



# East Village Bentleigh East Access and Movement Report

Client // Victorian Planning Authority

Office // VIC

Reference // V136080

Date // 19/10/18

# East Village

# Bentleigh East

# Access and Movement Report

Issue: D 19/10/18

Client: Victorian Planning Authority

Reference: V136080

GTA Consultants Office: VIC

#### **Quality Record**

| Issue | Date     | Description          | Prepared By   | Checked By    | Approved By        | Signed |
|-------|----------|----------------------|---------------|---------------|--------------------|--------|
| A-Dr  | 06/12/17 | Preliminary<br>Draft | Saskia Noakes | Alex Blackett | Alex Blackett      |        |
| A-Dr1 | 08/02/18 | Draft                | Alex Blackett | Alex Blackett | Alex Blackett      |        |
| Α     | 02/05/18 | Final                | Alex Blackett | Alex Blackett | Reece<br>Humphreys |        |
| В     | 18/07/18 | Revised Final        | Alex Blackett | Alex Blackett | Reece<br>Humphreys |        |
| С     | 24/09/18 | Revised Final        | Alex Blackett | Alex Blackett | Reece<br>Humphreys |        |
| D     | 19/10/18 | Revised Final        | Alex Blackett | Alex Blackett | Reece<br>Humphreys | RHyr   |



# **Executive Summary**

The Victorian Planning Authority (VPA) is working with the Glen Eira City Council (GECC) to prepare a Structure Plan for the mixed-use strategic site named East Village, located in Bentleigh East. Planning for the Structure Plan includes the development of an Access and Movement Report.

The Access and Movement Report has been prepared by undertaking the following:

- i A **policy review** of relevant transport documents affecting how the area is proposed to develop into the future, and what the desired transport network should look like.
- ii A review of the **existing transport conditions** in the area to provide a baseline of conditions to use when assessing the likely impact of the proposal.
- iii A **traffic impact assessment** of the future conditions of the existing and proposed intersections to identify the performance and any required road network arrangements.
- iv Development of an **integrated transport response** for the site to suitably support all modes of transport with the aim to reduce the sites reliance on private car use
- v Identification of the **mitigating and/or supporting transport works** that will be required to suitably support the development of East Village and its integration with the surrounding transport network.

It is anticipated that the analysis and findings from this Access and Movement Report will be used to inform the design and management of the required transport infrastructure to support the proposed development of East Village and be used to proportion the cost and responsibility of their implementation.

#### Policy Review

Encouraging the use of public transport, walking and cycling as modes of transport, and reducing the reliance on private car use to access employment opportunities and services, is central to achieving the aims of the various policy documents for the area. Given that East Village is located in the southeast of metropolitan Melbourne, it has strong linkages to various employment and service areas, which provides a prime opportunity to achieve the core policy directives.

In achieving more sustainable outcomes, planning for the site requires a shift in thinking away from providing unbounded capacity for private motor vehicle use, towards facilities that help encourage the use of alternative transport modes. This is in part due to the constrained nature of the network that East Village is located in, but also given the expected continued population and employment growth in the southeast that won't be able to be purely serviced through building additional road capacity.

#### **Existing Transport Conditions**

The majority of the surrounding land use is standalone residential dwellings, except for the site itself, which consists of light industrial and commercial uses, meaning that there is very tidal travel demand in the morning and afternoon peak periods. Car ownership levels are generally consistent with the metropolitan Melbourne average in Glen Eira, with in the order of 1.6 cars per dwelling. However, in Bentleigh East the average car ownership is 1.8 cars per dwelling, highlighting a higher reliance on car travel. There is considered to be opportunity to achieve a shift towards alternative transport modes.

The site has limited alternative transport services directly connecting with it, except for two local bus routes that operate along North Road and Crosbie Road / Marlborough Street. There are



pedestrian foot paths on both sides of most roads and controlled crossings on most approaches to signalised intersections in the sites vicinity. Only limited priority (in terms of movement and operational focus) has been given to pedestrians. Bicycle facilities are limited, except for some on-road facilities along some of the arterial roads. The Kew to Highett Strategic Cycling Corridor (SCC) is proposed along Murrumbeena Road and East Boundary Road past the site.

#### Traffic Impact Assessment & Mitigating Road Work

A traffic assessment has been undertaken to understand how the road network used to access East Village currently operates and is expected to in the future. This included collecting existing conditions traffic data of the key intersections and analysis using network SIDRA models. Future year analysis assessed the traffic conditions at the key intersections to confirm that the site access points will be able to operate satisfactorily (noting that the broader road network is the responsibility of VicRoads).

The analysis concluded that the anticipated traffic generated by the proposed rezoning and development of East Village can be accommodated by the surrounding road network following full development of the site, subject to the following mitigating road work:

- At the North Road / East Boundary Road / Murrumbeena Road signalised intersection:
  - Double right on the west approach
  - Continuation of the two departure lanes on the north approach
  - Continuation of the three departure lanes on the east and west approaches
  - Increase the right turn lane lengths on the south and east approaches
- At the Murrumbeena Road / Leila Road / Crosbie Road intersection:
  - Convert to a signalised intersection
  - Extend the right turn lane on the north approach

It will be necessary to install traffic signals at three key site access intersections on North Road and East Boundary Road. The required signalised intersection layouts are broadly outlined as follows:

- North Road / Cobar Street / Crosbie Road intersection:
  - Left turn lane and a through / right turn lane on the south approach
  - Left turn only lane on the north approach to minimise use of Cobar Street
  - Provide a left turn lane on the east approach
  - Extent the right turn lane on the west approach

East Boundary Road / North Drive / George Street intersection:

- Right turn lane on the south approach
- Double right turns on the east approach
- Left turn slip lane on the north and east approaches
- Additional short through lanes on the north approach
- Additional through lanes on the south approach
- George Street (west approach) restricted to left-in / left out movements
- East Boundary Road / South Drive intersection:
  - Double right turn lanes on the south and east approaches
  - Left-turn slip lanes on the east and north approaches
  - Additional through lanes in each direction on the north approach
  - Additional short through lanes on the south approach

There are two existing give-way controlled intersections to and along the North Road frontage of the subject site, which will require left turn lanes into them on North Road to be implemented and the eastern one (Carey Street) have the right turn in from North Road removed.



The internal site connector street network will consist of a continuous road between the Cobar Street and South Drive access points. Specific crossing facilities will be required to support pedestrian paths, and the separated bicycle path along the western and southern sides of the connector streets where they intersect other lower order roads, such as North Drive.

The overall staging of the above works is expected to occur as the subject site is developed, which is generally from the south to the north (i.e. North Road site related works to occur last). However, the mitigating road works will need to occur as follows:

- North Road / East Boundary Road / Murrumbeena Road signalised intersection once the subject site achieves a net increase in traffic volumes to what it currently generates
- Murrumbeena Road / Leila Road / Crosbie Road intersection once the North Road / Cobar Street / Crosbie Road intersection is signalised.

Integrated Transport Response & Supporting Facilities

People's behaviour will always be influenced by individual circumstances and preferences. As such, a range of alternatives to private car use need to be provided to achieve a meaningful shift in travel choice away from the existing private car use that currently occur in the area.

In higher density mixed-use developments like East Village, increased opportunities for walking, cycling and public transport tend to occur, to an extent, naturally when compared to lower density developments such as those in the proximate area. Moreover, high quality facilities such as this should provide facilities to support local 20-minute travel time catchments by all viable alternative transport modes (i.e. walking, cycling and bus).

The local 20-minute alternative transport mode catchments are generally the responsibility of the local and state transport authorities and would provide viable opportunities for a significant proportion of East Village residents and visitors. Advocacy for these facilities is expected as part of the planning process, with the following facilities expected at a minimum:

- The proposed SCC along Murrumbeena Road and East Boundary Road past the site
- East-west local 'shimmy' routes through the adjacent local road networks for cyclists
- Increases to the existing adjacent bus service frequencies and connection with stations
- The proposed bus route along Murrumbeena Road and East Boundary Road
- Location of bus stops that are highly accessible to the site by pedestrians.

East Village will be accommodating an entirely new population of people which provides an opportunity to develop new travel behaviours when the site is first developed. This in part requires the provision of transport infrastructure and services that are considered viable by all potential users, but these can be further supported through soft measures including Travel Demand Management (TDM) measures.

Tailored TDM strategies should be developed that achieve at a minimum the following:

- o Identification of the critical times that major congestion is likely to occur on the network and what proposed land uses will mainly contribute to them
- Identify targeted interventions to suitably manage the transport demand being generated by the development proposal, and
- A targeted implementation plan that outlines when and by who the measures to influence demand will be implemented



# **Table of Contents**

| 1. | Intro | oduction                                   | 1  |
|----|-------|--------------------------------------------|----|
|    | 1.1   | Background                                 | 1  |
|    | 1.2   | Structure Plan Purpose                     | 2  |
|    | 1.3   | Purpose of this Report                     | 4  |
|    | 1.4   | References                                 | 4  |
| 2. | Plai  | nning Context                              | 5  |
|    | 2.1   | Policy Review                              | 5  |
| 3. | Exis  | sting Conditions                           | 7  |
|    | 3.1   | Study Area and Land Uses                   | 7  |
|    | 3.2   | Population, Dwelling Mix and Car Ownership | 8  |
|    | 3.3   | Existing Travel Behaviour                  | 10 |
|    | 3.4   | Road Network                               | 11 |
|    | 3.5   | Accident Statistics                        | 13 |
|    | 3.6   | Car Parking Inventory Survey Data          | 13 |
|    | 3.7   | Active Transport                           | 14 |
|    | 3.8   | Public Transport                           | 16 |
|    | 3.9   | Local Car Sharing Services                 | 17 |
|    | 3.10  | Accessibility                              | 18 |
| 4. | Dev   | velopment Proposal                         | 20 |
|    | 4.1   | Land Use                                   | 20 |
|    | 4.2   | Vehicle Access & Internal Circulation      | 21 |
|    | 4.3   | Active Transport Facilities                | 22 |
|    | 4.4   | Public Transport Services                  | 22 |
| 5. | Traf  | fic Impact Assessment                      | 23 |
|    | 5.1   | Approach / Methodology                     | 23 |
|    | 5.2   | Existing Conditions                        | 23 |
|    | 5.3   | Post Development Conditions                | 28 |
|    | 5.4   | Mitigating Measures                        | 31 |
|    | 5.5   | Future Conditions                          | 39 |
| 6. | Inte  | egrated Transport Response                 | 42 |
|    | 6.1   | Transport Policy                           | 42 |
|    | 6.2   | Creating Modal Choice                      | 43 |
|    | 6.3   | Travel Demand Management                   | 45 |
| 7. | Car   | r Parking                                  | 46 |
|    | 7.1   | Existing Conditions                        | 46 |
|    | 7.2   | Future                                     | 46 |

| 8.  | Planning Re  | quirements Checklist                                                   | 49        |
|-----|--------------|------------------------------------------------------------------------|-----------|
|     | 8.1 Preamb   | ole                                                                    | 49        |
|     | 8.2 Walking  | g and Cycling                                                          | 50        |
|     | 8.3 Public 1 | ransport                                                               | 51        |
|     | 8.4 Neighb   | ourhood Street                                                         | 52        |
| 9.  | Conclusions  |                                                                        | 55        |
| Ap  | pendices     |                                                                        |           |
|     |              | Conditions Modelling                                                   |           |
|     | _            | ntersection - Existing Conditions Results                              |           |
|     |              | Generation                                                             |           |
|     | D: Conce     | pt Level Design Layouts & Swept Paths                                  |           |
|     |              | ntersection – Post Development Results                                 |           |
|     |              | ntersection –Future Site Access Intersection Results                   |           |
|     |              |                                                                        |           |
| Fig | ures         |                                                                        |           |
|     | Figure 1.1:  | East Village Regional Context                                          | 1         |
|     | Figure 1.2:  | Bentleigh East Village Precinct Future Urban Structure                 | 3         |
|     | Figure 3.1:  | Site Location Map                                                      | 7         |
|     | Figure 3.2:  | Land Zoning Map within and surrounding the Study Area                  | 8         |
|     | Figure 3.3:  | Bentleigh East, ABS Data Collection Extent                             | 9         |
|     | Figure 3.4:  | North Road (looking south west)                                        | 11        |
|     | Figure 3.5:  | North Road (looking east)                                              | 11        |
|     | Figure 3.6:  | East Boundary Road (facing north)                                      | 12        |
|     | Figure 3.7:  | East Boundary Road (facing south)                                      | 12        |
|     | Figure 3.8:  | Surrounding Intersections of the Site                                  | 12        |
|     | Figure 3.9:  | Accident Statistics, VicRoads                                          | 13        |
|     | Figure 3.10: | Car Parking Restrictions Within the Surrounding Streets of The Site    | 14        |
|     | Figure 3.11: | VicRoads Principal Bicycle Network and Bicycle Priority Routes (Purple | Lines) 15 |
|     | Figure 3.12: | Public Transport Map                                                   | 16        |
|     | Figure 3.13: | Local Car Sharing Services in Glen Eira                                | 17        |
|     | Figure 3.14: | Road travel time from East Village                                     | 18        |
|     | Figure 3.15: | Public transport travel time from East Village                         | 19        |
|     | Figure 4.1:  | Draft Plan                                                             | 20        |
|     | Figure 5.1:  | Existing AM Peak Hour Traffic Volumes                                  | 24        |
|     | Figure 5.2:  | Existing PM Peak Hour Traffic Volumes                                  | 25        |
|     | Figure 5.3:  | Peak Spreading Sample (Extract from West Gate Tunnel EES)              | 28        |
|     | Figure 5.4:  | AM Peak Period Site Generation Directional Distributions               | 29        |
|     | Figure 5.5:  | AM Peak Period Site Attraction Directional Distributions               | 29        |

Post-Development AM Peak Hour Traffic Volumes

Figure 5.6:



30

|     | Figure 5.7:  | Post-Development PM Peak Hour Traffic Volumes                                            | 30       |
|-----|--------------|------------------------------------------------------------------------------------------|----------|
|     | Figure 5.8:  | Resulting layout for the North Road / East Boundary Road / Murrumbeena Road intersection | 32       |
|     | Figure 5.9:  | Resulting layout for the Murrumbeena Road / Leila Road / Crosbie Road intersection       | 33       |
|     | Figure 5.10: | Resulting layout for the North Road / Cobar Street / Crosbie Road intersection           | on<br>34 |
|     | Figure 5.11: | Resulting layout for the East Boundary Road / North Drive / George Street intersection   | 35       |
|     | Figure 5.12: | Resulting layout for the East Boundary Road / South Drive intersection                   | 36       |
|     | Figure 5.13: | East Village Development Staging Plan                                                    | 38       |
|     | Figure 5.14: | Future AM Peak Hour Traffic Volumes (post development + 10 year growth)                  | 40       |
|     | Figure 5.15: | Future PM Peak Hour Traffic Volumes (post development + 10 year growth)                  | 41       |
|     | Figure 8.1:  | Indicative Street Network Hierarchy                                                      | 53       |
| ſab | les          |                                                                                          |          |
|     | Table 2.1:   | Transport Policy Review: Summary of Themes                                               | 5        |
|     | Table 3.1:   | 2011 & 2016 Population and Dwelling Numbers for Bentleigh East                           | 9        |
|     | Table 3.2:   | 2006 & 2011 ABS Method of Travel to Work Data for Residents Residing in Bentleigh East   | 10       |
|     | Table 3.3:   | Average Household Mode Splits by area size (2011)                                        | 10       |
|     | Table 3.4:   | Casualty Accident History for Area Proximate to Site                                     | 13       |
|     | Table 3.5:   | Public Transport Provision                                                               | 16       |
|     | Table 4.1:   | Indicative Development Schedule                                                          | 20       |
|     | Table 5.1:   | Existing Operating Conditions in AM Peak                                                 | 26       |
|     | Table 5.2:   | Existing Operating Conditions in PM Peak                                                 | 26       |
|     | Table 5.3:   | Post Development Operating Conditions in AM Peak                                         | 31       |
|     | Table 5.4:   | Post Development Operating Conditions in PM Peak                                         | 31       |
|     | Table 5.5:   | Post Development with Mitigating Works Operating Conditions in AM Peak                   | 37       |
|     | Table 5.6:   | Post Development with Mitigating Works Operating Conditions in PM Peak                   | 37       |
|     | Table 5.7:   | 10-Year Mid-Block Traffic Growth Levels                                                  | 39       |
|     | Table 5.8:   | Future Baseline Operating Conditions in AM Peak                                          | 41       |
|     | Table 5.9:   | Future Baseline Operating Conditions in PM Peak                                          | 41       |
|     | Table 7.1:   | Shopping Centre Car Parking Rates                                                        | 47       |
|     | Table 8.1:   | Proposed Road Hierarchy Details                                                          | 54       |

# 1. Introduction

# 1.1 Background

The Victorian Planning Authority (VPA) is working with Glen Eira City Council (GECC) to prepare a Comprehensive Development Plan (CDP) for a mixed use precinct named East Village.

The proposed East Village precinct is located 12km south-east of Melbourne's CBD in Bentleigh East, as shown in Figure 1.1. The site comprises of 24 hectares, and currently accommodates a variety of industrial and business service uses, with North Road forming the northern boundary and East Boundary Road forming the western boundary of the site.

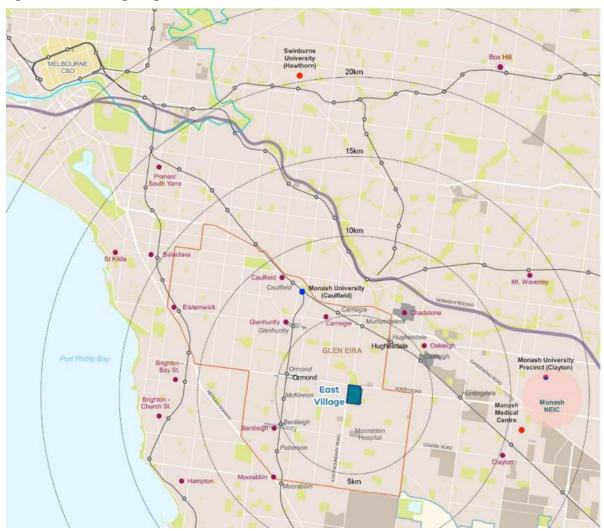



Figure 1.1: East Village Regional Context

(Source: East Village, Integrated Transport Assessment Briefing Material, VPA)

GTA Consultants (GTA) has been commissioned by VPA to undertake an integrated transport assessment to help guide the development of the proposed East Village precinct from a transport planning perspective.



### 1.2 Structure Plan Purpose

Based on information provided by VPA, the aim of the East Village CDP is a long-term plan for the redevelopment and renewal of the precinct area. The CDP will describe how land is expected to be developed and how land uses may change over time to create an employment and residential hub. It also includes where and how additional services, utilities and transport infrastructure are planned to support future development.

In order to achieve this, the CDP is intended to be implemented into the Glen Eira Planning Scheme to provide customised land use development controls.

The proposal consists of a mix of residential, commercial, business, retail and recreational uses, as shown in Figure 1.2.



Figure 1.2: Bentleigh East Village Precinct Future Urban Structure

Reproduced from Victorian Planning Authority

### 1.3 Purpose of this Report

This report sets out the access and movement arrangements to be implemented to support the proposed development of the East Village precinct. More specifically, this report includes the following:

- o transport policies influencing the project and land use in the area
- demographics and land use data associated with the proximate area
- existing transport network conditions surrounding the site
- existing and future public transport facilities and provisions
- existing and future bicycle and walking facilities and provisions
- proposed access approach with the surrounding transport network
- impact of the development proposal on the surrounding transport network, including the need for mitigating road works and appropriate vehicular access.

It should be noted that as the site abuts a Road Zone 1, so future planning permit applications will require referral to VicRoads under Clause 52.29 and Clause 66.03 of the Planning Scheme.

#### 1.4 References

In preparing this report, reference has been made to the following:

- plans for the precinct prepared by VPA
- Glen Eira Planning Scheme
- o various policy, strategy and technical data as referenced in this report
- traffic and car parking surveys undertaken by GTA Consultants as referenced in the context of this report
- an inspection of the site and its surrounds
- o other documents as nominated.



# 2. Planning Context

### 2.1 Policy Review

There are a number of key State and Local Government policy documents applicable to the subject site, which provide guidance on appropriate land use and development, as well as the transport facilities that are proposed to support development and what the desired transport network will look like in the future.

In this regard, a policy review of the following local and state documents has been undertaken:

- Transport Integration Act
- Plan Melbourne
- VicRoads SmartRoads
- Glen Eira City Council's Integrated Transport Strategy 2018-2031 (May 2018)
- Glen Eira's Activity Centre, Housing and Local Economy Strategy (July 2017)
- Glen Eira Draft Quality Design Standards (October 2017)
- O Glen Eira Towards a Walking Community Strategy (2014-2017)
- Glen Eira Towards Sustainable Transport Strategy (2011-2014)
- Glen Eira Road Safety Strategy (2007-2012)
- Glen Eira Bicycle Strategy (2010)
- Glen Eira Traffic Management Plans (November 2009)
- Glen Eira Parking Restrictions (August 2002)

A number of key themes have emerged through the review of these policies which are summarised in Table 2.1.

Table 2.1: Transport Policy Review: Summary of Themes

| Theme                    | Application to the East Village Transport Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Land Integration         | Transport infrastructure and movement networks should align with existing and respond to future land use, to efficiently connect activity centres and help achieve the community's desired lifestyle. This requires a collaborative approach across a wide range of public and private stakeholders, as enshrined through the Transport Integration Act (2010).                                                                                                                                                                                                                                                |
| Transport Choice         | As highlighted in the Glen Eira Walking, Bicycle and Sustainable Transport Strategies, transport choice is desired from network efficiency, sustainability, social interaction and amenity perspectives. However, it means that there are viable and attractive alternative transport options beyond private car use for a range of trip types and destinations. Transport choice is also intrinsically linked to urban form, in what facilities, services and mode types are able to be accommodated and most suited to the area.                                                                             |
| Road User Hierarchy      | A modal hierarchy is essential to help inform the decision framework for future transport priority and funding, in particular where there are competing demands on the same transport corridor. It is common practice to set the highest modal priority to the most vulnerable transport modes of walking and cycling, with the motorised transport modes prioritised based on their relative space efficiency in moving people (i.e. mass transport modes to single occupant private car use). This approach has been adopted as part of the SmartRoads framework, which applies to the sites fronting roads. |
| Travel Behaviour         | The comparative performance (perceived and/or actual) and level of access of each transport choice available to users for their given transport trips dictates their travel behaviour. This is emphasised in the Glen Eira Bicycle Strategy, which outlines the importance of providing a cycle network suitable for all abilities.                                                                                                                                                                                                                                                                            |
| Road Space<br>Management | Within most urban environments there is only a limited amount of road space. The management of this space aims to move people in the most efficient and safe manner possible, while providing local access and desired levels of amenity and place to the community. The approach to managing road space should be dependent on the function of the road and the proximate site conditions. However, with increased population, development and the resulting number of trips expected, more space efficient modes of transport will be required to move more people within the same road space.               |



| Theme                                               | Application to the East Village Transport Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sustainability                                      | As outlined in the Glen Eira Sustainable Transport Strategy, private vehicle travel is a significant contributor to greenhouse gas emissions and other environmentally detrimental emissions. This provides an impetus for advocating and promoting for more sustainable travel modes, such as active and public transport in the preparation of the East Village Structure Plan.                                                                                                                                                                                                                           |
| Road User Safety                                    | With any transport system there is the potential for conflict between users, as reflected by the 'Safe System' approach to road safety, which has been adopted in the Australian National Road Safety Strategy 2011-2020 and VicRoads Road Safety Strategy 2016-2020. The 'Safe System' approach accepts that people using the road network will make mistakes but that it is not acceptable that they pay for these mistakes with their lives or serious injuries. As such, the whole system needs to be forgiving enough that when a user makes a mistake it doesn't result in serious or fatal injuries. |
| Access Equity,<br>Diversity and Social<br>Inclusion | The transport network must be accessible to, and service the needs of a diverse range of users, from young children to the elderly ('8-80' planning), the mobility and sensory impaired, and for all socio-economic groups. Certain user groups are prone to transport disadvantage particularly if not provided access to transport services that suit their needs and abilities (both monetary and physically). As such, a lack of transport choice and access can contribute toward social exclusion and be a barrier to employment opportunities.                                                       |
| Health and Wellbeing                                | There is a strong link between active transport use and positive physical and mental health. Places where people walk, cycle and use public transport (typically have to walk to and from stops) are likely to perform better on a range of social indicators. The Glen Eira Walking Strategy outlines the importance of facilitating these lifestyle options by providing pedestrian infrastructure suitable for all abilities.                                                                                                                                                                            |

Specifically, GTA notes that GECC has prepared an Integrated Transport Strategy (ITS). The associated vision is reproduced below.

"VISION - GLEN EIRA 2031: Glen Eira will be a City of child friendly neighbourhoods that are connected to a network of vibrant and well-designed walkable activity centres. The community will have a range of travel options to service their daily needs, with a reduction to 50 per cent of trips made by car."



# 3. Existing Conditions

### 3.1 Study Area and Land Uses

The area constituting the East Village precinct is located on the southeast corner of the intersection between North Road and East Boundary Road, as illustrated in Figure 3.1.

Figure 3.1: Site Location Map



Reproduced from Nearmap

The site comprises some 24 hectares and is currently a mix of Industrial 1 Zone over the northern half, and Commercial 1 and 2 Zones over the southern half of the site. The zoning of the site and surrounding area is displayed in Figure 3.2.





Figure 3.2: Land Zoning Map within and surrounding the Study Area

(Reproduced from Land Channel web site)

# 3.2 Population, Dwelling Mix and Car Ownership

The area surrounding the East Village precinct in Bentleigh East is predominantly residential (Neighbourhood Residential Zone). Details of the current residential population, dwelling mix and car ownership rates in Bentleigh East have been obtained from the ABS data from 2011 and 2016.

The associated area the ABS data has been collected for is highlighted in Figure 3.3, with the population and dwelling numbers provided in Table 3.1, and car ownership rates in Table 3.2.

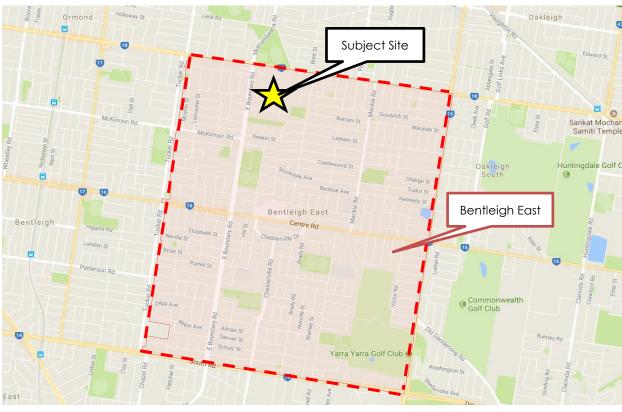



Figure 3.3: Bentleigh East, ABS Data Collection Extent

(Reproduced from Google Maps)

#### 3.2.1 Population and Dwelling Numbers

Table 3.1: 2011 & 2016 Population and Dwelling Numbers for Bentleigh East

| Data Type  | 2011   | 2016   | Difference  |
|------------|--------|--------|-------------|
| Population | 25,431 | 27,464 | +2,033 (8%) |
| Dwellings  | 10,105 | 10,896 | +791 (7.8%) |

Source: ABS Census Data 2011 and 2016.

Based on the 2016 ABS data there are in the order of 27,500 residents accommodated within 10,900 dwellings in Bentleigh East. Between 2011 and 2016, the population increased in the order of 8% and the number of dwellings increased by 7.8%, so the number of people in each dwelling is generally being maintained.

#### 3.2.2 Car Ownership Rates

The ABS 2016 Census indicates that Bentleigh East has an existing rate of car ownership of approximately 1.8 vehicles per dwelling, whilst the wider area of Glen Eira has a car ownership rate of 1.6 vehicles per dwelling, and metropolitan Melbourne has an average car ownership rate of 1.64 vehicles per dwelling. This indicates that Bentleigh East has an overall higher car ownership rate compared to Glen Eira and the wider metropolitan Melbourne area.



### 3.3 Existing Travel Behaviour

#### 3.3.1 Mode Splits

#### Bentleigh East

Guidance on the existing travel characteristics of Bentleigh East residents has been sought from the 2006 and 2011 ABS Method of Travel to Work data. It should be noted that the associated mode splits are work commuter related trips only, so do not include other types, such as education, retail, recreation, etc. related trips.

On this basis, Table 3.2 has been prepared to summarise the 2006 and 2011 mode splits for those that reside in Bentleigh East.

Table 3.2: 2006 & 2011 ABS Method of Travel to Work Data for Residents Residing in Bentleigh East

| Mode               | 2006          | 2011          |
|--------------------|---------------|---------------|
| Car / Truck Driver | 7313 (65.2%)  | 7867 (64.1 %) |
| Car Passenger      | 470 (4.2%)    | 385 (3.1%)    |
| Public Transport   | 1300 (11.5%)  | 1664 (13.6%)  |
| Bicycle            | 130 (1.2%)    | 109 (0.9%)    |
| Walk               | 202 (1.8%)    | 190 (1.6%)    |
| Worked from home   | 403 (3.6%)    | 508 (4.1%)    |
| Did not go to work | 1100 (9.8%)   | 1,219 (9.9%)  |
| Other              | 302 (2.7%)    | 305 (2.7%)    |
| Total              | 11,220 (100%) | 12,247 (100%) |

Table 3.3 indicates that between 2006 and 2011 there was an increase in the number of total trips and a slight shift away from private car use when travelling to work by those that reside in Bentleigh East. The shift away from private car use related to an increase in public transport use, which for those that reside in Bentleigh East is predominantly by train.

By way of comparison, Table 3.3 provides a summary of the 2011 ABS Method of Travel to Work data for residents living in Bentleigh East against City of Glen Eira and Metropolitan Melbourne.

Table 3.3: Average Household Mode Splits by area size (2011)

| Mode               | Bentleigh East | City of Glen Eira | Metropolitan Melbourne |
|--------------------|----------------|-------------------|------------------------|
| Car/ Truck Driver  | 64.1%          | 56.2%             | 61.3%                  |
| Car Passenger      | 3.1%           | 3.2%              | 4.3%                   |
| Public Transport   | 13.6%          | 21.6%             | 13.8%                  |
| Bicycle            | 0.9%           | 1.4%              | 1.3%                   |
| Walk               | 1.6%           | 2.2%              | 2.9%                   |
| Worked from home   | 4.1%           | 4.5%              | 3.7%                   |
| Did not go to work | 9.9%           | 9.3%              | 9.4%                   |
| Other              | 2.7%           | 1.6%              | 3.6%                   |

Table 3.3 indicates that the Bentleigh East area has a higher car user mode split than the City of Glen Eira and Metropolitan Melbourne.



#### 3.4 Road Network

#### 3.4.1 Connecting Roads

#### North Road

North Road functions as a secondary arterial road and is located within a Road Zone (Category 1) in the Victorian Planning Scheme. It is a two-way road aligned in an east – west direction along the northern frontage of the subject site, and is configured with a 4-lane, 12 metre wide carriageway set within a 30 metre wide road reserve (approx.).

Kerbside parking is permitted on both sides of the road outside of clearway times. The sign-posted speed limit on North Road is 70km/hr in the vicinity of the site.

North Road (between East Boundary Road and Crosbie Rad) carries approximately 17,000 vehicles per day<sup>1</sup>.

Photos of North Road taken while on site are provided in Figure 3.4 and Figure 3.5.

Figure 3.4: North Road (looking south west)

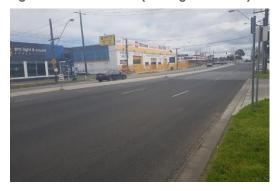



Figure 3.5: North Road (looking east)



#### East Boundary Road

East Boundary Road functions as a secondary arterial road and is located within a Road Zone (Category 1) in the Victorian Planning Scheme. It is a two-way road aligned in a north - south direction along the western frontage of the site, and is configured with a 4-traffic lane, 2-bicycle lane, 10 metre wide carriageway set within a 40 metre wide road reserve (approx.).

Kerbside parallel parking is provided on both sides of the road, clear of the through traffic and bicycle lanes, and angled and parallel parking is provided within the central median strip between Molden Street and George Street. The sign-posted speed limit on East Boundary Road is 70km/hr.

East Boundary Road (between North Road and Centre Road) carries approximately 11,000 vehicles per day<sup>1</sup>.

Photos of East Boundary Road taken while on site are provided in Figure 3.6 and Figure 3.7.



Based on VicRoads Traffic Profiles

Figure 3.6: East Boundary Road (facing north)



Figure 3.7: East Boundary Road (facing south)



#### Other Roads

In addition to the above two fronting arterial roads, there are the following local roads that exist within the subject site:

- Murra Street
- Carey Street
- Cobar Street
- Griffith Avenue
- North Drive
- South Drive

#### 3.4.2 Surrounding Intersections

Key intersections providing access to and in the vicinity of the site are labelled and described in Figure 3.8.

Figure 3.8: Surrounding Intersections of the Site



Reproduced from Nearmap



#### 3.5 Accident Statistics

A review of the reported casualty accident history for the roads and intersections adjoining and connecting the subject site to the surrounding arterial road network has been sourced from VicRoads CrashStats accident database. This database records all accidents causing injury that have occurred in Victoria since 1987 (as recorded by Victoria Police).

A summary of the proximate reported accidents causing injury for the last available five-year period (1 January 2012 to January 2017) is presented in Figure 3.9 and Table 3.4.



Figure 3.9: Accident Statistics, VicRoads

Reproduced from Crash Stats

Table 3.4: Casualty Accident History for Area Proximate to Site

| Location                                                  | Accident No. |                |              |
|-----------------------------------------------------------|--------------|----------------|--------------|
| Location                                                  | Fatality     | Serious Injury | Other Injury |
| North Road / East Boundary Road Intersection              | 0            | 1              | 0            |
| North Road                                                | 0            | 13             | 0            |
| East Boundary Road (continuing north to Murrumbeena Road) | 0            | 6              | 0            |

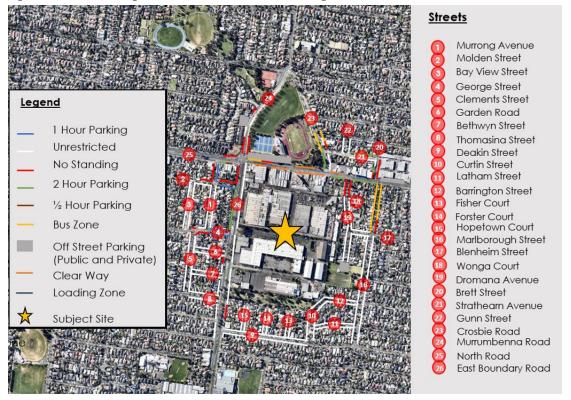
Source: VicRoads

As can be seen in Figure 3.9 and Table 3.4, they indicate that there is a moderate history of reported accidents causing serious injury in the vicinity of the subject site. A total of 20 serious accidents occurred within the last five-year period within the boundary considered proximate to the subject site, most of which occurred at the various intersections along North Road.

### 3.6 Car Parking Inventory Survey Data

Car parking (subject to various time and clearway restrictions) is generally provided on each side of the roads in the vicinity of East Village.

GTA Consultants compiled an inventory of publicly available on-street car parking along the frontages and proximate roads to the subject site. The inventory identified a total of 1,142 on-street spaces, including 1,001 spaces that are unrestricted during business hours.


On-site observations indicate that current on-street car parking demands along the frontages of the subject site and proximate roads to the subject site are moderate, and decrease as you



move further away from the site. However, it is noted that Duncan Mackinnon Reserve attracts significant parking demands on the weekend.

The parking restrictions on the fronting and surrounding streets are presented below in Figure 3.10.

Figure 3.10: Car Parking Restrictions Within the Surrounding Streets of The Site



Reproduced with Nearmap and survey data

## 3.7 Active Transport

#### 3.7.1 Pedestrian Infrastructure

Pedestrian paths are located along both sides of North Road and East Boundary Road, and signalised pedestrian crossings on all four approaches of their intersection, with zebra crossings at the slip lanes.

The closest pedestrian crossing from the study area on North Road is located at the intersection of North Road / Poath Road approximately 700metres east of the site.

Furthermore, a pedestrian operated signal (POS) is located on East Boundary Road approximately 650metres south of the site. Another POS is located on Murrumbeena Road approximately 580metres north of the site.

#### 3.7.2 Principal Bicycle Network

The Principal Bicycle Network (PBN) is a network of on and off-road cycling corridors that have been identified to support cycling for transport and access major destinations in metropolitan Melbourne. The PBN was reviewed and updated in 2012 by VicRoads and all local Councils.

The PBN is also a 'bicycle infrastructure planning tool' that help guide State investment in the planning and development of the future metropolitan Melbourne bicycle network. In this regard,



a subset of the PBN has been identified and elevated to a higher level of priority, mainly based on potential for separation from motorised traffic, making these routes more attractive to less experienced bike riders. These cycling corridors are referred to as Bicycle Priority Routes (BPRs) and form part of the modal priorities for the road network set out in the VicRoads SmartRoads framework.

It is noted that the type of bicycle facility (i.e. on or off-road and separated or shared) has not been indicated as part of the PBN and BPRs. Rather, the PBN and BPRs show the proposed cycling network. The associated facilities should be delivered in accordance with the relevant standards and guidelines, such as the Australian Standards, Austroads Guides and VicRoads' Cycle Notes.

The PBN and BPRs in the vicinity of the study area are shown in Figure 3.11.

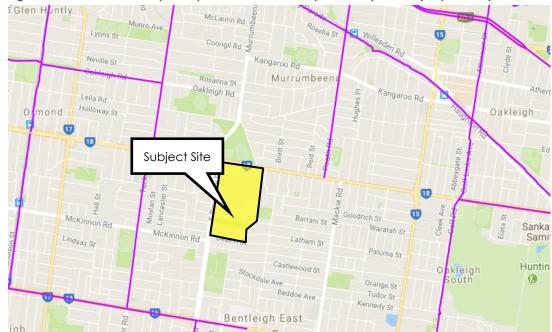



Figure 3.11: VicRoads Principal Bicycle Network and Bicycle Priority Routes (Purple Lines)

Source (www.maps.vic.gov.au/TransMaps/)

As indicated in Figure 3.11 the following PBN and BPRs exist within the vicinity of the site:

- Tucker Road
- Poath Road
- Centre Road
- East Boundary Road (south of Centre Road)

As shown in Figure 3.12, there are no PBN or BPR's directly along the subject site. There are cycle lanes on both sides of East Boundary Road (south of North Road) and cycle lanes on both sides of Murrumbeena Road (North of North Road). However, due to the speed and quantity of traffic along these roads, the cycle lanes would only be expected to be used by confident cyclists.

Strategic Cycle Corridors (SCC) form another subset of the PBN, and represent an initiative outlined in Plan Melbourne to support walking and cycling across Melbourne. SCCs are intended to be corridors designed to provide high quality bicycle infrastructure to, and around, major activity areas in metropolitan Melbourne.



GTA has previously undertaken feasibility work for a proposed SCC along the western border of East Village (from Murrumbeena Road to East Boundary Road). However, the status and potential treatments for this proposed SCC has not been progressed from a feasibility assessment stage.

### 3.8 Public Transport

Figure 3.12 shows the subject site in relation to existing public transport routes within its vicinity, whilst Table 3.5 summarises routes and major destinations that can be reached using these services.

