to 16:00	1	36	21	58	6	6	2	14	1	24	2	27	1	2	2	5	104	475
16:00 to 16:15	1	44	6	51	10	7	3	20	6	22	1	29	2	10	1	13	113	481
16:15 to 16:30	1	36	6	43	8	8	5	21	2	22	0	24	0	5	1	6	94	471
16:30 to 16:45	3	50	5	58	10	6	4	20	4	22	2	28	1	9	3	13	119	430
16:45 to 17:00	1	44	12	57	5	11	2	18	1	20	0	21	0	1	1	2	98	424
17:00 to 17:15	3	51	10	64	6	9	3	18	1	15	0	16	0	2	0	2	100	411
17:15 to 17:30	2	45	8	55	7	8	0	15	3	17	0	20	1	6	1	8	98	415
17:30 to 17:45	4	50	10	64	3	6	1	10	3	20	0	23	0	5	0	5	102	398
17:45 to 18:00	1	30	6	37	4	9	1	14	0	16	1	17	1	6	2	9	77	377
PM Peak	10		53	234	57	28	14	99	12	89	5	106	8	25	9	42	481	

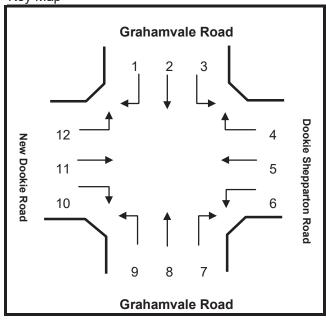

Location: Grahamvale/New Dookie Peak Hour Ends: 9:00

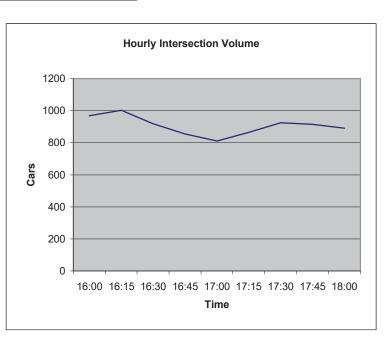

Date: 5 August 2008

Time: 7:30-10:30

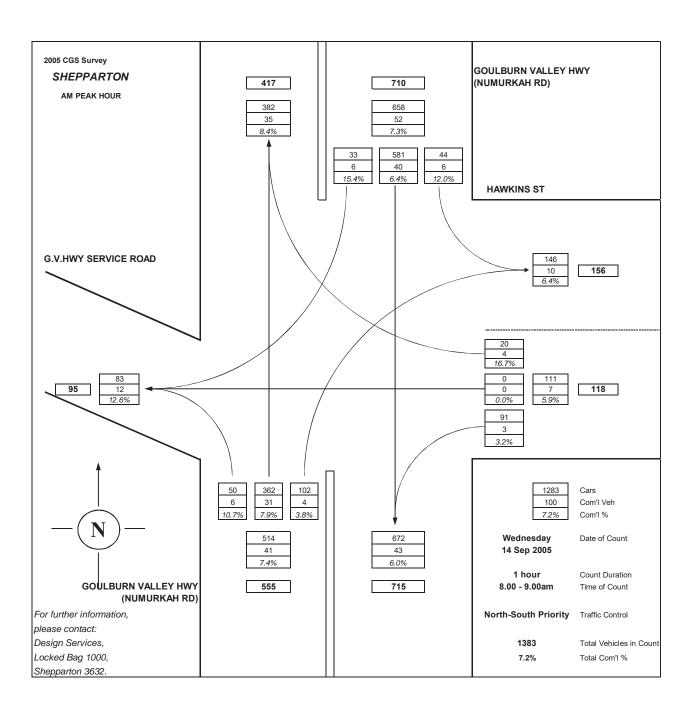
Surveyor:

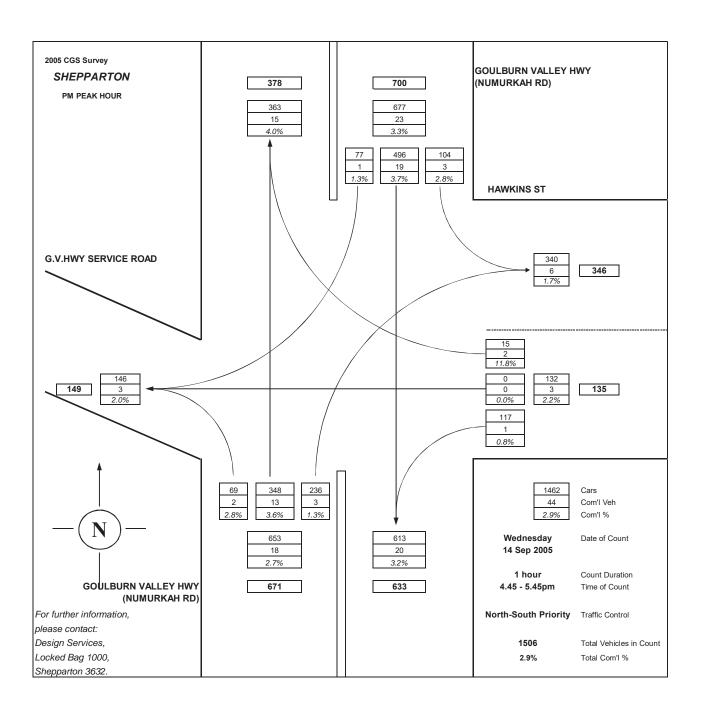
Weather Conditions:

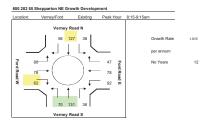




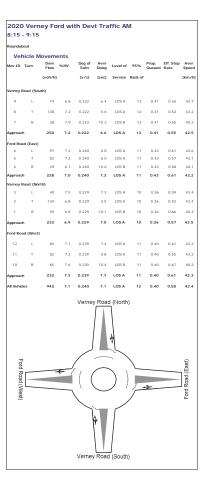
Road	Gra	hamv	ale Ro	oad	pokie	Shep	parto	n Roa	Gra	hamv	ale Ro	oad	Nev	v Doo	kie R	oad		
Movement	R	Т	L	a	R	Т	L	a a	R	Т	L	al	R	Т	L	a	15 min	hour
ID	1	2	3	Total	1	2	3	Total	1	2	3	Total	1	2	3	Total	total	total
7:30 to 7:45	15	39	4	58	0	28	3	31	6	22	25	53	15	26	9	50	192	-
7:45 to 8:00	26	37	4	67	2	30	6	38	30	37	37	104	25	33	14	72	281	-
8:00 to 8:15	18	32	0	50	1	44	7	52	11	25	32	68	17	28	17	62	232	-
8:15 to 8:30	19	50	3	72	0	43	9	52	4	47	27	78	20	37	20	77	279	984
8:30 to 8:45	28	54	1	83	4	32	11	47	5	41	36	82	29	24	36	89	301	1093
8:45 to 9:00	40	58	6	104	4	39	7	50	9	32	24	65	22	25	30	77	296	1108
9:00 to 9:15	22	30	2	54	0	22	3	25	7	21	16	44	13	10	6	29	152	1028
9:15 to 9:30	8	26	3	37	2	18	8	28	2	17	23	42	16	14	8	38	145	894
9:30 to 9:45	5	26	6	37	1	17	6	24	8	19	20	47	9	15	7	31	139	732
9:45 to 10:00	8	24	2	34	1	20	4	25	7	18	14	39	10	11	5	26	124	560
10:00 to 10:15	7	13	0	20	2	17	3	22	4	14	10	28	12	12	6	30	100	508
10:15 to 10:30	6	18	1	25	1	14	5	20	8	18	14	40	11	18	4	33	118	481
AM Peak	105	194	10	309	9	158	34	201	29	145	119	293	88	114	103	305	1108	

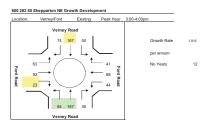

Location:	Grahamvale/New Dookie	Peak Hour Ends: 16:15
Date:	5 August 2008	
Time:	15:00-18:00	
Surveyor:		


Weather Conditions:


Road	Gra	hamv	ale Ro	oad	pokie	ookie Shepparton Roa					ale Ro	oad	Nev	v Doo	kie R	oad		
Movement	R	Т	L		R	т	L		R	Т	L		R	Т	L		15	
ID	1	2	3	Total	1	2	3	Total	1	2	3	Total	1	2	3	Total		hour total
15:00 to 15:15	10	27	1	38	2	37	4	43	10	32	17	59	15	23	17	55	195	-
15:15 to 15:30	11	30	2	43	5	29	8	42	13	55	18	86	28	13	24	65	236	-
15:30 to 15:45	32	46	7	85	7	36	9	52	7	45	18	70	29	32	27	88	295	-
15:45 to 16:00	28	37	3	68	3	25	8	36	6	50	25	81	21	21	16	58	243	969
16:00 to 16:15	9	29	3	41	1	33	20	54	12	47	16	75	21	23	14	58	228	1002
16:15 to 16:30	9	20	1	30	2	22	6	30	5	35	14	54	16	16	6	38	152	918
16:30 to 16:45	11	14	0	25	1	25	9	35	17	44	38	99	26	30	16	72	231	854
16:45 to 17:00	13	18	1	32	3	25	8	36	13	36	19	68	22	29	12	63	199	810
17:00 to 17:15	12	29	1	42	3	31	15	49	11	54	22	87	34	44	27	105	283	865
17:15 to 17:30	8	20	0	28	0	23	18	41	9	51	16	76	23	33	10	66	211	924
17:30 to 17:45	7	22	4	33	0	17	8	25	16	61	21	98	19	36	10	65	221	914
17:45 to 18:00	4	26	1	31	0	27	10	37	10	21	27	58	16	26	7	49	175	890
PM Peak	80	142	15	237	16	123	45	184	38	197	77	312	99	89	81	269	1002	