Clenhunty

Remarkation

Remarka

Figure 3.12: Public Transport Map

Reproduced from Public Transport Victoria

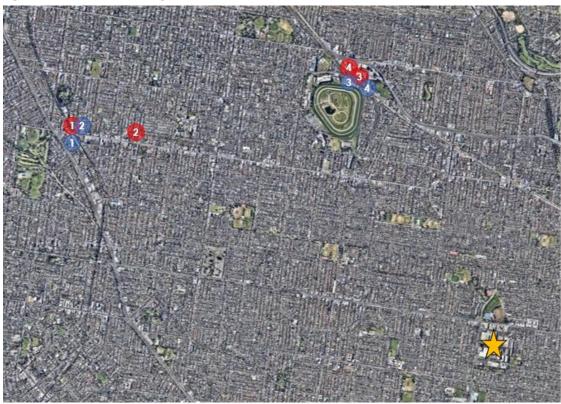
Table 3.5: Public Transport Provision

| Service | Route<br>Nos | Route Description                        | Distance to<br>Nearest Stop | Significant Destinations on Route | Frequency<br>On/Off Peak |
|---------|--------------|------------------------------------------|-----------------------------|-----------------------------------|--------------------------|
|         |              |                                          | (m)                         |                                   |                          |
| Bus     | 822          | Chadstone – Sandringham                  | 500                         | Chadstone                         | 30 min/60 min            |
| Bus     | 630          | Elwood – Monash University               | 200                         | Monash University (Clayton)       | 12 min/ 30 min           |
| Bus     | 978          | Elsternwick – Dandenong<br>(Night Rider) | 1,100                       | Monash University (Clayton)       | 60 min                   |
| Tram    | 67           | Carnegie – Melbourne<br>University       | 2,500                       | Melbourne University              | 6 min / 15 min           |
| Train   | 1            | Ormond Station                           | 2,600                       | South Yarra Station               | 10 min/ 20 min           |
| Train   | -            | Oakleigh Station                         | 3,900                       | Melbourne CBD                     | 8 min/ 20 min            |

It is noted that as part of the State Budget 2017/18 the government proposes a series of route extensions, upgrades, and new services were proposed to improve bus network coverage in the



southeast<sup>2</sup>, including a new bus route from Chadstone to Bentleigh, via Mackinnon Road and East Boundary Road.


It is also noted that in the State Budget 18/19 it is proposed that there will be bus improvements in Bentleigh East.

### 3.9 Local Car Sharing Services

There are currently no local car sharing services available within the vicinity of the subject site. However, Glen Eira is conducting a trial car share scheme within Elsternwick (7km west of the site) and Caulfield (3km west of the site), which if successful would be expanded to be expanded to other activity centres and major development sites, such as East Village.

The locations of the nearby car sharing pods are displayed below in figure 3.13.

Figure 3.13: Local Car Sharing Services in Glen Eira



#### Flexicar:

- Glen Huntly Road (near Ripon Grove), Elsternwick
- Glen Huntly Road (near Orrong Road), Elsternwick
- Sir John Monash Drive (opposite the Caulfield Railway Station), Caulfield
- Derby Road (just north of Sir John Monash Drive), Caulfield

#### Goget:

- Horne Street, Elsternwick
- Gordon Street, Elsternwick
- Normandy Road (near the Caulfield Railway Station), Caulfield
  - Sir John Monash Drive (just south of
- Derby Road), Caulfield



Subject Site



Source: Victorian Budget 17/18 Overview

### 3.10 Accessibility

#### 3.10.1 Road

Due to the site's proximity to major roads and the M1, the study area has a high level of road based accessibility. This is displayed in Figure 3.14, which indicates that most suburbs located in the south-eastern suburbs can be accessed within 30 minutes by road.

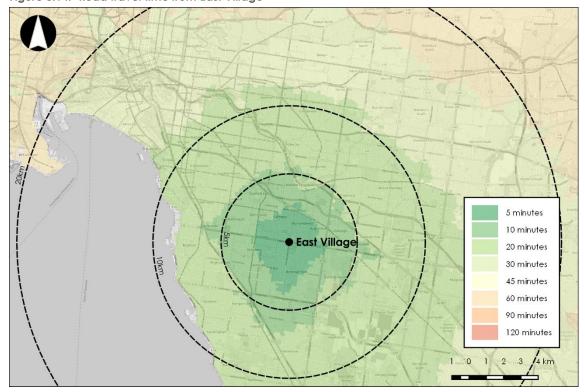



Figure 3.14: Road travel time from East Village

The Caulfield to Dandenong Level Crossing Removal Project consists of the removal of nine level crossings. The most notable in relation to Bentleigh East are at the following locations broadly north of the subject site:

- Grange Road
- Koornang Road
- Murrumbeena Road
- Poath Road
- Clayton Road
- Centre Road

The level crossing removal projects will increase road capacity at these mid-block locations, and decrease the average travel times for all vehicles along these sections of the roads. These level crossings, especially when adjacent to and needing to be integrated into the operation of signalised intersections, would at times have been the main corridor constraint. With their removal, the main corrdior constraints will be expected to be the up and down stream intersections.

As such, their removal will likely attract additional traffic volumes to those specific road links and change travel patterns in the area, with more trying to access Princes Highway from the south, but only by the amount able to be facilitated by the up and down stream intersections.



In terms of potential changes to traffic volumes and movement patterns proximate to the subject site, there is only limited ability for additional traffic volumes to go through the North Road / East Boundary Road intersection, as it already operates at capacity (limited ability to accommodate additional traffic volumes). However, higher proportions of what traffic currently uses the intersection may try and travel north-south in accessing Princes Highway, which is able to be more efficiently accommodated by the intersection (through movements are able to be more efficiently accommodated when compared to turning movements), but dependent on the capacity on the other intersections to the north.

#### 3.10.2 Public Transport

Accessibility from the study area is currently more limited by public transport, as depicted in Figure 3.15. Suburbs located east-west can be access within 45 minutes. However, suburbs located north and south receive less accessibility and take over 60 minutes to be accessed from the site.

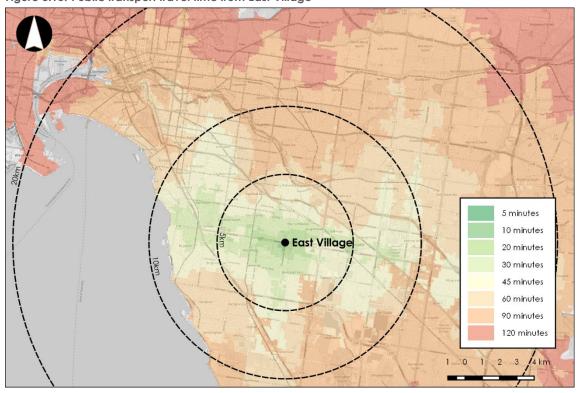



Figure 3.15: Public transport travel time from East Village

As mentioned, the Caulfield to Dandenong Level Crossing Removal Project consists of the removal of nine level crossings, with six of these being located broadly to the north of the subject site.

These level crossing removal projects provide an opportunity to reduce travel times for road based public transport along these road links, as long as they are not just allowed to fill up with additional private traffic volumes, through such measures as bus priority and jump lanes along their lengths, and at the up and down stream intersections.

Such measures would help increase the accessibility of the area by public transport, including connectivity and interchange with the adjacent train stations, which provide access to the Melbourne CBD and metropolitan rail network.



# 4. Development Proposal

#### 4.1 Land Use

The CDP for the East Village Precinct anticipates that the site's rezoning will support a mixed use precinct that includes commercial, retail, residential and community uses. The anticipated development schedule is presented in Table 4.1 and the draft plan is shown in Figure 4.1.

Table 4.1: Indicative Development Schedule

| Use         | Size                                                                                                      |
|-------------|-----------------------------------------------------------------------------------------------------------|
| Commercial  | 80,000m <sup>2</sup> of commercial office space                                                           |
| Retail      | 12,000m <sup>2</sup> of retail floor space (likely mix of supermarket, speciality, and food and beverage) |
| Residential | 3,000 dwellings in a mixture of densities                                                                 |
| School      | 800 secondary school students (approx.)                                                                   |

Source: VPA

Figure 4.1: Draft Plan



Reproduced from Victorian Planning Authority

#### 4.2 Vehicle Access & Internal Circulation

#### 4.2.1 Vehicle Access Principles

The subject site is located on the southeast corner of an existing signalised intersection between two arterial roads that is operating at or near its capacity. As such, vehicle access to the site aims to ideally minimise the need to use, but at least make turns at the existing signalised intersection (i.e. only travel straight through) to minimise the impact on them and the need to provide more traffic capacity than required in the area.

This requires highly attractive and generally full turning movement access intersections on the two fronting arterial roads into the site. As the subject site has a rectangular shape, two full turning movement access intersections are proposed on the longer site frontage of East Boundary Road, and only one proposed on the shorter frontage of North Road.

Internal to the site, and to be consistent with the above site access approach, the precinct has proposed to establish north-south and east-west connector roads, the placement of which aligns with the proposed primary site access intersections. A lower order local street is also proposed to connect with North Drive, but consistent with the signalised intersection layout on East Boundary Road, it is of a lower order to the connector roads connecting with the other signalised site accesses.

No direct vehicular access to the local road network on the east and south sides of the subject site is proposed, to help protect the existing local residential neighbourhood from potential traffic intrusion.

#### 4.2.2 Site Access Points

The precinct is bounded on two sides by existing arterial roads, and it is anticipated that access will be obtained via a number of intersections with these two roads to allow the new development to have highly attractive access that minimises the potential for local residential neighbourhood traffic intrusion.

Specifically, the development proposal envisages access to the precinct from:

- i A new four-way signalised intersection on North Road at the intersection with Cobar Street and Crosbie Road. However, southbound movements on Crosbie Road have been restricted to minimise the level of impact on the existing residential area on the eastern side of Crosbie Road.
- ii Two left-in / left-out only give-way controlled intersections on North Road relatively evenly spaced between Cobar Street and East Boundary Road
- iii Two new signalised intersections on East Boundary Road at the following locations:
  - X- intersection with North Drive and George Street
  - T-intersection with South Drive, south of Garden Road.

It is noted that George Street will be restricted to left-in / left-out only as part of the above site access intersection to restrict the potential of traffic intrusion into the existing residential area.

Further details of these works and others required to support the development are provided in Section 5 of this report.



#### 4.2.3 Internal Road Network

The proposed layout of the internal road network broadly consists of a road hierarchy with connector streets and access streets within the subject site. These will connect with the abutting road network and access the proposed internal land uses. Of particular note, there is a continuous connector street through the site that extends south from the North Road / Cobar Street / Crosbie Road intersection, and extends east from the East Boundary Road / South Drive intersection.

This connector street will provide efficient access to the abutting road network, and internal lower order road network and land uses.

Further details of the internal road network are provided in Section 8.

### 4.3 Active Transport Facilities

The Structure Plan anticipates a number of pedestrian and bicycle links through and connecting the site, broadly consisting of the following:

- Footpaths along all internal and abutting streets
- Dedicated bicycle paths along the internal connector street
- Maintain the existing setback along the East Boundary Road frontage to accommodate an active transport path (specific facility type to be determined as part of the proposed SCC)
- Shared paths through the internal and connecting open space areas.

These paths are also proposed to be connected to the surrounding local bicycle network through the following facilities:

- Pedestrian crossing facilities on most approaches to the three proposed signalised intersections along North Road and East Boundary Road
- Bicycle lanterns to be included on the appropriate approaches of the signalised intersections to support the SCC and dedicated bicycle paths
- Shared path connection through Marlborough Street Reserve
- Shared path connection(s) to the existing path network within Virginia Park.

Further details on the suitability of the active transport facilities and how they will be used by those accessing East Village are provided in Section 6 of this report.

### 4.4 Public Transport Services

The planning, operation and management of the public transport services in the area is outside of the control of any one development. However, there is an understanding that there is the potential in the future for improvements to the existing bus services in the area, such as east-west along North Road, north-south along Murrumbeena Road and a potential local bus route along East Boundary Road.

The specific arrangements of these routes are not known at this time, but it is expected that they will provide access to Ormond, Murrumbeena and Huntingdale Stations.

With this understanding, allowances exist to provide new bus stop pairs proximate to the proposed signalised site access intersections to both North Road and East Boundary Road.

Further details on the suitability of the public transport facilities and how they will be used by those accessing East Village are provided in Section 6 of this report.



# 5. Traffic Impact Assessment

### 5.1 Approach / Methodology

A traffic impact assessment of the primary road network that will be used to access East Village has been undertaken to understand how it currently operates and is expected to in the future. The primary road network that has been considered as part of the traffic impact assessment broadly includes the following extents:

- North Road between and including Tucker Road and Poath Road
- Murrumbeena Road and East Boundary Road between and including Leila Road and Ardena Court.

In order to consider the operation of the above road network today and in the future, the following key activities have been undertaken:

- Collected existing conditions traffic data of the key intersections used to access the subject site
- Prepared existing AM and PM peak hour network SIDRA Models for the key intersections
- Identified the anticipated level of additional traffic the site will generate given its level of development and applied them to the key intersections
- Assessed the post development peak hour traffic conditions at the key intersections through the network SIDRA Models to identify the mitigating works required to support the proposed development of East Village
- Identify the future background traffic growth on the arterial road network and applied them to the key intersections
- Assessed the future peak hour traffic conditions at the key intersections through the network SIDRA Models to confirm that the site access points will be able to operate satisfactorily (maintaining the broader road network is the responsibility of VicRoads).

A summary of the results of the above activities is set out in this section of the report, with more detail in the relevant Appendices as indicated.

### 5.2 Existing Conditions

#### 5.2.1 Overview of Activities

The approach used to model the existing road network conditions along the abutting roads within close proximity of the subject site is broadly set out as follows:

- Obtain existing traffic movement data through SCATS data for signalised intersections and camera based surveys of unsignalised intersections (camera based surveys were completed for a couple of the signalised intersections for validation purposes).
- Obtain SCATS Intersection Diagnostic Monitor (IDM) data and off-set data for the survey day for the signalised intersections to identify the existing phasing and coordination arrangements.
- Determine how representative the survey day is to typical peak road network conditions (i.e. 85<sup>th</sup> percentile design day).
- Build existing network SIDRA Intersection models for the abutting and proximate intersections associated with the primary road network.



 Calibrate the existing network SIDRA Intersection models based on site observations of queues, SCATS IDM phasing data and gap capacities from the camera based surveys to identify the baseline modelling conditions.

Outcomes of the existing conditions modelling is presented hereafter, with more detail associated with the above activities set out in Appendix A of this report.

#### 5.2.2 Existing Traffic Volumes

GTA Consultants obtained traffic movement data for all existing site access points and the key intersections that make up the primary road network on Thursday 14 September, except for the Murrumbeena Road / Leila Road / Crosbie Road intersection, which was collected on Thursday 21 September 2017.

The resulting AM and PM peak hour traffic volumes are shown in Figure 5.1 and Figure 5.2, respectively.

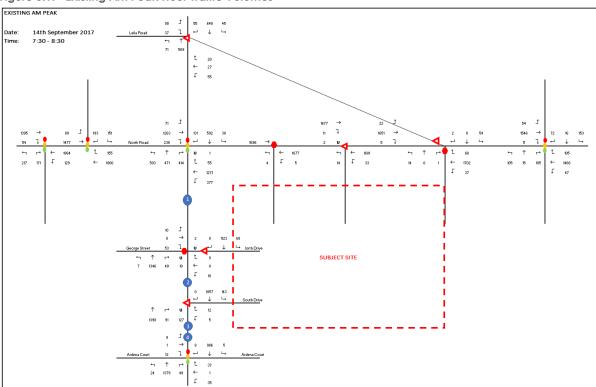



Figure 5.1: Existing AM Peak Hour Traffic Volumes

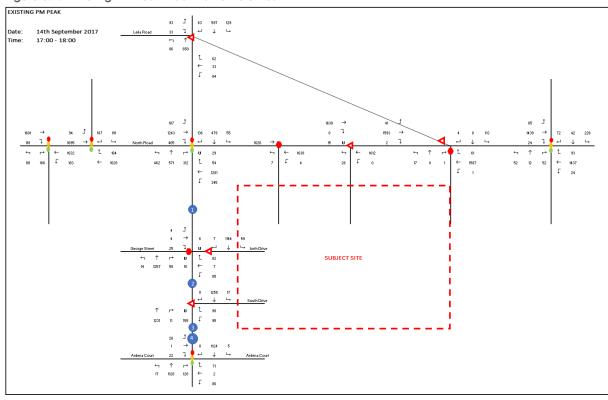



Figure 5.2: Existing PM Peak Hour Traffic Volumes

It is noted in Figure 5.1 and Figure 5.2 that the following existing traffic volumes currently access the site via the existing access roads:

#### **AM Peak Hour:**

- Ingress = 450 vehicle movements
- Egress = 75 vehicle movements
- Total = 525 vehicle movements

#### **PM Peak Hour:**

- Ingress = 156 vehicle movements
- Egress = 418 vehicle movements
- Total = 574 vehicle movements

The above existing traffic volumes are not expected to be generated in the future following full development of the subject site, and thus will be deducted under the post-development traffic impact assessment.

It should also be noted that the associated traffic volumes are considered to be conservative on the low side for what the site currently generates, as it doesn't include any car parking accessed directly from the fronting arterial roads, or the abutting publicly available car parking facilities.

Most notable of the abutting public car parking are those within the median along East Boundary Road, which have been provided as part of a Section 173 agreement with one of the current onsite developments. There are also other car parks that are directly accessed from North Road and East Boundary Road. This provides an opportunity with the development proposal to remove these car spaces and reinstate the median with an alternative treatment, such as landscaping to help improve the amenity and sustainability of the area.



#### 5.2.3 Existing Conditions Modelling Results

The commonly used measure of intersection performance is referred to as the Degree of Saturation (DOS). The DOS represents the flow-to-flow capacity ratio for the most critical movement on each leg of the intersection.

For signalised intersections, a DOS of around 0.95 has been typically considered the 'ideal' limit, beyond which queues and delays increase disproportionately, whilst for an unsignalised intersection a DOS of 0.90 is considered the 'ideal' limit<sup>3</sup>.

Table 5.1 and Table 5.2 presents a summary of the existing operation of the modelled intersections in the AM and PM peak periods, respectively. Full details of the associated SIDRA Intersection modelling are provided in Appendix B.

Table 5.1: Existing Operating Conditions in AM Peak

| Intersection                                 | DOS   | Average Delay<br>(sec) | 95 <sup>th</sup> Percentile<br>Queue (m) |
|----------------------------------------------|-------|------------------------|------------------------------------------|
| North Rd / East Boundary Rd / Murrumbeena Rd | #1.00 | 62 sec                 | 206 m                                    |
| North Rd / Koornang Rd / Tucker Rd           | 0.83  | 27 sec                 | 252 m                                    |
| North Rd / Poath Rd                          | 0.80  | 24 sec                 | 326 m                                    |
| East Boundary Rd / Ardena Ct                 | 0.61  | 16 sec                 | 180 m                                    |
| East Boundary Rd / North Dr                  | 0.39  | 3 sec                  | 11 m                                     |
| Leila Rd / Murrumbeena Rd                    | 0.56  | 5 sec                  | 15m                                      |
| East Boundary Rd / South Dr                  | 0.76  | 7 sec                  | 30 m                                     |
| North Rd / Crosbie Rd / Cobar Rd             | 1.00  | 13 sec                 | 27 m                                     |

DOS – Degree of Saturation, # - Highest Network Intersection DOS

Table 5.2: Existing Operating Conditions in PM Peak

| Intersection                                 | DOS   | Average Delay (sec) | 95 <sup>th</sup> Percentile<br>Queue (m) |
|----------------------------------------------|-------|---------------------|------------------------------------------|
| North Rd / East Boundary Rd / Murrumbeena Rd | 0.99  | 60 sec              | 243 m                                    |
| North Rd / Koornang Rd / Tucker Rd           | 0.79  | 27 sec              | 228 m                                    |
| North Rd / Poath Rd                          | 0.76  | 21 sec              | 278 m                                    |
| East Boundary Rd / Ardena Ct                 | 0.57  | 20 sec              | 153 m                                    |
| East Boundary Rd / North Dr                  | 0.33  | 2 sec               | 6 m                                      |
| Leila Rd / Murrumbeena Rd                    | 1.00  | 14 sec              | 71 m                                     |
| East Boundary Rd / South Dr                  | 1.00  | 13 sec              | 18 m                                     |
| North Rd / Crosbie Rd / Cobar Rd             | #1.00 | 5 sec               | 19 m                                     |

DOS – Degree of Saturation, # - Highest Network Intersection DOS

Table 5.1 and Table 5.2 indicates that the majority of the intersections operate within an acceptable DOS. However, there are a number that are operating above, as outlined below and the key movements that are not performing well:

3 SIDRA INTERSECTION adopts the following criteria for Level of Service assessment:

| Level of Service |            | Intersection Degree of Saturation (DOS) |                         |            |  |
|------------------|------------|-----------------------------------------|-------------------------|------------|--|
|                  |            | Unsignalised Intersection               | Signalised Intersection | Roundabout |  |
| Α                | Excellent  | <=0.60                                  | <=0.60                  | <=0.60     |  |
| В                | Very Good  | 0.60-0.70                               | 0.60-0.70               | 0.60-0.70  |  |
| С                | Good       | 0.70-0.80                               | 0.70-0.90               | 0.70-0.85  |  |
| D                | Acceptable | 0.80-0.90                               | 0.90-0.95               | 0.85-0.95  |  |
| Е                | Poor       | 0.90-1.00                               | 0.95-1.00               | 0.95-1.00  |  |
| F                | Very Poor  | >=1.0                                   | >=1.0                   | >=1.0      |  |



- North Road / East Boundary Road / Murrumbeena Road intersection: Each approach is at or near capacity, so to support additional traffic volumes additional intersection capacity will be required.
- Leila Road / Murrumbeena Road intersection: Predominately the right turn movements from the side roads struggle in the PM peak period given they are under give way control to the reasonably high through movements along Murrumbeena Road.
- East Boundary Road / South Drive intersection: Predominately the right turn movement in the PM peak period out of South Drive struggles given it is under give way control and they need to cross a number of highly trafficked lanes on East Boundary Road.
- North Road / Crosbie Road / Cobar Road intersection: Predominately the right turn
  movements from the side roads struggle given they are under give way control and
  they need to cross a number of highly trafficked lanes on North Road.

#### 5.2.4 Do Nothing Scenario

The above identified DOS's in a fully built up urban area are not uncommon, and while they may indicate that there is limited ability to accommodate additional traffic volumes, additional development in the area and traffic volumes through the above intersections will occur even if we do nothing with the subject site because metropolitan Melbourne is growing.

Moreover, when these additional traffic volumes occur those intersections operating with a DOS of around 1.0 do not break down and stop working. Rather, the intersections won't be able to process all of the approaching traffic volumes within each signal cycle, and vehicles will have to wait at times for more than one signal cycle to get through (i.e. they will not get through on each green phase supporting their desired movement).

In reality what happens if additional traffic is being generated in the area and no additional road capacity is provided, is that some people will change their travel behaviour, through one or a combination of the following:

- Change when they travel
- Change the route they take
- Change transport mode

At a macro level, this has been shown through the October 2018 Grattan Institute Report titled Remarkedly Adaptive: Australian Cities in a Time of Growth<sup>4</sup>, where people's average commuting times are not increasing, at least not anywhere near the level of population and network congestion growth that is occurring across Australia's capital cities.

At a more local network level, especially in highly congested road networks, this results in the phenomenon known as peak spreading, where essentially road congestion conditions reach a peak level, but as additional traffic volumes are generated the peak congestion periods occur for longer periods of time across the day.

This outcome is shown in Figure 5.3, which identifies the likely spread of vehicle activity outside the busiest peak hour and into each shoulder period<sup>5</sup>. Should the North Road / East Boundary Road / Murrumbeena Road intersection remain in its current arrangement, but continued growth occurs in the area, ultimately peak spreading is expected to occur.



<sup>4</sup> https://grattan.edu.au/wp-content/uploads/2018/10/909-Remarkably-adaptive-Australian-cities-in-a-time-of-growth.pdf

<sup>&</sup>lt;sup>5</sup> Source: West Gate Tunnel EES, Technical Report A.

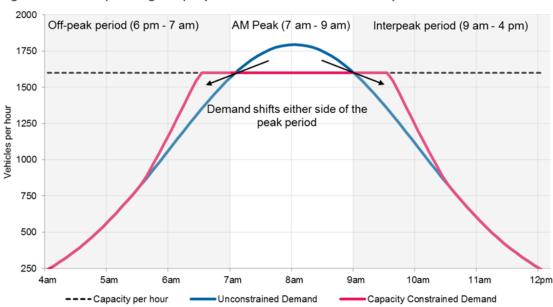



Figure 5.3: Peak Spreading Sample (Extract from West Gate Tunnel EES)

### 5.3 Post Development Conditions

#### 5.3.1 Traffic Generation

A first principles traffic generation assessment for the proposed level of development to be accommodated as part of the East Village precinct has been set out in Appendix C. Based on the information presented in Appendix C, the total estimated externally generated traffic activity by East Village results in 2,618 vehicle movements in the AM peak hour (consisting of 1,312 ingress and 1,306 egress movements) and 2,810 vehicle movements in the PM peak hour (consisting of 1,108 ingress and 1,702 egress movements). In terms of daily volumes, these will be in the order of 27,000 movements.

If the existing site generated traffic volumes are subtracted from the above estimated externally generated traffic activity by East Village, we end up with the additional traffic volumes that will be added to the existing traffic volumes shown in Figure 5.1 and Figure 5.2.

In this regard, the following additional external traffic volumes are expected as a result of East Village:

#### **AM Peak Hour:**

- o Ingress = 862 vehicle movements
- Egress = 1,231 vehicle movements
- Total = 2.093 vehicle movements

#### PM Peak Hour:

- Ingress = 952 vehicle movements
- Egress = 1,284 vehicle movements
- Total = 2,236 vehicle movements



## 5.3.2 Traffic Distribution and Assignment

The directional distribution and assignment of the additional external traffic generated by the proposed development will be influenced by a number of factors, including the:

- i configuration of the arterial road network in the immediate vicinity of the site
- ii operation of intersections providing access between the local and arterial road network
- iii distribution of households in the vicinity of the site
- iv surrounding employment centres, retail centres and schools in relation to the site
- v configuration of access points to the site.

In order to estimate the expected distribution of the additional external traffic generated by East Village, VITM has been used. This has been done by completing a Select Link Analysis of the traffic volumes generated by the VITM zone the site is located in during the 2016 AM peak period. The resulting Select Link Analysis for the site VITM zone is attached to this memorandum, which has been used to develop Figure 5.4 and Figure 5.5, that show the anticipated directional distributions for the additional external traffic volumes generated from and attracted to the site in the AM peak, respectively.

Figure 5.4: AM Peak Period Site Generation Directional Distributions

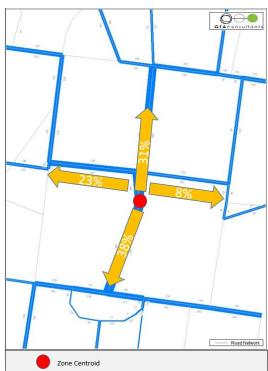
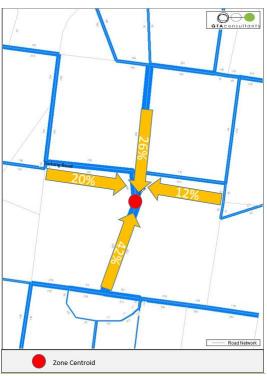
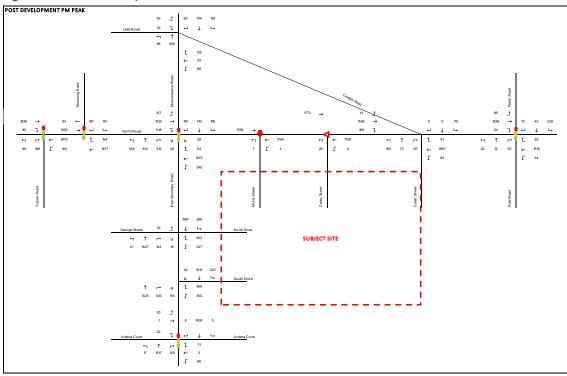




Figure 5.5: AM Peak Period Site Attraction Directional Distributions



It is proposed to adopt the directional distributions set out in Figure 5.4 and Figure 5.5 for the AM peak hour, and obviously reverse them in the PM peak hour.


## 5.3.3 Post Development Traffic Volumes

By adding the additional external development traffic to the existing conditions traffic volumes, we can obtain the 'Design' or Post-Development traffic volumes. The resulting AM and PM peak hour traffic volumes are outlined in Figure 5.6 and Figure 5.7, respectively.



Figure 5.6: Post-Development AM Peak Hour Traffic Volumes





# 5.3.4 Post Development Modelling Results

Table 5.3 and Table 5.4 presents a summary of the post development operation of the modelled intersections in the AM and PM peak periods, respectively. Full details of the associated SIDRA Intersection modelling are provided in Appendix E.

Table 5.3: Post Development Operating Conditions in AM Peak

| Intersection                                 | DOS     | Average Delay<br>(sec) | 95 <sup>th</sup> Percentile<br>Queue (m) |
|----------------------------------------------|---------|------------------------|------------------------------------------|
| North Rd / East Boundary Rd / Murrumbeena Rd | 1.13    | 113 sec                | 393 m                                    |
| North Rd / Koornang Rd / Tucker Rd           | 0.96    | 38 sec                 | 477 m                                    |
| North Rd / Poath Rd                          | 0.88    | 27 sec                 | 403 m                                    |
| East Boundary Rd / Ardena Ct                 | 0.78    | 17 sec                 | 266 m                                    |
| East Boundary Rd / North Dr                  | 2.76    | 230 sec                | 794 m                                    |
| Leila Rd / Murrumbeena Rd                    | 2.70    | 70 sec                 | 263m                                     |
| East Boundary Rd / South Dr                  | 3.33    | 291 sec                | 905 m                                    |
| North Rd / Crosbie Rd / Cobar Rd             | # 20.59 | 1,407 sec              | 1,004 m                                  |

DOS – Degree of Saturation, # - Highest Network Intersection DOS

Table 5.4: Post Development Operating Conditions in PM Peak

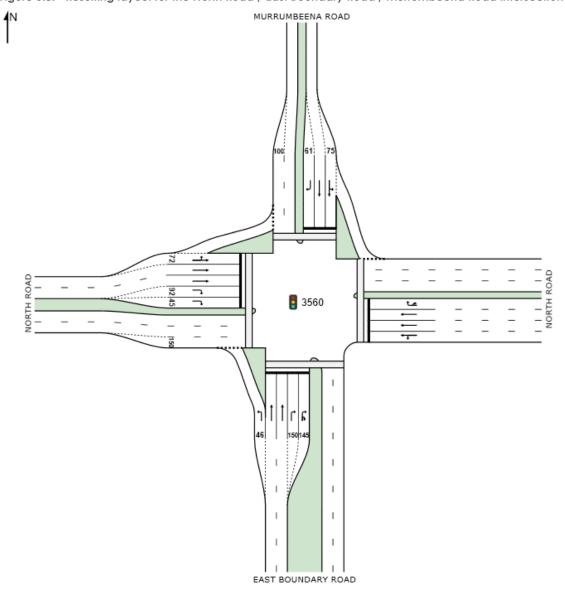
| Intersection                                 | DOS     | Average Delay<br>(sec) | 95 <sup>th</sup> Percentile<br>Queue (m) |
|----------------------------------------------|---------|------------------------|------------------------------------------|
| North Rd / East Boundary Rd / Murrumbeena Rd | 1.18    | 113 sec                | 544 m                                    |
| North Rd / Koornang Rd / Tucker Rd           | 0.86    | 29 sec                 | 281 m                                    |
| North Rd / Poath Rd                          | 0.76    | 21 sec                 | 291 m                                    |
| East Boundary Rd / Ardena Ct                 | 0.77    | 21 sec                 | 253 m                                    |
| East Boundary Rd / North Dr                  | 3.01    | 223 sec                | 834 m                                    |
| Leila Rd / Murrumbeena Rd                    | 2.31    | 35 sec                 | 128 m                                    |
| East Boundary Rd / South Dr                  | 4.13    | 364 sec                | 1,021 m                                  |
| North Rd / Crosbie Rd / Cobar Rd             | # 25.79 | 2,199 sec              | 1,262 m                                  |

DOS – Degree of Saturation, # - Highest Network Intersection DOS

Table 5.3 and Table 5.4 indicates that following full development of East Village that the proximate road network will not be able to suitably accommodate the anticipated level of traffic generated, with the majority of the site access and proximate intersections operating outside of an acceptable DOS.

# 5.4 Mitigating Measures

## 5.4.1 Proposed Mitigating Works


On this basis, a suite of mitigating measures has been identified to support the anticipated traffic generated by the proposed rezoning and development of East Village. The mitigating measures road works to the existing road infrastructure are outlined as follows:

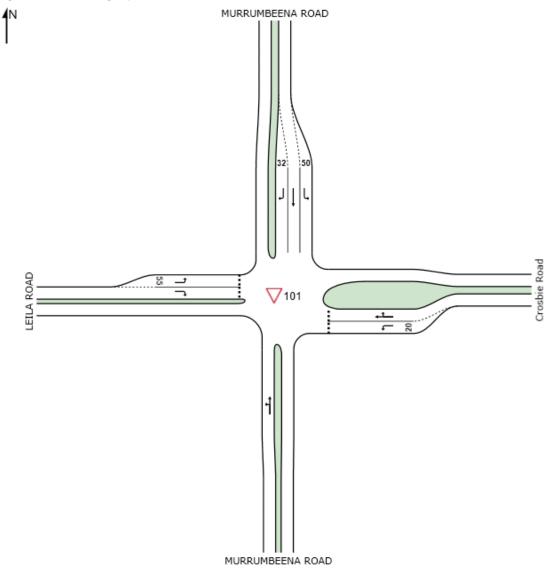


- o At the North Road / East Boundary Road / Murrumbeena Road signalised intersection:
  - Double right on the west approach
  - Continuation of the two departure lanes on the north approach
  - Continuation of the three departure lanes on the east and west approaches
  - Extend the right turns on the south and east approaches

The resulting intersection layout for the North Road / East Boundary Road / Murrumbeena Road signalised intersection is shown in Figure 5.8<sup>6</sup>.

Figure 5.8: Resulting layout for the North Road / East Boundary Road / Murrumbeena Road intersection



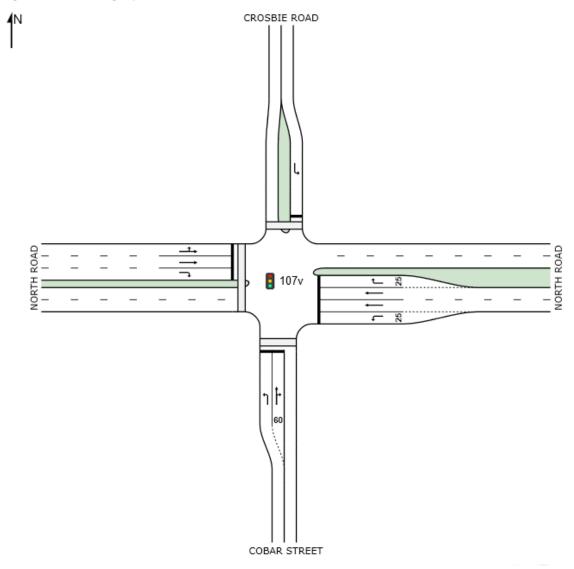

GTA consultants

<sup>&</sup>lt;sup>6</sup> East approach right turn lane is actually a 110m short lane. Shown as continuous due to the short lane extending past Murra Street.

- At the Murrumbeena Road / Leila Road / Crosbie Road intersection:
  - Convert to a signalised intersection
  - Extent the right turn lane on the north approach

The resulting intersection layout for the Murrumbeena Road / Leila Road / Crosbie Road intersection is shown in Figure 5.9.

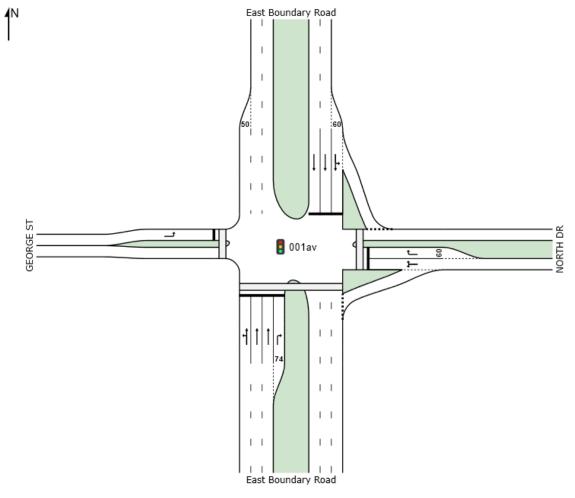
Figure 5.9: Resulting layout for the Murrumbeena Road / Leila Road / Crosbie Road intersection




It will be necessary to install traffic signals at the three proposed site access intersections on North Road and East Boundary Road associated with the internal connector and access streets. The required intersection layouts are broadly outlined as follows:

- North Road / Cobar Street / Crosbie Road intersection:
  - Left turn lane and a through / right turn lane on the south approach
  - Left turn only lane on the north approach to minimise use of Cobar Street
  - Left turn lane on the east approach
  - Extend the right turn on the west approach

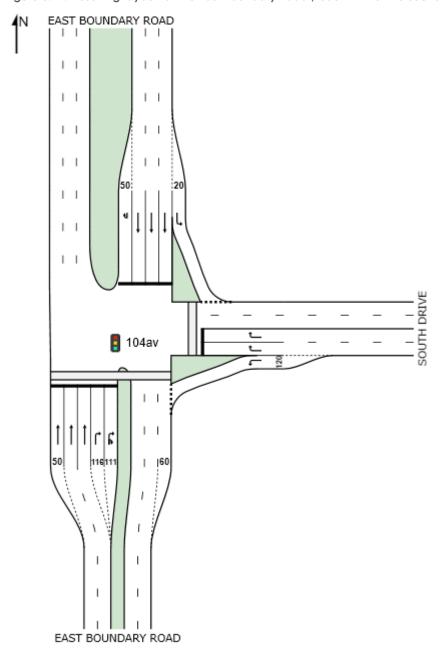
The resulting intersection layout for the North Road / Cobar Street / Crosbie Road intersection is shown in Figure 5.10.


Figure 5.10: Resulting layout for the North Road / Cobar Street / Crosbie Road intersection



- East Boundary Road / North Drive / George Street intersection:
  - Right turn lane on the south approach
  - Double right turn lanes on the east approach
  - Left turn slip lanes on the north and east approaches
  - Additional short through lanes on the north approach
  - Additional through lanes on the south approach
  - Restrict George Street (west approach) to left-in / left-out only

The resulting intersection layout for the East Boundary Road / North Drive / George Street intersection is shown in Figure 5.11.


Figure 5.11: Resulting layout for the East Boundary Road / North Drive / George Street intersection



- East Boundary Road / South Drive intersection:
  - Double right turn lanes on the south and east approaches
  - Left-turn slip lane on the east approach
  - Left turn slip lane on the north approach
  - Additional through lanes on the north approach
  - Additional short through lanes on the south approach

The resulting intersection layout for the East Boundary Road / South Drive intersection is shown in Figure 5.12.

Figure 5.12: Resulting layout for the East Boundary Road / South Drive intersection



Concept level designs and supporting swept paths for the above mitigating road works are included in Appendix D.



## 5.4.2 Post Development with Mitigating Works Modelling Results

Table 5.5 and Table 5.6 presents a summary of the post development with mitigating works operation of the modelled intersections in the AM and PM peak periods, respectively. Full details of the associated SIDRA Intersection modelling is provided in Appendix E.

Table 5.5: Post Development with Mitigating Works Operating Conditions in AM Peak

| Intersection                                 | DOS    | Average Delay (sec) | 95 <sup>th</sup> Percentile<br>Queue (m) |
|----------------------------------------------|--------|---------------------|------------------------------------------|
| North Rd / East Boundary Rd / Murrumbeena Rd | 0.87   | 46 sec              | 228 m                                    |
| North Rd / Koornang Rd / Tucker Rd           | # 0.96 | 38 sec              | 477 m                                    |
| North Rd / Poath Rd                          | 0.84   | 25 sec              | 349 m                                    |
| East Boundary Rd / Ardena Ct                 | 0.65   | 11 sec              | 205 m                                    |
| East Boundary Rd / North Dr / George St      | 0.69   | 24 sec              | 194 m                                    |
| Leila Rd / Murrumbeena Rd                    | 0.79   | 16 sec              | 207 m                                    |
| East Boundary Rd / South Dr                  | 0.65   | 22 sec              | 147 m                                    |
| North Rd / Crosbie Rd / Cobar Rd             | 0.84   | 23 sec              | 308 m                                    |

DOS – Degree of Saturation, # - Highest Network Intersection DOS

Table 5.6: Post Development with Mitigating Works Operating Conditions in PM Peak

| Intersection                                 | DOS   | Average Delay<br>(sec) | 95 <sup>th</sup> Percentile<br>Queue (m) |
|----------------------------------------------|-------|------------------------|------------------------------------------|
| North Rd / East Boundary Rd / Murrumbeena Rd | #0.95 | 55 sec                 | 289 m                                    |
| North Rd / Koornang Rd / Tucker Rd           | 0.86  | 30 sec                 | 281 m                                    |
| North Rd / Poath Rd                          | 0.82  | 22 sec                 | 334 m                                    |
| East Boundary Rd / Ardena Ct                 | 0.66  | 16 sec                 | 223 m                                    |
| East Boundary Rd / North Dr / George St      | 0.62  | 21 sec                 | 155 m                                    |
| Leila Rd / Murrumbeena Rd                    | 0.90  | 22 sec                 | 310 m                                    |
| East Boundary Rd / South Dr                  | 0.63  | 19 sec                 | 108 m                                    |
| North Rd / Crosbie Rd / Cobar Rd             | 0.81  | 28 sec                 | 285 m                                    |

DOS – Degree of Saturation, # - Highest Network Intersection DOS

Table 5.3 and Table 5.4 indicates that following full development of East Village and implementation of the suite of mitigating road works that the proximate road network will be able to suitably accommodate the anticipated level of traffic generated.

# 5.4.3 Development & Mitigating Works Staging

The overall staging of the subject site is understood to relate to the property ownership and leasing arrangements. In this regard, Figure 5.13 has been prepared to show the anticipated staging of East Village.

Figure 5.13: East Village Development Staging Plan SUBSTATION M. ST VIRGINIA PARK

East Village, Bentleigh East

Based on Figure 5.13, it is expected that East Village will generally develop from the south to the north. The implications of this staging with the site access arrangements and mitigating works are outlined as follows:

- The mitigating road works at the North Road / East Boundary Road / Murrumbeena Road intersection will only need to be in place once the subject site achieves a net increase in the existing traffic volumes it generates.
- East Boundary site access intersections are expected to be implemented first, then the North Road site access intersection.
- All the associated mitigating works along North Road are not expected to be required until the adjacent properties are redeveloped, which will require the left-turn lanes on North Road to be provided, and the internal north-south connector road extends through to North Road, which will require the signalised site access intersection to be provided.
- The signalisation of the Murrumbeena Road / Leila Road / Crosbie Road intersection once the North Road / Cobar Street / Crosbie Road intersection is signalised.

### 5.5 Future Conditions

The responsibility of the broader road network to operate at a satisfactorily level into the future primarily sits with VicRoads and other State Government bodies. However, where new site access points to arterial roads are introduced, it is expected that they would be able to at least operate 10 years into the future.

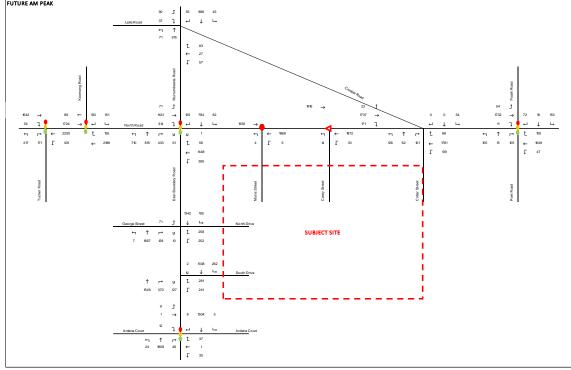
As such, an assessment of how the three proposed signalised site access intersections will perform 10 years into the future is presented in this section.

### 5.5.1 Traffic Volume Growth (+10 years)

The Victorian Integrated Transport Model (VITM) reference case has been used to identify what the background road network growth will likely be in the area. In this regard, the change in the two-hour AM and PM peak hours between 2016 and 2031 on the primary road network have been extracted and are presented in Table 5.7, along with what the 10 year growth would likely be assuming it is linear over the above 15 year period from VITM.

Table 5.7: 10-Year Mid-Block Traffic Growth Levels

| Road               | Saction                  | Section |       |       |        | 10yr Avg. |       |        |
|--------------------|--------------------------|---------|-------|-------|--------|-----------|-------|--------|
| κοαα               | Section                  | Daily   | AM    | PM    | Daily  | AM        | PM    | Growth |
|                    | Poath - Mackie           | 40,410  | 5,760 | 5,850 | 42,350 | 5,850     | 6,070 | 102%   |
| North Board        | East Boundary - Poath    | 45,260  | 6,650 | 6,860 | 47,410 | 6,800     | 7,030 | 102%   |
| North Road         | East Boundary - Koornang | 35,980  | 5,890 | 6,210 | 39,950 | 6,320     | 6,640 | 106%   |
|                    | Tucker - Bewdley         | 36,160  | 5,900 | 6,370 | 40,240 | 6,440     | 6,820 | 106%   |
| Murrumboong Board  | Oakleigh - Leila         | 20,240  | 3,020 | 3,160 | 21,460 | 3,120     | 3,240 | 103%   |
| Murrumbeena Road   | Leila - North            | 17,170  | 2,440 | 2,520 | 18,450 | 2,520     | 2,620 | 103%   |
| East Boundary Road | North - Ardena           | 38,640  | 6,060 | 6,360 | 41,620 | 6,550     | 6,820 | 105%   |
|                    | Ardena - McKinnon        | 36,340  | 5,760 | 5,900 | 38,940 | 6,140     | 6,280 | 104%   |


Table 5.7 indicates that there will likely only be moderate increases on the primary road network over the next 10 years, with between 2% and 6% growth.



This is considered to be reflective of the generally congested road network in the area, and that there is currently no major trip destination in the area drawing further afield user volumes in and through the area.

As such, by adding the above background growth to the post development traffic volumes, the resulting future AM and PM peak hour traffic volumes in the area are shown in Figure 5.1 and Figure 5.2, respectively.





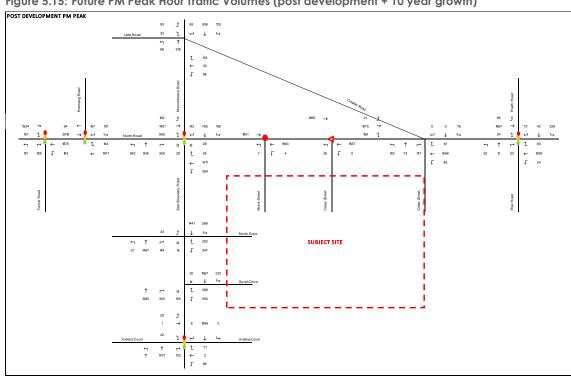



Figure 5.15: Future PM Peak Hour Traffic Volumes (post development + 10 year growth)

#### Future Site Access Intersection Modelling Results 5.5.2

Table 5.8 and Table 5.9 presents a summary of the future baseline operation of the modelled intersections in the AM and PM peak periods, respectively. Full details of the associated SIDRA Intersection modelling are provided in Appendix F.

Table 5.8: Future Baseline Operating Conditions in AM Peak

| Intersection                            | DOS    | Average Delay (sec) | 95 <sup>th</sup> Percentile<br>Queue (m) |
|-----------------------------------------|--------|---------------------|------------------------------------------|
| East Boundary Rd / North Dr / George St | 0.69   | 24 sec              | 194 m                                    |
| East Boundary Rd / South Dr             | 0.65   | 22 sec              | 147 m                                    |
| North Rd / Crosbie Rd / Cobar Rd        | # 0.84 | 23 sec              | 308 m                                    |

DOS – Degree of Saturation, # - Highest Network Intersection DOS

Table 5.9: Future Baseline Operating Conditions in PM Peak

| Intersection                            | DOS    | Average Delay<br>(sec) | 95 <sup>th</sup> Percentile<br>Queue (m) |
|-----------------------------------------|--------|------------------------|------------------------------------------|
| East Boundary Rd / North Dr / George St | 0.64   | 21 sec                 | 174 m                                    |
| East Boundary Rd / South Dr             | 0.64   | 19 sec                 | 111 m                                    |
| North Rd / Crosbie Rd / Cobar Rd        | # 0.91 | 34 sec                 | 398 m                                    |

DOS – Degree of Saturation, # - Highest Network Intersection DOS

Table 5.8 and Table 5.9 indicates that the site access intersections will continue to operate within an acceptable DOS under post development conditions and +10 years growth.



# 6. Integrated Transport Response

# 6.1 Transport Policy

Encouraging the use of public transport, walking and cycling as modes of transport, and reducing the reliance on private car use to access employment opportunities and services, is central to achieving the aims of a broad range of policy documents affecting the subject area and directing how it develops into the future, such as those listed in Section 2.

Given that East Village is located in the municipality of Glen Eria, which is in the southeast of metropolitan Melbourne, it has strong linkages to the following employment and services areas, which provides a prime opportunity to achieve the above core policy directives:

- Monash National Employment and Innovation Cluster (second largest employment precinct in metropolitan Melbourne, after the CBD)
- Caulfield Educational Precinct
- State significant activity centres of Bentleigh, Chadstone and Oakleigh.

Moreover, the increased density and mixed-use development proposal as part of East Village has the potential to become a local neighbourhood activity centre in its own right.

However, this does require a bit of a shift in thinking away from providing unbounded capacity for private motor vehicle use, towards facilities that help encourage the use of alternative transport modes. This is in part due to the constrained nature of the broader road network area East Village is located in, and the expected continued population and industry growth in the southeast, which won't be able to be purely serviced through building additional road capacity.

This has been well considered by the Victorian Auditor General in a report released on Managing Traffic Congestion (April 2013). Most importantly, the report notes that in recent times:

"Congestion management strategies remain heavily weighted towards the supply side with little attention to demand management. Continuing this approach poses a significant risk for achieving any congestion reduction benefits."

#### The report goes on to note:

"The state's increasingly constrained finances, coupled with significant population growth projected for Melbourne, indicates that an approach that ignores demand management is unsustainable. This warrants greater attention by transport agencies to address the demand-side factors contributing to congestion. Such strategies have been successful in alleviating congestion in other jurisdictions."

As such, a focus for the area and development of East Village should be to encourage shorter trips to local employment opportunities and services through more space efficient transport modes like public and active transport. At the same time we need to suppress (or at least not actively encourage) the less efficient modes like private car use during peak demand periods, especially the commuter peaks in the proximate area of the site, which are considered to have the least amount of available capacity to accommodate additional traffic demands.

This approach is broadly consistent with the policy documents affecting the area and directing how land develop is expected to occur more broadly across metropolitan Melbourne into the future. As such, it is expected that the above approach will be generally adopted and applied as part of developing the East Village Structure Plan.



# 6.2 Creating Modal Choice

#### 6.2.1 Overview

People's behaviour will always be influenced by individual circumstances and preferences, and factors such as income, age and travel distance. As such, a range of alternatives to private car use need to be provided to achieve a meaningful shift in travel choice away from the existing private car use that currently occurs in the area. As there is no (or expected in the foreseeable future) rail access within walking distance of the subject site walking, cycling and bus are considered to be the most viable transport options for those accessing East Village.

In higher density mixed-use developments like East Village, increased opportunities to access them by walking, cycling and public transport tend to occur when compared to the existing lower density development in the proximate area, as there are an increased number of short trips, especially internal trips to the site. As noted in Appendix C, there is expected to be in the order of 20% to 30% of trips to occur within the site, and these at a minimum should be targeted to occur via walking and cycling. Moreover, local catchments of 20 minutes travel time should also be aimed to be supported for the site by all the viable alternative transport modes, which are broadly outlined as follows:

- Walking catchment = approx. 2km depending on delays at crossing facilities
- Cycling catchment = approx. 5km depending on delays at intersections and crossing facilities
- **Bus Catchment** = based on Figure 3.15, it could be up to 10km in each direction and connecting the site with the following areas:
  - North Road to the Monash Cluster to the east and North Brighton to the west
  - Murrumbeena Road to the Caulfield Precinct and Chadstone Activity Centre to the north
  - East Boundary Road to Moorabbin to the south.

Should the above walking, cycling and bus catchments be able to be provided, as well as a high quality integrated and connected path network within the site, then it would provide viable opportunities for a significant proportion of those that will be accessing East Village to do so via alternative transport modes, and reduce the number of people that will access the site by private car. The specific level of shift away from private car use is beyond the scope of this engagement and is dependent on what other developments and transport facilities are ultimately provided in the area, but a shift of 10% to 20% is not considered unreasonable against existing mode splits that occur in the area.

These are discussed further below, noting that the ability for the proposed initiatives within the broader network are outside the control of any one development, but with such a significant development as East Village, the potential for them to be provided increases, so where possible developments should try and integrate with them.

### 6.2.2 Walking Catchment

Generally speaking the local footpath network is reasonably complete, with paths on both sides of most roads. With a high quality internal path network and signalised crossing facilities to be provided on most approaches as part of the proposed signalised site intersections, then reasonable connectivity with the existing external pedestrian network is expected, and able to support access by foot within the 20 minute / 2km walking catchment of the site.



The only potential barrier to supporting the local walking catchment for East Village is to the east and south through the existing local residential neighbourhood, but with the proposed path connections through the abutting open space areas, this is considered to be overcome.

### 6.2.3 Bicycle Catchment

Bicycle facilities in the area are currently fairly poor, with the only facilities really being the onroad bicycle lanes on some of the arterial roads, which are not considered to be viable facilities for the majority of potential users. As a minimum for facilities to be considered viable by a wide range of potential users, bicycle facilities should be consistent with Figure 4 in the VicRoads Design Guidance for Strategically Important Cycling Corridors.

However, it is understood that the Kew to Highett SCC is proposed to be implemented along Murrumbeena Road and East Boundary Road, as described in Section 3.7.2, which will provide a high quality north-south bicycle facility, connecting the site with the proximate area and activity centres to the north and south. This facility is being supported as part of the East Village development proposal through the following:

- Bicycle lanterns on the signalised crossing facilities of the site access intersections
- Connecting bicycle paths along the internal connector streets.

In an east-west direction, there are currently no high quality facilities that exist or we are aware of being proposed. However, there are networks of low traffic volume and speed local residential streets, which could be used to provide local 'shimmy' routes. They typically require additional traffic calming, wayfinding and arterial road crossing facilities to support them, but they can provide viable facilities that could connect the site with the various open spaces and activity centres in the area. Their alignment with the signalised site access intersections on East Boundary Road and connecting paths through the open space on the south and east sides of the site provide good opportunities to start developing and connecting such facilities.

### 6.2.4 Public Transport Catchment

As previously mentioned, bus is the only expected viable public transport option to directly access the site. Moreover, bus network and route planning activities are occurring across metropolitan Melbourne, so there is expected to be improvements in the services in the area in the short to medium future.

In this regard, State Government departments have set general requirements for all new developments to try and provide the ability for the majority of new dwellings to be located within 400m of a potential bus route. For this to occur as part of East Village and still provide a highly efficient bus network in the area, it is expected that bus routes will be provided in the north-south and east-west directions along the arterial roads of Murrumbeena Road, East Boundary Road and North Road. The specific frequencies are not able to be advised, but it would be expected that they will be 10 to 20 minutes during peak commuter periods.

At a transport network level, the above routes should ideally connect with the proximate rail stations and key employment areas, to support the majority of trips accessing the site. They should be prioritised over general traffic through bus priority and jump lanes, with highly accessible and integrated stops where feasible.

Specific to East Village, it is expected that bus stop pairs will be provided on both the North Road and East Boundary Road frontages proximate to the proposed signalised site access intersections.



# 6.3 Travel Demand Management

East Village will be accommodating an entirely new population of people. As such, it provides the best time to nudge people's travel behaviour in the direction we ideally want them to, namely when they first start developing new travel behaviours associated with accessing the site. This in part requires the above indicated transport infrastructure to provide facilities and services that are considered viable by potential users, but these can be further supported through soft measures, commonly referred to as Travel Demand Management (TDM) measures.

Tailored TDM strategies can be developed for the East Village site, each accessing user type and/or tenancy, that essentially identify incentives that will help encourage desired travel behaviour and suppress unwanted travel behaviour. The specific need and level of intervention is dependent on what the overall mode split targets are for the development and the ability to achieve meaningful shifts in travel behaviour.

At this time, no specific incentives are being identified, but it is recommended that they form part of each subsequent development application that achieve at a minimum the following:

- Identification of the critical times that major congestion is likely to occur on the network and what proposed land uses will mainly contribute to them.
- Identify targeted interventions to suitably manage the transport demand being generated by the development proposal.
- A targeted implementation plan that outlines when and by who the measures to influence demand will be implemented.



# 7. Car Parking

# 7.1 Existing Conditions

As outlined in Section 3.6 and presented in Figure 3.10, there are currently 1,142 on-street spaces, including 1,001 spaces that are unrestricted during business hours, along the site frontages and within the proximate roads. On-site observations indicate that current on-street car parking demands are moderate and decrease as you move further away from the site. However, it is noted that Duncan Mackinnon Reserve attracts significant parking demands on the weekend.

As such, there is considered to only be currently isolated car parking issues, that can be generally managed through various car parking management approaches, such as additional or changes to the time restricted parking areas and/or introduction of resident permit parking on at least one side of local residential streets. It has not been observed or been advised that the existing land uses on the site generate parking demands that are not able to be generally accommodated on-site, so are not expected to have a significant impact on proximate local residential streets.

The only site specific situation of note is the car parking within the central median along the East Boundary Road frontage of the site. It is understood that these car parking spaces were provided as part of a Section 173 agreement for a development that occurred on-site. This arrangement is not common or typically permitted along arterial roads, as it generates various vehicle manoeuvres within the through lanes of a busy movement focused road corridor. However, once the associated development is removed (or others that create available car parking capacity on site), these car spaces could be removed.

### 7.2 Future

#### Approach Overview

Generally speaking, the provision of car parking will be determined as part of each specific development application. However, based on the general approach set out in this report, it is important that car parking is not over supplied, as it will encourage private car use.

In this regard, the car parking provision rates set out in Clause 52.06 of the Glen Eira Planning Scheme should be considered as maximum rates with a development of this nature, and consideration be given to reductions to the associated rates where supporting evidence in relation to the following decision guidelines are able to be provided:

- "The likelihood of multi-purpose trips within the locality which are likely to be combined with a trip to the land in connection with the proposed use.
- The variation of car parking demand likely to be generated by the proposed use over time.
- The short-stay and long-stay car parking demand likely to be generated by the proposed use.
- The availability of public transport in the locality of the land.
- The convenience of pedestrian and cyclist access to the land.
- The provision of bicycle parking and end of trip facilities for cyclists in the locality of the land.
- The anticipated car ownership rates of likely or proposed visitors to or occupants (residents or employees) of the land.
- Any empirical assessment or case study"



The combination of these factors often results in car parking demand being generated at rates different to the statutory rates, especially within higher density mixed-use developments like East Village, where residents can walk and cycle to employment, school and other services within and proximate to the site, as well as the potential to provide shared car parking facilities between the different land uses with temporal park demand differences, i.e. they generate peak parking demands at different times.

Noting the above, the following broad guidance is provided for the proposed land uses that make up the East Village precinct.

#### Commercial Land Uses

While there is proposed to be in the order of 80,000m<sup>2</sup> of commercial office space, there is considered to be significant opportunity to share the associated car parking facilities, provide high quality end-of-trip facilities and provide coordinated TDM measures to reduce the reliance on private car use in accessing the subject site.

Moreover, and especially when you consider there is also a significant residential population to be accommodated as part of East Village, that car share operations will be feasible to provide.

However, should the car parking provision for the commercial uses be near the statutory car parking rates for, then it is recommended that part of the shared car parking facilities be provided within above ground structured facilities with floor to ceiling heights that enable them to be able to be converted to commercial and retail tenancies in the future.

#### Mixed Use Retail Land Uses

The statutory car parking rates for retail land uses do not reflect any variability that exists with their size, which is widely understood to occur, and clearly demonstrated through Table 5.2 of the RTA Guide to Traffic Generating Developments, which is reproduced in Table 7.1.

Table 7.1: Shopping Centre Car Parking Rates

| Gross Leasable Floor Area (GLFA) m <sup>2</sup> | Car Parking Spaces per 100m <sup>2</sup> of GLFA |
|-------------------------------------------------|--------------------------------------------------|
| 0 – 10,000                                      | 6.1                                              |
| 10,000 – 20,000                                 | 5.6                                              |
| 20,000 – 30,000                                 | 4.3                                              |
| Over 30,000                                     | 4.1                                              |

Source: Table 5.2 of the RTA Guide of Traffic Generating Developments

Table 7.1 indicates that as retail centres increase in size their car parking rate of demand decreases, which is expected to be the case with East Village and likely to result in an overall rate of provision that is less than the statutory rates, especially if the supporting car parking facilities are shared, i.e. not made up of a number of small discreet and access restricted car parks.

#### School

The level of car parking provision for the 800 student secondary school will be advised by the education department. What will be key is that any drop-off / pick-up facilities are well planned and designed, so they are safely used.

It is also noted that the use of suitable car parking restrictions on the proximate roads, both internal and external to the site should be considered to minimise the potential for drop-off / pick-up facilities occurring where they are not desired. Other management measures could include the staggering of class start and finish times to spread when drop-off / pick-up activities occur, as well as carpooling and walking school bus programs to reduce the number of vehicles accessing the school.



### Residential Dwellings

Car parking for the proposed residential dwelling lots are expected to be generally provided in accordance with the statutory parking requirements through a minimum provision of single garages for one and two bedroom dwellings and double garages for three or more bedroom dwellings. Visitor car parking demands are expected to be able to be accommodated on-street.

### **Apartments**

Integrated car parking facilities are expected to be provided for the apartment buildings, with a maximum on-site car parking provision of one space for one and two bedroom apartments and two spaces for three or more bedroom apartments.

Residential visitor car parking demands are expected to be able to be comfortably accommodated on-street.

Consideration should also be given to reducing the above car parking provision to help encourage the use of alternative transport modes, especially for any small one-bedroom dwellings and/or if on-site car share facilities are provided.

# 8. Planning Requirements Checklist

### 8.1 Preamble

As the proposal is only in the Structure Plan and rezoning phase, the details are still being developed. However, eventually the development of the site will need to accord with the requirements of Clause 56 of the Glen Eira Planning Scheme. Therefore, this section of the report assesses the proposed development against the access and mobility requirements set out within Clause 56.06 of the Planning Scheme for subdivisions.

Clause 56 of the Glen Eira Planning Scheme sets out the following purpose:

"To implement the State Planning Policy Framework and the Local Planning Policy Framework, including the Municipal Strategic Statement and local planning policies.

To create liveable and sustainable neighbourhoods and urban places with character and identify.

To achieve residential subdivision outcomes that appropriately respond to the site and its context for:

- Metropolitan Melbourne growth areas
- o Infill sites within established residential areas
- Regional cities and towns

To ensure residential subdivision design appropriately provides for:

- Policy implementation
- Liveable and sustainable communities
- Resident lot design
- Urban landscape
- Access and mobility management
- Integrated water management
- Site management
- Utilities."

Clause 56 consists of a number of provisions made up of objectives and standards for implementation within the design of a new subdivision. The Clause states the following in respect to objectives and standards:

- "Objectives. An objective describes the desired outcome to be achieved in the completed subdivision.
- Standards. A standard contains the requirements to meet the objective.

A standard should normally be met. However, if the responsible authority is satisfied that an application for an alternative design solution meets the objective, the alternative design solution may be considered."

The relevant transport and access areas of Clause 56 that will be considered within this report is Clause 56.06, which aims to:

"achieve an urban structure where compact and walkable neighbourhoods are clustered to support larger activity centres on the Principal Public Transport Network in Metropolitan Melbourne and on the regional public transport network outside Metropolitan Melbourne.

To provide for walking (including persons with impaired mobility), cycling, public transport and other motor vehicles in an integrated manner.



To contribute to reduced car dependence, improved energy efficiency, reduced greenhouse gas emissions and reduced air pollution."

Standard C14 of the Clause requires that a plan of the layout of the neighbourhood be prepared that meets the objectives of:

- Clause 56.06-2 Walking and cycling network
- Clause 56.06-3 Public Transport network
- Clause 56.06-4 Neighbourhood street network.

Clause 56.06 divides walking and cycling facilities, public transport facilities and street network design into two areas, being Network Objectives and Detail Objectives, of which much of the latter is a matter for detailed design and therefore only the general intent agreed to as part of the Structure Plan.

# 8.2 Walking and Cycling

#### Statutory Requirements

The walking and cycling network and detailed objectives set out within Clause 56.06-2 and 56.06-5 respectively state the following:

#### Clause 56.06-2

- "To contribute to community health and well-being by encouraging walking and cycling as part of the daily lives of residents, employees and visitors.
- To provide safe and direct movement through and between neighbourhoods by pedestrian and cyclists.
- To reduce car use, greenhouse gas emissions and air pollution."

### Clause 56.06-5

- "To design and construct footpaths, shared cycle path networks that are safe, comfortably, well-constructed and accessible for people with disabilities.
- To design footpaths to accommodate wheelchairs, prams, scooters and other footpath vehicles".

Standards C15 and C18 set out the requirements that should be met to meet the objectives of these Clauses.

#### **Proposed Treatments**

The following active transport facilities are proposed:

- Footpaths will generally be provided on both sides of the roads within the site
- Streets will be designed to encourage pedestrian and bicycle activity when adjacent to open space areas
- Connector streets to have a 3.0m wide dedicated bicycle facility on one side.

It is expected that the on-road traffic volume and speed environments on the other streets in the study area will generally be consistent with Figure 4 in the VicRoads Design Guidance for Strategically Important Cycling Corridors. This is considered to provide a suitable level of access for pedestrians and cyclists of all abilities expected to be generated within and potential to travel through the East Village precinct.

To support longer trips and integrate with the broad active transport network, the following facilities are proposed:



- Suitable corridor width provided within the precinct to accommodate the proposed north-south Strategic Cycling Corridor between Kew and Highett.
- Signalised crossing facilities (including bicycle lanterns where relevant) on most of the approaches of the signalised intersections along the arterial road site frontages of the site.
- Connecting shared paths through the abutting open spaces to connect with the local residential streets.

To the east and west of the site there are no specific bicycle facilities, but there is considered to be potential for local 'shimmy' routes, through specific traffic calming, wayfinding and arterial road crossing facilities to connect up with other open spaces and activity centres in the area.

### Compliance to Clause 56

The objectives of Clauses 56.06-2 and 56.06-5 are considered to be met as follows:

- A majority of lots would be within a reasonable walking distance of the following amenities:
  - Public transport bus services currently operate along North Road and expected to be provided along East Boundary Road in the future.
  - Neighbourhood shops there will be a significant retail presence to be provided as part of the site.
  - Public open space suitable green belts and passive open space are being contemplated.
  - Community facilities these are expected to be provided as part of the development.
- The walking and cycling network through the subdivision is logical and generally follows the pattern of streets and public open spaces as follows:
  - Access Lanes shared pedestrian, cycle and motor vehicle facilities on street.
  - Access Streets shared cycle facilities on street, dedicated footpaths.
  - Connector Streets marked cycle lanes on street and shared paths or separated bicycle paths on one side of the road where possible.
  - Public Open Spaces shared paths through open spaces connecting to other facilities where possible.
- The walking and cycling network links into existing facilities allowing the cycling network to connect into the regional network.
- The proposed road reservations are sufficient to provide footpaths and cycle paths in line with the requirements of Table C1 of the Clause.

# 8.3 Public Transport

### Statutory Requirements

Clause 56.06-3 and 56.06-6 set out the public transport network and detailed design objectives for subdivisions as follows:

#### Clause 56.06-3

"To provide an arterial road and neighbourhood street network that supports a direct efficient and safe public transport system.

To encourage maximum use of public transport."



#### Clause 56.06-6

"To provide for the safe, efficient operation of public transport and the comfort and convenience of public transport users; and.

To provide public transport stops that are accessible to people with disabilities."

Standards C16 and C19 set out the standards that need to be met in relation to bus routes and the location and design of bus and tram stops.

#### **Proposed Treatments**

While bus stops are already in place along North Road, provision has been made to accommodate a bus stop pair on East Boundary Road proximate to the proposed signalised site access intersections.

Once bus services operate along both the arterial site frontages almost the whole of the subject site will be within 400m walking distance of a bus stop.

#### Compliance with Clause 56

Section 3.8 of this report discusses the integrated transport network surrounding the development site from which it is apparent that public transport would be accessible to residents within the new subdivision.

Although the proposed development is considered large enough to suggest that public transport services along East Boundary Road could be viable, the implementation of these services and improvement of any of the existing is a matter for the public transport operators and Department of Economic Development, Jobs, Transport and Resources (DEDJTR). However, the objectives of Clause 56.06-3 and 56.06-6 are considered to be met from a planning perspective.

# 8.4 Neighbourhood Street

#### Statutory Requirements

Clauses 56.06.4 and 56.06-7 set out the neighbourhood street network and detail objectives and aims as follows:

#### Clause 56.06.4

"Provide for a direct, safe and easy movement through and between neighbourhoods for pedestrians, cyclists, public transport and other motor vehicles using the neighbourhood street network."

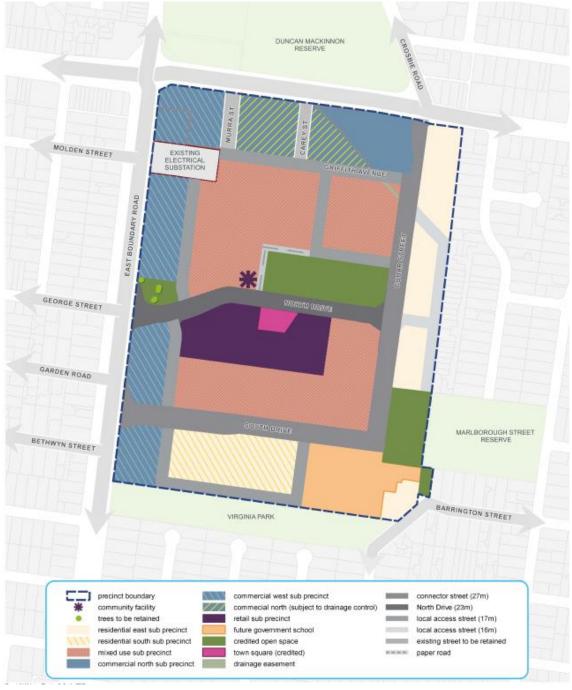
#### Clause 56.06.7

"To design and construct street carriageways and verges so that the geometry and traffic speeds provide an accessible and safe neighbourhood street system for all users."

Standards C17 and C20 set out a number of standards that should be met to achieve the aims of Clauses 56.06-4 and Clause 56.06-7.

#### **Proposed Treatments**

The proposed subdivision would connect into the existing street network at the following locations:


- New four-way signalised intersection on North Road at the intersection with Cobar Street and Crosbie Road.
- Two left-in / left-out only give way controlled intersections in North Road relatively evenly spaced between Cobar Street and East Boundary Road.



- Two new signalised intersections on East Boundary Road at the following locations:
  - X- intersection with North Road and George Street
  - o T-intersection with South Drive, south of Garden Road.

In terms of the internal neighbourhood street network, an indicative street hierarchy is shown in Figure 8.1.

Figure 8.1: Indicative Street Network Hierarchy



Source: VPA

#### Compliance with Clause 56

Table 8.1 assesses the proposed road hierarchy generally against the requirements of Clause 56.06-7 of the Glen Eira Planning Scheme.

Table 8.1: Proposed Road Hierarchy Details

|                            |                 | •                                       |                                                        |                                                 |                                             |
|----------------------------|-----------------|-----------------------------------------|--------------------------------------------------------|-------------------------------------------------|---------------------------------------------|
| Street Type                | Target<br>Speed | Indicative Road<br>Reservation<br>Width |                                                        | Theoretical<br>Capacity Daily<br>Traffic Volume | Anticipated<br>Peak Daily<br>Traffic Volume |
| Access Lane                | 10kph           | 9.0m                                    | None                                                   | 300<br>vehicles per day                         | <300 vpd                                    |
| Access Street –<br>Level 1 | 20kph           | 16m                                     | Kerbside parking along one side of the road            | <1,000 vpd                                      | <1,000 vpd                                  |
| Access Street –<br>Level 2 | 30kph           | 17m                                     | Kerbside parking along one side of the road            | 1,000 to 2,000<br>vehicles per day              | <0.000 vm d                                 |
| Access Street –<br>Level 3 | 40kph           | 23m                                     | Kerbside parking along both sides of the road          | 2,000 to 3,000<br>vehicles per day              | <2,000 vpd                                  |
| Connector<br>Street        | 50kph           | 27m                                     | Kerbside or indented parking on both sides of the road | 3,000 to 7,000<br>vehicles per day              | 10,000 vpd [1]                              |

<sup>[1]</sup> Over the sections of the internal connector roads between the abutting arterial roads and the first major car park access points and/or side roads, are expected to carry in the order of 10,000 vpd but will be suitably designed to accommodate such traffic volumes.

As indicated within Table 8.1, the proposed road hierarchy generally accords with the minimum requirements necessary to allow carriageways, footpaths and cycle paths to be accommodated appropriate to the road type as specified within Table C1 of Clause 56.06.

It is noted that all road reservations include additional widths at intersections in order to incorporate the visibility splay requirements set out within Standard C20.

The speed targets for the internal street network would be met due to the inclusion of the following and with reference to Table 8.1 in the VicRoads Traffic Engineering Manual Volume 1, Chapter 8: Local Area Traffic Management:

- network design incorporating bends as slow points
- o reducing block lengths and/or introduction of one-way sections
- provision of slow points or other similar suitable treatments to limit maximum leg lengths to achieve target speed.

The design of the latter would be undertaken as part of the detailed design of the street network and those that would be located on connector streets should be designed to accommodate buses.

The contemplated internal road network is anticipated to accommodate traffic volumes less than the associated road type's theoretical capacity, noting that the internal connecter streets will provide specific crossing facilities to support the separated bicycle facilities on one side of the connector streets at intersections with lower order roads, such as North Drive.

In addition, it is noted that no dedicated on-road bicycle lanes are proposed on the connector streets. Instead, separated bicycle facilities are being proposed on one side of the connector street carriageways within the road reserves, and with suitable crossing facilities they would be appropriate for the majority of potential users.

Moreover, if vehicle speeds are managed appropriately on the connector streets mixed traffic conditions are considered to be appropriate for those users that wish to cycle on the road. Furthermore, widening the carriageway to accommodate dedicated bicycle lanes is considered to be counterproductive in trying to manage vehicle speeds.



# 9. Conclusions

Based on the analysis and discussions presented within this report, the following conclusions are made:

- There is sufficient capacity within the immediate road network to accommodate the additional traffic movements anticipated as part of the development of East Village, subject to the following mitigating road works:
  - At the North Road / East Boundary Road / Murrumbeena Road signalised intersection:
    - Double right on the west approach
    - Continuation of the two departure lanes on the north approach
    - Continuation of the three departure lanes on the east and west approaches
    - Increase the right turn lane lengths on the south and east approaches
  - At the Murrumbeena Road / Leila Road / Crosbie Road intersection:
    - Convert to a signalised intersection
    - Extend the right turn lane on the north approach
  - North Road / Cobar Street / Crosbie Road intersection:
    - Left turn lane and a through / right turn lane on the south approach
    - Left turn only lane on the north approach to minimise use of Cobar Street
    - Left turn lane on the east approach
    - Extend the right turn lane on the west approach
  - East Boundary Road / North Drive / George Street intersection:
    - o Right turn lane on the south approach
    - o Double right turn lanes on the east approach
    - Left turn slip lanes on the north and east approaches
    - Additional short through lanes on the north approach
    - Additional through lanes on the south approach
    - George Street (west approach) restricted to left-in / left-out only
  - East Boundary Road / South Drive intersection:
    - Double right turn lanes on the south and east approaches
    - Left-turn slip lane on the east and north approaches
    - Additional through lanes on the north approach
    - Additional short through lanes on the south approach
- ii In addition, the following facilities are recommended to support alternative transport modes in accessing the site:
  - Pedestrian crossing facilities (including bicycle lanterns where relevant) on most approaches to the three proposed signalised site intersections.
  - Advocate for the proposed north-south Kew to Highett Strategic Cycling Corridor.
  - Connecting shared paths through the abutting open spaces to connect with the local residential streets.
  - Advocate for east-west 'shimmy' bicycle routes through local residential streets.
  - Provision of a bus stop pair on the East Boundary Road site frontage proximate to the proposed signalised site intersections.
  - Advocate for improved and additional north-south bus services to better connect the site with the other proximate activity centres and train stations.



# Appendix A

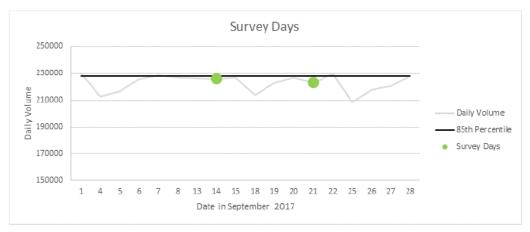
Existing Conditions Modelling

# A.1 Surveys

Existing traffic movement data was generally collected on Thursday 14 September through SCATS for the signalised intersections and the camera based surveys of the unsignalised and a majoirty of the signalised intersections, but those associated with the Murrumbeena Road / Leila Road / Crosbie Road intersection were collected on Thursday 21 September.

# A.2 Existing Phasing and Off-Set Data

A request was submitted to VicRoads to record the SCATS IDM and off-set data for the survey days for the signalised intersections to identify the existing phasing and coordination arrangements. This has been provided and analysed to identify average cycle times for each signalised intersection during the AM and PM peaks, as well as the off-sets between the signals.


In addition, site observations of the signalised intersections were completed on the survey days, to identify movement splits for shared turning lanes, queue lengths and phasing data.

# A.3 Design Day (85th percentile traffic volumes)

It is common practice to design for the 85<sup>th</sup> percentile traffic event. As such, to understand how representative the above survey days are to an 85<sup>th</sup> percentile design day, Figure A.1 has been prepared, which identifies the following:

- Daily SCATS traffic volumes through the North Road / East Boundary Road / Murrumbeena Road intersection over the month of October (excluding weekends, public holidays and those days with errors)
- 85<sup>th</sup> percentile daily traffic volume level
- o The two survey days of Thursday 14 September and Thursday 21 September

Figure A.1: Survey Day vs Design Day



Based on the data presented in Figure A.1, the following has been identified about the survey days:

- Thursday 14 September represents a day where the daily traffic volumes were 0.8% less than the 85<sup>th</sup> percentile level
- Thursday 21 September represents a day where the daily traffic volumes were 2.2% less than the 85<sup>th</sup> percentile level



On this basis, GTA has adopted the traffic volume data collected on Thursday 14 September as is, and the traffic survey data collected at the Murrumbeena Road / Leila Road / Crosbie Road intersection on Thursday 21 September increased by 2.2%.

It is also noted that weekend traffic volumes through the Murrumbeena Road / Leila Road / Crosbie Road intersection are on average 83% of the average weekday, which is reflected through Figure A.2.

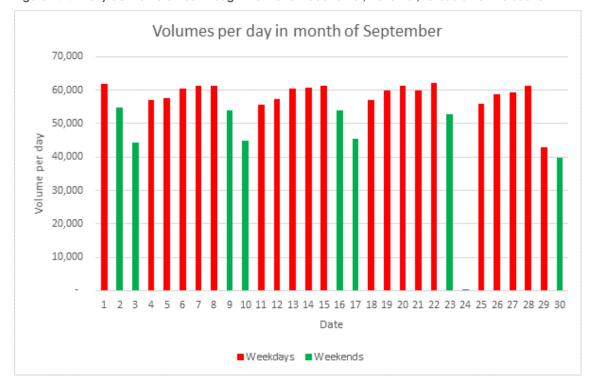



Figure A.2: Daily SCATS Volumes through the Murrumbeena Rd / Leila Rd / Crosbie Rd intersection

# A.4 Existing Conditions Model Build

The operation of key intersections has been assessed using SIDRA INTERSECTION 8, a computer based modelling package which calculates intersection performance.

As part of the traffic assessment, the networking function available through SIDRA INTERSECTION 8 has been used for the following coordinated intersections:

- North Road Corridor, between Poath Road and East Boundary Road / Murrumbeena Road, and the East Boundary Road / Murrumbeena Road Corridor, between Oakleigh Road and Ardena Court.
- The North Road / Koornang Road and North Road / Tucker Road intersections (separated from the main network model due to distance and inability to model as a network model).