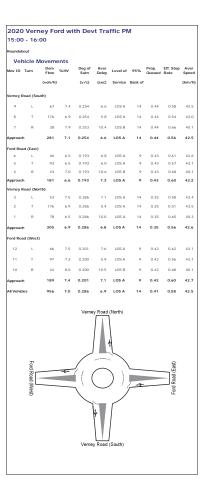
Appendix B

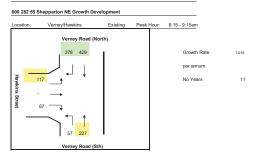

SIDRA Analysis



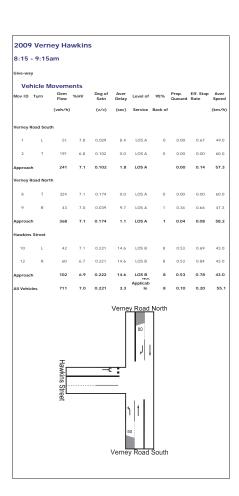
Road	v	erney	Road	N	Ford Road E Verney Road S						Ford Road W					
Movement	R	т	L	_	R	т	L	_	R	т	L	_	R	т	L	_
ID	1	2	3	Total	4	5	6	Total	7	8	9	Total	10	11	12	Total
8:15-9:15am	47	80	32	159	39	65	77	181	30	96	49	175	34	65	67	166
2020 Growth	56	96	38	190	47	78	92	216	36	115	59	209	41	78	80	198
Devt Traffic		31		31				0		16	11	27	21			21
2020 + Devt	56	127	38	221	47	78	92	216	36	131	70	236	62	78	80	219

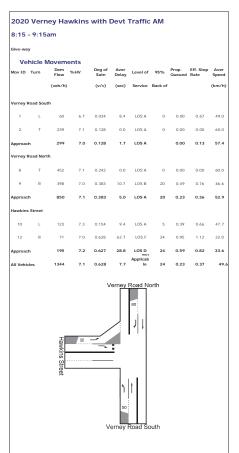
8:15 -		ney For	a										
Roundab													
	icle N	Noveme Dem	nts ‰ни	Deg of	Aver	Level of	95%	Prop.	Eff. Stop	Aver			
MOV ID	Ium	Flow	%HV	Satn	Delay			Queued	Rate	Speed			
		(veh/h)		(v/c)	(sec)	Service	Back of			(km/h)			
Verney R	oad (So	uth)											
9	L	52	7.7	0.159	6.2	LOS A	8	0.35	0.54	42.9			
8	т	101	6.9	0.159	5.4	LOS A	8	0.35	0.49	43.5			
7	R	32	6.5	0.159	10.0	LOS A	8	0.35	0.63	40.3			
Approach		184	7.1	0.159	6.4	LOS A	8	0.35	0.53	42.7			
Ford Roa	d (East)												
6	L	81	7.4	0.187	6.2	LOS A	8	0.33	0.55	43.0			
5	Т	68	7.2	0.187	5.4	LOS A	8	0.33	0.50	43.6			
4 Approach	R	41 191	7.3 7.3	0.187	10.0	LOS A	8	0.33	0.65	40.4 42.6			
Verney R			7.3	0.167	6.7	LUSA	۰	0.33	0.56	42.0			
3	L	34	6.1	0.156	6.8	LOS A	7	0.29	0.56	43.7			
2	т	84	7.1	0.157	5.2	LOS A	7	0.29	0.48	43.8			
1	R	49	6.1	0.157	9.8	LOS A	7	0.29	0.64	40.5			
Approach		166	6.6	0.157	6.9	LOS A	7	0.29	0.54	42.7			
Ford Roa	d (West))											
12	L	71	7.0	0.174	7.1	LOS A	7	0.33	0.58	43.5			
11	т	68	7.2	0.174	5.4	LOS A	7	0.33	0.50	43.6			
10	R	36	8.3	0.174	10.0	LOS B	7	0.33	0.65	40.4			
Approach		176	7.4	0.174	7.0	LOS A	7	0.33	0.56	42.8			
All Vehicle		717	7.1	0.187	6.7	LOS A	8	0.33	0.55	42.7			
All VUILLE		,,,		0.107	0.7	LUJA		0.33	0.55	42.7			
Verney Road (North) Ford Road (West)													
				Verne	y Road	(South)							

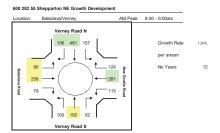




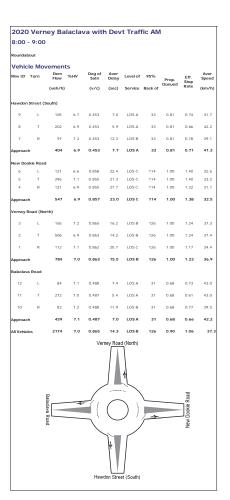
Road	١	/emey	Road		Ford Road				Verney Road				Ford Road			
Movement	R	т	L	_	R	т	L	_	R	т	L	_	R	т	L	_
ID	1	2	3	Total	4	5	6	Total	7	8	9	Total	10	11	12	Total
3:00-4:00pm	62	133	42	237	34	74	37	145	30	106	32	168	14	77	53	144
2020 Growth	74	159	50	283	41	88	44	173	36	127	38	201	17	92	63	172
Devt Traffic		8		8						40	26	66	6			6
2020 + Devt	74	167	50	291	41	88	44	173	36	167	64	267	23	92	63	178

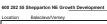

15:00 - 16:0									
Roundabout	00								
Vehicle M									
Mov ID Turn	_	%HV	Deg of Satn	Aver	Level of	95%	Prop. Queued	Eff. Stop Rate	Aver Speed
	(veh/h)		(v/c)	(sec)	Service	Back of			(km/h)
Verney Road (Sou	ath) 34	6.1	0.154	6.3	LOS A	8	0.37	0.55	42.8
-	112	7.1	0.154	5.5	LOS A	8	0.37	0.50	43.4
7 R	32	6.5	0.154	10.1	LOS B	8	0.37	0.64	40.3
Approach	176	6.8	0.155	6.4	LOS A	8	0.37	0.53	42.7
Ford Road (East)	39	7.7	0.155	6.5	LOS A	7	0.37	0.57	42.8
5 T	78	6.5	0.156	5.6	LOS A	7	0.37	0.52	43.4
4 R	36	8.3	0.155	10.2	LOS B	7	0.37	0.66	40.3
Approach	152	7.2	0.155	6.9	LOS A	7	0.37	0.57	42.4
Verney Road (Nor	th)								
3 L	44	6.8	0.228	6.8	LOS A	10	0.29	0.56	43.7
2 T	140	7.1	0.228	5.2	LOS A	10	0.29	0.48	43.8
1 R	65	7.6	0.228	9.8	LOS A	10	0.29	0.64	40.5
Approach	250	7.2	0.228	6.7	LOS A	10	0.29	0.54	42.8
Ford Road (West)									
12 L	56	7.1	0.151	7.1	LOS A	6	0.33	0.58	43.5
11 T	81	7.4	0.151	5.4	LOS A	6	0.33	0.50	43.6
10 R	15	6.7	0.150	10.0	LOS B	6	0.33	0.65	40.4
Approach	152	7.2	0.151	6.5	LOS A	6	0.33	0.54	43.2
All Vehicles	730	7.1	0.228	6.6	LOS A	10	0.34	0.54	42.
Ford Road (West)			Ven	ney Roa	d (North)) =3	-	Ford Road (East)	

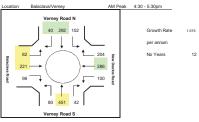




Road	Ver	ney R	oad (N	orth)	V	erney f	Road (Sth)	Hawkins Street				
Movement	R	т				т	L		R	т	L		
ID	1	2		Total		8	9	Total	10	11	12	Total	
8:15 - 9:15am	41	308		349		181	48	229	57	0	40	97	
2020 Growth	48	363		411		213	57	270	67	-	47	114	
Devt Traffic	330	66		396		14	_	14	_	-	70	70	
2020 + Devt	378	429		807		227	57	284	67	-	117	184	

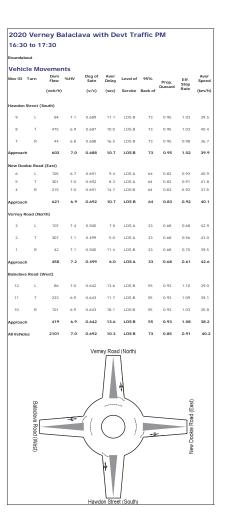



Road	٧	erney	Road	N	New Dookie Road				Verney Road S				Balaclava Road			
Movement	R	т	L	=	R	т	L	=	R	т	L	=	R	т	L	=
ID	1	2	3	Total	4	5	6	Total	7	8	9	Total	10	11	12	Total
8:00 - 9:00am	55	292	131	478	104	180	96	380	77	137	84	298	66	204	60	330
2020 Growth	66	349	157	572	124	215	115	454	92	164	100	356	79	244	72	395
Devt Traffic	40	132	-	172	-	66		66	-	28	-	28	-	14	8	22
2020 + Devt	106	481	157	744	124	281	115	520	92	192	100	384	79	258	80	417