The networking function allows for consideration of the impacts that up and down stream intersections have on each intersection in the aim of better reflecting actual traffic conditions, as well as helping with the understanding of which intersections drive the operation of others along a corridor, i.e. the North Road / East Boundary Road / Murrumbeena Road intersection.



For reference, the northern section of the resulting North Road Corridor and East Boundary Road / Murrumbeena Road Corridor network SIDRA model is shown in Figure A.3. Only the northern section is provided as its quite a large network model.

Figure A.3: North Road Corridor & East Boundary Road/Murrumbeena Road Corridor (northern section)

### A.5 Model Calibration

#### **Network Function**

The majority of the abutting and proximate intersections likely to be impacted by the development proposal have been able to be incorporated into a single network model, except for the North Road / Koornang Road and North Road / Tucker Road intersections. Even when these two intersections are attempted to be modelled at off-set networked T-intersections, they have not been able to be suitably modelled through the SIDRA Intersection platform. As such, they have been modelled as a single X-intersection.

#### Balancing Network Volumes

As the network only captures the major intersections within the proposed network, it was concluded that the minor side roads/local streets between the major intersection may cause a discrepancy between intersection departure and approach volumes.

A comparison was made throughout the network between the departure and approach volumes with all links showing a favourable degree of similarity between these volumes. The only instance where there was a large discrepancy of traffic volumes occurred along East Boundary Road between the intersections of South Drive and Ardena Court. To calibrate the model, two 'dummy legs' where introduced at this location as shown in Figure A.4 which were used to add or subtract the required traffic volumes to balance the departure and approach volumes between the two intersections.



Dummy Entry Approach

To East Boundary Road/
Ardena Court

Figure A.4: Dummy legs to account for traffic volume differences between major intersections

### Lane Utilisation

Lane utilisation factors were introduced at the North Road / East Boundary Road / Murrumbeena Road intersection to better reflect the splits identified by SCATS detector volumes. Specifically, the SCATS detector data identified more vehicles utilising the outside lanes on North Road despite the downstream short lane impacts.

It was also noted that there was a discrepancy between the right-turning volumes at the North Road / East Boundary Road / Murrumbeena Road intersection recorded through the survey data and SCATS detector volumes. As such, the survey volumes have been adopted but the lane utilisation increased for these movements to reflect what they have actually been able to accommodate.

#### Lane Movement Factor

Lane movement factors were introduced throughout the model at key locations were unnecessary lane movements occurred. A high number of vehicles would switch lanes between each site depending on the departure lanes and the subsequent turning volumes at the downstream intersection. To avoid excessive lane movements, lane movement factors were introduced to better manage vehicles switching lanes between sites.

## Signal timings for the signalised intersections

- The analysis of the IDM data provided by VicRoads identified an average cycle time for each signalised intersection during the AM and PM peaks.
- o The average cycle time was inputted into the SIDRA where the network model was set to 'user given cycle time' and allowed to allocated green time as per the inputted phasing arrangement and traffic volumes.



 As an example, a comparison between the SIDRA outputted signal timings and the observed IDM data signal timings for the North Road / East Boundary Road / Murrumbeena Road intersection is outlined in Table A.1 below.

Table A.1: North Road / East Boundary Road / Murrumbeena Road Intersection Signal Timings

| Intersection                         | Peak Period | Scenario                   |    |    | Signal | Timings |    |    |
|--------------------------------------|-------------|----------------------------|----|----|--------|---------|----|----|
|                                      | reak relioa | scendio                    | Α  | В  | С      | D       | Е  | F  |
|                                      | A A A       | Observed Signal<br>Timings | 52 | 21 | 28     | 24      | 52 | 21 |
| North Road / East<br>Boundary Road / | AM          | Modelled Signal<br>Timings | 50 | 22 | 30     | 24      | 50 | 22 |
| Murrumbeena<br>Road                  | PM          | Observed Signal<br>Timings | 51 | 15 | 28     | 31      | 51 | 15 |
|                                      | F/VI        | Modelled Signal<br>Timings | 43 | 15 | 34     | 36      | 43 | 15 |

Signal timing comparisons demonstrate that there is a strong relationship between the modelled signal timings and those observed as part of the IDM signal data obtained from VicRoads. This indicates that the model is a good reflection of the existing conditions of what occurred on-site during the surveyed day.

#### General site observations

- Queues within the SIDRA model generally reflected what was observed on-site at the key intersections.
- Those movements that dictate the resulting DOS each intersection was what were observed to be the movements that performed the worst.
- With the understanding that a DOS of 1.0 represents the point at which queued vehicles on approaches don't get through each signal cycle, the below results reflected generally what was observed out on-site.

SIDRA Intersection - Existing Conditions Results

### **MOVEMENT SUMMARY**

Site: 3560 [2. NORTH ROAD / EAST BOUNDARY ROAD / MURRUMBEENA ROAD]

NORTH ROAD / EAST BOUNDARY ROAD / MURRUMBEENA ROAD

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 126 seconds (Site User-Given Cycle Time)

| Mov       | Movement Performance - Vehicles |                   |       |             |      |              |                  |                     |                |       |                 |                   |          |             |
|-----------|---------------------------------|-------------------|-------|-------------|------|--------------|------------------|---------------------|----------------|-------|-----------------|-------------------|----------|-------------|
| Mov<br>ID | Turn                            |                   |       |             |      | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Quei | ue    | Prop.<br>Queued | Effective<br>Stop | No.      | Averag<br>e |
|           |                                 | Total             |       | Total veh/h | HV   |              |                  |                     | Vehicles E     |       |                 | Rate              | Cycles S |             |
| Sout      | h· FAS                          | veh/h<br>T BOUND/ |       |             | %    | v/c          | sec              |                     | veh            | m     |                 |                   |          | km/h        |
| 1         | L2                              | 529               | 3.8   | 529         | 3.8  | 0.557        | 25.6             | LOSC                | 18.5           | 133.8 | 0.72            | 0.86              | 0.86     | 45.1        |
| 2         | T1                              | 496               | 2.5   | 496         | 2.5  | 0.914        | 63.4             | LOS E               | 26.1           | 186.7 | 0.97            | 0.97              | 1.20     | 14.0        |
| 3         | R2                              | 436               | 1.4   | 436         | 1.4  | 0.996        | 108.5            | LOS F               | 18.5           | 131.4 | 1.00            | 1.10              | 1.69     | 8.8         |
| Appr      |                                 | 1461              |       | 1461        | 2.7  | 0.996        | 63.1             | LOS E               | 26.1           | 186.7 | 0.89            | 0.97              | 1.22     | 21.4        |
| East:     | NOR <sup>-</sup>                | TH ROAD           |       |             |      |              |                  |                     |                |       |                 |                   |          |             |
| 4         | L2                              | 397               | 2.1   | 397         | 2.1  | 0.510        | 30.4             | LOS C               | 18.3           | 130.9 | 0.75            | 0.80              | 0.75     | 11.2        |
| 5         | T1                              | 1338              | 3.9   | 1338        | 3.9  | 0.979        | 80.2             | LOS F               | 21.4           | 155.0 | 0.99            | 1.21              | 1.40     | 23.5        |
| 6         | R2                              | 58                | 5.5   | 58          | 5.5  | 0.597        | 73.1             | LOS E               | 3.8            | 27.9  | 1.00            | 0.77              | 1.06     | 5.3         |
| 6u        | U                               | 1                 | 0.0   | 1           | 0.0  | 0.597        | 74.3             | LOS E               | 3.8            | 27.9  | 1.00            | 0.77              | 1.06     | 5.3         |
| Appr      | oach                            | 1794              | 3.6   | 1794        | 3.6  | 0.979        | 68.9             | LOS E               | 21.4           | 155.0 | 0.94            | 1.10              | 1.24     | 22.1        |
| North     | n: MUR                          | RUMBEEN           | NA RO | AD          |      |              |                  |                     |                |       |                 |                   |          |             |
| 7         | L2                              | 32                | 10.0  | 32          | 10.0 | 0.982        | 101.4            | LOS F               | 28.6           | 205.7 | 1.00            | 1.24              | 1.78     | 14.0        |
| 8         | T1                              | 623               | 2.4   | 623         | 2.4  | 0.982        | 94.3             | LOS F               | 28.6           | 205.7 | 1.00            | 1.22              | 1.68     | 14.2        |
| 9         | R2                              | 138               | 1.5   | 138         | 1.5  | 0.860        | 76.5             | LOS E               | 9.4            | 66.7  | 1.00            | 0.95              | 1.34     | 29.2        |
| Appr      | oach                            | 793               | 2.5   | 793         | 2.5  | 0.982        | 91.4             | LOS F               | 28.6           | 205.7 | 1.00            | 1.18              | 1.62     | 17.1        |
| West      | : NOR                           | TH ROAD           |       |             |      |              |                  |                     |                |       |                 |                   |          |             |
| 10        | L2                              | 75                | 4.2   | 75          | 4.2  | 0.602        | 42.0             | LOS D               | 23.2           | 166.4 | 0.81            | 0.77              | 1.20     | 34.7        |
| 11        | T1                              | 1329              | 2.3   | 1329        | 2.3  | 0.602        | 29.7             | LOS C               | 23.2           | 166.4 | 0.79            | 0.71              | 0.92     | 38.1        |
| 12        | R2                              | 248               | 4.2   | 248         | 4.2  | 0.965        | 94.5             | LOS F               | 19.8           | 143.4 | 1.00            | 1.07              | 1.55     | 19.2        |
| Appr      | oach                            | 1653              | 2.7   | 1653        | 2.7  | 0.965        | 40.0             | LOS D               | 23.2           | 166.4 | 0.82            | 0.77              | 1.02     | 33.1        |
| All Ve    | ehicles                         | 5700              | 2.9   | 5700        | 2.9  | 0.996        | 62.2             | LOS E               | 28.6           | 205.7 | 0.90            | 0.98              | 1.23     | 23.5        |

♦♦ Network: N101 [Master

Model]

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move            | Movement Performance - Pedestrians |                         |                         |       |                                   |                           |                 |                        |  |  |  |  |  |  |  |
|-----------------|------------------------------------|-------------------------|-------------------------|-------|-----------------------------------|---------------------------|-----------------|------------------------|--|--|--|--|--|--|--|
| Mov<br>ID       | Description                        | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Bacl<br>Pedestrian<br>ped | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate |  |  |  |  |  |  |  |
| P1              | South Full Crossing                | 53                      | 39.8                    | LOS D | 0.1                               | 0.1                       | 0.80            | 0.80                   |  |  |  |  |  |  |  |
| P2              | East Full Crossing                 | 53                      | 57.3                    | LOS E | 0.2                               | 0.2                       | 0.95            | 0.95                   |  |  |  |  |  |  |  |
| P3              | North Full Crossing                | 53                      | 28.7                    | LOS C | 0.1                               | 0.1                       | 0.68            | 0.68                   |  |  |  |  |  |  |  |
| P4              | West Full Crossing                 | 53                      | 56.3                    | LOS E | 0.2                               | 0.2                       | 0.95            | 0.95                   |  |  |  |  |  |  |  |
| All Pedestrians |                                    | 211                     | 45.5                    | LOS E |                                   |                           | 0.84            | 0.84                   |  |  |  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:14:28 AM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\171028 SIDRA Network - Existing
AM.sip8

## Site: 3559 [10. NORTH ROAD / KOORNANG ROAD / TUCKER ROAD]

10. NORTH ROAD / KOORNAND ROAD / TUCKER ROAD

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 126 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

| Move   | ement F | erformanc      | e - Vel | nicles      |              |          |                 |               |        |           |           |               |
|--------|---------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------|
| Mov    | Turn    | Demand F       | lows    | Deg.        | Average      | Level of | 95% Back        | of Queue      | Prop.  | Effective | Aver. No. | Average       |
| ID     |         | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay<br>sec | Service  | Vehicles<br>veh | Distance<br>m | Queued | Stop Rate | Cycles    | Speed<br>km/h |
| South  | : TUCKE | R ROAD         |         |             |              |          |                 |               |        |           |           |               |
| 1      | L2      | 228            | 3.0     | 0.460       | 38.2         | LOS D    | 10.4            | 74.5          | 0.79   | 0.79      | 0.79      | 36.2          |
| 2      | T1      | 180            | 3.0     | 0.712       | 51.4         | LOS D    | 10.3            | 73.8          | 0.94   | 0.81      | 1.02      | 32.8          |
| Appro  | ach     | 408            | 3.0     | 0.712       | 44.0         | LOS D    | 10.4            | 74.5          | 0.86   | 0.80      | 0.89      | 34.6          |
| East:  | NORTH   | ROAD           |         |             |              |          |                 |               |        |           |           |               |
| 4      | L2      | 136            | 3.0     | 0.134       | 19.7         | LOS B    | 3.9             | 28.1          | 0.51   | 0.70      | 0.51      | 46.0          |
| 5      | T1      | 1895           | 3.0     | 0.829       | 22.5         | LOS C    | 35.1            | 252.2         | 0.73   | 0.69      | 0.76      | 45.6          |
| 6      | R2      | 163            | 3.0     | 0.808       | 70.9         | LOS E    | 10.7            | 76.7          | 1.00   | 0.90      | 1.21      | 29.8          |
| Appro  | ach     | 2194           | 3.0     | 0.829       | 25.9         | LOS C    | 35.1            | 252.2         | 0.74   | 0.70      | 0.78      | 43.9          |
| North  | : KOORI | NANG ROAD      | )       |             |              |          |                 |               |        |           |           |               |
| 7      | L2      | 159            | 3.0     | 0.250       | 36.8         | LOS D    | 6.9             | 49.6          | 0.75   | 0.77      | 0.75      | 38.9          |
| 8      | T1      | 203            | 3.0     | 0.593       | 50.3         | LOS D    | 11.5            | 82.2          | 0.96   | 0.79      | 0.96      | 33.1          |
| Appro  | ach     | 362            | 3.0     | 0.593       | 44.4         | LOS D    | 11.5            | 82.2          | 0.87   | 0.78      | 0.87      | 35.6          |
| West:  | NORTH   | ROAD           |         |             |              |          |                 |               |        |           |           |               |
| 10     | L2      | 94             | 3.0     | 0.093       | 19.4         | LOS B    | 2.6             | 18.9          | 0.49   | 0.69      | 0.49      | 44.5          |
| 11     | T1      | 1468           | 3.0     | 0.631       | 18.9         | LOS B    | 25.7            | 184.2         | 0.69   | 0.62      | 0.69      | 47.4          |
| 12     | R2      | 57             | 3.0     | 0.281       | 62.5         | LOS E    | 3.3             | 23.7          | 0.96   | 0.75      | 0.96      | 29.3          |
| Appro  | ach     | 1619           | 3.0     | 0.631       | 20.5         | LOS C    | 25.7            | 184.2         | 0.69   | 0.63      | 0.69      | 46.3          |
| All Ve | hicles  | 4583           | 3.0     | 0.829       | 27.1         | LOSC     | 35.1            | 252.2         | 0.74   | 0.69      | 0.76      | 43.0          |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | ement Performance - Pe | destrians      |                  |       |                            |                        |                 |                        |
|-----------|------------------------|----------------|------------------|-------|----------------------------|------------------------|-----------------|------------------------|
| Mov<br>ID | Description            | Demand<br>Flow | Average<br>Delay |       | Average Bacl<br>Pedestrian | k of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate |
|           |                        | ped/h          | sec              |       | ped                        | m                      |                 |                        |
| P1        | South Full Crossing    | 53             | 15.8             | LOS B | 0.1                        | 0.1                    | 0.50            | 0.50                   |
| P2        | East Full Crossing     | 53             | 57.3             | LOS E | 0.2                        | 0.2                    | 0.95            | 0.95                   |
| P3        | North Full Crossing    | 53             | 4.3              | LOSA  | 0.0                        | 0.0                    | 0.26            | 0.26                   |
| P4        | West Full Crossing     | 53             | 57.3             | LOS E | 0.2                        | 0.2                    | 0.95            | 0.95                   |
| All Pe    | destrians              | 211            | 33.7             | LOS D |                            |                        | 0.67            | 0.67                   |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

 $Project: P: \V13600-13699 \V136080 \ East \ Village - Integrated \ Transp\\ \Modelling \SIDRA\\ \ 180920-Updates\\ \ 171028 \ SIDRA \ Network - Existing \ AM.sip8$ 



Site: 3561 [6. NORTH ROAD / POATH ROAD / POET ROAD]

**♦** Network: N101 [Master

Model]

NORTH ROAD / POATH ROAD / POET ROAD

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 130 seconds (Site User-Given Cycle Time)

| Mov       | vement   | t Perform | ance  | - Vehi  | cles |              |                  |                     |                |         |                 |                   |          |             |
|-----------|----------|-----------|-------|---------|------|--------------|------------------|---------------------|----------------|---------|-----------------|-------------------|----------|-------------|
| Mov<br>ID | Turn     | Demand    | Flows | Arrival |      | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Quet |         | Prop.<br>Queued | Effective<br>Stop | Aver. A  | Averag<br>e |
|           |          | Total     |       | Total   | HV   |              |                  |                     | Vehicles D     | istance |                 | Rate              | Cycles S |             |
| Carr      | +h. DOE  | veh/h     | %     | veh/h   | %    | v/c          | sec              |                     | veh            | m       |                 |                   |          | km/h        |
|           | -        | -         | 0.0   | 444     | 0.0  | 0.000        | 00.4             | 100 5               | 45.0           | 444.0   | 4.00            | 0.00              | 4.45     | 47.0        |
| 1         | L2       | 111       | 2.9   | 111     | 2.9  | 0.803        | 63.1             | LOS E               | 15.6           | 111.8   | 1.00            | 0.93              | 1.15     | 17.0        |
| 2         | T1       | 16        | 0.0   | 16      | 0.0  | 0.803        | 59.7             | LOS E               | 15.6           | 111.8   | 1.00            | 0.93              | 1.15     | 26.3        |
| 3         | R2       | 111       | 2.9   | 111     | 2.9  | 0.803        | 63.1             | LOS E               | 15.6           | 111.8   | 1.00            | 0.93              | 1.15     | 26.4        |
| App       | roach    | 237       | 2.7   | 237     | 2.7  | 0.803        | 62.9             | LOS E               | 15.6           | 111.8   | 1.00            | 0.93              | 1.15     | 22.6        |
| Eas       | t: NORT  | H ROAD    |       |         |      |              |                  |                     |                |         |                 |                   |          |             |
| 4         | L2       | 49        | 2.1   | 49      | 2.1  | 0.801        | 23.1             | LOS C               | 45.0           | 325.6   | 0.78            | 0.74              | 0.78     | 41.4        |
| 5         | T1       | 1545      | 4.0   | 1545    | 4.0  | 0.801        | 15.6             | LOS B               | 45.0           | 325.6   | 0.69            | 0.65              | 0.70     | 43.8        |
| 6         | R2       | 111       | 2.9   | 111     | 2.9  | 0.673        | 36.1             | LOS D               | 4.7            | 33.9    | 0.98            | 0.85              | 1.07     | 38.7        |
| App       | roach    | 1705      | 3.8   | 1705    | 3.8  | 0.801        | 17.2             | LOS B               | 45.0           | 325.6   | 0.71            | 0.66              | 0.72     | 43.0        |
| Nort      | h: POA   | TH ROAD   |       |         |      |              |                  |                     |                |         |                 |                   |          |             |
| 7         | L2       | 161       | 3.3   | 161     | 3.3  | 0.368        | 39.1             | LOS D               | 8.3            | 59.8    | 0.85            | 0.77              | 0.85     | 34.0        |
| 8         | T1       | 17        | 0.0   | 17      | 0.0  | 0.368        | 34.5             | LOS C               | 8.3            | 59.8    | 0.85            | 0.77              | 0.85     | 32.7        |
| 9         | R2       | 76        | 2.8   | 76      | 2.8  | 0.276        | 54.4             | LOS D               | 4.2            | 30.1    | 0.90            | 0.76              | 0.90     | 20.3        |
| Арр       | roach    | 254       | 2.9   | 254     | 2.9  | 0.368        | 43.4             | LOS D               | 8.3            | 59.8    | 0.87            | 0.77              | 0.87     | 30.3        |
| Wes       | st: NOR  | TH ROAD   |       |         |      |              |                  |                     |                |         |                 |                   |          |             |
| 10        | L2       | 57        | 3.7   | 57      | 3.7  | 0.800        | 29.9             | LOS C               | 43.0           | 307.0   | 0.86            | 0.80              | 0.86     | 47.0        |
| 11        | T1       | 1627      | 2.3   | 1627    | 2.3  | 0.800        | 22.8             | LOS C               | 43.0           | 307.0   | 0.83            | 0.77              | 0.83     | 50.9        |
| 12        | R2       | 12        | 0.0   | 12      | 0.0  | 0.129        | 46.3             | LOS D               | 0.6            | 4.1     | 0.77            | 0.72              | 0.77     | 33.8        |
| Арр       | roach    | 1696      | 2.3   | 1696    | 2.3  | 0.800        | 23.2             | LOS C               | 43.0           | 307.0   | 0.83            | 0.77              | 0.83     | 50.6        |
| All \     | /ehicles | 3892      | 3.0   | 3892    | 3.0  | 0.803        | 24.3             | LOSC                | 45.0           | 325.6   | 0.79            | 0.73              | 0.81     | 43.6        |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | ement Performance - Ped | lestrians               |                         |       |                                   |                           |                 |                        |
|-----------|-------------------------|-------------------------|-------------------------|-------|-----------------------------------|---------------------------|-----------------|------------------------|
| Mov<br>ID | Description             | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Bacl<br>Pedestrian<br>ped | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate |
| P1        | South Full Crossing     | 53                      | 9.3                     | LOSA  | 0.1                               | 0.1                       | 0.38            | 0.38                   |
| P2        | East Full Crossing      | 53                      | 47.5                    | LOS E | 0.2                               | 0.2                       | 0.86            | 0.86                   |
| P3        | North Full Crossing     | 53                      | 15.3                    | LOS B | 0.1                               | 0.1                       | 0.49            | 0.49                   |
| P4        | West Full Crossing      | 53                      | 47.5                    | LOS E | 0.2                               | 0.2                       | 0.86            | 0.86                   |
| All Pe    | destrians               | 211                     | 29.9                    | LOS C |                                   |                           | 0.64            | 0.64                   |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:14:28 AM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\171028 SIDRA Network - Existing
AM.sip8



Site: 1209 [5. EAST BOUNDARY ROAD / ARDENA COURT]

**♦** Network: N101 [Master Model]

EAST BOUNDARY ROAD / ARDENA COURT

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 117 seconds (Site User-Given Cycle Time)

| Mov       | ement   | t Perform | ance  | - Vehi  | cles  |              |                  |                     |                |         |                 |                   |                |             |
|-----------|---------|-----------|-------|---------|-------|--------------|------------------|---------------------|----------------|---------|-----------------|-------------------|----------------|-------------|
| Mov<br>ID | Turn    | Demand I  | Flows | Arrival | Flows | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Quei |         | Prop.<br>Queued | Effective<br>Stop | Aver. A<br>No. | Averag<br>e |
|           |         | Total     |       | Total   | HV    |              |                  |                     | Vehicles D     | istance |                 | Rate              | Cycles S       | Speed       |
|           |         | veh/h     |       | veh/h   | %     | v/c          | sec              |                     | veh            | m       |                 |                   |                | km/h        |
|           |         | T BOUNDA  |       |         |       |              |                  |                     |                |         |                 |                   |                |             |
| 1         | L2      | 25        | 4.2   | 25      | 4.2   | 0.022        | 15.2             | LOS B               | 0.5            | 3.9     | 0.40            | 0.66              | 0.40           | 42.4        |
| 2         | T1      | 1452      | 3.0   | 1452    | 3.0   | 0.614        | 14.1             | LOS B               | 25.1           | 179.9   | 0.66            | 0.60              | 0.66           | 45.6        |
| 3         | R2      | 52        | 2.0   | 52      | 2.0   | 0.549        | 69.4             | LOS E               | 3.1            | 22.1    | 1.00            | 0.76              | 1.04           | 26.0        |
| Appr      | oach    | 1528      | 3.0   | 1528    | 3.0   | 0.614        | 16.0             | LOS B               | 25.1           | 179.9   | 0.66            | 0.61              | 0.66           | 43.4        |
| East      | : ARDE  | NA COUR   | Т     |         |       |              |                  |                     |                |         |                 |                   |                |             |
| 4         | L2      | 37        | 2.9   | 37      | 2.9   | 0.079        | 37.9             | LOS D               | 1.6            | 11.6    | 0.78            | 0.69              | 0.78           | 32.2        |
| 5         | T1      | 1         | 0.0   | 1       | 0.0   | 0.079        | 34.5             | LOS C               | 1.6            | 11.6    | 0.78            | 0.69              | 0.78           | 28.3        |
| 6         | R2      | 39        | 2.7   | 39      | 2.7   | 0.151        | 48.5             | LOS D               | 1.9            | 13.8    | 0.89            | 0.72              | 0.89           | 19.6        |
| Appr      | oach    | 77        | 2.7   | 77      | 2.7   | 0.151        | 43.3             | LOS D               | 1.9            | 13.8    | 0.84            | 0.70              | 0.84           | 26.3        |
| North     | n: EAS  | T BOUNDA  | RY R  | DAD     |       |              |                  |                     |                |         |                 |                   |                |             |
| 7         | L2      | 5         | 0.0   | 5       | 0.0   | 0.005        | 15.0             | LOS B               | 0.1            | 8.0     | 0.39            | 0.64              | 0.39           | 38.1        |
| 8         | T1      | 1038      | 3.0   | 1038    | 3.0   | 0.437        | 12.0             | LOS B               | 15.0           | 108.1   | 0.56            | 0.50              | 0.56           | 53.9        |
| 9         | R2      | 8         | 0.0   | 8       | 0.0   | 0.088        | 66.2             | LOS E               | 0.5            | 3.4     | 0.98            | 0.66              | 0.98           | 22.4        |
| Appr      | oach    | 1052      | 3.0   | 1052    | 3.0   | 0.437        | 12.4             | LOS B               | 15.0           | 108.1   | 0.56            | 0.50              | 0.56           | 53.2        |
| West      | t: ARDE | ENA COUR  | T     |         |       |              |                  |                     |                |         |                 |                   |                |             |
| 10        | L2      | 9         | 0.0   | 9       | 0.0   | 0.082        | 46.0             | LOS D               | 1.1            | 7.7     | 0.86            | 0.69              | 0.86           | 20.2        |
| 11        | T1      | 1         | 0.0   | 1       | 0.0   | 0.082        | 42.6             | LOS D               | 1.1            | 7.7     | 0.86            | 0.69              | 0.86           | 26.7        |
| 12        | R2      | 13        | 0.0   | 13      | 0.0   | 0.082        | 45.9             | LOS D               | 1.1            | 7.7     | 0.86            | 0.69              | 0.86           | 30.5        |
| Appr      | oach    | 23        | 0.0   | 23      | 0.0   | 0.082        | 45.8             | LOS D               | 1.1            | 7.7     | 0.86            | 0.69              | 0.86           | 26.7        |
| All Ve    | ehicles | 2680      | 2.9   | 2680    | 2.9   | 0.614        | 15.6             | LOS B               | 25.1           | 179.9   | 0.63            | 0.57              | 0.63           | 46.2        |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Mov    | ment Performance - Ped | Demand        | Average      |         | Average Back   |               | Prop.  | Effective |
|--------|------------------------|---------------|--------------|---------|----------------|---------------|--------|-----------|
| ID     | Description            | Flow<br>ped/h | Delay<br>sec | Service | Pedestrian ped | Distance<br>m | Queued | Stop Rate |
| P1     | South Full Crossing    | 53            | 52.8         | LOS E   | 0.2            | 0.2           | 0.95   | 0.95      |
| P2     | East Full Crossing     | 53            | 11.1         | LOS B   | 0.1            | 0.1           | 0.44   | 0.44      |
| P3     | North Full Crossing    | 53            | 52.8         | LOS E   | 0.2            | 0.2           | 0.95   | 0.95      |
| P4     | West Full Crossing     | 53            | 10.3         | LOS B   | 0.1            | 0.1           | 0.42   | 0.42      |
| All Pe | destrians              | 211           | 31.7         | LOS D   |                |               | 0.69   | 0.69      |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:14:28 AM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\171028 SIDRA Network - Existing
AM.sip8

V Site: 103a [3a (east). EAST BOUNDARY ROAD / NORTH DRIVE!

♦♦ Network: N101 [Master Model]

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane.

Site Category: (None) Giveway / Yield (Two-Way)

| Mov       | /ement  | : Perform                | ance   | - Vehi | cles             |                     |                         |                     |                                        |      |                 |                           |                            |      |
|-----------|---------|--------------------------|--------|--------|------------------|---------------------|-------------------------|---------------------|----------------------------------------|------|-----------------|---------------------------|----------------------------|------|
| Mov<br>ID | Turn    | Demand<br>Total<br>veh/h | HV     |        | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Bac<br>Queue<br>Vehicles Di<br>veh |      | Prop.<br>Queued | Effective<br>Stop<br>Rate | Aver. A<br>No.<br>Cycles S | ě    |
| Sout      | th: EAS | T BOUND                  | ARY R  | OAD    |                  |                     |                         |                     |                                        |      |                 |                           |                            |      |
| 3         | R2      | 52                       | 2.0    | 52     | 2.0              | 0.208               | 13.8                    | LOS B               | 0.7                                    | 5.3  | 0.81            | 0.93                      | 0.86                       | 14.4 |
| 3u        | U       | 11                       | 0.0    | 11     | 0.0              | 0.208               | 25.7                    | LOS D               | 0.7                                    | 5.3  | 0.81            | 0.93                      | 0.86                       | 9.9  |
| Аррі      | roach   | 62                       | 1.7    | 62     | 1.7              | 0.208               | 15.8                    | NA                  | 0.7                                    | 5.3  | 0.81            | 0.93                      | 0.86                       | 13.9 |
| East      | :: NORT | H DRIVE                  |        |        |                  |                     |                         |                     |                                        |      |                 |                           |                            |      |
| 4         | L2      | 17                       | 12.5   | 17     | 12.5             | 0.019               | 8.2                     | LOS A               | 0.1                                    | 0.6  | 0.51            | 0.64                      | 0.51                       | 47.7 |
| 5         | T1      | 9                        | 0.0    | 9      | 0.0              | 0.034               | 16.4                    | LOS C               | 0.1                                    | 0.8  | 0.79            | 0.90                      | 0.79                       | 39.2 |
| Аррі      | roach   | 26                       | 8.0    | 26     | 8.0              | 0.034               | 11.1                    | LOS B               | 0.1                                    | 0.8  | 0.61            | 0.73                      | 0.61                       | 44.2 |
| Nort      | h: EAS1 | Γ BOUNDA                 | ARY RO | DAC    |                  |                     |                         |                     |                                        |      |                 |                           |                            |      |
| 7         | L2      | 72                       | 2.9    | 72     | 2.9              | 0.328               | 3.5                     | LOS A               | 0.0                                    | 0.0  | 0.00            | 0.07                      | 0.00                       | 56.1 |
| 8         | T1      | 1182                     | 2.7    | 1182   | 2.7              | 0.328               | 0.0                     | LOS A               | 0.0                                    | 0.0  | 0.00            | 0.03                      | 0.00                       | 56.6 |
| Аррі      | roach   | 1254                     | 2.7    | 1254   | 2.7              | 0.328               | 0.2                     | NA                  | 0.0                                    | 0.0  | 0.00            | 0.03                      | 0.00                       | 56.4 |
| Wes       | t: MEDI | AN                       |        |        |                  |                     |                         |                     |                                        |      |                 |                           |                            |      |
| 11        | T1      | 8                        | 0.0    | 8      | 0.0              | 0.392               | 25.3                    | LOS D               | 1.5                                    | 10.8 | 0.90            | 1.01                      | 1.13                       | 29.6 |
| 12        | R2      | 56                       | 3.8    | 56     | 3.8              | 0.392               | 31.8                    | LOS D               | 1.5                                    | 10.8 | 0.90            | 1.01                      | 1.13                       | 2.5  |
| Аррі      | roach   | 64                       | 3.3    | 64     | 3.3              | 0.392               | 31.0                    | LOS D               | 1.5                                    | 10.8 | 0.90            | 1.01                      | 1.13                       | 8.7  |
| All V     | ehicles | 1406                     | 2.8    | 1406   | 2.8              | 0.392               | 2.5                     | NA                  | 1.5                                    | 10.8 | 0.09            | 0.13                      | 0.10                       | 38.9 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:14:28 AM

Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\171028 SIDRA Network - Existing AM.sip8



V Site: 101 [1. MURRUMBEENA ROAD / LEILA ROAD]

**♦** Network: N101 [Master Model]

MURRUMBEENA ROAD / LEILA ROAD Site Category: (None) Giveway / Yield (Two-Way)

| Mov       | ement   | : Perform                | ance  | - Vehi | cles |                     |                         |                     |                                        |      |                 |                           |                            |         |
|-----------|---------|--------------------------|-------|--------|------|---------------------|-------------------------|---------------------|----------------------------------------|------|-----------------|---------------------------|----------------------------|---------|
| Mov<br>ID | Turn    | Demand<br>Total<br>veh/h | Flows |        |      | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Bac<br>Queud<br>Vehicles Di<br>veh | Э    | Prop.<br>Queued | Effective<br>Stop<br>Rate | Aver. A<br>No.<br>Cycles S | ě       |
| Sout      | n: MUR  | RUMBEE                   |       |        | ,,   | •,,,                |                         |                     | 7011                                   |      |                 |                           |                            | 1011/11 |
| 1         | L2      | 75                       | 1.4   | 75     | 1.4  | 0.353               | 5.6                     | LOS A               | 0.0                                    | 0.0  | 0.00            | 0.07                      | 0.00                       | 57.6    |
| 2         | T1      | 599                      | 2.5   | 599    | 2.5  | 0.353               | 0.0                     | LOS A               | 0.0                                    | 0.0  | 0.00            | 0.07                      | 0.00                       | 59.3    |
| Appr      | oach    | 674                      | 2.3   | 674    | 2.3  | 0.353               | 0.7                     | NA                  | 0.0                                    | 0.0  | 0.00            | 0.07                      | 0.00                       | 59.1    |
| East:     | LEILA   | ROAD                     |       |        |      |                     |                         |                     |                                        |      |                 |                           |                            |         |
| 4         | L2      | 58                       | 9.1   | 58     | 9.1  | 0.107               | 10.5                    | LOS B               | 0.4                                    | 2.7  | 0.60            | 0.83                      | 0.60                       | 45.1    |
| 5         | T1      | 28                       | 0.0   | 28     | 0.0  | 0.563               | 60.0                    | LOS F               | 2.1                                    | 15.1 | 0.96            | 1.07                      | 1.32                       | 27.7    |
| 6         | R2      | 21                       | 10.0  | 21     | 10.0 | 0.563               | 85.5                    | LOS F               | 2.1                                    | 15.1 | 0.96            | 1.07                      | 1.32                       | 27.5    |
| Appr      | oach    | 107                      | 6.9   | 107    | 6.9  | 0.563               | 38.3                    | LOS E               | 2.1                                    | 15.1 | 0.77            | 0.94                      | 0.93                       | 32.3    |
| North     | ı: MUR  | RUMBEEN                  | NA RO | AD     |      |                     |                         |                     |                                        |      |                 |                           |                            |         |
| 7         | L2      | 47                       | 6.7   | 47     | 6.7  | 0.027               | 5.6                     | LOS A               | 0.0                                    | 0.0  | 0.00            | 0.57                      | 0.00                       | 50.9    |
| 8         | T1      | 674                      | 1.6   | 674    | 1.6  | 0.352               | 0.0                     | LOS A               | 0.0                                    | 0.0  | 0.00            | 0.00                      | 0.00                       | 59.9    |
| 9         | R2      | 58                       | 0.0   | 58     | 0.0  | 0.063               | 8.6                     | LOS A               | 0.3                                    | 2.0  | 0.59            | 0.72                      | 0.59                       | 47.7    |
| Appr      | oach    | 779                      | 1.8   | 779    | 1.8  | 0.352               | 1.0                     | NA                  | 0.3                                    | 2.0  | 0.04            | 0.09                      | 0.04                       | 57.3    |
| West      | : LEILA | ROAD                     |       |        |      |                     |                         |                     |                                        |      |                 |                           |                            |         |
| 10        | L2      | 95                       | 1.1   | 95     | 1.1  | 0.133               | 8.1                     | LOS A               | 0.5                                    | 3.7  | 0.55            | 0.74                      | 0.55                       | 47.5    |
| 12        | R2      | 39                       | 0.0   | 39     | 0.0  | 0.499               | 71.2                    | LOS F               | 1.7                                    | 12.0 | 0.96            | 1.05                      | 1.23                       | 17.0    |
| Appr      | oach    | 134                      | 0.8   | 134    | 8.0  | 0.499               | 26.5                    | LOS D               | 1.7                                    | 12.0 | 0.67            | 0.83                      | 0.74                       | 36.4    |
| All Ve    | ehicles | 1694                     | 2.2   | 1694   | 2.2  | 0.563               | 5.2                     | NA                  | 2.1                                    | 15.1 | 0.12            | 0.19                      | 0.14                       | 52.8    |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:14:28 AM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\171028 SIDRA Network - Existing AM.sip8

V Site: 104a [4a (east). EAST BOUNDARY ROAD / SOUTH

♦♦ Network: N101 [Master Model]

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane.