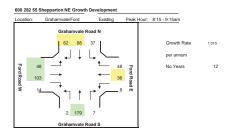


2008 Ve	erney Ba	lacla	/a						
8:00 - 9:									
Roundabout									
Vehicle I	Novement	s							
Mov ID Tur	n Dem Flow	%HV	Deg of Satn	Aver Delay	Level of	95%	Prop.	Eff. Stop	Aver Speed
	(veh/h)		(v/c)	(sec)	Service	Back of	Queued	Rate	(km/h)
Hawdon Stre	et (South)								
9	L 88	6.8	0.289	5.4	LOS A	18	0.58	0.56	42.9
8	T 144	6.9	0.289	4.3	LOS A	18	0.58	0.47	43.6
7	R 81	7.4	0.288	10.8	LOS B	18	0.58	0.68	39.8
Approach	313	7.0	0.289	6.3	LOS A	18	0.58	0.55	42.3
New Dookle F	Road								
1	L 101	6.9	0.445	6.2	LOS A	26	0.66	0.65	42.5
	T 189 R 109	6.9 7.3	0.444	5.1 11.5	LOS A	26 26	0.66	0.56	43.1 39.6
Approach	400	7.0	0.444	7.1	LOS A	26	0.66	0.63	41.9
		7.0	0.444	7.1	LOS A	26	0.66	0.63	41.9
Verney Road	(North)	7.2	0.519	7.0	LOS A	33	0.64	0.69	43.2
	T 307	7.1	0.519	5.1	LOS A	33	0.64	0.58	43.2
_	R 58	6.9	0.519	11.5	LOS B	33	0.64	0.75	39.6
	504	7.1	0.519	6.4	LOS A	33	0.64	0.63	42.7
Approach Balaclava Ro		7.1	0.519	0.4	LUSA	33	0.64	0.63	42.7
	L 63	6.3	0.352	6.2	LOS A	18	0.53	0.60	43.7
	T 215	7.0	0.352	4.2	LOS A	18	0.53	0.47	43.9
	R 69	7.0	0.352	10.7	LOSA	18	0.53	0.47	40.0
Approach	348	6.9	0.352	5.9	LOS A	18	0.53	0.54	43.0
All Vehicles	1565	7.0	0.519	6.4	LOS A	33	0.61	0.59	42.5
All venicles	1565	7.0			d (North)	33	0.61	0.59	42.5
	Balaciava Road	*	Haw	January Construction Street)) iet (South)			New Dookie Road	

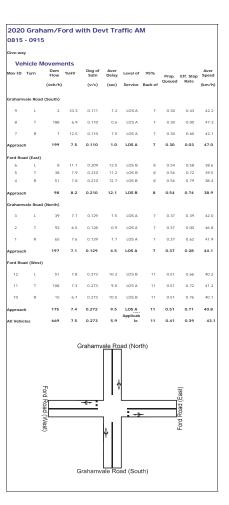
9Dec09 Shepparton Sidra 2020 Verney and Grahamvale Intersections 15/12/20095:14 PM

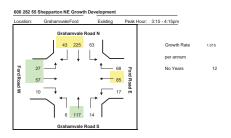





Road	V	erney	Road	N	Ne	w Doo	kie Ro	oad	V	erney	Road	s	В	alacla	va Roa	d
Movement	R	Т	L	=	R	Т	L	=	R	т	L	=	R	т	L	ıl
ID	1	2	3	Total	4	5	6	Total	7	8	9	Tota	10	11	12	Tota
4:30 - 5:30pm	20	198	85	303	171	217	84	472	35	289	67	391	80	141	43	264
2020 Growth	24	237	102	362	204	259	100	564	42	346	80	467	96	169	51	316
Devt Traffic	16	55	-	71		27		27		105		105	-	52	31	83
2020 + Devt	40	292	102	433	204	286	100	591	42	451	80	572	96	221	82	399

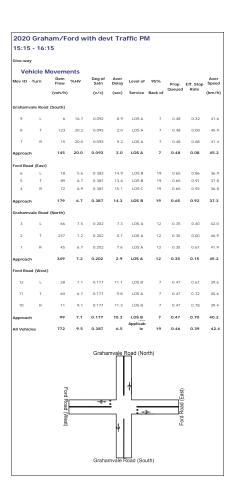
16:30 to 1	7.30								
toundabout	7.30								
Vehicle M Nov ID Turn	D	%HV	Deg of Satn	Aver Delay	Level of	95%	Prop.	Eff.	Aver
	(veh/h)		(v/c)	(sec)	Service	Back of	Queued	Stop Rate	(km/h
lawdon Street	(South)								
9 1	71	7.0	0.403	6.1	LOSA	27	0.69	0.64	42.4
8 T	304	6.9	0.404	5.0	LOSA	27	0.69	0.55	43.0
8 I	304				LOS B	27		0.55	
	-	8.1	0.402	11.4			0.69		39.5
pproach	412	7.0	0.404	5.8	LOS A	27	0.69	0.58	42.5
lew Dookle Roz	id (East)			5.5		28	0.57		43.0
6 L	228	6.8 7.0	0.484	5.5	LOS A	28	0.57	0.57	43.6
4 R	180	7.2	0.484	10.8	LOS B	28	0.57	0.70	39.9
pproach	496	7.1	0.484	6.9	LOS A	28	0.57	0.58	42.0
erney Road (N	orth)								
3 L	89	6.7	0.310	5.8	LOS A	16	0.48	0.55	44.0
2 T	208	7.2	0.310	3.8	LOS A	16	0.48	0.42	44.7
1 R	21	4.8	0.309	10.3	LOS B	16	0.48	0.66	40.2
	319	6.9	0.310	4.8	LOSA	16	0.48	0.60	43.9
ipproach		6.9	0.310	4.8	LUSA	16	0.48	0.47	43.9
lalaclava Road									
12 L	45	6.7	0.326	7.3	LOS A	17	0.64	0.70	43.2
11 T	148	6.8	0.326	5.3	LOS A	17	0.64	0.59	43.2
10 R	84	7.1	0.327	11.8	LOS B	17	0.64	0.75	39.6
pproach	277	6.9	0.326	7.6	LOS A	17	0.64	0.66	42.0
III Vehicles	1504	7.0	0.484	6.3	LOS A	28	0.60	0.57	42.
Balaclava Road (West)		+			d (North)			New Dookie Road (East)	

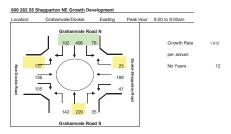




Road	Gra	hamva	le Roa	id N		Ford F	Road E		Gra	hamva	ile Roa	ıd S		Ford R	load W	1
Movement	R	Т	L	ы	R	Т	L	ы	R	Т	L	le le	R	T	L	-
ID	1	2	3	Total	4	5	6	Total	7	8	9	Total	10	11	12	Total
8:15 - 9:15am	45	69	31	145	40	18	7	65	6	128	2	136	12	31	7	50
2020 Growth	54	82	37	173	48	22	8	78	7	153	2	163	14	37	8	60
Devt Traffic	8	6		14		14	-	14		26		26		66	40	106
2020 + Devt	62	88	37	187	48	36	8	92	7	179	2	189	14	103	48	166

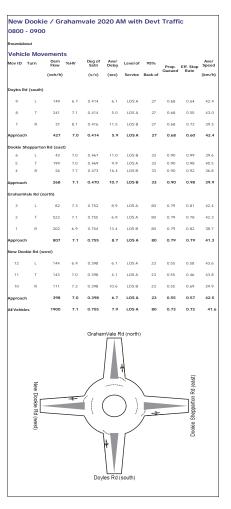
2008	Grah	am/Fo	ord A	M						
0815			nun							
Give-way	y									
Vel	nicle N	Noveme	nts							
Mov ID	Turn	Dem Flow	%HV	Deg of Satn	Aver Delay	Level of	95%	Prop.	Eff. Stop	Aver Speed
		(veh/h)		(v/c)	(sec)	Service	Back of	Queued	Rate	(km/h)
Grahamv	rale Roac	I (South)								
9	L	2	33.3	0.079	7.1	LOS A	5	0.26	0.45	42.4
	т	135	6.7	0.080	0.5	LOS A		0.26	0.00	47.7
7		6	14.3	0.080	7.3	LOS A	5	0.26	0.59	42.2
		144				LOS A	5			
Approach		144	7.6	0.080	1.0	LUS A	ь	0.26	0.04	47.3
Ford Roa	id (East)	7	12.5	0.111	9.5	LOS A	4	0.41	0.56	40.8
5	т	19	5.3	0.111	8.2	LOS A	4	0.41	0.61	41.8
4	R	42	7.1	0.111	9.7	LOS A	4	0.41	0.68	40.6
Approach	h	69	7.2	0.111	9.3	LOS A	4	0.41	0.65	41.0
Grahamv	rale Road	(North)								
3	L	33	6.2	0.095	7.2	LOS A	5	0.30	0.43	42.2
2	т	73	6.8	0.095	0.6	LOS A	5	0.30	0.00	47.4
1	R	47	6.4	0.095	7.4	LOS A	5	0.30	0.60	42.1
Approach	n	152	6.6	0.095	4.1	LOS A	5	0.30	0.28	44.5
Ford Roa	d (West	,								
12	L (7	12.5	0.078	9.0	LOS A	3	0.41	0.59	41.2
11	т	33	6.2	0.078	7.7	LOS A	3	0.41	0.60	42.3
10	R	13	7.7	0.078	9.2	LOS A	3	0.41	0.66	41.0
Approach		53	7.5	0.078	8.3	LOS A Applicab	3	0.41	0.62	41.8
All Vehic	ies	418	7.2	0.111	4.4	le	5	0.32	0.30	44.4
				Graham\						
		Ford Road (West		₹:					Ford Road (East)	
		<u></u>			_	-3	-		80	
		West)		Grahamy	₩ (ale Ro	ad (Soi	ıth)		Ford	
				oranani.	raio IXC	, au (000	101)			

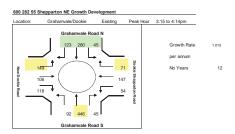




Road	Gra	hamva	le Roa	nd N		Ford F	Road E		Gra	hamva	le Roa	ıd S		Ford R	load W	
Movement	R	Т	L	ы	R	Т	L	le le	R	Т	L	le le	R	T	Г	Б
ID	1	2	3	Total	4	5	6	Total	7	8	9	Total	10	11	12	Total
3:15 - 4:15pm	10	171	53	234	57	28	14	99	12	89	5	106	8	25	9	42
2020 Growth	12	204	63	280	68	33	17	118	14	106	6	127	10	30	11	50
Devt Traffic	31	21		52		52		52		11		11		27	16	43
2020 + Devt	43	225	63	332	68	85	17	170	14	117	6	138	10	57	27	93

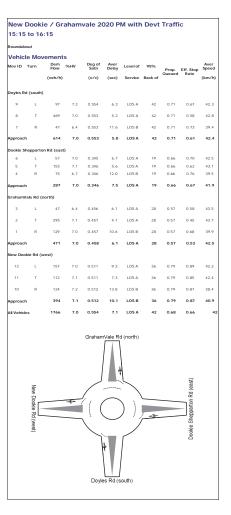
2008	Grah	am/F	ord P	М						
15:15	- 16:	15								
Give-wa	у									
Ve	hicle N	/loveme	ents							
Mov ID	Turn	Dem Flow	%HV	Deg of Satn	Aver Delay	Level of	95%	Prop.	Eff. Stop	Aver Speed
		(veh/h)		(v/c)	(sec)	Service	Back of	Queued	Rate	(km/h)
Graham	vale Road	(South)								
9	L	5	20.0	0.071	8.4	LOS A	5	0.42	0.35	41.8
8	т	94	20.2	0.072	1.5	LOS A	5	0.42	0.00	46.3
7	R	13	23.1	0.072	8.7	LOS A	5	0.42	0.64	41.7
Approac	h	112	20.5	0.072	2.6	LOS A	5	0.42	0.09	45.5
Ford Roa	ad (East)									
6	L	15	6.7	0.179	10.4	LOS B	7	0.50	0.66	40.2
5	T	29 60	6.9	0.179	9.1	LOS A	7	0.50	0.68	41.2
		104	6.7	0.179	10.0	LOS B	7	0.50	0.70	40.3
Approac	n vale Roac		6.7	0.179	10.1	LUSB	,	0.50	0.70	40.3
3	L L	56	7.1	0.137	7.1	LOS A	8	0.30	0.43	42.2
2	т.	180	7.2	0.137	0.5	LOS A	8	0.30	0.00	47.4
1	P	11	9.1	0.137	7.3	LOS A	8	0.30	0.59	42.1
Approac		247	7.3	0.135	2.3	LOS A	8	0.30	0.12	45.8
	n ad (West)		7.5	0.137	2.5	LOJA	Ü	0.50	0.12	45.0
12	ad (west,	,	10.0	0.070	9.5	LOS A	3	0.40	0.57	40.8
11	т.	26	7.7	0.070	8.2	LOS A	3	0.40	0.62	41.9
10	P	20	11.1	0.070	9.7	LOS A	3	0.40	0.62	40.6
		45	8.9	0.071	8.8	LOS A	3	0.40	0.62	41.4
Approac		508	10.2	0.179	4.6	Applicab	8	0.38	0.82	44.1
All Vehic	cles	508	10.2	0.179	4.6	ie	8	0.38	0.28	44.1
				Graf	namvale	Road (N	lorth)			
						ы				
			For			T			East)	
			Ford Road (West)	-€	=='	_			Road (E	
		1	<u></u>		\neg	تم.	-1-		& P	
		out)	PS		4				Ford	
					ľ					
				Grah	namvale	Road (S	South)			

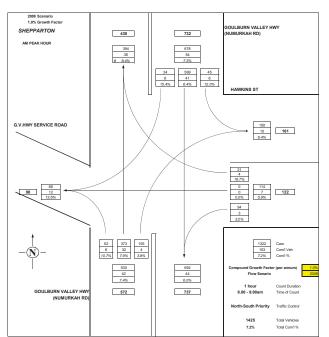


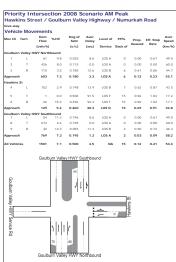


Road	Gra	hamva	le Roa	id N	Dooki	Shep	partor	Road	Gra	hamva	le Roa	ed S	Ne	w Doo	kie Ro	ad
Movement	R	Т	L	le	R	т	L	a a	R	т	L	le le	R	Т	L	-
ID	1	2	3	Total	4	5	6	Total	7	8	9	Total	10	11	12	Total
8:00 to 9:00am	105	194	10	309	9	158	34	201	29	145	119	174	88	114	103	305
2020 Growth	126	232	12	369	11	189	41	240	35	173	142	208	105	136	123	365
Devt Traffic	66	264	66	396	14			14		56		56			14	14
2020 + Devt	192	496	78	765	25	189	41	254	35	229	142	264	105	136	137	379

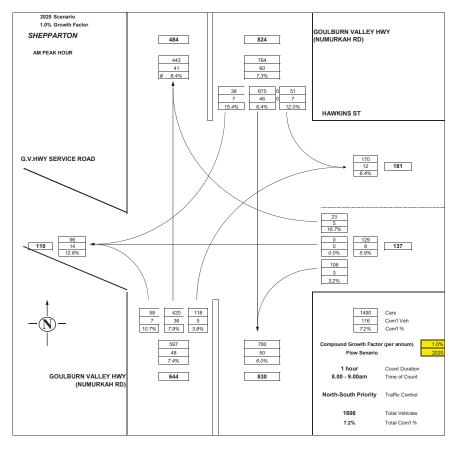
e / Gra	aham	vale 20	008 A	M				
)								
	s							
Dem Flow	%HV	Deg of Satn	Aver Delay	Level of	95%	Prop.	Eff. Stop	Aver Speed
(veh/h)		(v/c)	(sec)	Service	Back of	Queued	Rate	(km/h)
105	7.0	0.744		100.4	15	0.50	0.53	43.4
								44.1
								40.1
308	7.1	0.264	4.9	LOS A	15	0.50	0.49	43.4
								43.3
166	7.2	0.228	10.9	LOS A	11	0.52	0.49	40.0
								43.6
	*	0.220		2001.	•••	0.52	0.51	45.0
	9.1	0.306	5.6		15	0.43	0.54	44.2
204	6.9	0.305	3.6	LOS A	15	0.43	0.40	44.5
111	7.2	0.305	10.1	LOS B	15	0.43	0.65	40.4
326	7.1	0.305	5.9	LOS A	15	0.43	0.49	42.9
vest)								
108	7.3	0.287	5.3	LOS A	14	0.39	0.51	44.5
120	6.7	0.286	3.3	LOS A	14	0.39	0.37	44.8
93	6.5	0.287	9.8	LOS A	14	0.39	0.63	40.5
321	6.9	0.287	5.9	LOS A	14	0.39	0.49	43.3
1168	7.1	0.306	5.5	LOS A	15	0.45	0.49	43.3
		Graham\	/ale Rd (north)				
					**		Dookie Shepparton Rd (east)	
	ement: Dem / Row /	Demonstary Service Percent P	ements Dem No. Plow Plow Very Very	ements Dem 764W Deg of Oeley (veh/h) (v/x) (cec) 125 7.2 0.264 5.0 153 7.2 0.264 3.9 31 6.7 0.263 10.3 30 8.3 0.228 5.5 166 7.2 0.228 4.4 9 10.0 0.227 10.9 213 7.5 0.228 4.7 orth) 11 9.1 0.306 5.6 204 6.9 0.305 3.6 111 7.2 0.306 5.6 204 7.1 0.305 5.9 est) 108 7.3 0.287 5.9 est) 108 7.3 0.287 5.9 SGrahamVale Rd	Prime Prime	Person 94-HV Deg of Sath Toles Level of 95%	Permits Dem	Promote Subsection Despriments

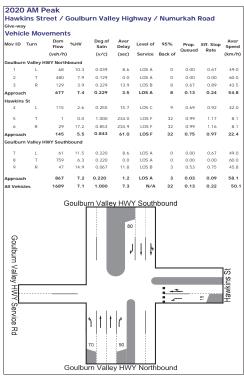


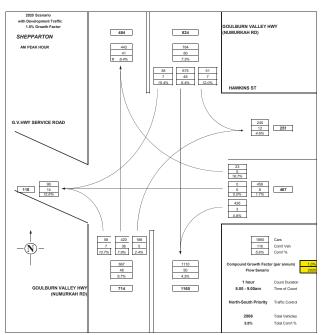


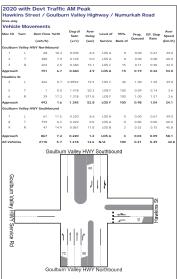

Road	Gra	hamva	le Roa	id N	Dooki	e Shep	partor	Road	Gra	hamva	ale Roa	id S	Ne	w Doo	kie Ro	ad
Movement	R	Т	L	le	R	т	L	a a	R	т	L	le le	R	Т	L	-
ID	1	2	3	Total	4	5	6	Total	7	8	9	Total	10	11	12	Total
3:15 to 4:14pm	80	142	15	237	16	123	45	184	38	197	77	312	99	89	81	269
2020 Growth	96	170	18	283	19	147	54	220	45	236	92	373	118	106	97	322
Devt Traffic	27	110	27	164	52	_	_	52		210	_	210			52	52
2020 + Devt	123	280	45	447	71	147	54	272	45	446	92	583	118	106	149	374