Site Category: (None) Giveway / Yield (Two-Way)

| Move      | ement  | Perform           | ance · | - Vehi | cles |              |                  |                     |                  |      |                 |                   |          |             |
|-----------|--------|-------------------|--------|--------|------|--------------|------------------|---------------------|------------------|------|-----------------|-------------------|----------|-------------|
| Mov<br>ID | Turn   | Demand            |        |        |      | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Bad<br>Queue |      | Prop.<br>Queued | Effective<br>Stop | No.      | Averag<br>e |
|           |        | Total             |        | Total  | HV   |              |                  |                     | Vehicles Di      |      |                 | Rate              | Cycles S |             |
| South     | · FAS  | veh/h<br>T BOUND/ |        | veh/h  | %    | v/c          | sec              | _                   | veh              | m    | _               |                   | _        | km/h        |
| 3         | R2     | 96                | 1.1    | 96     | 1.1  | 0.300        | 18.0             | LOS C               | 1.2              | 8.2  | 0.83            | 0.97              | 0.98     | 18.9        |
| 3u        | U      | 134               | 3.1    | 134    | 3.1  | 0.759        | 51.5             | LOS F               | 4.2              | 30.1 | 0.95            | 1.24              | 1.96     | 6.6         |
| Appro     | ach    | 229               | 2.3    | 229    | 2.3  | 0.759        | 37.6             | NA                  | 4.2              | 30.1 | 0.90            | 1.13              | 1.55     | 13.8        |
| East:     | NORT   | H DRIVE           |        |        |      |              |                  |                     |                  |      |                 |                   |          |             |
| 4         | L2     | 5                 | 0.0    | 5      | 0.0  | 0.008        | 8.8              | LOS A               | 0.0              | 0.2  | 0.52            | 0.65              | 0.52     | 46.8        |
| 5         | T1     | 13                | 0.0    | 13     | 0.0  | 0.065        | 22.7             | LOS C               | 0.2              | 1.5  | 0.84            | 0.92              | 0.84     | 34.6        |
| Appro     | ach    | 18                | 0.0    | 18     | 0.0  | 0.065        | 18.6             | LOS C               | 0.2              | 1.5  | 0.75            | 0.84              | 0.75     | 37.5        |
| North     | : EAS1 | BOUNDA            | ARY RO | DAD    |      |              |                  |                     |                  |      |                 |                   |          |             |
| 7         | L2     | 151               | 0.0    | 151    | 0.0  | 0.331        | 5.5              | LOS A               | 0.0              | 0.0  | 0.00            | 0.14              | 0.00     | 55.4        |
| 8         | T1     | 1113              | 3.0    | 1113   | 3.0  | 0.331        | 0.0              | LOS A               | 0.0              | 0.0  | 0.00            | 0.06              | 0.00     | 55.6        |
| Appro     | ach    | 1263              | 2.7    | 1263   | 2.7  | 0.331        | 0.7              | NA                  | 0.0              | 0.0  | 0.00            | 0.07              | 0.00     | 55.5        |
| All Ve    | hicles | 1511              | 2.6    | 1511   | 2.6  | 0.759        | 6.5              | NA                  | 4.2              | 30.1 | 0.15            | 0.24              | 0.24     | 32.6        |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:14:28 AM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\171028 SIDRA Network - Existing AM.sip8

V Site: 107 [7. NORTH ROAD / CROSBIE ROAD / COBAR

NORTH ROAD / CROSBIE ROAD / COBAR STREET

Site Category: (None) Giveway / Yield (Two-Way)

| Mov       | emen    | t Perform      | nance | - Vehi      | cles      |              |                  |                     |                |               |                 |                   |              |               |
|-----------|---------|----------------|-------|-------------|-----------|--------------|------------------|---------------------|----------------|---------------|-----------------|-------------------|--------------|---------------|
| Mov<br>ID | Turn    | Demand         | Flows | Arrival     |           | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Quet |               | Prop.<br>Queued | Effective<br>Stop | Aver.<br>No. | Averag<br>e   |
|           |         | Total<br>veh/h |       | Total veh/h | HV<br>%   | v/c          | sec              |                     | Vehicles D     | istance)<br>m |                 | Rate              | Cycles       | Speed<br>km/h |
| Sout      | h: COI  | BAR STRE       |       | V 011/11    | ,,        | 7,5          |                  |                     | 7011           |               |                 |                   |              | 1(11)/11      |
| 1         | L2      | 15             | 0.0   | 15          | 0.0       | 0.284        | 70.8             | LOS F               | 0.7            | 4.6           | 0.96            | 1.02              | 1.03         | 16.1          |
| 3         | R2      | 1              | 100.0 | 1           | 100.<br>0 | 1.000        | 3337.7           | LOS F               | 1.8            | 23.8          | 1.00            | 1.03              | 1.11         | 0.5           |
| Appr      | oach    | 16             | 6.7   | 16          | 6.7       | 1.000        | 288.6            | LOS F               | 1.8            | 23.8          | 0.96            | 1.02              | 1.04         | 5.6           |
| East      | : NORT  | TH ROAD        |       |             |           |              |                  |                     |                |               |                 |                   |              |               |
| 4         | L2      | 39             | 5.4   | 39          | 5.4       | 0.781        | 6.0              | LOS A               | 0.0            | 0.0           | 0.00            | 0.02              | 0.00         | 57.8          |
| 5         | T1      | 1792           | 3.8   | 1792        | 3.8       | 0.781        | 12.2             | LOS B               | 26.7           | 193.2         | 0.19            | 0.01              | 0.39         | 46.3          |
| 6a        | R1      | 72             | 7.4   | 72          | 7.4       | 1.000        | 176.7            | LOS F               | 6.1            | 45.6          | 1.00            | 1.44              | 2.91         | 11.6          |
| Appr      | oach    | 1902           | 3.9   | 1902        | 3.9       | 1.000        | 18.2             | NA                  | 26.7           | 193.2         | 0.22            | 0.07              | 0.48         | 41.9          |
| North     | nWest:  | CROSBIE        | ROAD  | )           |           |              |                  |                     |                |               |                 |                   |              |               |
| 27a       | L1      | 57             | 7.4   | 57          | 7.4       | 0.128        | 11.7             | LOS B               | 0.5            | 3.4           | 0.68            | 0.85              | 0.68         | 43.7          |
| 29b       | R3      | 2              | 0.0   | 2           | 0.0       | 0.909        | 1959.4           | LOS F               | 2.0            | 13.9          | 1.00            | 1.02              | 1.13         | 1.0           |
| Appr      | oach    | 59             | 7.1   | 59          | 7.1       | 0.909        | 81.3             | LOS F               | 2.0            | 13.9          | 0.70            | 0.86              | 0.70         | 16.7          |
| West      | t: NOR  | TH ROAD        |       |             |           |              |                  |                     |                |               |                 |                   |              |               |
| 10b       | L3      | 23             | 9.1   | 23          | 9.1       | 0.015        | 7.4              | LOS A               | 0.0            | 0.0           | 0.00            | 0.64              | 0.00         | 38.4          |
| 11        | T1      | 1738           | 2.1   | 1738        | 2.1       | 0.452        | 1.1              | LOS A               | 0.0            | 0.0           | 0.00            | 0.18              | 0.00         | 62.2          |
| 12        | R2      | 5              | 20.0  | 5           | 20.0      | 0.214        | 155.2            | LOS F               | 0.5            | 4.0           | 0.99            | 1.00              | 1.01         | 11.5          |
| Appr      | oach    | 1766           | 2.2   | 1766        | 2.2       | 0.452        | 1.6              | NA                  | 0.5            | 4.0           | 0.00            | 0.19              | 0.00         | 58.6          |
| All V     | ehicles | 3743           | 3.2   | 3743        | 3.2       | 1.000        | 12.5             | NA                  | 26.7           | 193.2         | 0.13            | 0.14              | 0.26         | 41.5          |

♦♦ Network: N101 [Master

Model]

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:14:28 AM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\171028 SIDRA Network - Existing AM.sip8

Site: 3560 [2. NORTH ROAD / EAST BOUNDARY ROAD / MURRUMBEENA ROAD]

NORTH ROAD / EAST BOUNDARY ROAD / MURRUMBEENA ROAD

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 128 seconds (Site User-Given Cycle Time)

| Mov       | ement   | t Perform      | ance  | - Vehi      | cles    |              |                  |                     |                   |       |                 |                   |          |               |
|-----------|---------|----------------|-------|-------------|---------|--------------|------------------|---------------------|-------------------|-------|-----------------|-------------------|----------|---------------|
| Mov<br>ID | Turn    |                |       |             |         | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Que     | ue    | Prop.<br>Queued | Effective<br>Stop | No.      | Averag        |
|           |         | Total<br>veh/h |       | Total veh/h | HV<br>% | v/c          | sec              |                     | Vehicles [<br>veh |       |                 | Rate              | Cycles S | Speed<br>km/h |
| South     | h: EAS  | T BOUNDA       |       |             | 70      | V/C          | 366              |                     | Ven               | m     |                 |                   |          | KIII/II       |
| 1         | L2      | 462            | 0.4   | 462         | 0.4     | 0.423        | 21.1             | LOS C               | 13.4              | 94.4  | 0.58            | 0.82              | 0.74     | 48.0          |
| 2         | T1      | 571            | 0.4   | 571         | 0.4     | 0.990        | 76.8             | LOS E               | 21.1              | 148.0 | 0.99            | 1.02              | 1.34     | 11.9          |
| 3         | R2      | 312            | 0.6   | 312         | 0.6     | 0.982        | 103.3            | LOS F               | 12.8              | 90.2  | 1.00            | 1.08              | 1.68     | 9.2           |
| Appr      | oach    | 1345           | 0.4   | 1345        | 0.4     | 0.990        | 63.8             | LOS E               | 21.1              | 148.0 | 0.85            | 0.96              | 1.22     | 21.0          |
| East:     | NOR     | TH ROAD        |       |             |         |              |                  |                     |                   |       |                 |                   |          |               |
| 4         | L2      | 345            | 0.3   | 345         | 0.3     | 0.626        | 45.8             | LOS D               | 22.1              | 155.0 | 0.91            | 0.84              | 0.91     | 8.0           |
| 5         | T1      | 1201           | 0.9   | 1201        | 0.9     | 0.974        | 79.6             | LOS E               | 22.1              | 155.0 | 0.99            | 1.15              | 1.37     | 23.6          |
| 6         | R2      | 54             | 0.0   | 54          | 0.0     | 0.798        | 77.5             | LOS E               | 5.7               | 39.8  | 1.00            | 0.88              | 1.29     | 4.9           |
| 6u        | U       | 29             | 0.0   | 29          | 0.0     | 0.798        | 78.8             | LOS E               | 5.7               | 39.8  | 1.00            | 0.88              | 1.29     | 4.9           |
| Appr      | oach    | 1629           | 0.7   | 1629        | 0.7     | 0.974        | 72.3             | LOS E               | 22.1              | 155.0 | 0.98            | 1.07              | 1.27     | 21.2          |
| North     | n: MUR  | RUMBEEN        | NA RO | AD          |         |              |                  |                     |                   |       |                 |                   |          |               |
| 7         | L2      | 55             | 3.6   | 55          | 3.6     | 0.627        | 61.0             | LOS E               | 13.5              | 95.5  | 0.98            | 0.86              | 1.28     | 20.4          |
| 8         | T1      | 479            | 0.6   | 479         | 0.6     | 0.895        | 62.7             | LOS E               | 20.2              | 142.4 | 0.99            | 0.96              | 1.28     | 18.9          |
| 9         | R2      | 136            | 0.7   | 136         | 0.7     | 0.942        | 89.6             | LOS F               | 10.3              | 72.5  | 1.00            | 1.05              | 1.57     | 26.7          |
| Appr      | oach    | 670            | 0.9   | 670         | 0.9     | 0.942        | 68.0             | LOS E               | 20.2              | 142.4 | 0.99            | 0.97              | 1.34     | 21.4          |
| West      | : NOR   | TH ROAD        |       |             |         |              |                  |                     |                   |       |                 |                   |          |               |
| 10        | L2      | 107            | 3.7   | 107         | 3.7     | 0.117        | 15.1             | LOS B               | 3.2               | 23.4  | 0.48            | 0.62              | 0.48     | 50.9          |
| 11        | T1      | 1243           | 2.1   | 1243        | 2.1     | 0.783        | 23.8             | LOS C               | 34.1              | 242.5 | 0.75            | 0.68              | 0.75     | 42.0          |
| 12        | R2      | 405            | 0.5   | 405         | 0.5     | 0.992        | 101.2            | LOS F               | 34.5              | 242.2 | 0.96            | 1.10              | 1.53     | 18.3          |
| Appr      | oach    | 1755           | 1.8   | 1755        | 1.8     | 0.992        | 41.1             | LOS D               | 34.5              | 242.5 | 0.79            | 0.77              | 0.92     | 32.6          |
| All Ve    | ehicles | 5399           | 1.0   | 5399        | 1.0     | 0.992        | 59.5             | LOS E               | 34.5              | 242.5 | 0.89            | 0.93              | 1.15     | 24.3          |

♦♦ Network: N101 [Master

Model]

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | ement Performance - Pec | lestrians               |                         |       |                                   |                           |                 |                        |
|-----------|-------------------------|-------------------------|-------------------------|-------|-----------------------------------|---------------------------|-----------------|------------------------|
| Mov<br>ID | Description             | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Back<br>Pedestrian<br>ped | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate |
| P1        | South Full Crossing     | 53                      | 50.9                    | LOS E | 0.2                               | 0.2                       | 0.89            | 0.89                   |
| P2        | East Full Crossing      | 53                      | 58.3                    | LOS E | 0.2                               | 0.2                       | 0.96            | 0.96                   |
| P3        | North Full Crossing     | 53                      | 25.1                    | LOS C | 0.1                               | 0.1                       | 0.63            | 0.63                   |
| P4        | West Full Crossing      | 53                      | 58.3                    | LOS E | 0.2                               | 0.2                       | 0.96            | 0.96                   |
| All Pe    | edestrians              | 211                     | 48.1                    | LOS E |                                   |                           | 0.86            | 0.86                   |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:15:58 AM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\171205 SIDRA Network - Existing PM - Sat Flow Change.sip8

## Site: 3559 [10. NORTH ROAD / KOORNANG ROAD / TUCKER ROAD AM]

10. NORTH ROAD / KOORNAND ROAD / TUCKER ROAD

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 126 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

| Move   | ement F  | Performanc     | e - Vel | hicles      |              |          |                 |               |        |           |           |               |
|--------|----------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------|
| Mov    | Turn     | Demand I       |         | Deg.        | Average      | Level of | 95% Back        |               | Prop.  |           | Aver. No. |               |
| ID     |          | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay<br>sec | Service  | Vehicles<br>veh | Distance<br>m | Queued | Stop Rate | Cycles    | Speed<br>km/h |
| South  | 1: TUCKE | ER ROAD        |         |             |              |          |                 |               |        |           |           |               |
| 1      | L2       | 191            | 1.1     | 0.353       | 37.3         | LOS D    | 8.4             | 59.6          | 0.77   | 0.77      | 0.77      | 36.6          |
| 2      | T1       | 198            | 1.1     | 0.780       | 55.3         | LOS E    | 11.9            | 83.9          | 0.96   | 0.88      | 1.11      | 31.7          |
| Appro  | oach     | 388            | 1.1     | 0.780       | 46.5         | LOS D    | 11.9            | 83.9          | 0.87   | 0.83      | 0.94      | 33.9          |
| East:  | NORTH    | ROAD           |         |             |              |          |                 |               |        |           |           |               |
| 4      | L2       | 193            | 1.1     | 0.188       | 20.2         | LOS C    | 5.8             | 40.6          | 0.53   | 0.72      | 0.53      | 45.9          |
| 5      | T1       | 1714           | 0.6     | 0.728       | 19.0         | LOS B    | 26.5            | 186.2         | 0.69   | 0.62      | 0.69      | 47.3          |
| 6      | R2       | 173            | 1.2     | 0.788       | 69.1         | LOS E    | 11.1            | 78.7          | 1.00   | 0.89      | 1.17      | 30.2          |
| Appro  | ach      | 2079           | 0.7     | 0.788       | 23.3         | LOS C    | 26.5            | 186.2         | 0.70   | 0.65      | 0.72      | 45.1          |
| North  | : KOORI  | NANG ROAI      | )       |             |              |          |                 |               |        |           |           |               |
| 7      | L2       | 201            | 1.0     | 0.312       | 37.5         | LOS D    | 9.0             | 63.2          | 0.78   | 0.78      | 0.78      | 38.7          |
| 8      | T1       | 197            | 1.1     | 0.564       | 51.1         | LOS D    | 11.2            | 78.8          | 0.96   | 0.79      | 0.96      | 32.8          |
| Appro  | oach     | 398            | 1.1     | 0.564       | 44.2         | LOS D    | 11.2            | 78.8          | 0.87   | 0.79      | 0.87      | 35.7          |
| West:  | NORTH    | ROAD           |         |             |              |          |                 |               |        |           |           |               |
| 10     | L2       | 99             | 1.1     | 0.097       | 19.4         | LOS B    | 2.8             | 19.7          | 0.50   | 0.69      | 0.50      | 44.6          |
| 11     | T1       | 1685           | 2.0     | 0.775       | 20.1         | LOS C    | 32.1            | 228.4         | 0.73   | 0.66      | 0.73      | 46.8          |
| 12     | R2       | 169            | 1.2     | 0.773       | 68.4         | LOS E    | 10.8            | 76.7          | 1.00   | 0.88      | 1.15      | 28.0          |
| Appro  | oach     | 1954           | 1.9     | 0.775       | 24.2         | LOS C    | 32.1            | 228.4         | 0.74   | 0.68      | 0.76      | 44.4          |
| All Ve | hicles   | 4819           | 1.2     | 0.788       | 27.3         | LOSC     | 32.1            | 228.4         | 0.75   | 0.69      | 0.76      | 42.9          |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | Movement Performance - Pedestrians |                |                  |       |                            |                      |                 |                        |  |
|-----------|------------------------------------|----------------|------------------|-------|----------------------------|----------------------|-----------------|------------------------|--|
| Mov<br>ID | Description                        | Demand<br>Flow | Average<br>Delay |       | Average Back<br>Pedestrian | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate |  |
|           |                                    | ped/h          | sec              |       | ped                        | m                    |                 |                        |  |
| P1        | South Full Crossing                | 53             | 15.8             | LOS B | 0.1                        | 0.1                  | 0.50            | 0.50                   |  |
| P2        | East Full Crossing                 | 53             | 57.3             | LOS E | 0.2                        | 0.2                  | 0.95            | 0.95                   |  |
| P3        | North Full Crossing                | 53             | 4.6              | LOSA  | 0.1                        | 0.1                  | 0.27            | 0.27                   |  |
| P4        | West Full Crossing                 | 53             | 57.3             | LOS E | 0.2                        | 0.2                  | 0.95            | 0.95                   |  |
| All Pe    | destrians                          | 211            | 33.7             | LOS D |                            |                      | 0.67            | 0.67                   |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

 $Project: P: V13600-13699 V136080 \ East \ Village - Integrated \ Transp\\ Modelling\\ SIDRA\\ V180920-Updates\\ V171205 \ SIDRA \ Network - Existing \ PM - Sat \ Flow \ Change. \\ sip8$ 



Site: 3561 [6. NORTH ROAD / POATH ROAD / POET ROAD]

**♦** Network: N101 [Master Model]

NORTH ROAD / POATH ROAD / POET ROAD

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 130 seconds (Site User-Given Cycle Time)

| Mov       | ement   | Perform        | ance | - Vehi      | cles |              |                  |                     |                |       |                 |                   |        |             |
|-----------|---------|----------------|------|-------------|------|--------------|------------------|---------------------|----------------|-------|-----------------|-------------------|--------|-------------|
| Mov<br>ID | Turn    | Demand         |      |             |      | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Quei | ıe    | Prop.<br>Queued | Effective<br>Stop | No.    | Averag<br>e |
|           |         | Total<br>veh/h |      | Total veh/h | HV   | v/c          |                  |                     | Vehicles D     |       |                 | Rate              | Cycles |             |
| Sout      | h: POE  | T ROAD         | %    | ven/n       | %    | V/C          | sec              |                     | veh            | m     |                 |                   |        | km/h        |
| 1         | L2      | 55             | 1.9  | 55          | 1.9  | 0.761        | 70.1             | LOS E               | 8.2            | 58.1  | 1.00            | 0.91              | 1.18   | 16.0        |
| 2         | T1      | 13             | 0.0  | 13          | 0.0  | 0.761        | 66.6             | LOS E               | 8.2            | 58.1  | 1.00            | 0.91              | 1.18   | 25.1        |
| 3         | R2      | 55             | 1.9  | 55          | 1.9  | 0.761        | 70.0             | LOS E               | 8.2            | 58.1  | 1.00            | 0.91              | 1.18   | 25.2        |
| Appr      | oach    | 122            | 1.7  | 122         | 1.7  | 0.761        | 69.7             | LOS E               | 8.2            | 58.1  | 1.00            | 0.91              | 1.18   | 21.6        |
| East      | : NORT  | H ROAD         |      |             |      |              |                  |                     |                |       |                 |                   |        |             |
| 4         | L2      | 25             | 0.0  | 25          | 0.0  | 0.724        | 18.9             | LOS B               | 37.1           | 261.6 | 0.66            | 0.63              | 0.66   | 43.6        |
| 5         | T1      | 1513           | 0.7  | 1513        | 0.7  | 0.724        | 11.1             | LOS B               | 37.1           | 261.6 | 0.59            | 0.54              | 0.59   | 49.2        |
| 6         | R2      | 98             | 1.1  | 98          | 1.1  | 0.548        | 28.7             | LOS C               | 3.6            | 25.6  | 0.89            | 0.80              | 0.89   | 42.1        |
| Appr      | oach    | 1636           | 0.7  | 1636        | 0.7  | 0.724        | 12.2             | LOS B               | 37.1           | 261.6 | 0.61            | 0.56              | 0.61   | 48.1        |
| Nortl     | h: POAT | TH ROAD        |      |             |      |              |                  |                     |                |       |                 |                   |        |             |
| 7         | L2      | 238            | 0.9  | 238         | 0.9  | 0.718        | 47.8             | LOS D               | 15.4           | 108.7 | 0.97            | 0.85              | 0.99   | 31.5        |
| 8         | T1      | 44             | 0.0  | 44          | 0.0  | 0.718        | 43.3             | LOS D               | 15.4           | 108.7 | 0.97            | 0.85              | 0.99   | 30.4        |
| 9         | R2      | 76             | 1.4  | 76          | 1.4  | 0.252        | 54.8             | LOS D               | 4.2            | 29.7  | 0.90            | 0.76              | 0.90   | 20.2        |
| Appr      | oach    | 358            | 0.9  | 358         | 0.9  | 0.718        | 48.7             | LOS D               | 15.4           | 108.7 | 0.95            | 0.83              | 0.98   | 29.4        |
| Wes       | t: NOR1 | TH ROAD        |      |             |      |              |                  |                     |                |       |                 |                   |        |             |
| 10        | L2      | 89             | 1.2  | 89          | 1.2  | 0.749        | 25.8             | LOS C               | 39.1           | 278.3 | 0.78            | 0.74              | 0.78   | 49.1        |
| 11        | T1      | 1515           | 2.1  | 1515        | 2.1  | 0.749        | 18.3             | LOS B               | 39.1           | 278.3 | 0.74            | 0.68              | 0.74   | 53.7        |
| 12        | R2      | 25             | 0.0  | 25          | 0.0  | 0.228        | 36.7             | LOS D               | 1.1            | 8.0   | 0.70            | 0.75              | 0.70   | 36.6        |
| Appr      | oach    | 1629           | 2.0  | 1629        | 2.0  | 0.749        | 19.0             | LOS B               | 39.1           | 278.3 | 0.74            | 0.69              | 0.74   | 53.1        |
| All V     | ehicles | 3745           | 1.3  | 3745        | 1.3  | 0.761        | 20.5             | LOS C               | 39.1           | 278.3 | 0.71            | 0.65              | 0.72   | 46.1        |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move<br>Mov<br>ID | ment Performance - Pede<br>Description | Demand<br>Flow | Average<br>Delay |       | verage Back<br>Pedestrian | Distance | Prop.<br>Queued | Effective<br>Stop Rate |
|-------------------|----------------------------------------|----------------|------------------|-------|---------------------------|----------|-----------------|------------------------|
| P1                | South Full Crossing                    | ped/h<br>53    | sec<br>7.5       | LOSA  | ped<br>0.1                | 0.1      | 0.34            | 0.34                   |
| P2                | East Full Crossing                     | 53             | 51.9             | LOS E | 0.2                       | 0.2      | 0.89            | 0.89                   |
| P3                | North Full Crossing                    | 53             | 13.0             | LOS B | 0.1                       | 0.1      | 0.45            | 0.45                   |
| P4                | West Full Crossing                     | 53             | 51.9             | LOS E | 0.2                       | 0.2      | 0.89            | 0.89                   |
| All Pe            | destrians                              | 211            | 31.0             | LOS D |                           |          | 0.64            | 0.64                   |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:15:58 AM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\171205 SIDRA Network - Existing PM - Sat Flow Change.sip8



Site: 1209 [5. EAST BOUNDARY ROAD / ARDENA COURT]

**♦** Network: N101 [Master Model]

EAST BOUNDARY ROAD / ARDENA COURT

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 116 seconds (Site User-Given Cycle Time)

| Mov       | ement   | : Perform      | ance   | - Vehi      | cles    |              |                  |                     |                   |               |                 |                   |          |               |
|-----------|---------|----------------|--------|-------------|---------|--------------|------------------|---------------------|-------------------|---------------|-----------------|-------------------|----------|---------------|
| Mov<br>ID | Turn    | Demand         | Flows  | Arrival     | Flows   | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Que     |               | Prop.<br>Queued | Effective<br>Stop | Aver. A  | Averag<br>e   |
|           |         | Total<br>veh/h |        | Total veh/h | HV<br>% | v/c          | sec              |                     | Vehicles [<br>veh | Distance<br>m |                 | Rate              | Cycles S | Speed<br>km/h |
| Sout      | h: EAS  | T BOUND        |        |             | 70      | V/C          | 300              |                     | VCII              |               |                 |                   |          | KIII/II       |
| 1         | L2      | 18             | 0.0    | 18          | 0.0     | 0.016        | 15.1             | LOS B               | 0.4               | 2.6           | 0.40            | 0.66              | 0.40     | 42.4          |
| 2         | T1      | 1187           | 0.5    | 1187        | 0.5     | 0.495        | 12.7             | LOS B               | 18.1              | 127.6         | 0.59            | 0.53              | 0.59     | 47.3          |
| 3         | R2      | 126            | 8.0    | 126         | 0.8     | 0.529        | 58.8             | LOS E               | 6.9               | 48.6          | 0.98            | 0.79              | 0.98     | 28.1          |
| Appr      | oach    | 1332           | 0.6    | 1332        | 0.6     | 0.529        | 17.1             | LOS B               | 18.1              | 127.6         | 0.62            | 0.56              | 0.62     | 42.3          |
| East      | ARDE    | NA COUR        | Т      |             |         |              |                  |                     |                   |               |                 |                   |          |               |
| 4         | L2      | 91             | 0.0    | 91          | 0.0     | 0.151        | 32.1             | LOS C               | 3.6               | 25.4          | 0.74            | 0.71              | 0.74     | 34.2          |
| 5         | T1      | 2              | 0.0    | 2           | 0.0     | 0.151        | 28.7             | LOS C               | 3.6               | 25.4          | 0.74            | 0.71              | 0.74     | 29.6          |
| 6         | R2      | 75             | 0.0    | 75          | 0.0     | 0.287        | 50.2             | LOS D               | 3.8               | 26.6          | 0.92            | 0.75              | 0.92     | 19.3          |
| Appr      | oach    | 167            | 0.0    | 167         | 0.0     | 0.287        | 40.1             | LOS D               | 3.8               | 26.6          | 0.82            | 0.73              | 0.82     | 27.9          |
| North     | n: EAST | Γ BOUNDA       | ARY RO | DAC         |         |              |                  |                     |                   |               |                 |                   |          |               |
| 7         | L2      | 5              | 0.0    | 5           | 0.0     | 0.005        | 19.0             | LOS B               | 0.1               | 0.9           | 0.47            | 0.64              | 0.47     | 36.1          |
| 8         | T1      | 1183           | 0.4    | 1183        | 0.4     | 0.565        | 18.5             | LOS B               | 21.8              | 152.9         | 0.71            | 0.64              | 0.71     | 48.0          |
| 9         | R2      | 8              | 0.0    | 8           | 0.0     | 0.088        | 65.6             | LOS E               | 0.5               | 3.3           | 0.98            | 0.66              | 0.98     | 22.5          |
| Appr      | oach    | 1197           | 0.4    | 1197        | 0.4     | 0.565        | 18.8             | LOS B               | 21.8              | 152.9         | 0.71            | 0.64              | 0.71     | 47.6          |
| West      | :: ARDE | NA COUR        | RT     |             |         |              |                  |                     |                   |               |                 |                   |          |               |
| 10        | L2      | 21             | 0.0    | 21          | 0.0     | 0.169        | 48.2             | LOS D               | 2.2               | 15.6          | 0.89            | 0.72              | 0.89     | 19.7          |
| 11        | T1      | 1              | 0.0    | 1           | 0.0     | 0.169        | 44.8             | LOS D               | 2.2               | 15.6          | 0.89            | 0.72              | 0.89     | 26.2          |
| 12        | R2      | 23             | 0.0    | 23          | 0.0     | 0.169        | 48.1             | LOS D               | 2.2               | 15.6          | 0.89            | 0.72              | 0.89     | 29.9          |
| Appr      | oach    | 45             | 0.0    | 45          | 0.0     | 0.169        | 48.1             | LOS D               | 2.2               | 15.6          | 0.89            | 0.72              | 0.89     | 25.7          |
| All Ve    | ehicles | 2741           | 0.5    | 2741        | 0.5     | 0.565        | 19.8             | LOS B               | 21.8              | 152.9         | 0.68            | 0.61              | 0.68     | 42.6          |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | ment Performance - Pec | lestrians               |                         |       |                                   |                           |                 |                        |
|-----------|------------------------|-------------------------|-------------------------|-------|-----------------------------------|---------------------------|-----------------|------------------------|
| Mov<br>ID | Description            | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Bacl<br>Pedestrian<br>ped | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate |
| P1        | South Full Crossing    | 53                      | 52.3                    | LOS E | 0.2                               | 0.2                       | 0.95            | 0.95                   |
| P2        | East Full Crossing     | 53                      | 15.6                    | LOS B | 0.1                               | 0.1                       | 0.52            | 0.52                   |
| P3        | North Full Crossing    | 53                      | 52.3                    | LOS E | 0.2                               | 0.2                       | 0.95            | 0.95                   |
| P4        | West Full Crossing     | 53                      | 10.4                    | LOS B | 0.1                               | 0.1                       | 0.42            | 0.42                   |
| All Pe    | destrians              | 211                     | 32.6                    | LOS D |                                   |                           | 0.71            | 0.71                   |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:15:58 AM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\171205 SIDRA Network - Existing PM - Sat Flow Change.sip8

V Site: 103a [3a (east). EAST BOUNDARY ROAD / NORTH DRIVE!

♦♦ Network: N101 [Master Model]

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane.

Site Category: (None) Giveway / Yield (Two-Way)

| Mov       | rement  | Perform                    | ance  | - Vehi | cles             |                     |                         |                     |                                          |     |                 |                           |                            |      |
|-----------|---------|----------------------------|-------|--------|------------------|---------------------|-------------------------|---------------------|------------------------------------------|-----|-----------------|---------------------------|----------------------------|------|
| Mov<br>ID | Turn    | Demand I<br>Total<br>veh/h | HV    |        | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Queue<br>Vehicles Dis<br>veh |     | Prop.<br>Queued | Effective<br>Stop<br>Rate | Aver. A<br>No.<br>Cycles S | ě    |
| Sout      | h: EAS  | T BOUNDA                   | ARY R | OAD    |                  |                     |                         |                     |                                          |     |                 |                           |                            |      |
| 3         | R2      | 53                         | 0.0   | 53     | 0.0              | 0.243               | 14.0                    | LOS B               | 0.9                                      | 6.3 | 0.82            | 0.95                      | 0.91                       | 14.8 |
| 3u        | U       | 17                         | 0.0   | 17     | 0.0              | 0.243               | 26.7                    | LOS D               | 0.9                                      | 6.3 | 0.82            | 0.95                      | 0.91                       | 9.3  |
| Аррі      | roach   | 69                         | 0.0   | 69     | 0.0              | 0.243               | 17.1                    | NA                  | 0.9                                      | 6.3 | 0.82            | 0.95                      | 0.91                       | 14.1 |
| East      | : NORT  | H DRIVE                    |       |        |                  |                     |                         |                     |                                          |     |                 |                           |                            |      |
| 4         | L2      | 89                         | 0.0   | 89     | 0.0              | 0.094               | 8.0                     | LOS A               | 0.4                                      | 2.8 | 0.52            | 0.70                      | 0.52                       | 47.7 |
| 5         | T1      | 7                          | 0.0   | 7      | 0.0              | 0.053               | 16.4                    | LOS C               | 0.1                                      | 0.6 | 0.79            | 0.90                      | 0.79                       | 39.2 |
| Аррі      | oach    | 97                         | 0.0   | 97     | 0.0              | 0.094               | 8.6                     | LOS A               | 0.4                                      | 2.8 | 0.54            | 0.72                      | 0.54                       | 46.9 |
| Nort      | h: EAS1 | BOUNDA                     | RY R  | DAC    |                  |                     |                         |                     |                                          |     |                 |                           |                            |      |
| 7         | L2      | 62                         | 0.0   | 62     | 0.0              | 0.327               | 3.5                     | LOS A               | 0.0                                      | 0.0 | 0.00            | 0.06                      | 0.00                       | 56.5 |
| 8         | T1      | 1204                       | 0.5   | 1204   | 0.5              | 0.327               | 0.0                     | LOS A               | 0.0                                      | 0.0 | 0.00            | 0.03                      | 0.00                       | 57.0 |
| Аррі      | oach    | 1266                       | 0.5   | 1266   | 0.5              | 0.327               | 0.2                     | NA                  | 0.0                                      | 0.0 | 0.00            | 0.03                      | 0.00                       | 56.8 |
| Wes       | t: MEDI | AN                         |       |        |                  |                     |                         |                     |                                          |     |                 |                           |                            |      |
| 11        | T1      | 4                          | 0.0   | 4      | 0.0              | 0.206               | 20.3                    | LOS C               | 0.7                                      | 4.8 | 0.89            | 0.96                      | 0.94                       | 30.9 |
| 12        | R2      | 26                         | 0.0   | 26     | 0.0              | 0.206               | 29.5                    | LOS D               | 0.7                                      | 4.8 | 0.89            | 0.96                      | 0.94                       | 2.8  |
| Appı      | roach   | 31                         | 0.0   | 31     | 0.0              | 0.206               | 28.2                    | LOS D               | 0.7                                      | 4.8 | 0.89            | 0.96                      | 0.94                       | 9.7  |
| All V     | ehicles | 1463                       | 0.4   | 1463   | 0.4              | 0.327               | 2.1                     | NA                  | 0.9                                      | 6.3 | 0.09            | 0.14                      | 0.10                       | 42.4 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:15:58 AM

Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\171205 SIDRA Network - Existing PM -

Sat Flow Change.sip8



V Site: 101 [1. MURRUMBEENA ROAD / LEILA ROAD]

**♦** Network: N101 [Master Model]

MURRUMBEENA ROAD / LEILA ROAD Site Category: (None) Giveway / Yield (Two-Way)

| Mov       | ement    | Perform                    | ance        | - Vehi | cles |                     |                         |                     |                                     |      |                 |                           |                            |      |
|-----------|----------|----------------------------|-------------|--------|------|---------------------|-------------------------|---------------------|-------------------------------------|------|-----------------|---------------------------|----------------------------|------|
| Mov<br>ID | Turn     | Demand I<br>Total<br>veh/h | Flows<br>HV |        |      | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Queu<br>Vehicles D<br>veh | ie   | Prop.<br>Queued | Effective<br>Stop<br>Rate | Aver. A<br>No.<br>Cycles S | e    |
| Sout      | h: MUR   | RUMBEE                     | NA RO       | AD     |      |                     |                         |                     |                                     |      |                 |                           |                            |      |
| 1         | L2       | 91                         | 1.2         | 91     | 1.2  | 0.401               | 5.6                     | LOS A               | 0.0                                 | 0.0  | 0.00            | 0.07                      | 0.00                       | 57.5 |
| 2         | T1       | 684                        | 0.5         | 684    | 0.5  | 0.401               | 0.1                     | LOS A               | 0.0                                 | 0.0  | 0.00            | 0.07                      | 0.00                       | 59.2 |
| Appr      | oach     | 775                        | 0.5         | 775    | 0.5  | 0.401               | 0.7                     | NA                  | 0.0                                 | 0.0  | 0.00            | 0.07                      | 0.00                       | 59.0 |
| East:     | LEILA    | ROAD                       |             |        |      |                     |                         |                     |                                     |      |                 |                           |                            |      |
| 4         | L2       | 88                         | 4.8         | 88     | 4.8  | 0.144               | 9.8                     | LOS A               | 0.5                                 | 3.6  | 0.57            | 0.82                      | 0.57                       | 45.9 |
| 5         | T1       | 35                         | 0.0         | 35     | 0.0  | 1.000               | 183.8                   | LOS F               | 9.9                                 | 70.7 | 1.00            | 1.49                      | 3.10                       | 14.7 |
| 6         | R2       | 65                         | 3.2         | 65     | 3.2  | 1.000               | 191.1                   | LOS F               | 9.9                                 | 70.7 | 1.00            | 1.49                      | 3.10                       | 14.7 |
| Appr      | oach     | 188                        | 3.4         | 188    | 3.4  | 1.000               | 104.7                   | LOS F               | 9.9                                 | 70.7 | 0.80            | 1.17                      | 1.91                       | 18.6 |
| North     | n: MUR   | RUMBEEN                    | NA RO       | AD     |      |                     |                         |                     |                                     |      |                 |                           |                            |      |
| 7         | L2       | 136                        | 8.0         | 136    | 8.0  | 0.074               | 5.6                     | LOS A               | 0.0                                 | 0.0  | 0.00            | 0.58                      | 0.00                       | 50.9 |
| 8         | T1       | 628                        | 0.5         | 628    | 0.5  | 0.326               | 0.0                     | LOS A               | 0.0                                 | 0.0  | 0.00            | 0.00                      | 0.00                       | 59.9 |
| 9         | R2       | 66                         | 1.6         | 66     | 1.6  | 0.088               | 9.6                     | LOS A               | 0.4                                 | 2.6  | 0.62            | 0.80                      | 0.62                       | 47.1 |
| Appr      | oach     | 831                        | 0.6         | 831    | 0.6  | 0.326               | 1.7                     | NA                  | 0.4                                 | 2.6  | 0.05            | 0.16                      | 0.05                       | 56.2 |
| West      | :: LEILA | ROAD                       |             |        |      |                     |                         |                     |                                     |      |                 |                           |                            |      |
| 10        | L2       | 98                         | 0.0         | 98     | 0.0  | 0.160               | 9.0                     | LOS A               | 0.6                                 | 4.0  | 0.58            | 0.80                      | 0.58                       | 47.0 |
| 12        | R2       | 35                         | 0.0         | 35     | 0.0  | 0.635               | 115.8                   | LOS F               | 2.2                                 | 15.1 | 0.98            | 1.09                      | 1.34                       | 12.0 |
| Appr      | oach     | 133                        | 0.0         | 133    | 0.0  | 0.635               | 37.0                    | LOS E               | 2.2                                 | 15.1 | 0.69            | 0.88                      | 0.78                       | 32.7 |
| All Ve    | ehicles  | 1926                       | 0.8         | 1926   | 0.8  | 1.000               | 13.8                    | NA                  | 9.9                                 | 70.7 | 0.15            | 0.27                      | 0.26                       | 45.5 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

#### SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:15:58 AM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\171205 SIDRA Network - Existing PM -Sat Flow Change.sip8

Giveway / Yield (Two-Way)

V Site: 104a [4a (east). EAST BOUNDARY ROAD / SOUTH

♦♦ Network: N101 [Master Model]

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane. Site Category: (None)

| Move      | ement  | Perform        | ance   | - Vehi         | cles    |              |                  |                     |                   |               |                 |                   |                |               |
|-----------|--------|----------------|--------|----------------|---------|--------------|------------------|---------------------|-------------------|---------------|-----------------|-------------------|----------------|---------------|
| Mov<br>ID | Turn   | Demand         | Flows  | Arrival        |         | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Que     |               | Prop.<br>Queued | Effective<br>Stop | Aver. /<br>No. | Averag<br>e   |
|           |        | Total<br>veh/h |        | Total<br>veh/h | HV<br>% | v/c          | sec              |                     | Vehicles [<br>veh | Distance<br>m |                 | Rate              | Cycles S       | Speed<br>km/h |
| South     | n: EAS | T BOUND        | ARY R  | OAD            |         |              |                  |                     |                   |               |                 |                   |                |               |
| 3         | R2     | 12             | 0.0    | 12             | 0.0     | 0.040        | 16.5             | LOS C               | 0.1               | 0.9           | 0.80            | 0.92              | 0.80           | 19.2          |
| 3u        | U      | 163            | 1.3    | 163            | 1.3     | 1.000        | 106.1            | LOS F               | 10.0              | 71.1          | 1.00            | 1.77              | 4.18           | 3.4           |
| Appro     | ach    | 175            | 1.2    | 175            | 1.2     | 1.000        | 100.2            | NA                  | 10.0              | 71.1          | 0.99            | 1.71              | 3.95           | 4.4           |
| East:     | SOUT   | H DRIVE        |        |                |         |              |                  |                     |                   |               |                 |                   |                |               |
| 4         | L2     | 100            | 0.0    | 100            | 0.0     | 0.199        | 11.7             | LOS B               | 0.7               | 5.0           | 0.67            | 0.86              | 0.68           | 43.5          |
| 5         | T1     | 103            | 0.0    | 103            | 0.0     | 0.585        | 38.2             | LOS E               | 2.5               | 17.8          | 0.93            | 1.09              | 1.42           | 26.9          |
| Appro     | oach   | 203            | 0.0    | 203            | 0.0     | 0.585        | 25.2             | LOS D               | 2.5               | 17.8          | 0.80            | 0.98              | 1.06           | 33.1          |
| North     | : EAS1 | BOUND          | ARY RO | DAC            |         |              |                  |                     |                   |               |                 |                   |                |               |
| 7         | L2     | 18             | 0.0    | 18             | 0.0     | 0.345        | 5.5              | LOS A               | 0.0               | 0.0           | 0.00            | 0.02              | 0.00           | 57.1          |
| 8         | T1     | 1324           | 0.5    | 1324           | 0.5     | 0.345        | 0.0              | LOS A               | 0.0               | 0.0           | 0.00            | 0.01              | 0.00           | 59.3          |
| Appro     | ach    | 1342           | 0.5    | 1342           | 0.5     | 0.345        | 0.1              | NA                  | 0.0               | 0.0           | 0.00            | 0.01              | 0.00           | 59.2          |
| All Ve    | hicles | 1720           | 0.5    | 1720           | 0.5     | 1.000        | 13.2             | NA                  | 10.0              | 71.1          | 0.20            | 0.30              | 0.53           | 26.4          |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:15:58 AM Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\171205 SIDRA Network - Existing PM -Sat Flow Change.sip8

 $\overline{f V}$  Site: 107 [7. NORTH ROAD / CROSBIE ROAD / COBAR

NORTH ROAD / CROSBIE ROAD / COBAR STREET

Site Category: (None) Giveway / Yield (Two-Way)

| Mov       | ement   | t Perform      | ance | - Vehi      | cles    |              |                  |                     |                    |             |                 |                   |          |               |
|-----------|---------|----------------|------|-------------|---------|--------------|------------------|---------------------|--------------------|-------------|-----------------|-------------------|----------|---------------|
| Mov<br>ID | Turn    | Demand         |      |             | Flows   | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Bac<br>Queue   |             | Prop.<br>Queued | Effective<br>Stop | Aver. /  | e             |
|           |         | Total<br>veh/h |      | Total veh/h | пv<br>% | v/c          | sec              |                     | Vehicles Di<br>veh | stance<br>m |                 | Rate              | Cycles S | speed<br>km/h |
| South     | n: COE  | BAR STRE       |      |             |         |              |                  |                     |                    |             |                 |                   |          |               |
| 1         | L2      | 18             | 0.0  | 18          | 0.0     | 0.049        | 14.5             | LOS B               | 0.2                | 1.1         | 0.69            | 1.00              | 0.69     | 31.2          |
| 3         | R2      | 1              | 0.0  | 1           | 0.0     | 1.000        | 3874.5           | LOS F               | 2.0                | 14.3        | 1.00            | 1.03              | 1.10     | 0.5           |
| Appro     | oach    | 19             | 0.0  | 19          | 0.0     | 1.000        | 228.9            | LOS F               | 2.0                | 14.3        | 0.71            | 1.00              | 0.72     | 6.8           |
| East:     | NORT    | H ROAD         |      |             |         |              |                  |                     |                    |             |                 |                   |          |               |
| 4         | L2      | 1              | 0.0  | 1           | 0.0     | 0.431        | 5.6              | LOS A               | 0.0                | 0.0         | 0.00            | 0.00              | 0.00     | 58.5          |
| 5         | T1      | 1671           | 0.7  | 1671        | 0.7     | 0.431        | 0.1              | LOS A               | 0.0                | 0.0         | 0.00            | 0.00              | 0.00     | 59.9          |
| 6a        | R1      | 64             | 1.6  | 64          | 1.6     | 0.737        | 80.6             | LOS F               | 2.7                | 19.2        | 0.98            | 1.13              | 1.59     | 20.6          |
| Appro     | oach    | 1736           | 0.7  | 1736        | 0.7     | 0.737        | 3.1              | NA                  | 2.7                | 19.2        | 0.04            | 0.04              | 0.06     | 55.9          |
| North     | West:   | CROSBIE        | ROAD | )           |         |              |                  |                     |                    |             |                 |                   |          |               |
| 27a       | L1      | 119            | 0.9  | 119         | 0.9     | 0.238        | 11.4             | LOS B               | 0.9                | 6.6         | 0.69            | 0.87              | 0.74     | 44.0          |
| 29b       | R3      | 4              | 0.0  | 4           | 0.0     | 1.000        | 1193.7           | LOS F               | 2.3                | 15.9        | 1.00            | 1.05              | 1.27     | 1.6           |
| Appro     | oach    | 123            | 0.9  | 123         | 0.9     | 1.000        | 51.8             | LOS F               | 2.3                | 15.9        | 0.70            | 0.88              | 0.76     | 22.6          |
| West      | : NOR   | TH ROAD        |      |             |         |              |                  |                     |                    |             |                 |                   |          |               |
| 10b       | L3      | 43             | 4.9  | 43          | 4.9     | 0.027        | 7.4              | LOS A               | 0.0                | 0.0         | 0.00            | 0.64              | 0.00     | 38.4          |
| 11        | T1      | 1677           | 1.9  | 1677        | 1.9     | 0.435        | 1.1              | LOS A               | 0.0                | 0.0         | 0.00            | 0.18              | 0.00     | 62.2          |
| 12        | R2      | 2              | 0.0  | 2           | 0.0     | 0.015        | 30.4             | LOS D               | 0.0                | 0.3         | 0.90            | 0.96              | 0.90     | 28.7          |
| Appro     | oach    | 1722           | 2.0  | 1722        | 2.0     | 0.435        | 1.2              | NA                  | 0.0                | 0.3         | 0.00            | 0.19              | 0.00     | 60.9          |
| All Ve    | ehicles | 3600           | 1.3  | 3600        | 1.3     | 1.000        | 5.1              | NA                  | 2.7                | 19.2        | 0.05            | 0.15              | 0.06     | 51.2          |

♦♦ Network: N101 [Master

Model]

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

#### SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:15:58 AM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\171205 SIDRA Network - Existing PM -Sat Flow Change.sip8

# Appendix C

Traffic Generation



## C.1 Design Rates

The East Village development proposal is anticipated to accommodate the following key uses:

- Commercial (office)
- Retail (mix)
- Residential (medium to high density)
- School (most likely junior secondary school) of 1.2Ha in size

With each of these key uses, the initially proposed traffic generation rates are provided below.

#### Commercial (office)

Traffic generation rates for commercial uses tend to vary based on the level of car parking provision to be provided, efficiency of the building floor plates and types of office. However, for the purposes of assessing East Village as part of a land use change, it is assumed that car parking will be provided for 90% of the total staff numbers, and that 60% of the car spaces will turn-over in a peak hour.

Given that the employee density for the commercial land use as part of East Village is 50sqm/person, a commercial traffic generation rate of 1.08 peak hour movements per 100sqm of floor area is proposed.

#### Retail (mix)

Given that there is proposed to be just under 12,000sqm of mixed retail floor space, it is considered reasonable to consider it as a shopping centre. As such, Table 3.1 of the RTA Guide to Traffic Generating Developments indicates a rate of 6.0 movements per 100sqm of GLFA, or approx. 8.0 movements per 100sqm of LFA, in the PM peak hour.

#### Residential (medium to high density)

A single house on a standard lot in an outer metropolitan area will typically generate up to 1 trip in the peak hour and 8 to 10 trips per day. Medium density dwellings generally exhibit a lower traffic generation rate. In the outer metropolitan areas, where public transport accessibility is relatively low, the rate for medium density units is typically in the order of 6 to 8 trips per day. Closer to the Melbourne CAD the rate reduces to in the order of 3 to 6 trips per day depending on dwelling size, parking provisions and accessibility to public transport and local amenities, among other things.

These variations in household traffic generation rates are able to be identified through VISTA data. At this time, we have interrogated 2009 VISTA data, which indicates that households in Glen Eira on average complete 4.7 car movements per day. This is also similar, but marginally higher than what is able to be identified for the adjacent municipalities of Bayside and Kingston.

In terms of the peak hours, it is expected that 10% of the daily number will occur. As such, residential (medium to high density) traffic generation rate of 0.47 movements per dwelling is proposed.

#### School (secondary school)

At this time the specific number and type of school has not been identified. However, it is understood to most likely be in the order of 600-800 students for a 1.2Ha secondary school.

In terms of traffic generation rates, GTA has an empirical data base with 10 schools we have previously surveyed, and the results indicate the following rates during the school AM and PM peaks:



- AM Peak hour = 0.9 movements per student
- o PM (School) Peak hour = 0.7 movements per student

It is noted that the PM peak hour tends to occur between 3:00pm and 4:00pm, which is before the typical PM network peak. As such, school traffic generation rate of 0.9 movements per student in the AM peak period is proposed. It is not intended to include the PM peak rate in this analysis.

#### C.2 Internal Trip Discounts

Guidance on internal trip generation rates and corresponding allowances for internal trip rate reductions can be sourced from VISTA for residential land uses which suggests the following trip purposes for all residences in metropolitan Melbourne<sup>7</sup>:

Employment trips: 25.5% Education trips: 9.5% 0 Retail/Shopping trips: 0 17.4% 12.4% Social trips: 0 0 Recreation trips: 5.3% Other Trips: 30.1%

Sources such as RMS NSW Traffic Generation Guidelines (2002) recommend an internal trip discount rate of 25% in these circumstances.

For the benefit of a conservative on the high side assessment, an allowance for a 20% internal trip discount for the residential, retail and school uses has been assumed and relied upon for impact analysis.

On this basis, the resulting peak hour externally generated trip generation rates for the proposed land uses are set out in Table C.1.

Table C.1: External Trip Generation Rates

|                     | Traffic Gene                      | eration Rate             |
|---------------------|-----------------------------------|--------------------------|
| Use                 | AM Peak                           | PM Peak                  |
| Commercial (office) | 1.08 movements /100m <sup>2</sup> | 1.08 movements /100m²    |
| Retail (mix)        | N/A                               | 6.4 movements /100m²     |
| Residential         | 0.38 movements /dwelling          | 0.38 movements /dwelling |
| School              | 0.72 movements /student           | N/A                      |

## C.3 Directional Splits

The assignment of traffic (i.e. the ratio between the inbound and outbound traffic movements) for the additional external peak hour traffic movements anticipated to be generated by East Village are presented in Table C.2.

The Victorian Integrated Survey of Travel and Activity (VISTA) is an ongoing survey of household travel activity.



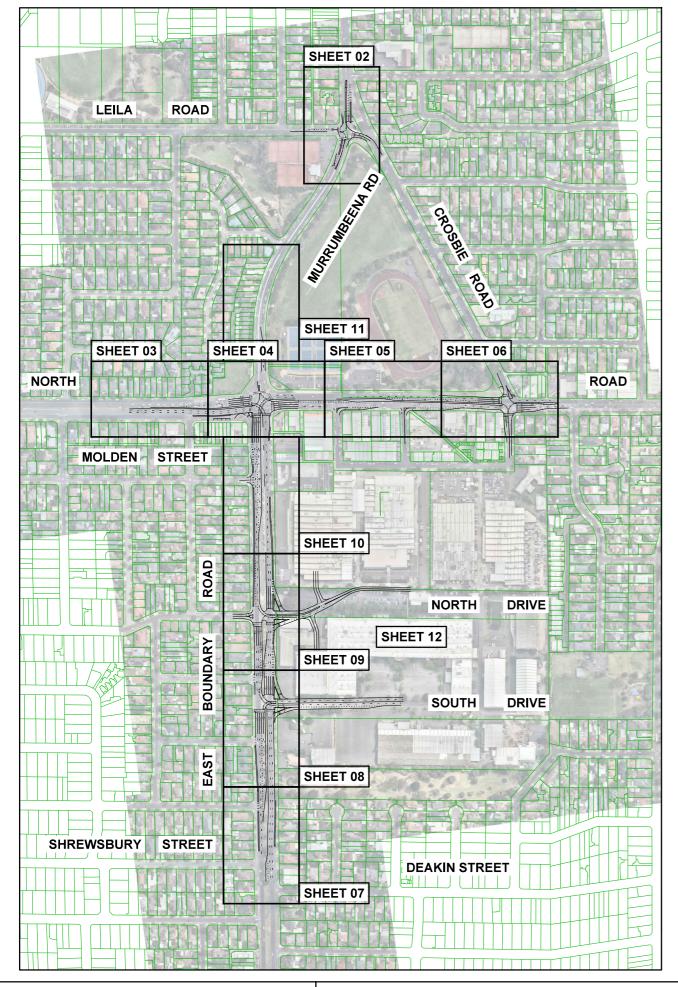
Table C.2: Assignment of Traffic (In and Out)

| Use                 | AM               | PM               |
|---------------------|------------------|------------------|
| Commercial (office) | 90% In / 10% Out | 10% In / 90% Out |
| Retail (mix)        | 90% In / 10% Out | 40% In / 60% Out |
| Residential         | 20% In / 80% Out | 60% In / 40% Out |
| School              | 50% In / 50% Out | 50% In / 50% Out |

## C.4 Traffic Generation Summary

These external generation rates and the resulting traffic generation are summarised in Table C.3.

Table C.3: Total Land Use Traffic Generation Estimate


|                     | Size                       | Traffic Generation Rate        |                                |                                |                                | Vehicle Movements |        |         |        |
|---------------------|----------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------|--------|---------|--------|
| Use                 |                            | AM Peak                        |                                | PM Peak                        |                                | AM Peak           |        | PM Peak |        |
|                     |                            | Ingress                        | Egress                         | Ingress                        | Egress                         | Ingress           | Egress | Ingress | Egress |
| Commercial (office) | ~80,000m²                  | 0.97<br>movements<br>/100m²    | 0.11<br>movements<br>/100m²    | 0.11<br>movements<br>/100m²    | 0.97<br>movements<br>/100m²    | 776               | 88     | 88      | 776    |
| Retail (mix)        | ~12,000m²                  | N/A                            |                                | 2.56<br>movements<br>/100m²    | 3.84<br>movements<br>/100m²    | 0                 |        | 307     | 461    |
| Residential         | ~3,100<br>dwellings<br>[1] | 0.08<br>movements<br>/dwelling | 0.30<br>movements<br>/dwelling | 0.23<br>movements<br>/dwelling | 0.15<br>movements<br>/dwelling | 248               | 930    | 713     | 465    |
| School              | 800<br>students            | 0.36<br>movements<br>/student  | 0.36<br>movements<br>/student  | N/A                            |                                | 288               | 288    | 0       |        |
| Total               |                            |                                |                                |                                |                                |                   | 1,306  | 1,108   | 1,702  |

<sup>[1] 100</sup> dwellings higher than proposed as a result of previous iterations. This is conservative on the high side as a result.

As shown in Table C.3, the total estimated externally generated traffic activity by East Village results in 2,618 vehicle movements in the AM peak hour (consisting of 1,312 ingress and 1,306 egress movements) and 2,810 vehicle movements in the PM peak hour (consisting of 1,108 ingress and 1,702 egress movements). In terms of daily volumes, these will be in the order of 27,000 movements).

# Appendix D

Concept Level Design Layouts & Swept Paths





# PROPOSED INTERSECTION AND ROADWORKS CONCEPT FUNCTIONAL LAYOUT PLANS

| SHEET SCHEDULE |                                                                  |  |  |  |  |
|----------------|------------------------------------------------------------------|--|--|--|--|
| SHEET 01       | COVER SHEET AND GENERAL NOTES                                    |  |  |  |  |
| SHEET 02       | MURRUMBEENA ROAD, LEILA ROAD AND CROSBIE ROAD INTERSECTION       |  |  |  |  |
| SHEET 03       | NORTH ROAD (WEST OF MURRUMBEENA ROAD)                            |  |  |  |  |
| SHEET 04       | NORTH ROAD, MURRUMBEENA ROAD AND EAST BOUNDARY ROAD INTERSECTION |  |  |  |  |
| SHEET 05       | NORTH ROAD (EAST OF MURRUMBEENA ROAD)                            |  |  |  |  |
| SHEET 06       | NORTH ROAD, (ROSBIE ROAD AND COBAR STREET INTERSECTION           |  |  |  |  |
| SHEET 07       | EAST BOUNDARY ROAD AND DEAKIN STREET (SOUTH OF NORTH ROAD)       |  |  |  |  |
| SHEET 08       | EAST BOUNDARY ROAD AND SOUTH DRIVE (SOUTH OF NORTH ROAD)         |  |  |  |  |
| SHEET 09       | EAST BOUNDARY ROAD AND NORTH DRIVE (SOUTH OF NORTH ROAD)         |  |  |  |  |
| SHEET 10       | EAST BOUNDARY ROAD AND MOLDEN STREET (SOUTH OF NORTH ROAD)       |  |  |  |  |
| SHEET 11       | MURRUMBEENA ROAD (NORTH OF NORTH ROAD)                           |  |  |  |  |
| SHEET 12       | NORTH DRIVE ALIGNMENT (EAST OF EAST BOUNDARY ROAD)               |  |  |  |  |



#### www.gta.com.au

Melbourne 03 9851 9600
Sydney 02 8448 1800
Brisbane 07 3113 5000
Canberra 02 6243 9400
Adelaide 08 8334 3600
Gold Coast 07 5510 4814
Townsville 07 4722 2765
Perth 08 6316 4434

#### GENERAL NOTES

1. ALL DIMENSIONS WITHIN THIS SET ARE BASED ON AERIAL PHOTOGRAPHY AND ARE APPROXIMATE ONLY.



Melbourne 03 9851 9600 Sydney 02 8448 1800 Brisbane 07 3113 5000 Conberra 02 6243 9400 Adelalde 08 8334 3600 Gold Coast 07 5510 4814 Townsville 07 4722 2765 Perth 08 6169 1000



PRELIMINARY PLAN

FOR DISCUSSION PURPOSES
ONLY SUBJECT TO CHANGE
WITHOUT MOTIFICATION

WARNING

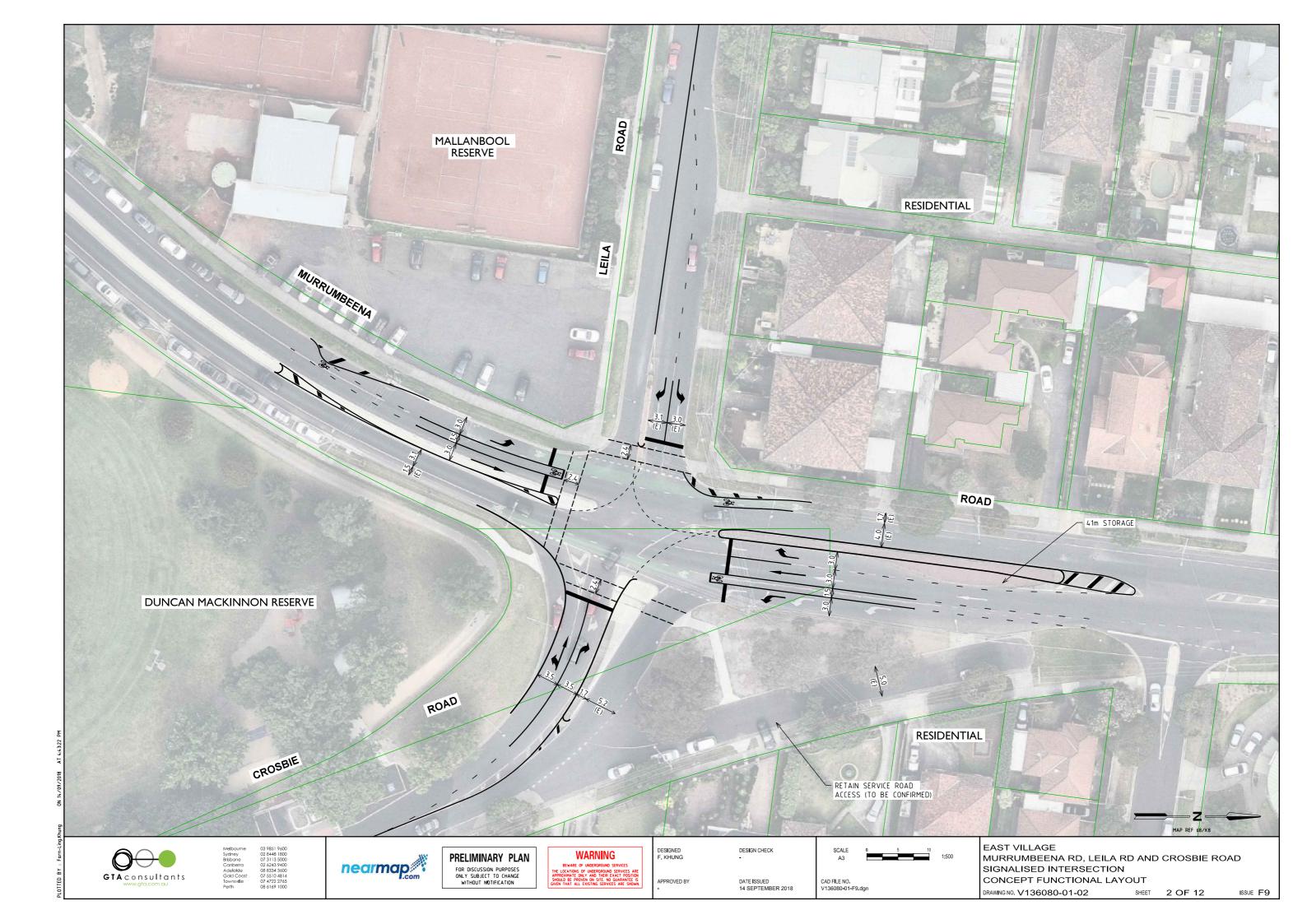

BEWARE OF UNDERGROUND SERVICES

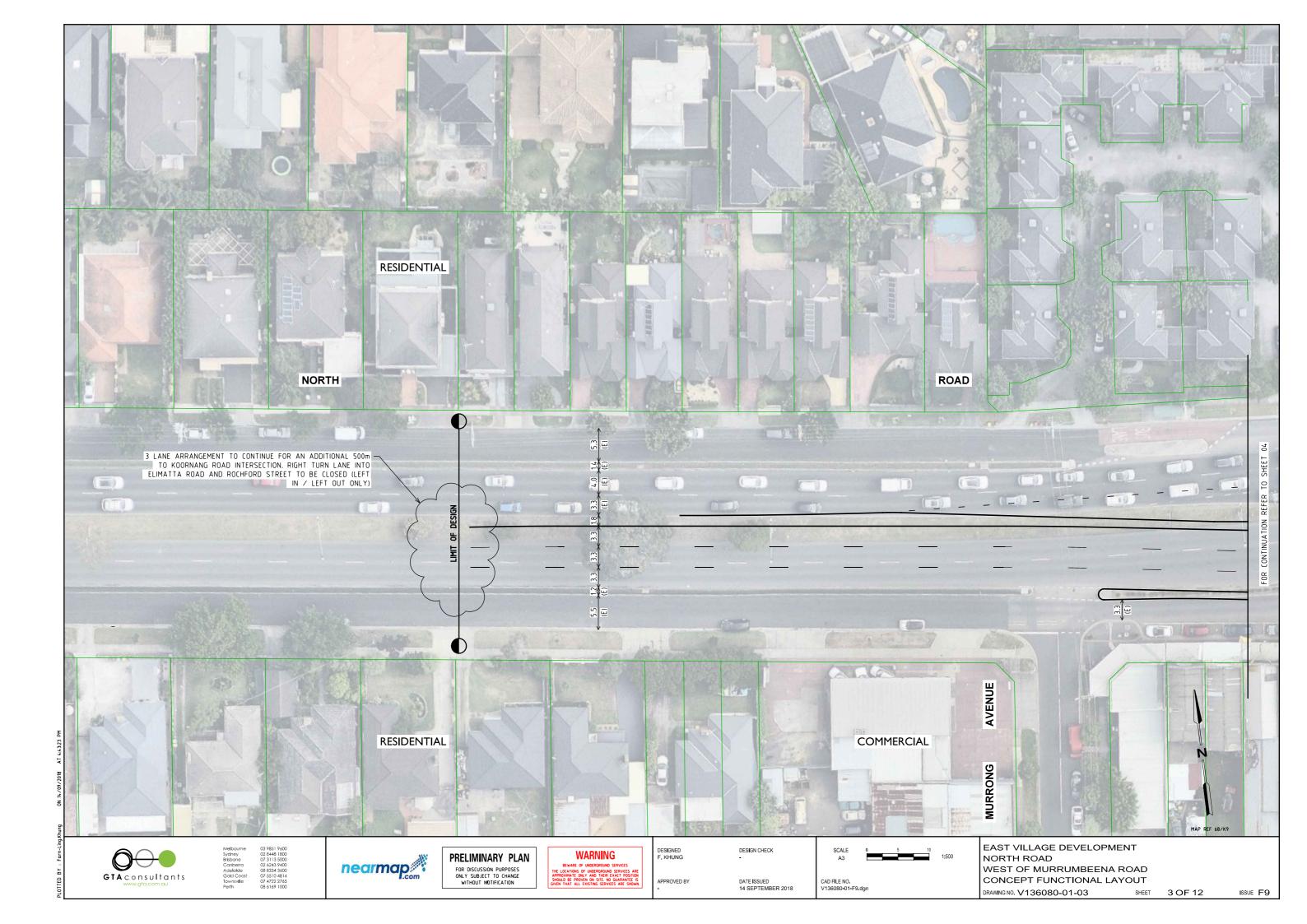
THE LOCATIONS OF UNDERGROUND SERVICES ARE
APPROXMANE ONLY AND THEM EXACT POSITION
SHOULD BE PROVEN ON SITE. NO GUARANTEE IS
CUYEN THAT ALL EXISTING SERVICES ARE SHOWN.