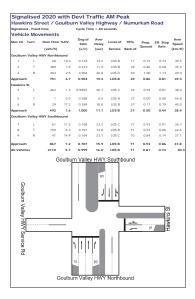


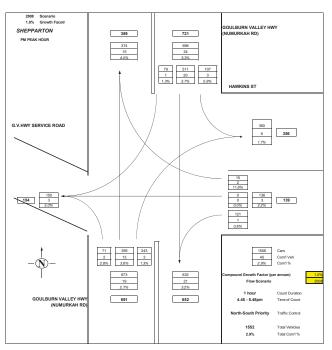

New Dookie	o / Gra	ham	vala 2	nne p	NΛ				
15:15 to 16:		iiiaiii	vale 2	0001					
Roundabout									
Vehicle Move	ements								
Mov ID Turn	Dem , Flow	%HV	Deg of Satn	Aver Delay	Level of	95%	Prop. Queued	Eff. Stop	Aver Speed
	(veh/h)		(v/c)	(sec)	Service	Back of	Queued	Rate	(km/h)
Doyles Rd (south)									
9 L	81	7.4	0.269	4.7	LOS A	15	0.45	0.49	43.7
8 T	207	7.2	0.269	3.6	LOS A	15	0.45	0.39	44.4
7 R	40	7.5	0.268	10.0	LOS B	15	0.45	0.63	40.3
Approach	329	7.3	0.269	4.6	LOS A	15	0.45	0.44	43.6
Dookle Sheppartor									
6 L	47	6.4	0.193	5.1	LOS A	9	0.46	0.53	43.6
5 T 4 R	129 17	7.0 5.9	0.193	4.0	LOS A	9	0.46	0.44	44.4
Approach	193	6.7	0.193	4.8	LOS A	9	0.46	0.48	43.7
GrahamVale Rd (n		0.7	0.175	4.0	LOJA	,	0.40	0.40	40.7
3 L	16	6.3	0.235	5.5	LOS A	11	0.41	0.52	44.4
2 T	149	6.7	0.234	3.5	LOSA	11	0.41	0.39	44.7
1 R	84	7.1	0.234	10.0	LOSA	- 11	0.41	0.57	40.4
Approach	249	6.8	0.234	5.8	LOS A	11	0.41	0.48	43.1
New Dookle Rd (w		0.0	0.234	5.0	LOJA		0.41	0.40	45.1
12 L	85	7.1	0.272	5.7	LOS A	13	0.45	0.54	44.2
11 T	94	7.4	0.272	3.7	LOS A	13	0.45	0.41	44.4
10 R	104	6.7	0.272	10.2	LOS B	13	0.45	0.65	40.3
Approach	283	7.1	0.272	6.7	LOS A	13	0.45	0.54	42.7
All Vehicles	1054	7.0	0.272	5.5	LOS A	15	0.44	0.48	43.1
All verticles	1034	7.0	0.272	5.5	LOJA		0.44	0.40	40
New Dookle Rd (west		+	Graha	amVale	Rd (north)		Dookie Shepparton Rd (east)	

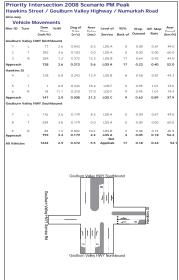


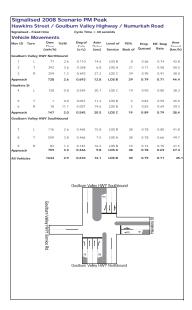


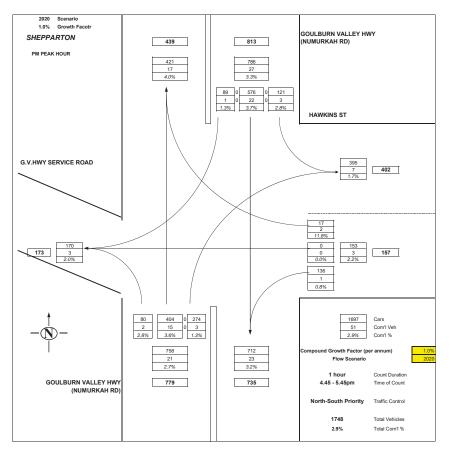


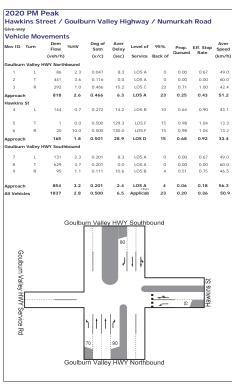


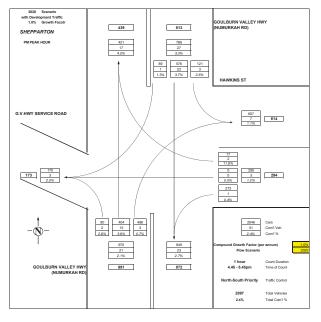


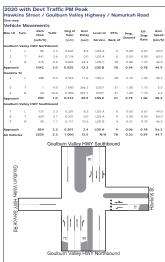


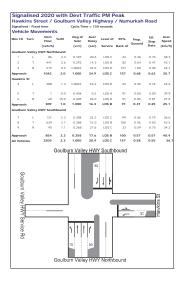


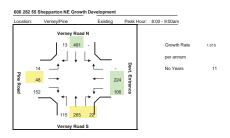


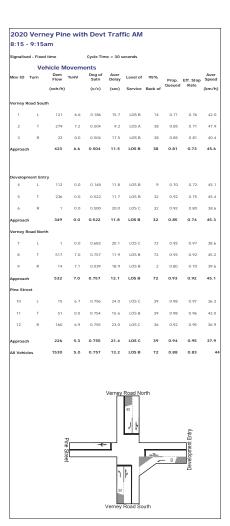


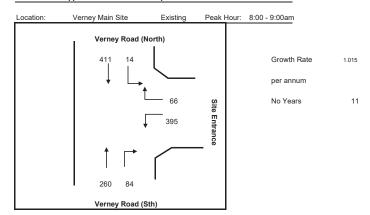










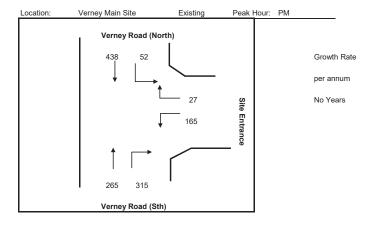

Road	١	erney	Road	N		evt. E	ntranc	е	٧	erney	Road	s		Pine	Road	
Movement	R	T	L	ы	R	Т	L	le le	R	Т	L	le le	R	T	Г	-
ID	1	2	3	Total	4	5	6	Total	7	8	9	Total	10	11	12	Total
8:00 - 9:00am	11	361	0	372	0	0	0	0	0	213	98	311	129	0	12	141
2020 Growth	13	425		438					,	251	115	366	152		14	166
Devt Traffic		66		66		224	106	330	22	14	,	36		48	,	48
2020 + Devt	13	491	-	504		224	106	330	22	265	115	402	152	48	14	214

8:1	5 - 9:	15an	n								
3ive-	way Ver Move	nicie ment	s								
Mov	Turn	Dem Flow	%HV	Deg of Satn	Aver Delay	Level of	95%		Eff. Stop	Aver Spee d	
		(veh/ h)		(v/c)	(sec)	Servi	Back of	ed	Rate	(km/ h)	
Vern	ey Road	South									
1	L	103	6.8	0.058	8.4	LOS A	0	0.00	0.67	49.0	
2	т	224	7.1	0.121	0.0	LOS A	0	0.00	0.00	60.0	
Appr	oach	328	7.0	0.121	2.7	LOS A		0.00	0.21	56.0	Verney Road N
Vern	ev Road	North									
8	т	380	7.1	0.204	0.0	LOS A	0	0.00	0.00	60.0	80
9	R	12	8.3	0.012	10.1	LOS B	0	0.39	0.66	47.1	1
Appr	oach	392	7.1	0.204	0.3	LOS A	0	0.01	0.02	59.5	Pi → ·
Pine	Street										Street
10	L	13	7.7	0.500	24.6	LOS	24	0.77	0.99	35.9	<u> </u>
12	R	136	7.4	0.491	24.7	LOS	24	0.77	1.04	35.8	
Appr	nach	149	7.4	0.491	24.7	LOS	24	0.77	1.04	35.8	50
	out i	. , ,		0.500		Appli			0.27		

2020	Vern	ey Pin	e wit	h Devt	Traf	fic AM				
8:15 -		-								
Give-way										
Veh	icle N	loveme	nts							
Mov ID	Turn	Dem Flow	%HV	Deg of Satn	Aver Delay	Level of	95%	Prop.	Eff. Stop	Aver Speed
		(veh/h)		(v/c)	(sec)	Service	Back of	Queued	Rate	(km/h)
Verney Re	ad Sout	th								
1	L	121	6.6	0.068	8.4	LOS A	0	0.00	0.67	49.0
2	т	279	7.2	0.179	3.5	LOS A	15	0.62	0.00	52.3
3	R	23	0.0	0.178	11.8	LOS B	15	0.62	0.84	45.3
Approach		423	6.6	0.179	5.3	LOS A	15	0.45	0.24	50.9
Developm	ent Entr	rv								
4	L	112	0.0	0.180	11.5	LOS B	6	0.55	0.82	45.7
5	т	236	0.0	1.083	191.8	LOS F	216	1.00	2.90	9.5
6	R	1	0.0	1.000	193.2	LOS F	216	1.00	2.93	9.5
Approach		349	0.0	1.083	133.9	LOS F	216	0.85	2.24	12.8
Verney Re	oad Nort	h								
7	L	1	0.0	0.250	8.2	LOS A	0	0.00	0.67	49.0
8	т	517	7.0	0.278	0.0	LOS A	0	0.00	0.00	60.0
9	R	14	7.1	0.015	10.5	LOS B	1	0.43	0.68	46.7
Approach		532	7.0	0.278	0.3	LOS A	1	0.01	0.02	59.5
Pine Stree	et									
10	L	15	6.7	1.071	161.5	LOS F	189	1.00	3.43	11.0
11	т	51	0.0	1.041	159.9	LOS F	189	1.00	2.67	11.1
12	R	160	6.9	1.053	161.6	LOS F	189	1.00	2.61	11.0
Approach		226	5.3	1.051	161.2	LOS F	189	1.00	2.68	11.0
All Vehicle	25	1530	5.0	1.083	55.9	Applicab le	216	0.47	0.98	23.6
					Verney	Road No	rth			
						® }				
		TIRE		-		1,1,			Development Entry	
		olleet			_ _ \			- 8/	Developi	
					50					
					Verney	Road So	uth			

Road	Verne	y Road	l (Nortl	Verne	y Road	l (Sth)	Site E	Site Entrance			
Movement	R	Т		Т	لـ		R	ا ا			
ID	1	2	Total	8	9	Total	10	12	Total		
8:00 - 9:00am	0	349	349	221	0	221	0	0	0		
2020 Growth	-	411	411	260	-	260	-	-	-		
Devt Traffic	14	-		-	84		66	395	461		
2020 + Devt	14	411	411	260	84	260	66	395	461		