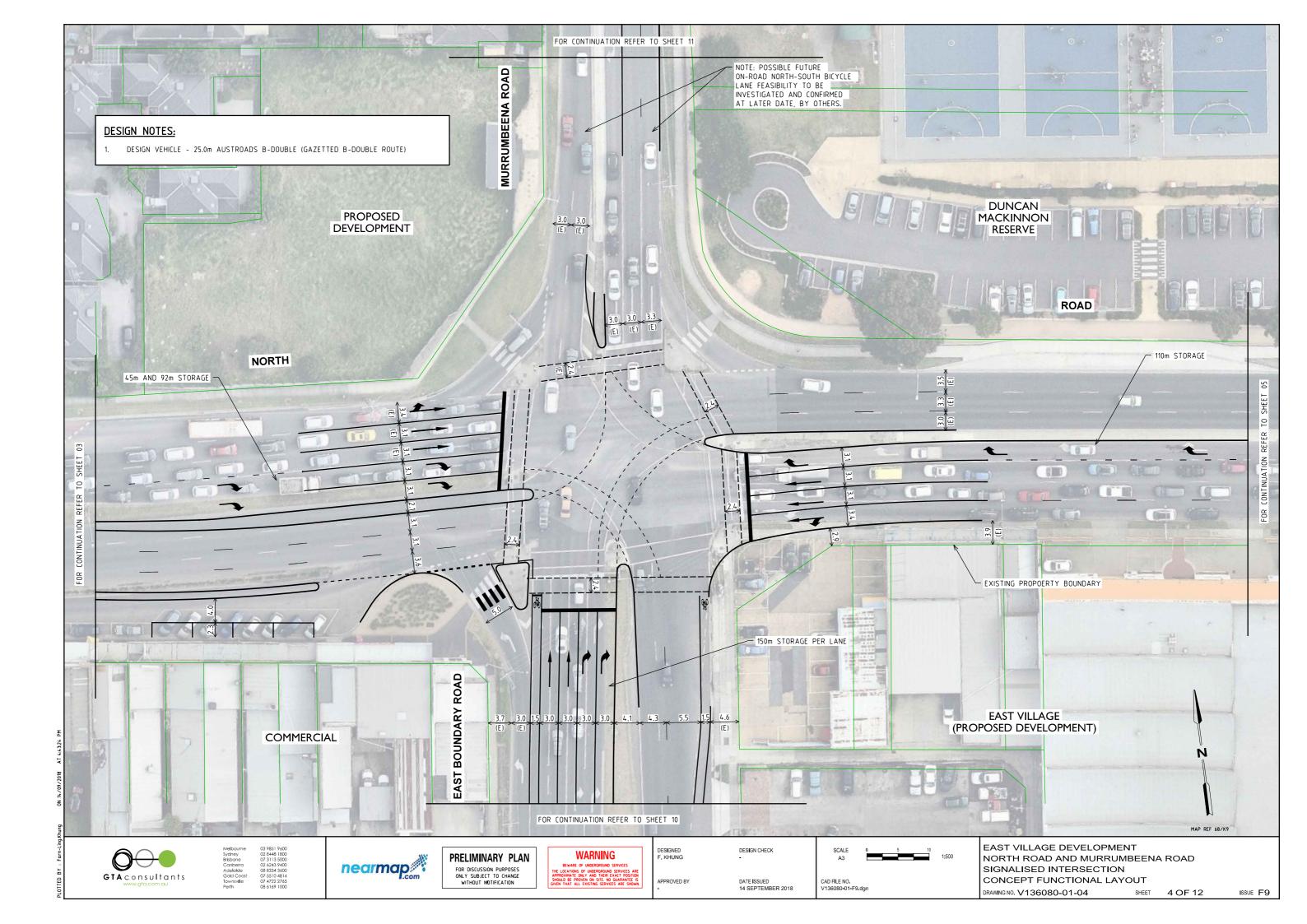
DESIGNED H.S. / T.N. / F.L.K

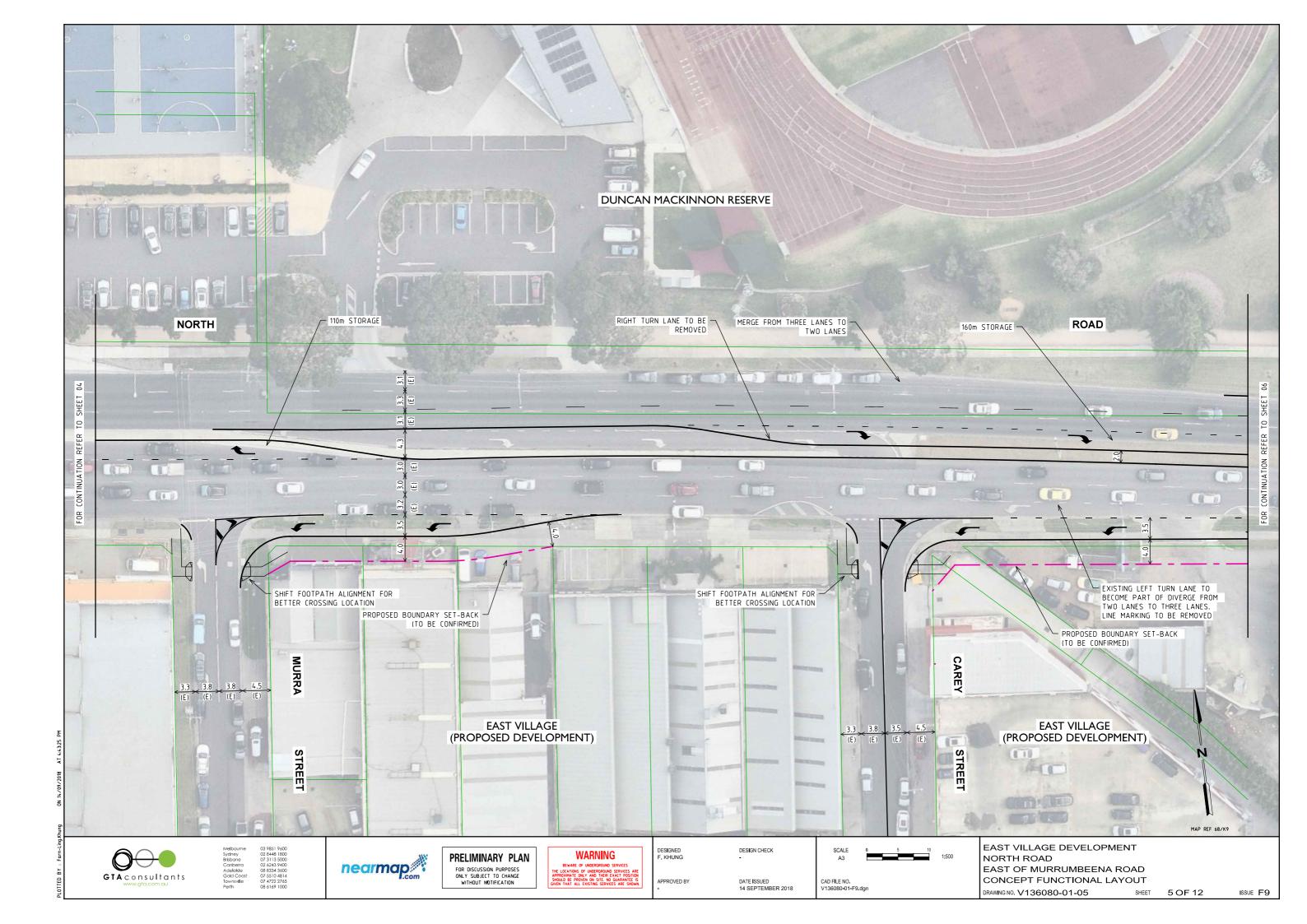
D DV DATE ISSUED

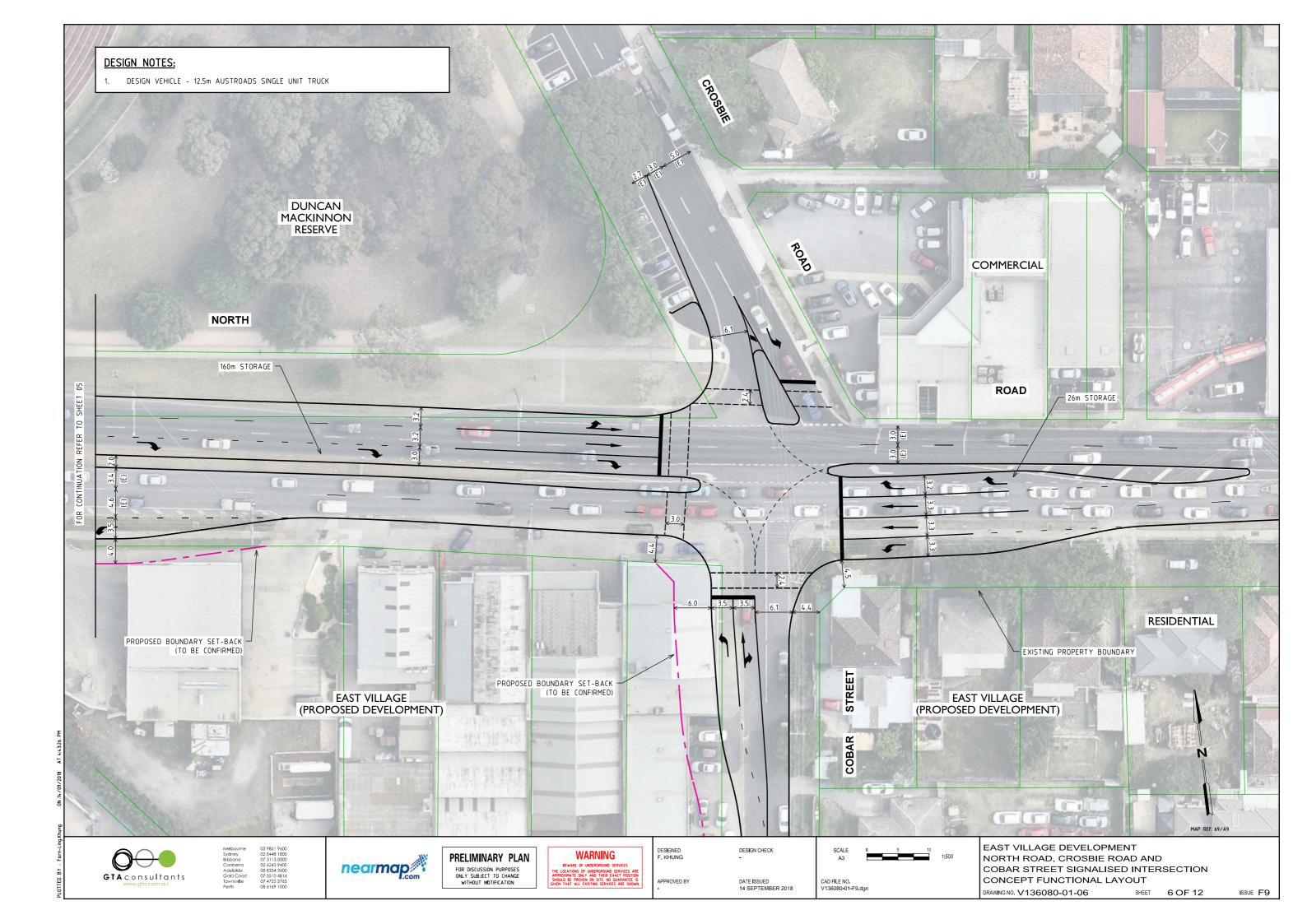
DESIGN CHECK

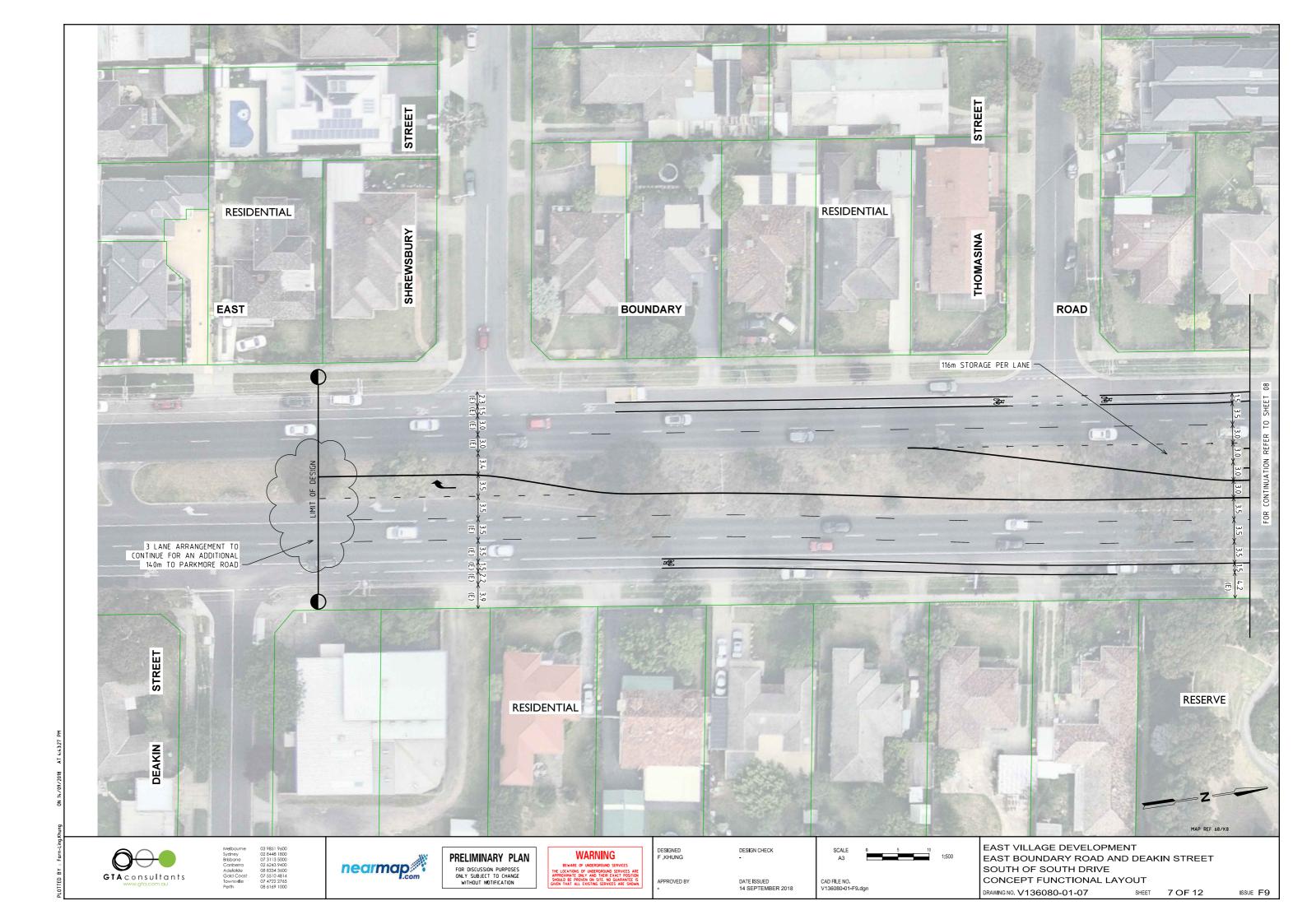


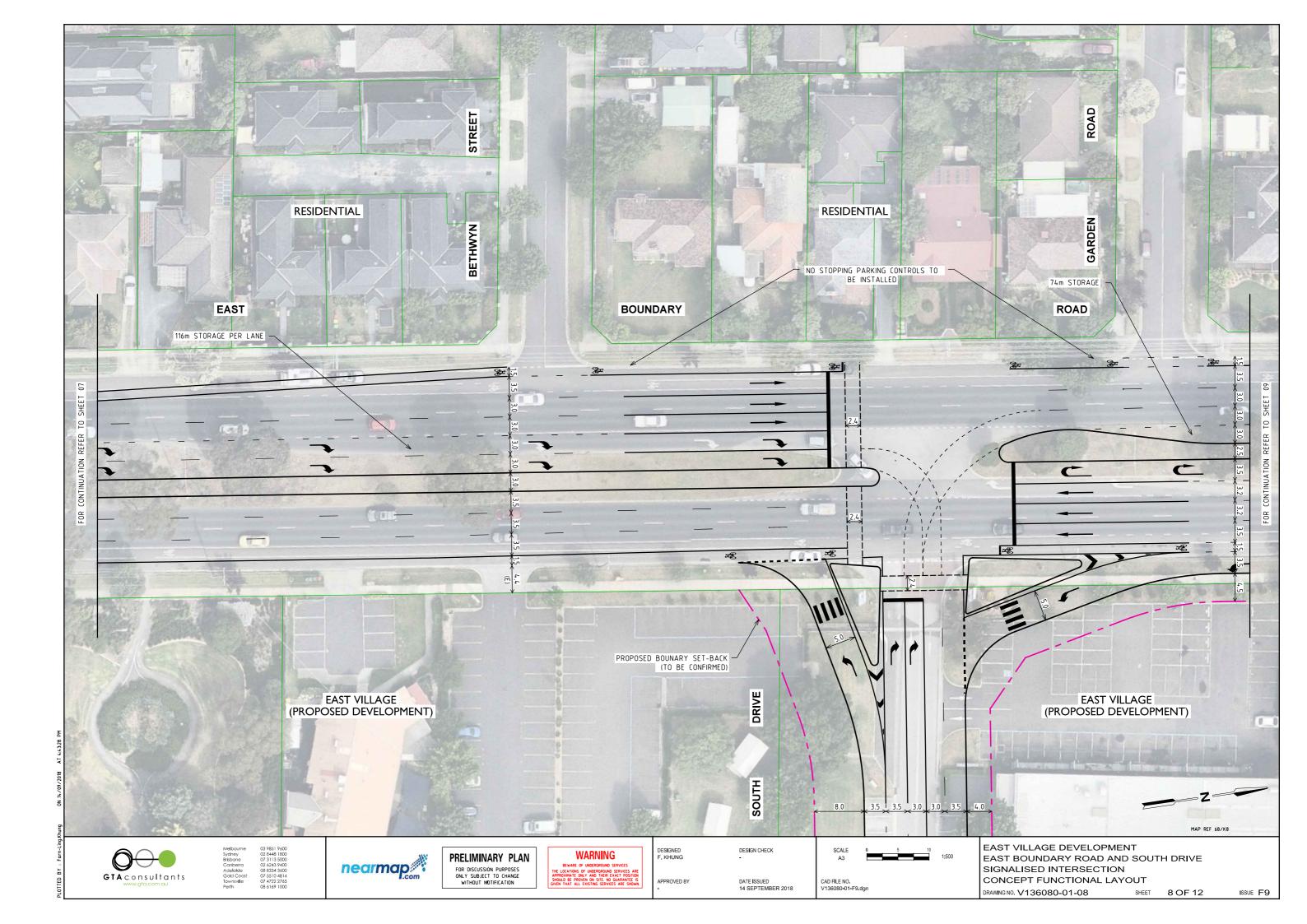


EAST VILLAGE DEVELOPMENT NORTH ROAD AND MURRUMBEENA ROAD CONCEPT FUNCTIONAL LAYOUT COVER SHEET AND GENERAL NOTES

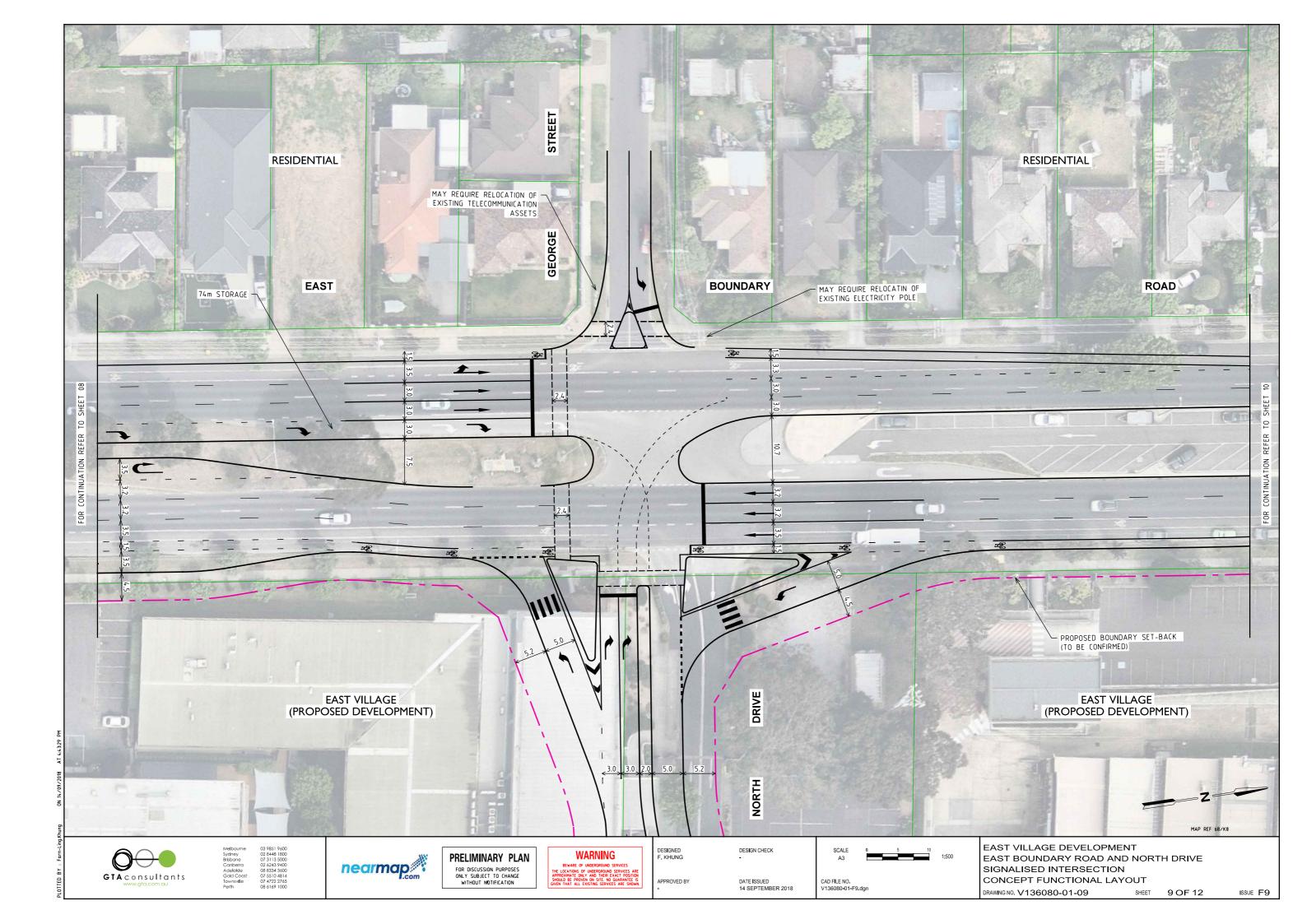

DRAWING NO. V136080-01-01 SHEET 1 OF 12

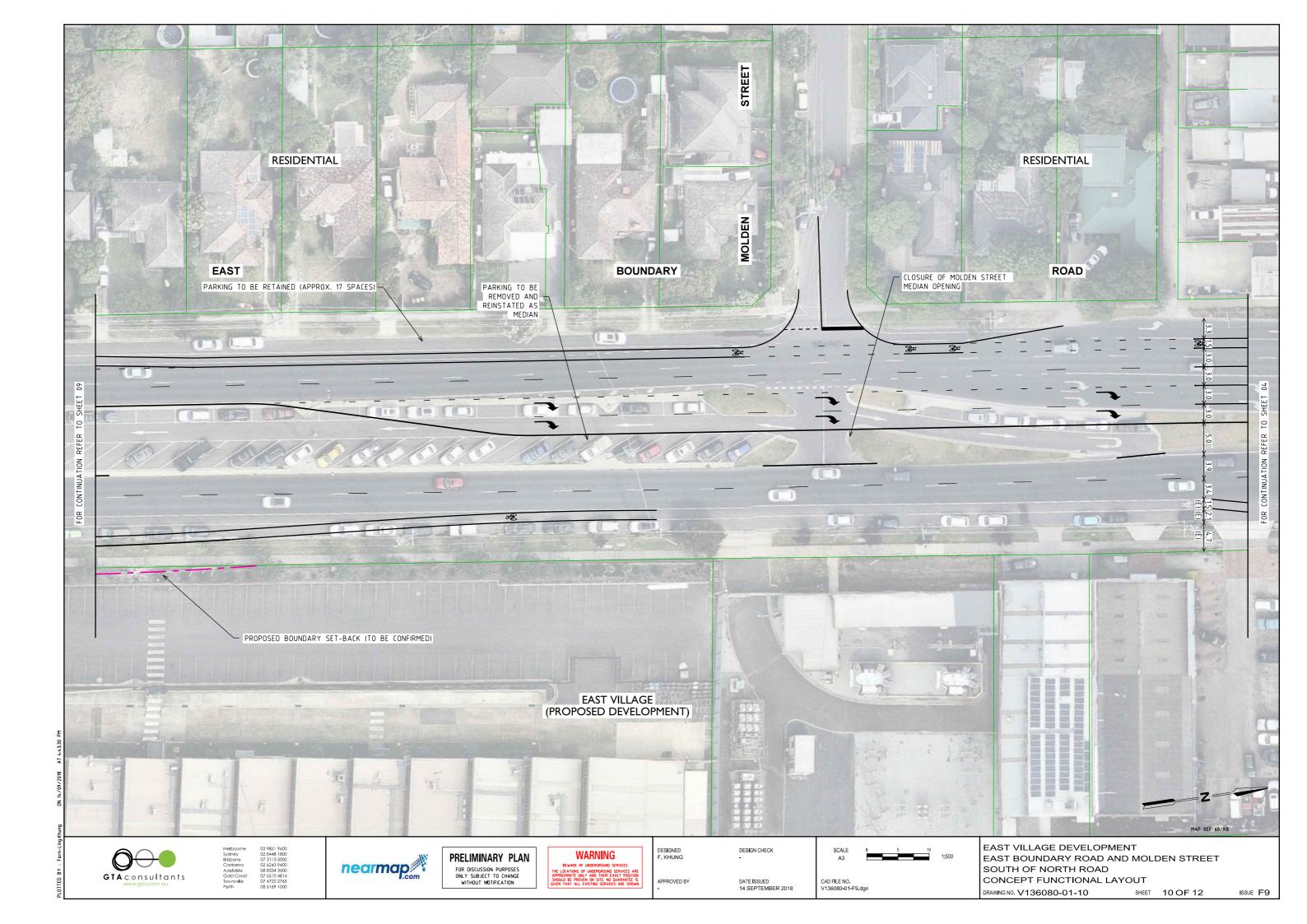

ISSUE F9

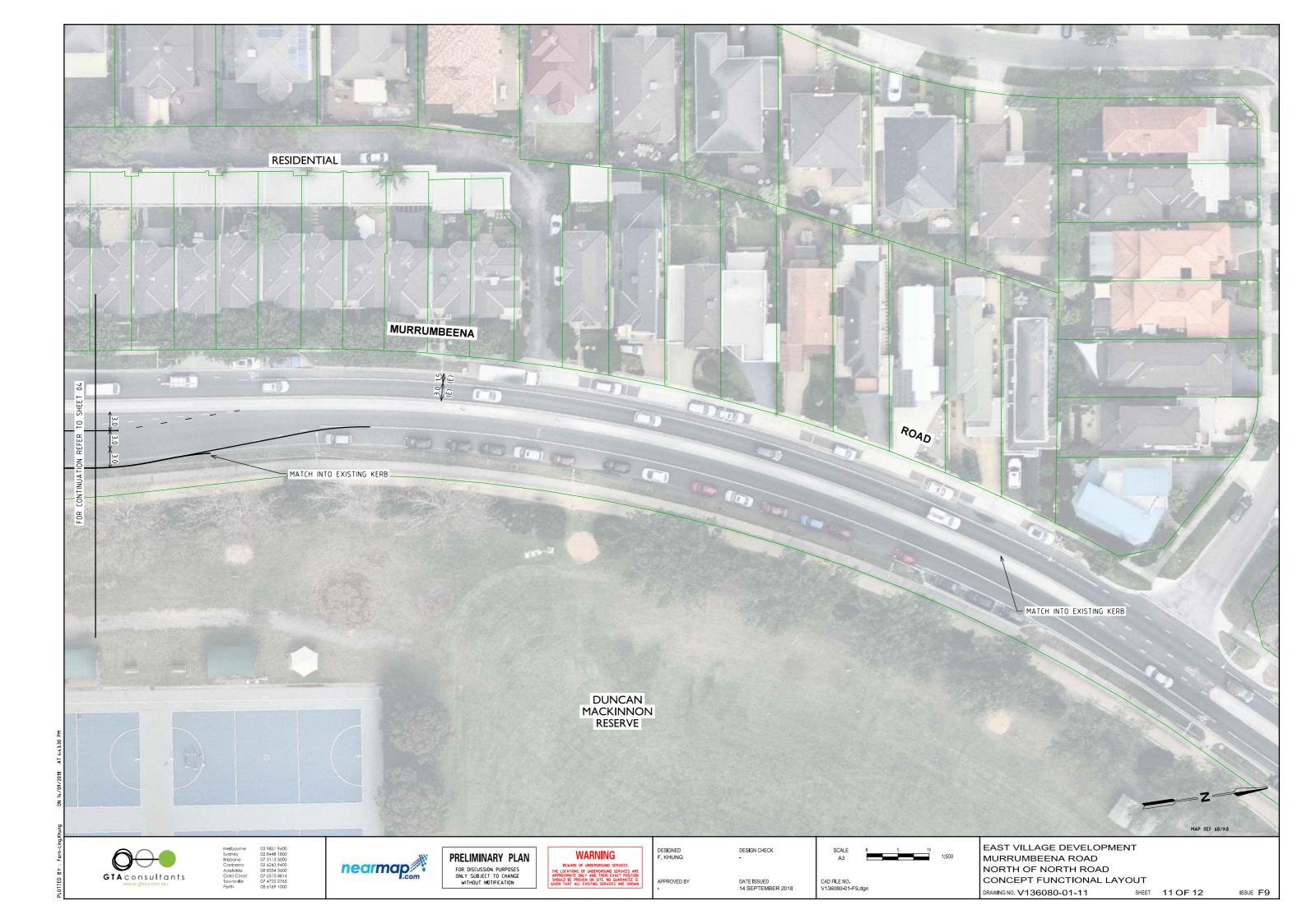

ED BY : Farn-Ling.Khung ON 14/09/2018 A

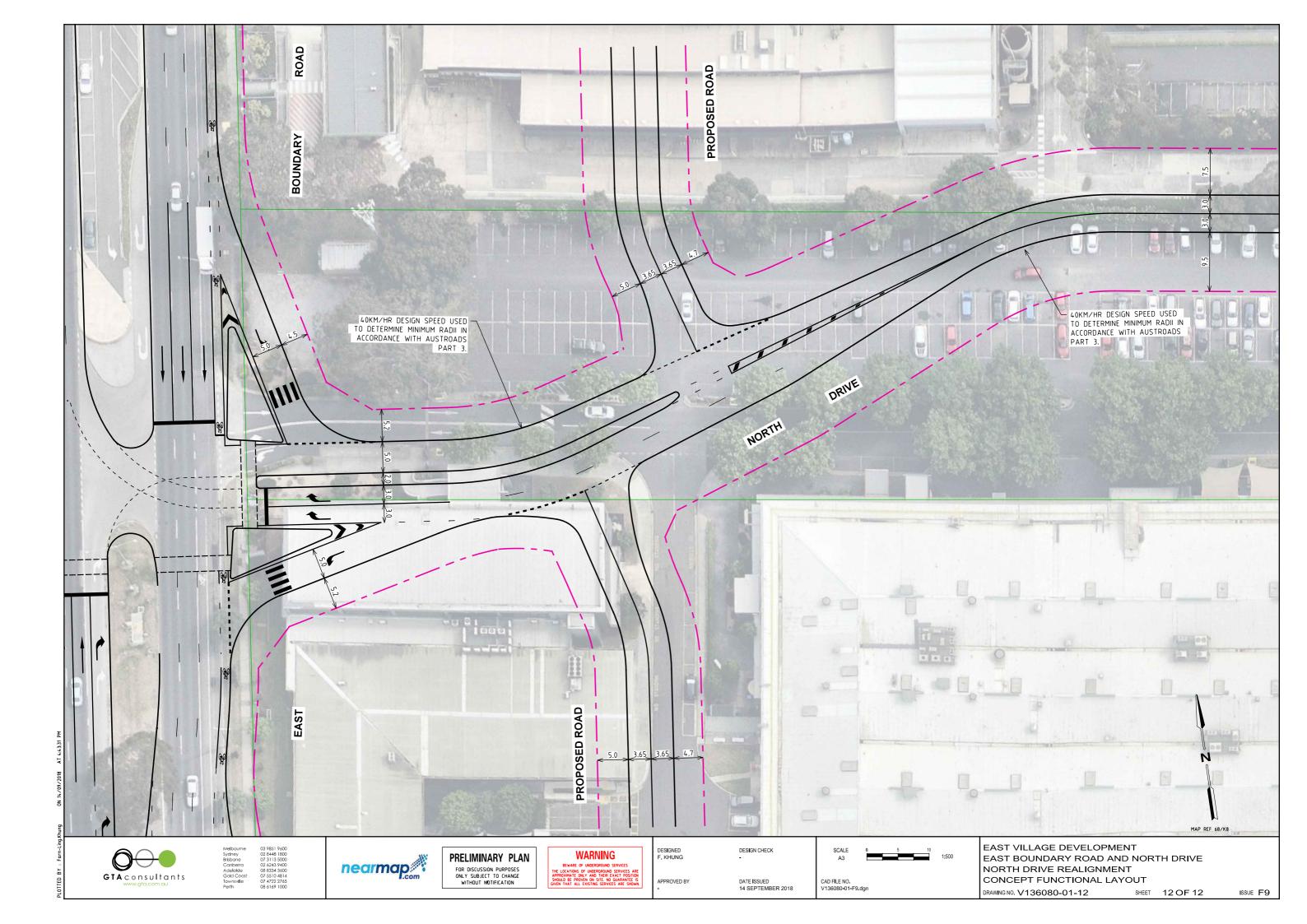


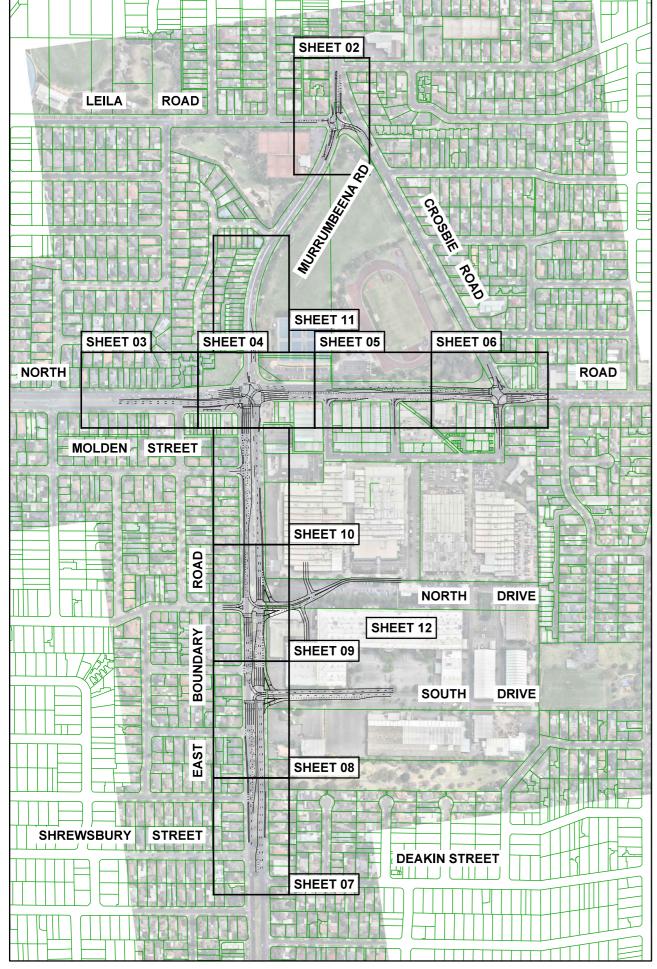
















# EAST VILLAGE MIXED USE DEVELOPMENT PROPOSED INTERSECTION AND ROADWORKS **CONCEPT FUNCTIONAL LAYOUT PLANS**

|             | SHEET SCHEDULE                                                   |
|-------------|------------------------------------------------------------------|
| SHEET 01    | COVER SHEET AND GENERAL NOTES                                    |
| SHEET 02-04 | MURRUMBEENA ROAD, LEILA ROAD AND CROSBIE ROAD INTERSECTION       |
| SHEET 05-06 | NORTH ROAD, MURRUMBEENA ROAD AND EAST BOUNDARY ROAD INTERSECTION |
| SHEET 07    | NORTH ROAD (EAST OF MURRUMBEENA ROAD)                            |
| SHEET 08-10 | NORTH ROAD, CROSBIE ROAD AND COBAR STREET INTERSECTION           |
| SHEET 11-12 | EAST BOUNDARY ROAD AND SOUTH DRIVE (SOUTH OF NORTH ROAD)         |
| SHEET 13-14 | EAST BOUNDARY ROAD AND NORTH DRIVE (SOUTH OF NORTH ROAD)         |
| SHEET 15    | NORTH DRIVE ALIGNMENT (EAST OF EAST BOUNDARY ROAD)               |
| SHEET 09    | EAST BOUNDARY ROAD AND NORTH DRIVE (SOUTH OF NORTH ROAD)         |



#### www.gta.com.au

Melbourne 03 9851 9600 Sydney 02 8448 1800 07 3113 5000 Canberra 02 6243 9400 Adelaide 08 8334 3600 07 5510 4814 Gold Coast 07 4722 2765 Townsville 08 6316 4634

#### **GENERAL NOTES**

1. ALL DIMENSIONS WITHIN THIS SET ARE BASED ON AERIAL PHOTOGRAPHY AND ARE APPROXIMATE ONLY.





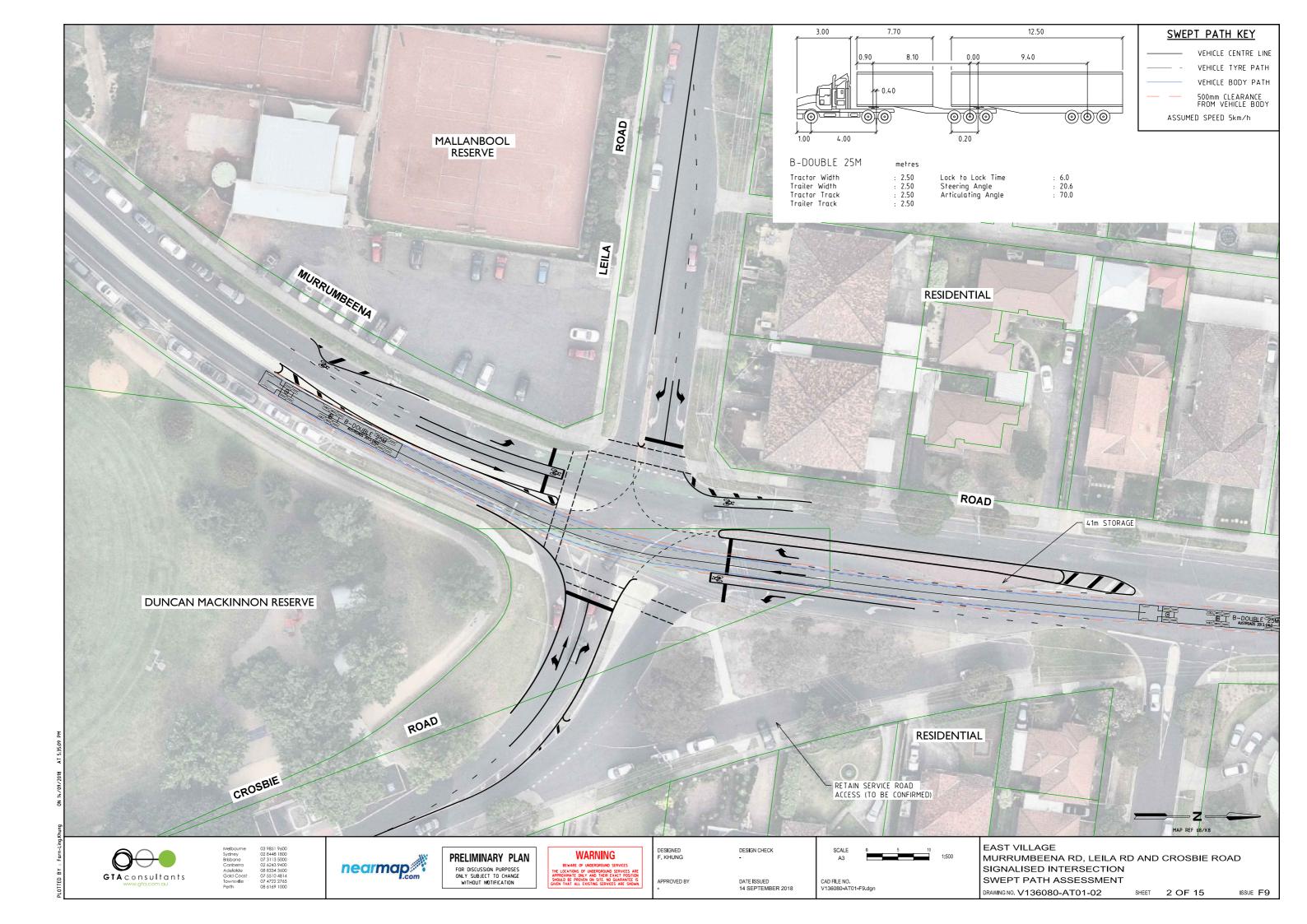
PRELIMINARY PLAN FOR DISCUSSION PURPOSES ONLY SUBJECT TO CHANGE WITHOUT NOTIFICATION

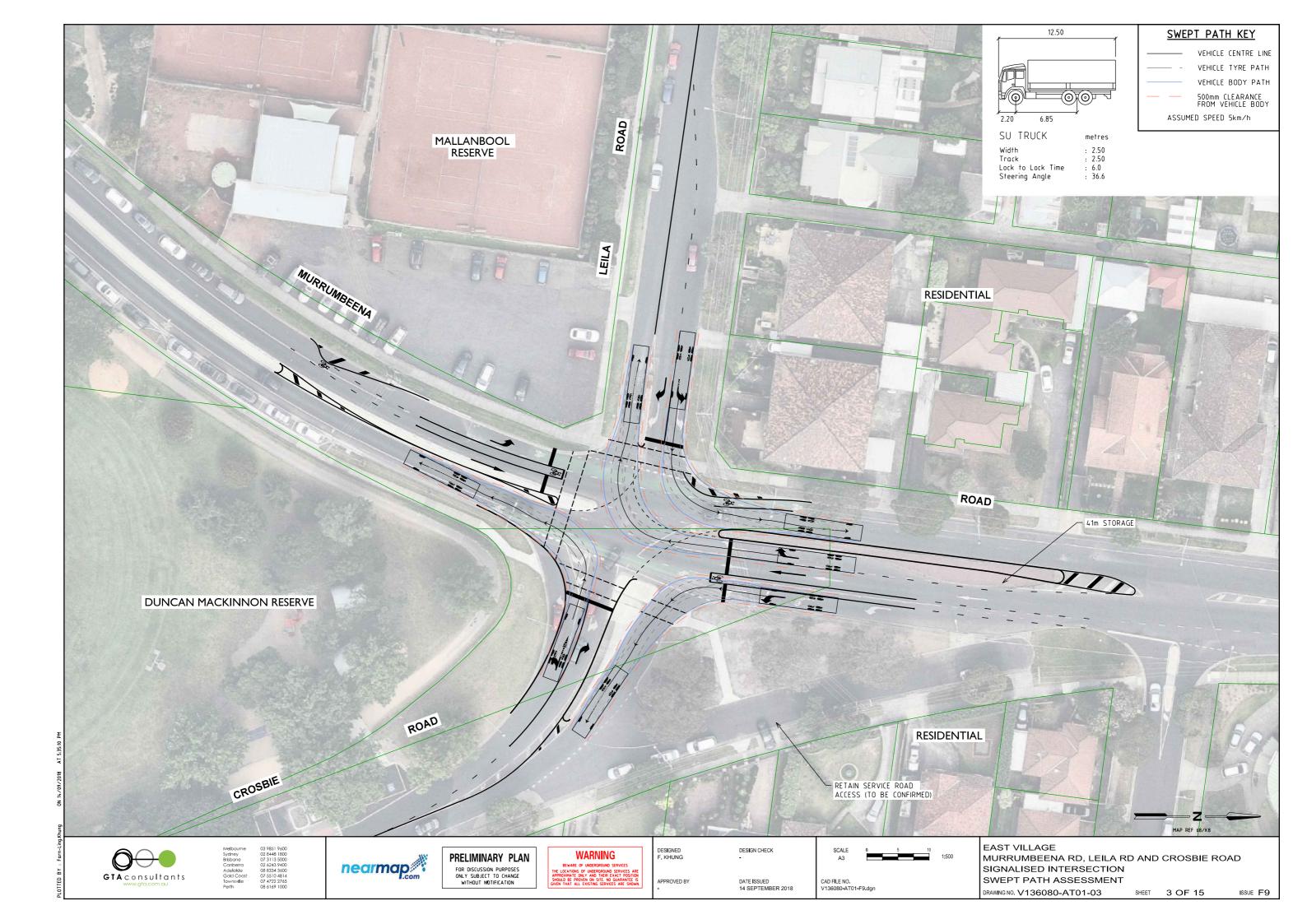
WARNING

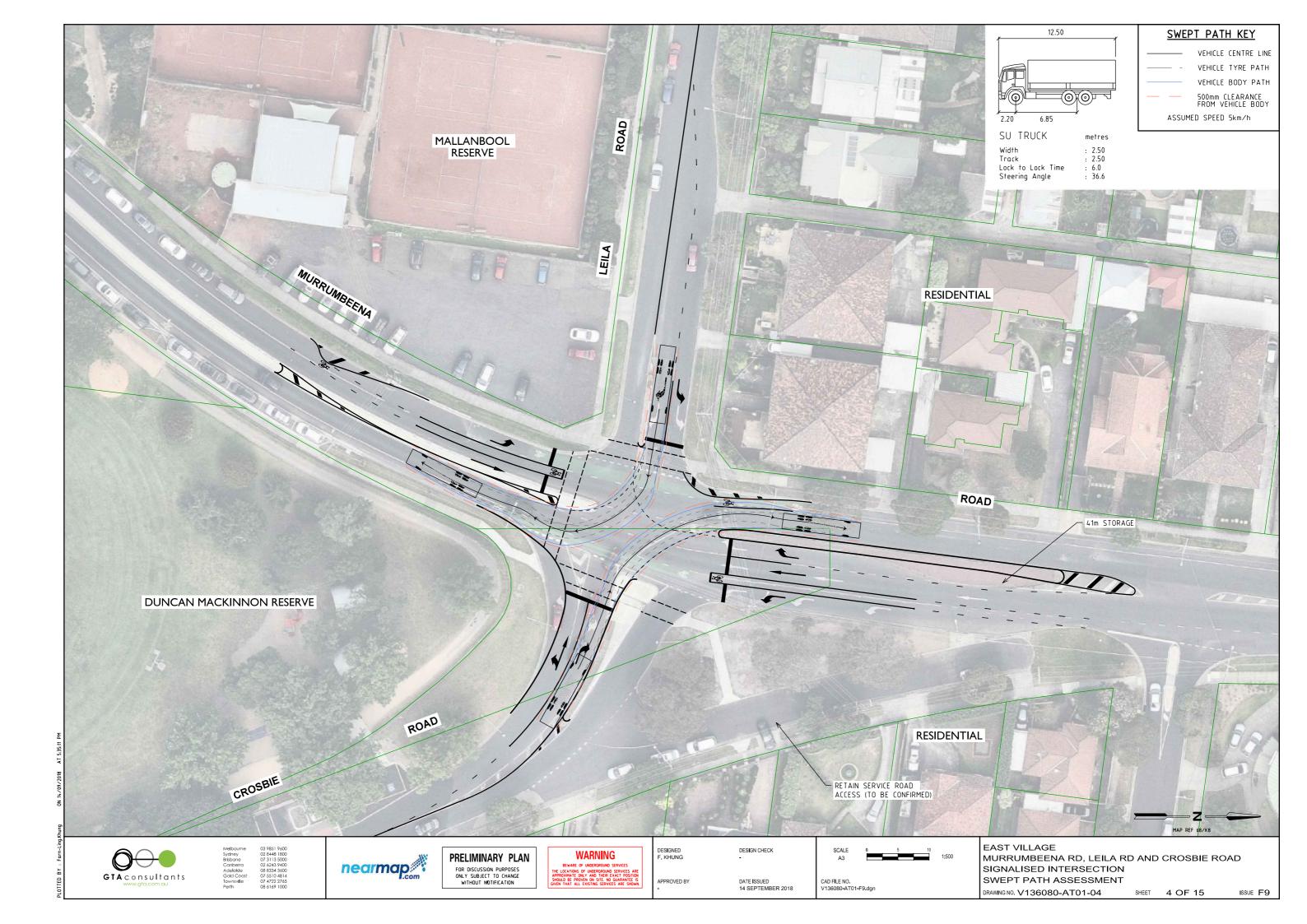
DESIGN CHECK

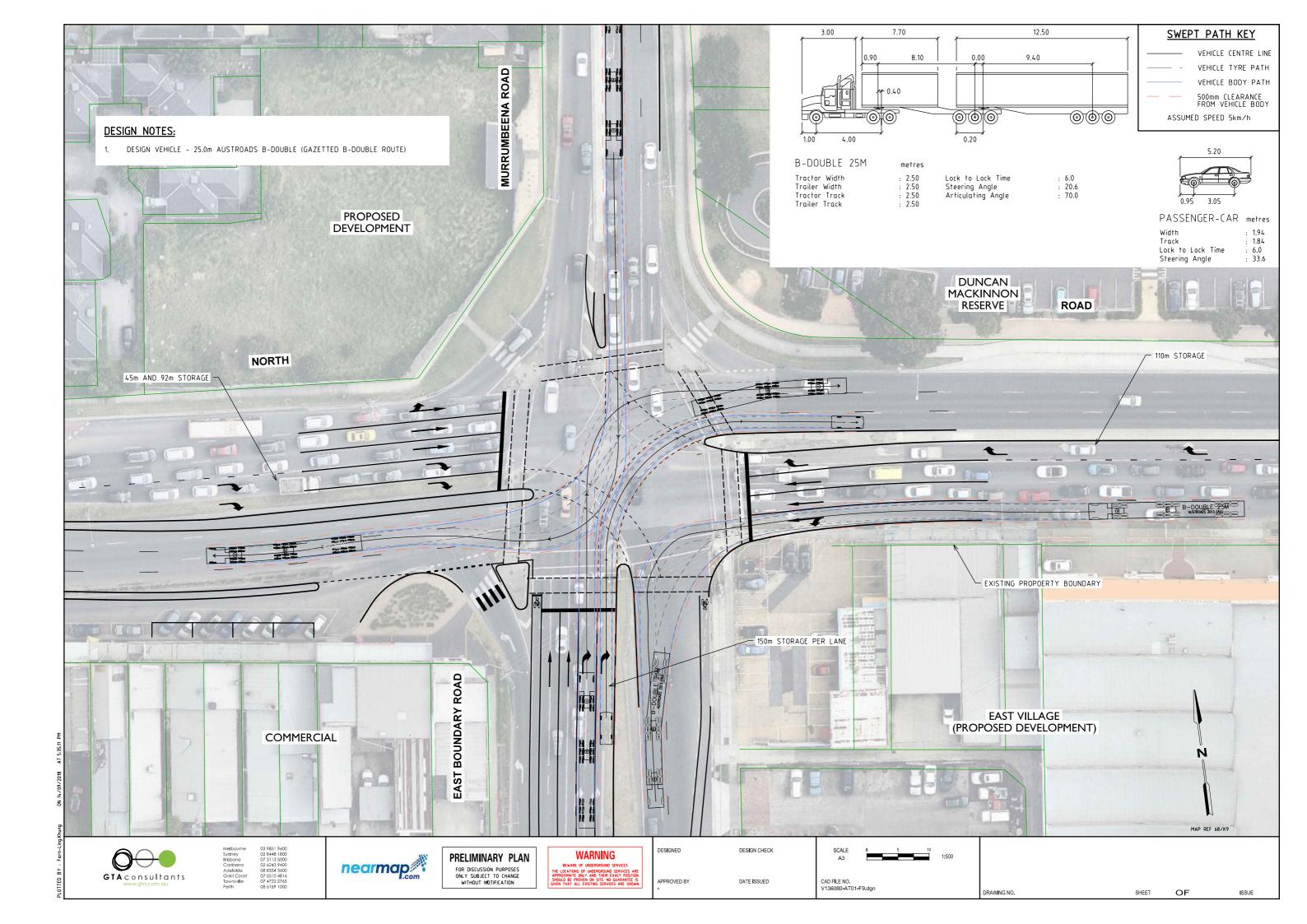


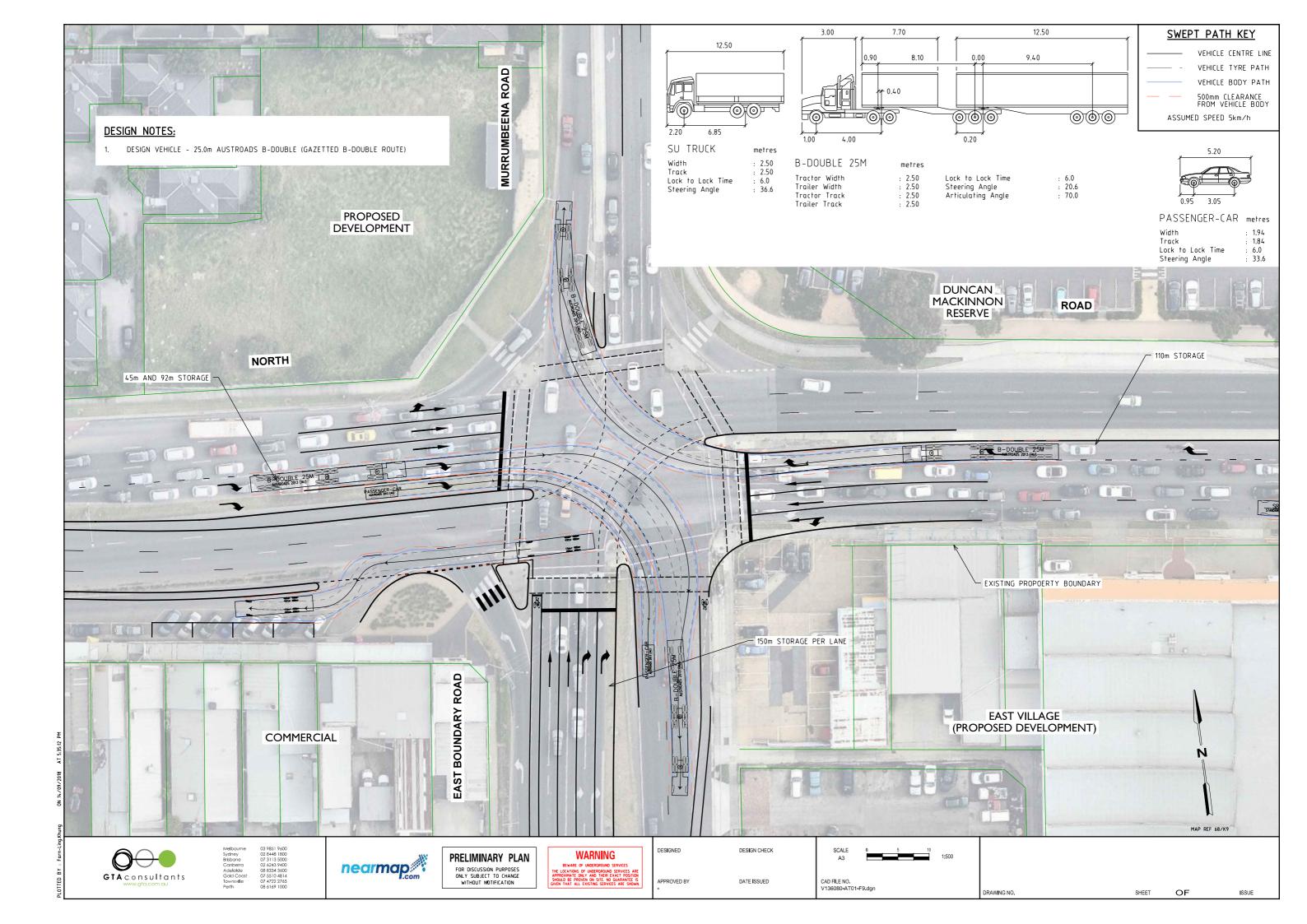
EAST VILLAGE DEVELOPMENT NORTH ROAD AND MURRUMBEENA ROAD SWEPT PATH ASSESSMENT COVER SHEET AND GENERAL NOTES