Movement Summary


Verney Main Entrance

AM Peak

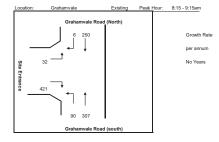
Give-Way

Vehic	le Mov	ement: Dem	S	Deg of	Aver	Level of	95%			Aver
Mov	Turn	Flow (veh/ h)	%HV	Satn (v/c)	Delay (sec)	Service	Back of	Prop. Queue	Eff. Stop	Speed (km/h)
ID	Turri		70 FT V				Queue	d	Rate	
						(
Verney	Road S	outh								
2	Т	274	6.9	0.147	0.0	LOS A	0	0.00	0.00	60.0
3	R	88	6.8	0.100	10.8	LOS B	4	0.48	0.74	46.4
Approa	ıch	362	6.9	0.147	2.6	LOS A	4	0.12	0.18	56.0
Main S	ite Entra	ance								
4	L	416	7.0	0.586	14.0	LOS B	41	0.67	1.02	43.6
6	R	69	7.1	0.315	27.1	LOS D	12	0.81	0.99	34.4
Approa	ıch	486	7.0	0.586	15.9	LOS C	41	0.69	1.02	42.0
Verney	Road N	lorth								
7	L	15	6.7	0.008	8.4	LOS A	0	0.00	0.67	49.0
8	Т	433	6.9	0.232	0.0	LOS A	0	0.00	0.00	60.0
Approa	ıch	447 1295	6.9	0.232	0.3	LOS A Not		0.00	0.02	59.6
All Veh	icles		6.9	0.586	6.8	Applicable	41	0.29	0.44	50.7

P:\60028255 V07PU Shepparton\6_Draft_docs\6.1_Reports\Traffic and Transportation\Draft Report Nov 09\Appendices\10Dec09 Shepparton Sidra 2020 Access Points.xls10Dec09 Shepparton Sidra 2020 Access Points.xls 15/12/2009

	1											
Road	Verney Road (North) Verney Road (Sth) Site Entrance							е				
Movement	L	т		т	R		R	L				
ID	1	2	Total	8	9	Total	10	12	Total			
8:00 - 9:00am	0	372	372	225	0	225	0	0	0			
2020 Growth	-	438	438	265	-	265	_	-	-			
Devt Traffic	52	_		-	315		27	165	192			
2020 + Devt	52	438	438	265	315	265	27	165	192			

Movement Summary


Verney Main Entrance

PM Peak

1.015 Give-Way

11	Vehicle	Moven	nents Dem Flow		Deg of Satn	Aver Delay	Level of	95%			Aver Speed
	Mov I D	Turn	(veh/ h)	%HV	(v/c)	(sec)	Service	Back of	Prop. Queue	Eff. Stop	(km/l
								Queue	d	Rate	
								(m)			
	Verney	Road S	South								
	2	Т	279	7.2	0.150	0.0	LOS A	0	0.00	0.00	60.0
	3	R	332	6.9	0.409	12.9	LOS B	22	0.61	0.94	44.5
	Approa	ch	610	7.0	0.409	7.0	LOS A	22	0.33	0.51	50.5
	Main Si	te Entr	ance								
	4	L	174	6.9	0.261	11.6	LOS B	10	0.55	0.82	45.9
	6	R	28	7.1	0.237	41.9	LOS E	7	0.89	0.99	27.9
	Approa	ch	202	6.9	0.261	15.8	LOS C	10	0.60	0.84	42.2
	Verney	Road N	North								
	7	L	55	7.3	0.031	8.4	LOS A	0	0.00	0.67	49.0
	8	Т	461	6.9	0.247	0.0	LOS A	0	0.00	0.00	60.0
	Approa	ch	516 1328	7.0	0.247	0.9	LOS A Not		0.00	0.07	58.6
	All Vehi	icles		7.0	0.409	6.0	Applicabl		0.24	0.39	51.7

P:\60028255 V07PU Shepparton\6_Draft_docs\6.1_Reports\Traffic and Transportation\Draft Report Nov 09\Appendices\10Dec09 Shepparton Sidra 2020 Access Points.xls10Dec09 Shepparton Sidra 2020 Access Points.xls 15/12/2009

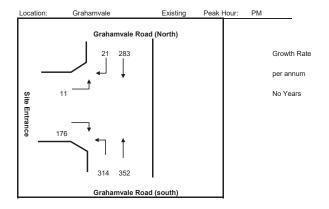
Road	Graha	mvale	Road	Graham	ıvale F	toad (s	Site Entrance			
Movement	R	т		т	L		R	٦		
ID	1	2	Total	8	9	Total	10	12	Total	
8:15 - 9:15am	0	209	209	257	0	257	0	0	0	
2020 Growth	_	250	250	307	-	307			0	
Devt Traffic	6	_	6		90	90	421	32	453	
2020 + Devt	6	250	256	307	90	397	421	32	453	

Grahamvale Site Entrance

AM	

Signalised - Fixed	time		Cycle Time = 40 seconds								
1.015 Vehicle Mover Mov I D	nents Turn	Dem Flow	%HV	Deg of Satn	Aver Delay	LOS		Prop. Queue		Aver Speed	
12 GVale South											
1	L	95	7.4	0.231	19.3	LOS B	14	0.85	0.76	39.4	
2	T	323	7.1	0.745	14.4	LOS B	51	0.98	0.93	43.0	
Approach		419	7.2		15.5	LOS B	51	0.95	0.89	42.1	
Gvale North				0.604							
8	T	263	6.8		12.4	LOS B	39	0.94	0.81	44.8	
9	R	6	14.3	0.029	22.7	LOS C	1	0.92	0.65	37.0	
Approach		270	7.0	0.604	12.7	LOS B	39	0.94	0.80	44.5	
Site Entrance											
10	L	34	6.1	0.051	15.3	LOS B	4	0.67	0.71	42.4	
12	R	443	7.0	0.683	18.8	LOS B	59	0.90	0.90	39.6	
Approach		476	6.9	0.683	18.6	LOS B	59	0.88	0.89	39.8	
All Vehicles		1165	7.0	0.745	16.1	LOS B	59	0.92	0.87	41.7	

Grahamvale Site Entrance - Priority (Unsignalised) Intersection

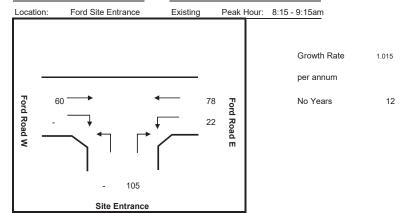

AM Peak

Give-way

Vehicle Movements

GVale S	GVale South														
1	L	95	7.4	0.054	8.4	LOS A	0	0.00	0.67	49.0					
2	Т	323	7.1	0.174	0.0	LOS A	0	0.00	0.00	60.0					
Approa	ch	419	7.2).174	1.9	LOS A		0.00	0.15	57.					
Gvale N	lorth														
8	T	263	6.8	0.141	0.0	LOS A	0	0.00	0.00	60.0					
9	R	6	14.3	0.009	10.7	LOS B	0	0.46	0.66	46.5					
Approa	ch	270	7.0).141	0.3	LOS A	0	0.01	0.02	59.6					
Site En	trance														

10	L	34	6.1	0.042	10.5	LOS B	1	0.43	0.70	46.8
12	R	443	7.0	1.462	450.8	LOS F		1.00	5.37	4.5
				1.402	450.0	2001	,,,,	1.00	5.57	4.5
Approac	h	476	6.9	1.462	120.2	LOS F	735	0.96	5.05	4.8
All Vehic	les	1165	7.0	1.462	172.5	licable	735	0.40	2.12	10.4


Road	Graha	mvale	Road	Graham	vale R	load (s	Site E	ntrance	
Movement	R	т		Т	L		R	L	
ID	1	2	Total	8	9	Total	10	12	Total
8:15 - 9:15am	0	237	237	294	0	294	0	0	0
2020 Growth	_	283	283	352	-	352	-	-	0
Devt Traffic	21	-	21	-	314	314	176	11	187
2020 + Devt	21	283	304	352	314	666	176	11	187

Grahamvale Site Entrance

AM Peak

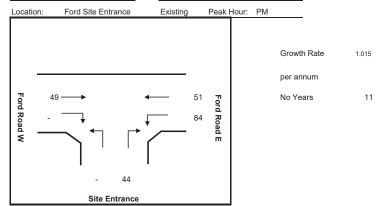
Signalised - Fixed time

1.015 Vehicle Moven	nents Turn	Dem Flow	%HV	Deg of Satn		LOS	95% BOQ	Prop. Queue		Aver Speed
12 GVale South										
1	L	331	7.0	0.734	18.2	LOS B	99	0.83	0.91	40.1
ı	L	331	7.0	0.735	10.2	LUS B	99	0.83	0.91	40.1
2	T	371	7.0		9.8	LOS A	99	0.83	0.80	47.3
Approach		701	7.0	0.734	13.8	LOS B	99	0.83	0.85	43.6
Gvale North										
8	Т	298	7.0	0.392	7.5	LOS A	42	0.69	0.58	49.7
9	R	22	8.7	0.391	16.3	LOS B	42	0.69	0.80	41.6
				0.392						
Approach		321	7.2		8.2	LOS A	42	0.69	0.60	49.0
Site Entrance										
10	L	12	8.3	0.635	27.0	LOS C	40	0.98	0.86	34.5
12	R	185	7.0	0.637	27.3	LOS C	40	0.98	0.86	34.3
		197	7.1	0.637	27.3	LOS C	40	0.98	0.07	24.0
Approach		1219	7.1	0.735	21.3	LUSC	40	0.98	0.86	34.3
All Vehicles			7.1		14.5	LOS B	99	0.82	0.79	43.0

Road	Ford F	Ford Road E			Site Entrance			Ford Road W		
Movement	Т	L		R	L	<u> </u>	R	Т	E	
ID	5	6	Total	7	9	Total	10	11	Total	
8:15 - 9:15am	65	0	65	0	0	0	0	50	50	
2020 Growth	78	-	78	-	-	-	-	60	60	
Devt Traffic	_	22	22	105	-	105	_		-	
2020 + Devt	78	22	100	105	-	105	_	60	60	

Movement SummaryFord Road Site Entrance

AM Peak


All Vehicles 284

Give-way

	Veh	icle l	Vlove	men	its						
	Mov I D	Turn	Dem Flow	%H V	Deg of Satn	Aver Delay	LOS	95% BOQ	Prop. Queued	Eff. Stop Pate	Aver Speed
-	New S	S leg									
				50.0	0.167						
	1	L	1			10.0	LOS A	7	0.36	0.63	47.0
	3	R	111	7.2	0.163	10.4	LOS B	7	0.36	0.68	46.9
				8.0	0.16						
	Appro	ach	113		3	10.4	LOS B	7	0.36	0.68	46.9
1	New E	leg									
				8.3	0.014						
	4	L	23	1.3	U.U44	8.4	LOS A	0	0.00	0.67	49.0
	5	Т	82	r.5	U.U4	0.0	LOS A	0	0.00	0.00	60.0
	Appro	ach	106		4	1.9	LOS A		0.00	0.15	57.1
-	New \	N leg									
		_		6.3	0.034						
	11	Т	63	FO 0	0.000	0.0	LOS A	0	0.00	0.00	60.0
	12	R	1	50.0	0.003	9.2	LOS A	0	0.25	0.62	47.6
				7.7	0.03						
	Appro	ach	65		4	0.3	LOS A	0	0.01	0.02	59.5
				7.7	0.16		Applica				

P:\60028255 V07PU Shepparton\6_Draft_docs\6.1_Reports\Traffic and Transportation\Draft Report Nov 09\Appendices\10Dec09 Shepparton Sidra 2020 Access Points.xls10Dec09 Shepparton Sidra 2020 Access Points.xls 15/12/2009

53

Road	Ford F	Ford Road E			Site Entrance			Ford Road W		
Movement	Т	L	- E	R	L	al	R	Т	<u>=</u>	
ID	5	6	Total	7	9	Total	10	11	Total	
8:15 - 9:15am	43	0	43	0	0	0	0	42	42	
2020 Growth	51	1	51	-	- 1	1	-	49	49	
Devt Traffic	-	84	84	44	_	44	-		-	
2020 + Devt	51	84	135	44	-	44	_	49	49	

Ford Road Site Entrance PM Peak

Give-way

Vehicle	Movements

ver	licie i	viove	emen	เร						
Mov ID	Turn	Dem Flow	%HV	Deg of Satn	Aver Delay	LOS	95% BOQ	Prop. Queued	Eff. Stop Rate	Aver Speed
Site E	Intrance	e								
1	L	1	50.0	0.069	9.7	LOS A	3	0.33	0.62	47.3
3	R	46	6.5	0.068	10.1	LOS B	3	0.33	0.66	47.2
Appro	oach	48	8.3	0.068	10.1	LOS B	3	0.33	0.66	47.2
Ford	Ford Road East									
4	L	88	6.8	0.050	8.4	LOS A	0	0.00	0.67	49.0
5	Т	54	7.4	0.029	0.0	LOS A	0	0.00	0.00	60.0
Appro	oach	142		0.050	5.2	LOS A		0.00	0.41	52.6
Ford	Road W	est								
11	Т	52	7.7	0.028	0.0	LOS A	0	0.00	0.00	60.0
12	R	1	50.0	0.003	9.5	LOS A	0	0.30	0.62	47.5
Appro	oach	54	9.3	0.028	0.4	LOS A	0	0.01	0.02	59.4
All Ve	hicles	244	7.8	0.069	5.1	Not Applicable	3	0.07	0.38	52.8

6

P:\60028255 V07PU Shepparton\6_Draft_docs\6.1_Reports\Traffic and Transportation\Draft Report Nov 09\Appendices\10Dec09 Shepparton Sidra 2020 Access Points.xls10Dec09 Shepparton Sidra 2020 Access Points.xls 15/12/2009

DRAFT

Appendix C

Additional Traffic Movement Distribution

North East Development Growth Area Traffic Generation and Trip Rates

Residential

Peak Hour		
Total Dwellings		1677
Peak hr movements (per dwe	90%	1509

24 Hour			
Total Dwellings			1677
24 Hr Traffic (movements/dwelling)		10	16770

AM Peak		
In	10%	151
Out	90%	1358

1509

PM Peak		
In	70%	1057
Out	30%	453

Retail and Community Uses

Peak Hour	
Total Retail Area	1350 sqm
% of Passing Trade	0
Peak Hour Trips	13
Peak Hour Retail Trips	169
Peak Hour External Retail 1	17

AM Peak		
In	50%	8
Out	50%	8

PM Peak		
In	50%	8
Out	50%	8

24 Hour	
Total Retail Area	1350 sqm
% of Passing Trade	0
24 Hr Trips	121
24 Hour Total Retail Trips	1634
24 Hour Total Trips from Extern	na 163

North East Development Growth Area Traffic Generation and Trip Rates Total Peak Hour Trips

Land Use	Trips per	AM I	Peak	PM Peak					
Land Ose	Peak Hour	Trips In	Trips Out	Trips In	Trips Out				
Residential	1342	10%	90%	70%	30%				
Retail	17	50%	50%	50%	50%				
Primary School Staff	35	100%	0%	0%	100%				
Primary School Students	203	50%	50%	50%	50%				

Land Use	Trips per	AM I	Peak	PM Peak					
Land Ose	Peak Hour	Trips In	Trips Out	Trips In	Trips Out				
Residential	1342	134	1208	939	403				
Retail	17	9	8	8	9				
Primary School	238	137	101	101	137				
Total	1597	280	1317	1048	549				

North East Development Growth Area Trip Distribution

	Trips per	AM	Peak	PM Peak						
Land Use	Peak Hour	Trips In	Trips Out	Trips In	Trips Out					
Residential	1342	134	1208	939	403					
Retail	17	9	8	8	9					
Primary School	238	137	101	101	137					
Total	1597	280	1317	1048	549					

	Access Points Distributio Verney Maiı Verney 2ndry Grahamvak Ford											
	Distributio Ve	rney MaiıVer	ney 2ndryGra	ahamval: For	d							
Direction	n Share	1	2	3	4 che	ck						
South	60%	20%	20%	20%	0%	0%						
West	20%	10%	5%	5%	0%	0%						
East	10%	0%	0%	5%	5%	0%						
North	10%	5%	0%	2%	3%	0%						
		35%	25%	32%	8%							

AM Peak Hour

	Distributio	Access Points Verney Road (Main) /erney Road (Secondary Grahamvale Road Ford Road											
Direction	n Share	Trips In	Trips Out	Trips In	Trips Out	Trips In	Trips Out	Trips In	Trips Out				
South	60%	56	263	56	263	56	263	0	0				
West	20%	28	132	14	66	14	66	0	0				
East	10%	0	0	0	0	14	66	14	66				
North	10%	14	66	0	0	6	26	8	40				
Total		98	461	70	329	90	421	22	105				
		559		399		511		128					

PM Peak Hour

		Access Points											
	Distributio	Verney R	oad (Main)	erney Road	(Secondary	Graham	/ale Road	Ford	Road				
Direction	n Share	Trips In	Trips Out	Trips In	Trips Out	Trips In	Trips Out	Trips In	Trips Out				
South	60%	210	110	210	110	210	110	0	0				
West	20%	105	55	52	27	52	27	0	0				
East	10%	0	0	0	0	52	27	52	27				
North	10%	52	27	0	0	21	11	31	16				
Total		367	192	262	137	335	176	84	44				
		559		399		511		128					

DRAFT

Appendix D

Crash History Data

Page 1

Map Refs Road Number	Location	SEVI	ERITY FatalSerio	011	DCA GROU	IPS.		OBJECT HIT	ROAD	LIGHT	VEHICLE NUMBER	S		YEARL	Y TREND
Road Number Km from start	i '	ALL	⊦atalSerio	usOther Injury	Pedes Cross trian Traffi	s RightRight icNear Again	Lost Rear stControlEnd	OBJECT HIT Fence PoleTreeWall	Dry Wet	Day Dark	Motor Car Truck Cycle Bike	e '04	'05	'06 '0	7 '08
VCD ED7 673 O4 114190 0.453 Km Shepparton	On Brauman Street btw Fenn Street & Goulburn Valley Hwy	1	1						1		2		1		
VCD ED7 673 P3 2640 178.406 Km Shepparton	At Goulburn Valley Highway Inbound Cwy & Hawkins Street	2	1	1		1	1		2	2	4		1		1
VCD ED7 673 P3 151212 0.398 Km Shepparton	On Hawkins Street btw Sali Drive & Kestrel Drive	1		1					1	1	2		1		
VCD ED7 673 P4 2640 178.037 Km Shepparton	Complex intersection no. 3056 At Goulburn Valley Hwy & Brauman Street	7	5	2		6	1		7	4 3	13 1		1	2	4
VCD ED7 673 P5 2640 177.463 Km Shepparton	At Goulburn Valley Highway Inbound Cwy & Graham Street	3		3					3	2 1	5 1	1	1	1	
VCD ED7 673 P5 146825 0.050 Km Shepparton	On Graham Street btw Goulburn Valley Highway Inbound Cwy & Dunlop Street	1	1				1	1	1	1	1			1	
VCD ED7 673 P6 2640 176.982 Km Shepparton	At Goulburn Valley Hwy & Goulburn Valley Hwy	5		5	1	1	2		4 1	4 1	10 1	1	1	1	2
VCD ED7 673 P6 5409 0.243 Km Shepparton	At Dookie-Shepparton Road & Orr Street	1		1					1	1	1 1	1			
VCD ED7 673 P6 5409 0.268 Km Shepparton	At Dookie-Shepparton Road & Kilpatrick Avenue	1		1	1				1	1	1			1	

(c) 2004 VicRoads

Road Crash Statistics: Victoria Accidents By Site

Location is Town(s): SHEPPARTON NORTH; Query: Casualty accidents; Sites: On Ford Rd between Verney Rd and, Intersection of Goulburn Valley Hwy and Brauman Street, On Dookie-Shepparton Road (2.176 km) between Apollo Drive and Drummond Road, On Dookie-Shepparton Road and Drummond Road, Intersection of Dookie-Shepparton Road and Drummond Road, Intersection of Dookie-Shepparton Road and Or Street, Intersection of Goulburn Valley Highway Inbound Cwy and Hawkins Street, Intersection of Goulburn Valley Highway Inbound Cwy and Hawkins Street, Intersection of Goulburn Valley Highway Inbound Cwy and Hawkins Street, Intersection of Clarke Court and Verney Road, Intersection of Goulburn Valley Highway Indoorn Road and Shepparton Road and Shepparton Road and Shepparton Road and Shepparton Road and Drummond Road, Intersection of Goulburn Valley Hwy and Ford Road, Intersection of Ford Road, Intersection of Goulburn Valley Hwy and Ford Road, Intersection of Ford Road, Intersection of Goulburn Valley Hwy and Ford Road, Intersection of Ford Road, Intersection of Cores, Intersection of Created, Intersection of Cookie-Shepparton Road and Alamein Street, Intersection of Road and Maude Street, Intersection of Cookie-Shepparton Road and Maude Street, Intersection of Dookie-Shepparton Road and Maude Street, Inters

Map Refs Road Number	Location	SEVE	RITY	DCA C	GROUPS	- 1	OBJECT HIT	ROAD	LIGHT	VEHICL	E NUMBERS			YEARLY	TREND
Road Number Km from start	(Road names)	ALL	RITY FatalSeriousOther Injury	Pedes Itrian	GROUPS Cross Right Right Lost Traffic Near AgainstContro	Rear IEnd	Fence PoleTreeWall	Drv Wet	Day Dark	Car Truc	Motor ck Cycle Bike	'04	'05	'06 '07	'08
VCD ED7 673 P6 5409	Complex intersection no. 3065 At Dookie-Shepparton Road & Corio Street	1	1		1		olerroovvan	1	1	2	5. 6 y 6.5 B. 10			00 0.	1
673 Q2	On Ford Road btw Southdown Street & Merino Drive	1	1					1	1	1				1	
673 R2	On Verney Road btw Trinity Drive & Ford Road	1	1					1	1		1			1	
VCD ED7 673 R2 141208 1.215 Km Shepparton	At Ford Road & Verney Road	1	1		1			1		1	1	1			
673 R3	On Hawkins Street btw Pontiac Avenue & Verney Road	1	1					1	1	1 1		1			
	At Crestwood Grove & Verney Road	1	1					1	1	1	1		1		
673 R6	On Dookie-Shepparton Road btw Dunrobin Street & Bourchier Street	1	1	1				1	1	1				1	
VCD ED7 673 R6 5409 0.938 Km Shepparton	At Dookie-Shepparton Road & Bourchier Street	2	2		2			1 1	1 1	4		1	1		
673 R6	On Dookie-Shepparton Road btw Bourchier Street & Verney Road	1	1	1				1	1	1			1		

(c) 2004 VicRoads

Road Crash Statistics: Victoria Accidents By Site

Location is Town(s): SHEPPARTON NGTH; Query: Casualty accidents; Sites: On Ford Rd between Verney Rd and, Intersection of Goulburn Valley Hwy and Brauman Street, On Dookie-Shepparton Road (2.176 km) between Apollo Drive and Drummond Road, On Dookie-Shepparton Road and Drummond Road, Intersection of Dookie-Shepparton Road and Or Street, Intersection of Dookie-Shepparton Road and Drummond Road, Intersection of Dookie-Shepparton Road and Mayon Street, Intersection of Goulburn Valley Highway Inbound Cwy and Hawkins Street, Intersection of Goulburn Valley Highway Inbound Cwy and Hawkins Street, Intersection of Clarke Court and Verney Road, Intersection of Goulburn Valley Hwy and Ford Road Intersection of Oak Street and Verney Road, Intersection of Goulburn Valley Hwy and Ford Road, Intersection of Goulburn Valley Hwy and Ford Road, Intersection of Ford Road and Verney Road, Intersection of Goulburn Valley Hwy and Ford Road, Intersection of Ford Road, Intersection of Goulburn Valley Hwy and Ford Road, Intersection of Ford Road, Intersection of Goulburn Valley Hwy and Ford Road, Intersection of Ford Road, Intersection of Coskie-Shepparton Road and Mayon Street, Intersection of Coskie-Shepparton Road and Mayon Street, Intersection of Coskie-Shepparton Road and Mayon Street, Intersection of Dookie-Shepparton Road and Mayon Street, Intersection of Dookie-Shepparton Road and Mayon Street, Intersection Road of Road Mayon Street, Intersection Road and Werney Road, Intersection Road and Dumkirk Avenue, Intersection Road and Mayon Street, Intersection Road and Mayon Street, Intersection Shepparton Road and Mayon Road and Mayon Street, Intersection Shepp

Map Refs Road Number	Location	SEVE ALL	RITY		DCA	GROUP	PS			О	BJECT HIT	RO	AD	LIGH	T	VEHIC	CLE N	UMBERS	3		YEA	RLY	TREND
Road Number Km from start	(Road names)	ALL injury	FatalSer	ousOther	Pede	s Cross	Right	Right	Lost Re	ear	BJECT HIT Fence oleTreeWall		\Mot	Day	Dark	Car T	ruck C	lotor	יטי	'05	'06	'07	'08
VCD ED7 673 R6	On Hawdon Street btw Dookie-Shepparton Road & Annerley Avenue	2		2		Hame	rivear	Agains	2		Jerreewall	2	VVCL	2	Daik	5	TUOK C	yde bike	1	1	- 00	01	00
VCD ED7 673 R6 252555 0.007 Km Shepparton	At Dookie-Shepparton Road & Hawdon Street	5	1	4		2			2		1	5		1	3	4 1	2		1	1	1	1	1
VCD ED7 673 S6 5409 1.595 Km Shepparton	At Dookie-Shepparton Road & Wheeler Street	2		2				1	1			2			1	1	2			1	1		
VCD ED7 673 T6 5409 2.189 Km Shepparton	At Dookie-Shepparton Road & Drummond Road	1		1			1					1			1	1 1			1				
673 T5	On Dookie-Shepparton Road btw Drummond Road & Megill Street	1	1									1		1		1 1							1
673 T6	On Drummond Road btw Dookie-Shepparton Road & Joseph Baldwin Place	1		1					1		1	1		1		1						1	
673 U5	On Dookie-Shepparton Road btw Mcgill Street & Shepparton Alternative Rout	1	1						1			1			1	1							1
VCD ED7 673 U5 5409 2.745 Km Shepparton	At Dookie-Shepparton Road & Shepparton Alternative Rout	1	1						1				1	1			1		1				
Totals:		46	16	30	3	7	1	9	7 6	1	1	43	3	26	16	5 65	6	5	10	12	6	7	11

(c) 2004 VicRoads

Page 4

Road Crash Statistics: Victoria Accidents By Site

Location is Town(s): SHEPPARTON NORTH; Query: Casualty accidents; Sites: On Ford Rd between Verney Rd and, Intersection of Goulburn Valley Hwy and Brauman Street, On Dookie-Shepparton Road and Drummond Road, On Dookie-Shepparton Road and Drummond Road, Intersection of Dookie-Shepparton Road and Or Street, Intersection of Dookie-Shepparton Road and Drummond Road, Intersection of Dookie-Shepparton Road and Mayon Street, Intersection of Goulburn Valley Highway Inbound Cwy and Hawkins Street, Intersection of Goulburn Valley Highway Inbound Cwy and Hawkins Street, Intersection of Goulburn Valley Highway Inbound Cwy and Hawkins Street, Intersection of Clarke Court and Verney Road, Intersection of Goulburn Valley Hwy and Goulburn Valley Hwy, Intersection of Coke-Shepparton Road and Abenparton Alternative Rout, Intersection of Clarke Court and Verney Road, Intersection of Goulburn Valley Hwy and Ford Road, Intersection of Ford Road, Intersection of Goulburn Valley Hwy and Ford Road, Intersection of Ford Road, Intersection of Goulburn Valley Hwy and Ford Road, Intersection of Ford Road, Intersection of Goulburn Valley Hwy and Ford Road and Verney Road, Intersection of Goulburn Valley Hwy and Ford Road and Intersection of Ford Road, Intersection of Cokei-Shepparton Road and Alamein Street, Intersection of Dookie-Shepparton Road and Maude Street, Intersection of Cokei-Shepparton Road and Maude Street, Intersection of Dookie-Shepparton Road and Maude Street, Intersectio

Map Refs	Location	SEVERITY	DCA GROUPS	OBJECT HIT ROAD	LIGHT	VEHICLE NUMBERS	YEARLY TREND
						Mada.	TETTILL TITLETO
Road Number	(Road names)	ALL FalaiseriousOlner		Fence		IVIOLOF	
Km from start	,	liniury Iniury	trian Traffic Near AgainstControlEnd	PoleTreeWall Dry Wet	Dav Dark	Car Truck Cvcle Bike 0	04 '05 '06 '07 '08

Note:

Object Hit: Only most common categories listed. An animal or object is not his in every crash.

Road Condition: Only dry and wet provided, other excluded.

Accident numbers are tallied within each category except for VEHICLE subsection where number and type of vehicles within the accident are tallied.

The crashes on roads that make up local government area (Iga) borders are allocated to both Igas. Double counting only occurs when two or more Igas are queried separately (not together).