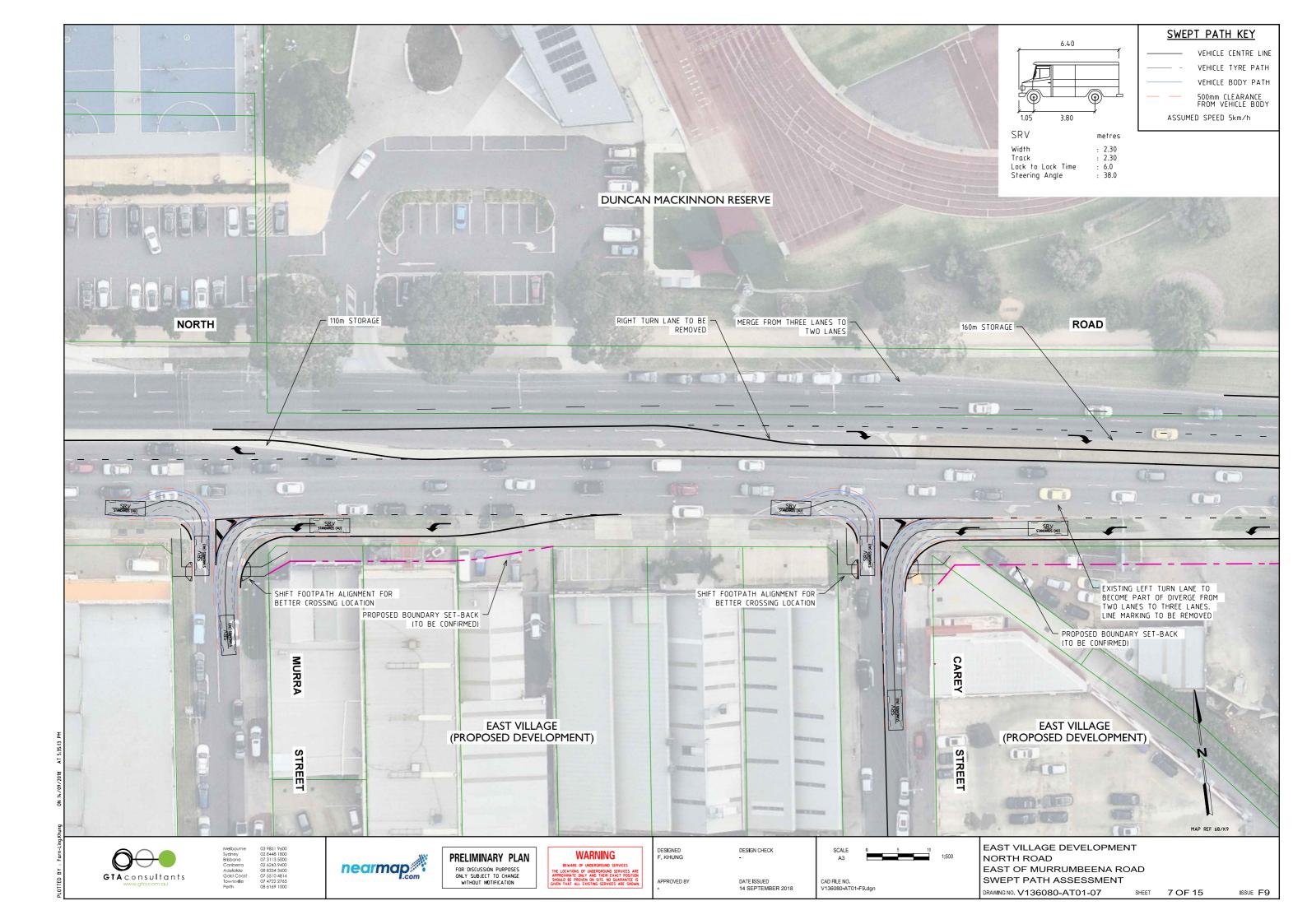

SHEET 1 OF 15

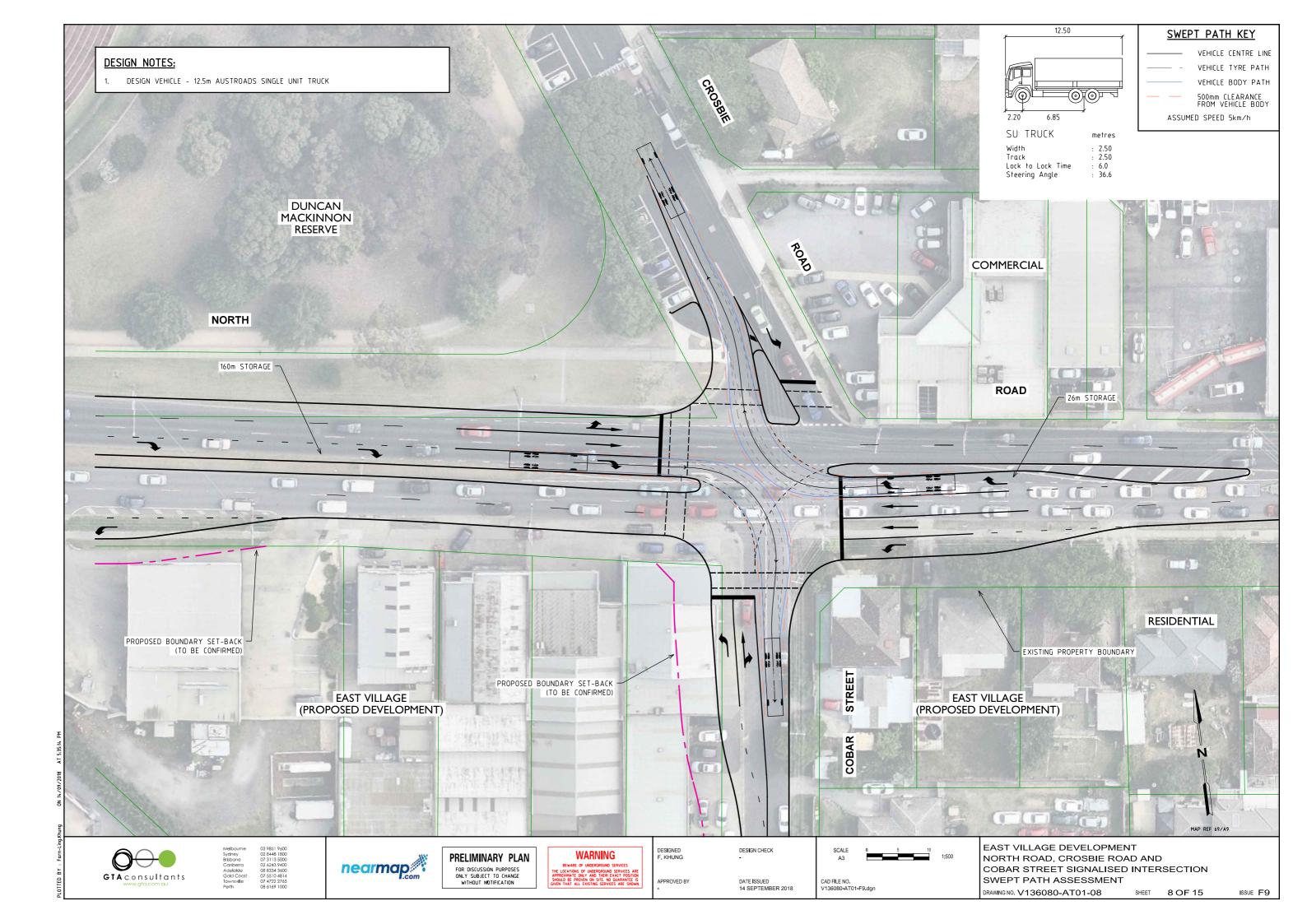

ISSUE F9

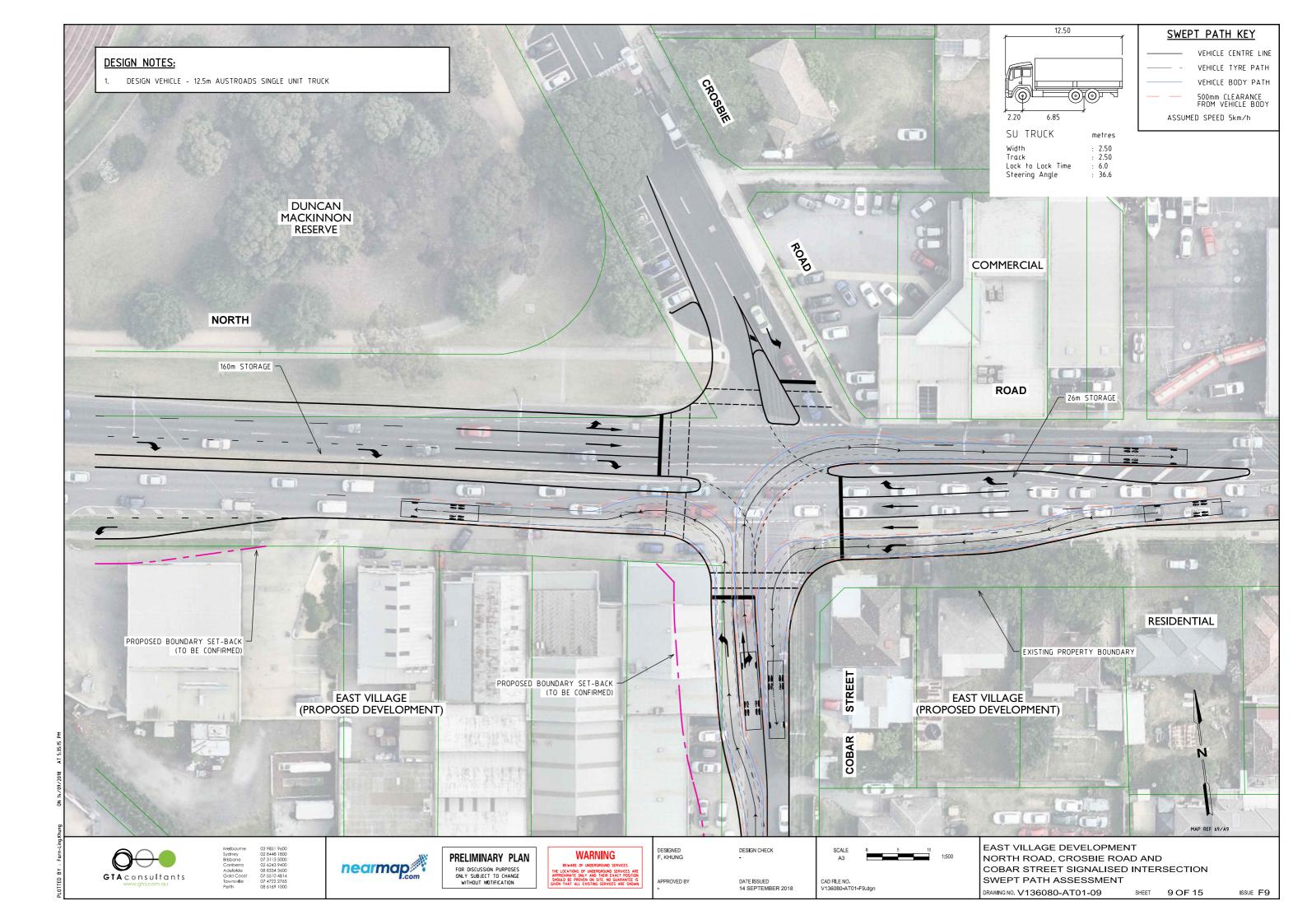

DESIGNED H.S. / T.N. / F.L.K

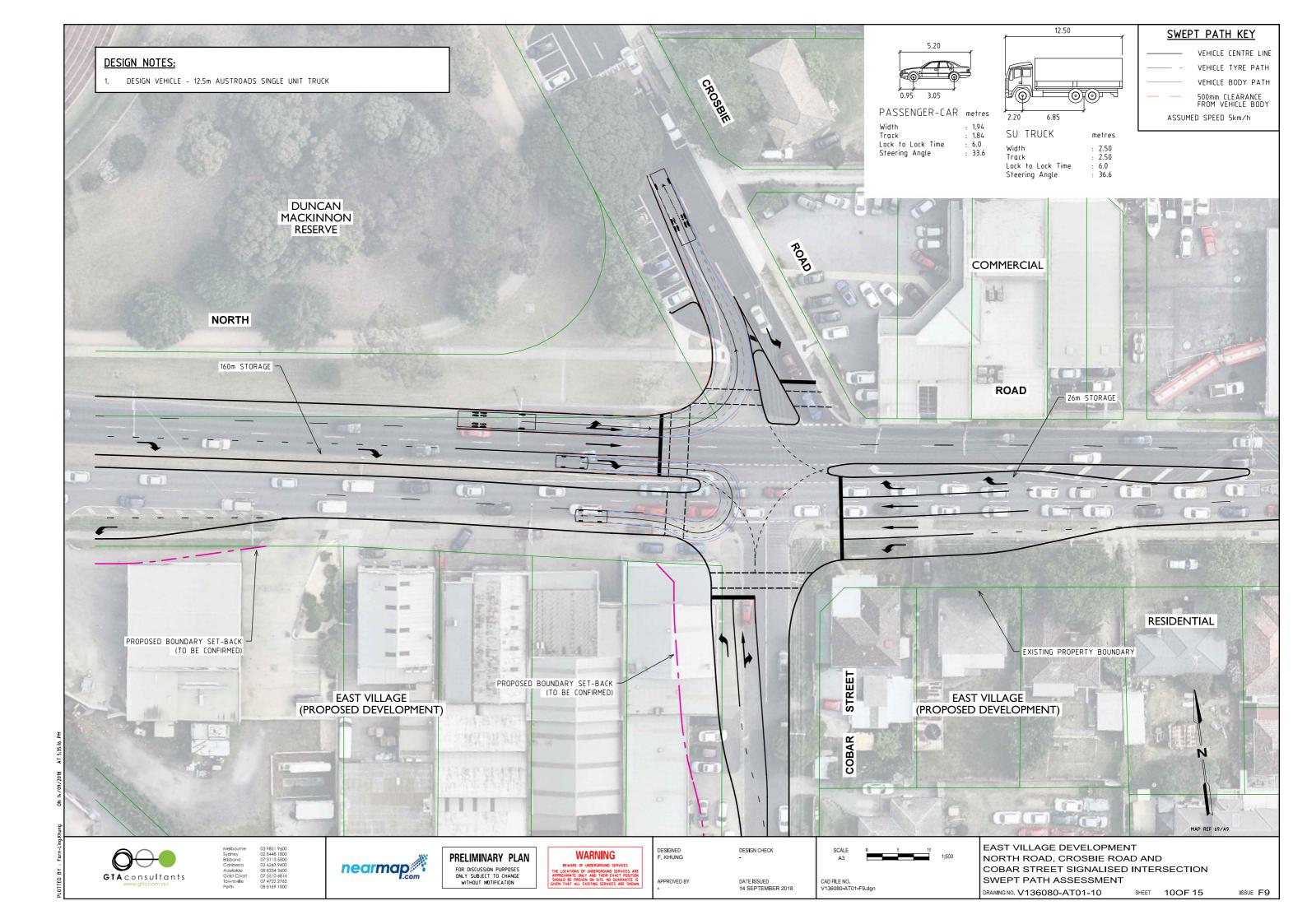

CAD FILE NO. V136080-AT01-F9.dgn

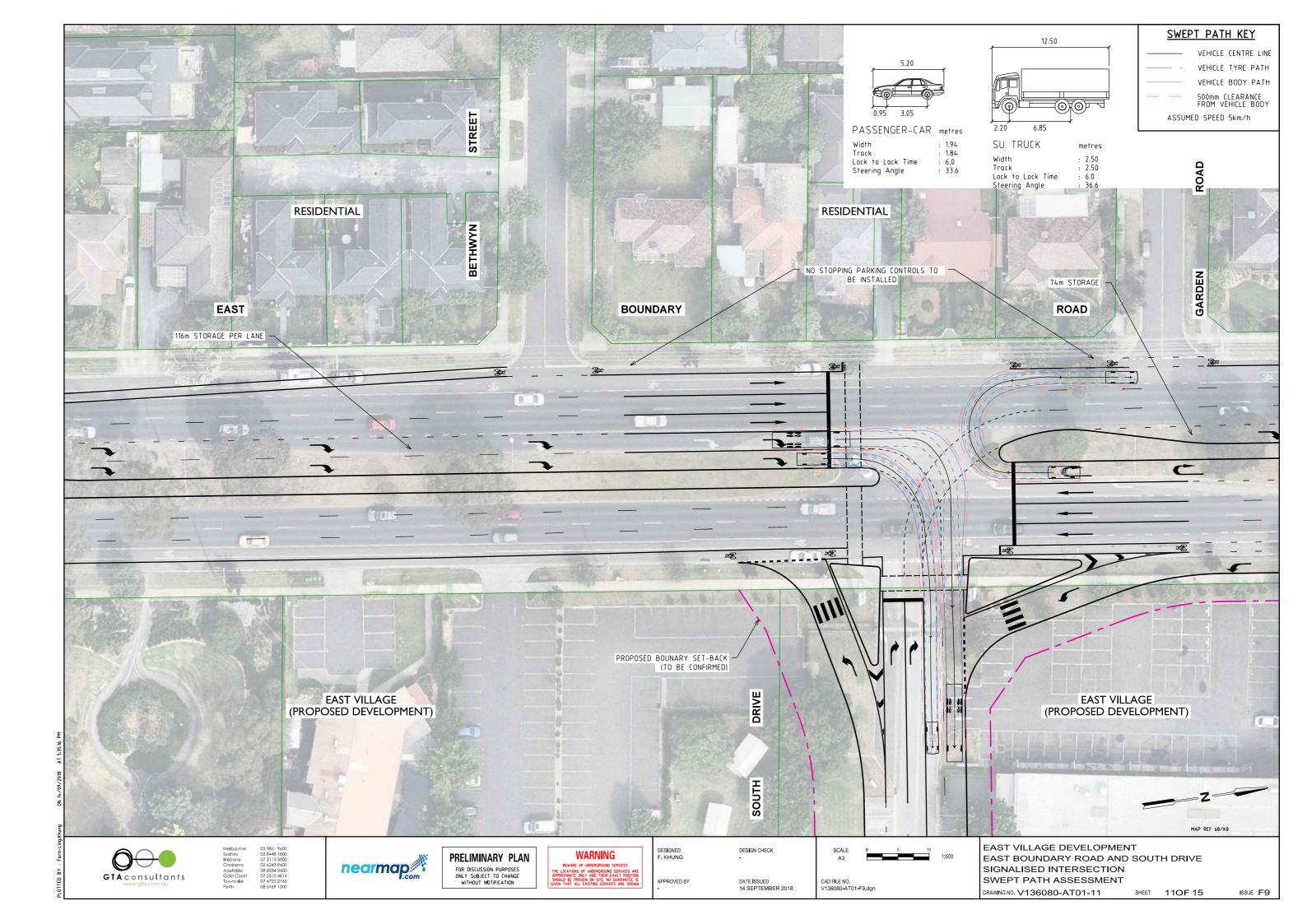

DRAWING NO. V136080-AT01-01

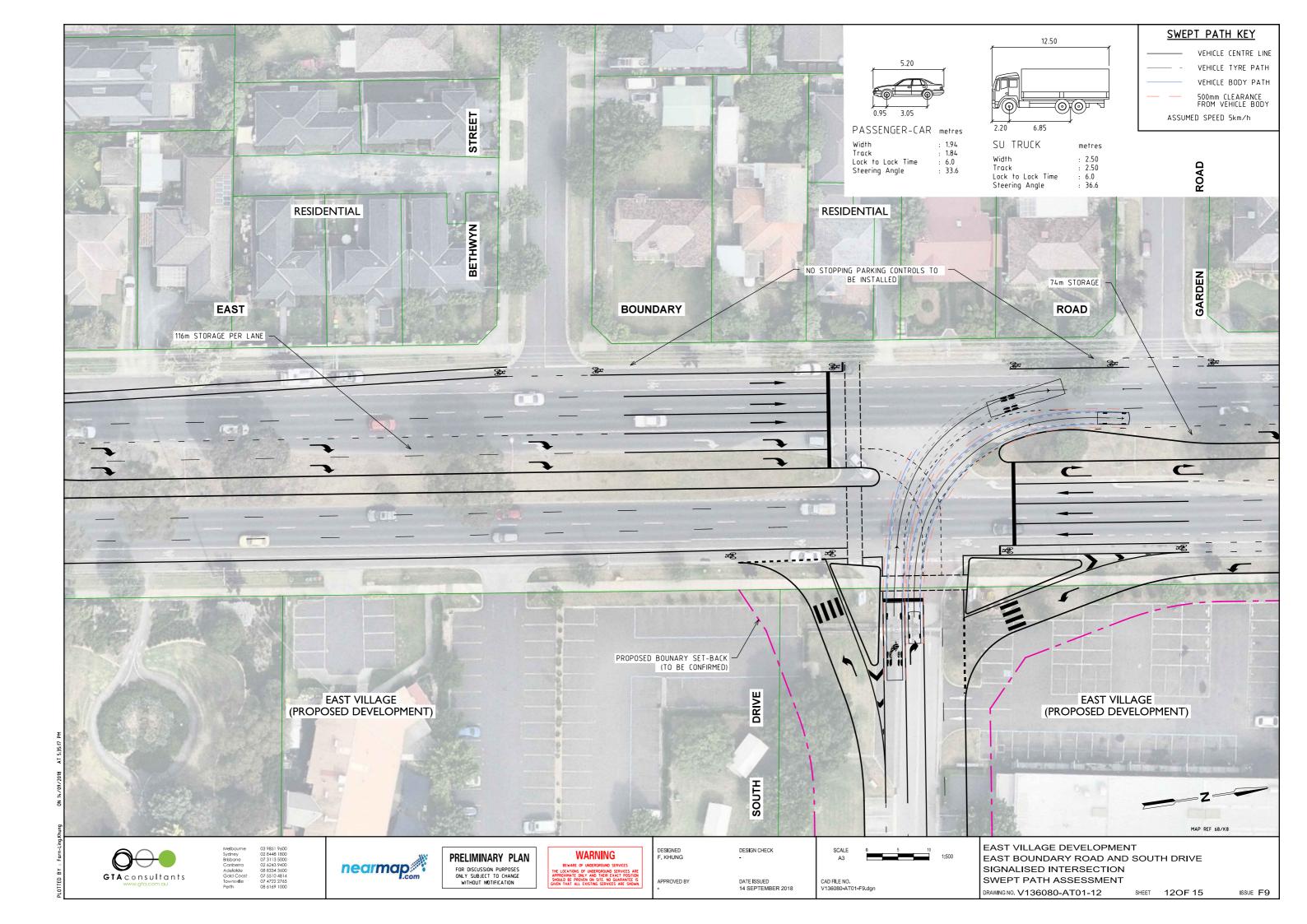


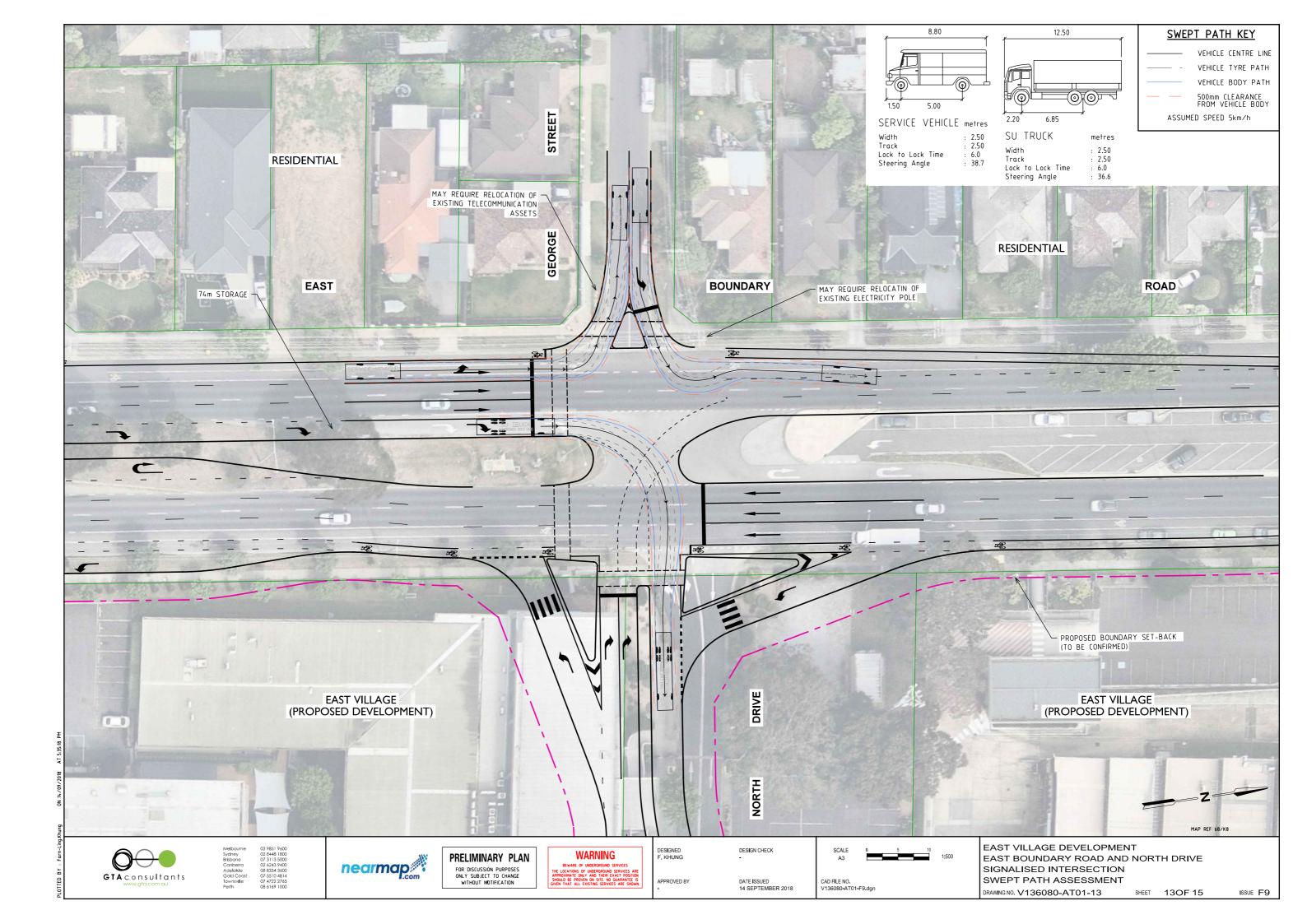



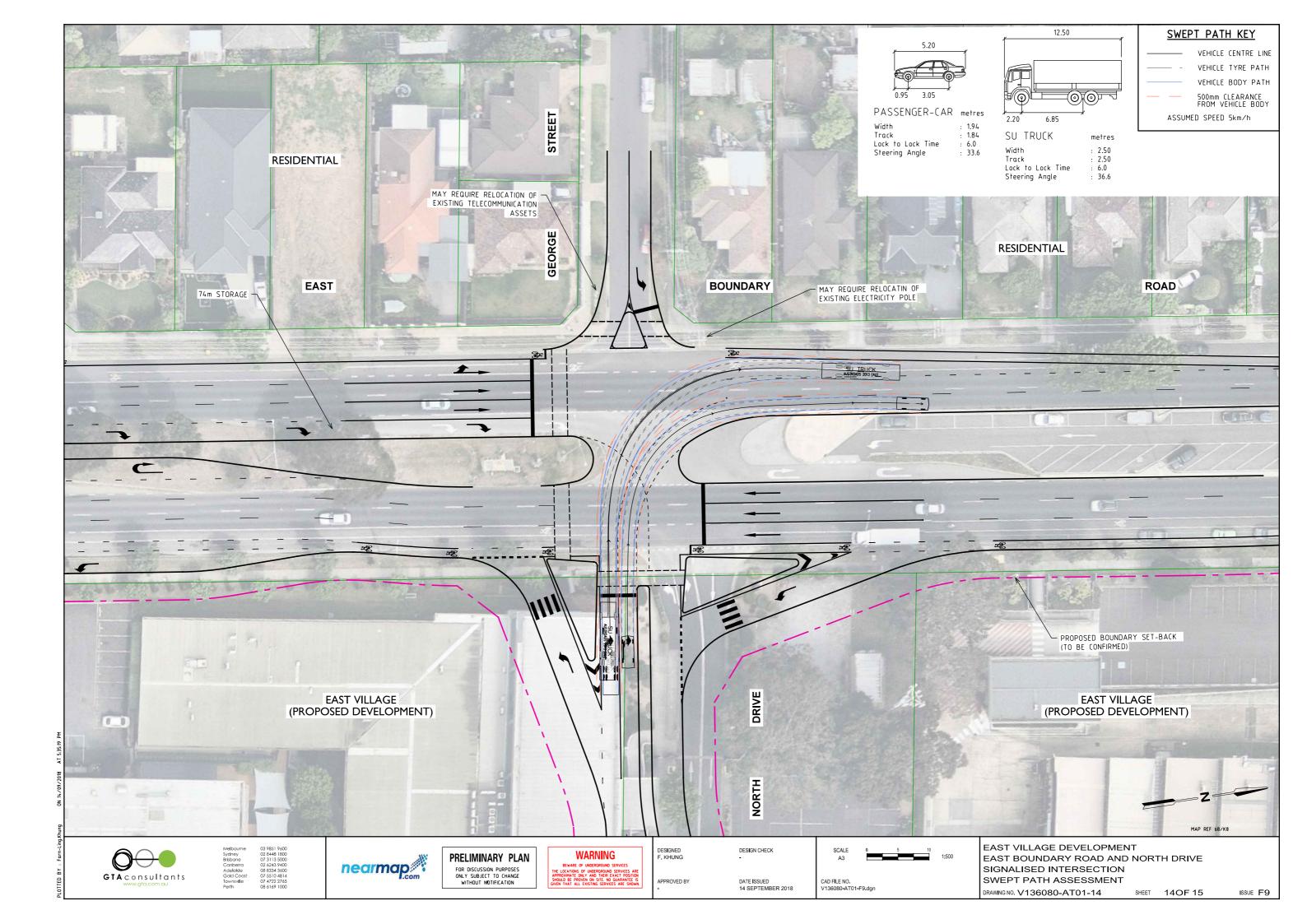



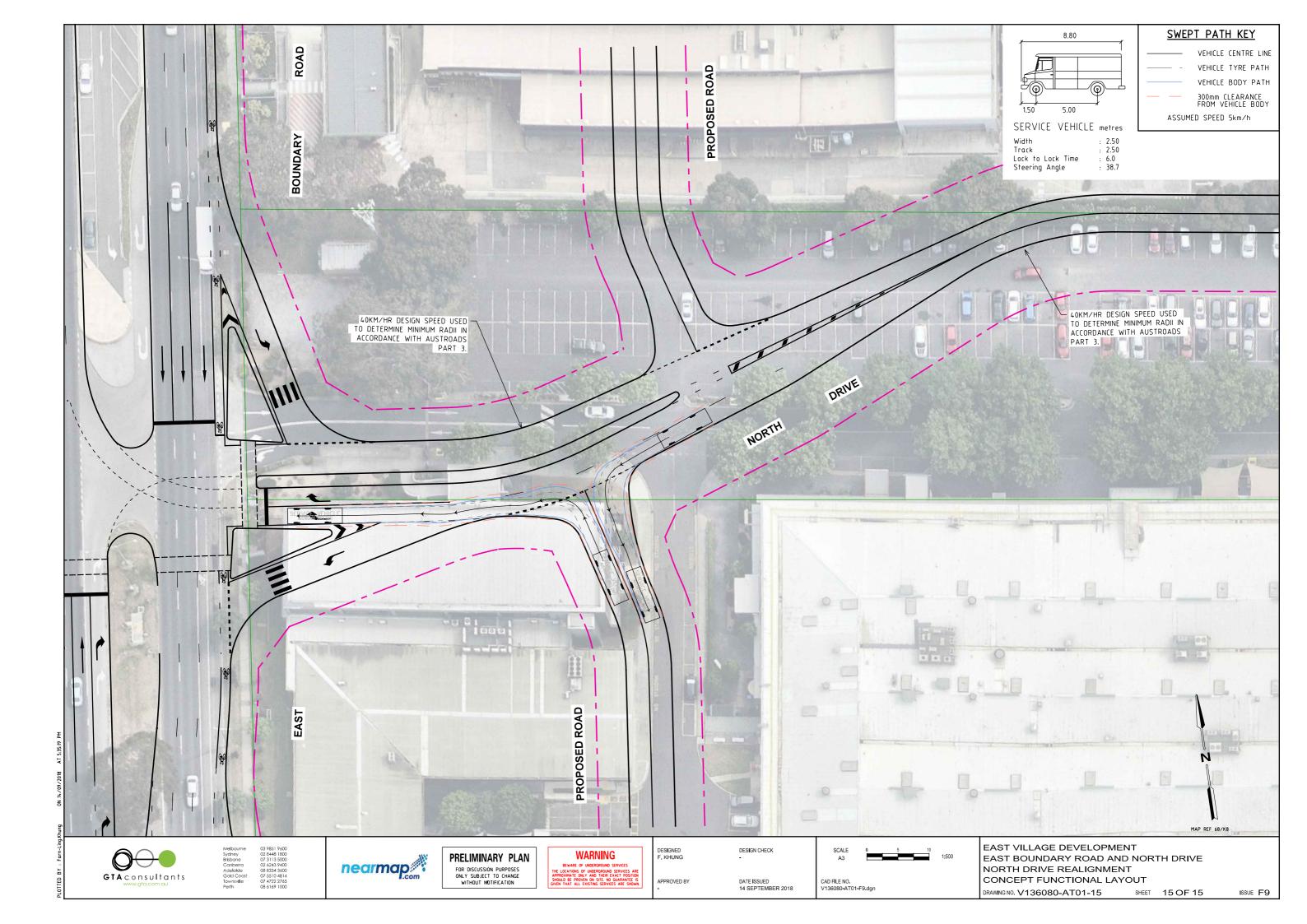














# Appendix E

# Appendix E

SIDRA Intersection – Post Development Results

## E.1 Existing Layout

Site: 3560 [2. NORTH ROAD / EAST BOUNDARY ROAD / MURRUMBEENA ROAD]

NORTH ROAD / EAST BOUNDARY ROAD / MURRUMBEENA ROAD

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 126 seconds (Site User-Given Cycle Time)

| Mov       | ement   | t Performa     | ance  | - Vehic            | les     |              |                  |                     |                |       |                 |                   |          |             |
|-----------|---------|----------------|-------|--------------------|---------|--------------|------------------|---------------------|----------------|-------|-----------------|-------------------|----------|-------------|
| Mov<br>ID | Turn    |                |       |                    |         | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Quei | Je    | Prop.<br>Queued | Effective<br>Stop | No.      | Averag<br>e |
|           |         | Total<br>veh/h |       | Total veh/h        | HV<br>% | v/c          | 222              |                     | Vehicles D     |       |                 | Rate              | Cycles S |             |
| Sout      | h: FAS  | T BOUNDA       |       |                    | 70      | V/C          | sec              |                     | veh            | m     |                 |                   |          | km/h        |
| 1         | L2      | 713            | 2.8   | 573                | 3.5     | 0.595        | 28.0             | LOS C               | 18.8           | 135.4 | 0.74            | 0.92              | 1.02     | 43.7        |
| 2         | T1      | 837            | 1.5   | 671                | 1.9     | 1.092        | 128.5            | LOSF                | 55.2           | 392.5 | 0.97            | 1.30              | 1.67     | 7.5         |
| 3         | R2      | 436            | 1.4   | 349                | 1.8     | 1.067        | 153.4            | LOS F               | 22.4           | 159.2 | 1.00            | 1.22              | 2.03     | 6.3         |
| Appr      |         | 1985           |       | NI1                |         | 1.092        | 97.8             | LOS F               | 55.2           | 392.5 | 0.89            | 1.15              | 1.52     | 15.3        |
| East      | : NOR   | TH ROAD        |       |                    |         |              |                  |                     |                |       |                 |                   |          |             |
| 4         | L2      | 397            | 2.1   | 372                | 2.3     | 0.590        | 37.6             | LOS D               | 20.4           | 145.8 | 0.84            | 0.83              | 0.84     | 9.5         |
| 5         | T1      | 1456           | 3.6   | 1366               | 3.9     | 1.133        | 183.5            | LOS F               | 21.4           | 155.0 | 0.99            | 1.69              | 2.08     | 12.4        |
| 6         | R2      | 58             | 5.5   | 54                 | 5.8     | 0.663        | 75.3             | LOS E               | 3.7            | 26.9  | 1.00            | 0.79              | 1.14     | 5.1         |
| 6u        | U       | 1              | 0.0   | 1                  | 0.0     | 0.663        | 76.5             | LOS E               | 3.7            | 26.9  | 1.00            | 0.79              | 1.14     | 5.1         |
| Appr      | oach    | 1912           | 3.4   | 1793 <sup>N1</sup> | 3.6     | 1.133        | 149.9            | LOS F               | 21.4           | 155.0 | 0.96            | 1.48              | 1.80     | 12.2        |
| North     | n: MUR  | RUMBEEN        | IA RO | AD                 |         |              |                  |                     |                |       |                 |                   |          |             |
| 7         | L2      | 85             | 3.7   | 83                 | 3.8     | 1.093        | 142.9            | LOS F               | 42.0           | 299.5 | 1.00            | 1.35              | 1.98     | 8.5         |
| 8         | T1      | 802            | 1.8   | 778                | 1.9     | 1.093        | 150.0            | LOS F               | 44.5           | 316.7 | 1.00            | 1.45              | 2.00     | 8.7         |
| 9         | R2      | 138            | 1.5   | 134                | 1.6     | 0.918        | 83.7             | LOS F               | 9.7            | 68.5  | 1.00            | 1.02              | 1.50     | 27.8        |
| Appr      | oach    | 1025           | 2.0   | 995 <sup>N1</sup>  | 2.0     | 1.093        | 140.5            | LOS F               | 44.5           | 316.7 | 1.00            | 1.38              | 1.93     | 10.7        |
| West      | t: NOR  | TH ROAD        |       |                    |         |              |                  |                     |                |       |                 |                   |          |             |
| 10        | L2      | 75             | 4.2   | 75                 | 4.2     | 0.886        | 62.2             | LOS E               | 45.7           | 326.4 | 0.99            | 1.03              | 1.56     | 27.2        |
| 11        | T1      | 1437           | 2.1   | 1437               | 2.1     | 0.886        | 52.7             | LOS D               | 45.7           | 326.4 | 0.93            | 0.97              | 1.32     | 28.2        |
| 12        | R2      | 320            | 3.3   | 320                | 3.3     | 1.111        | 183.0            | LOS F               | 37.4           | 268.9 | 1.00            | 1.33              | 2.13     | 11.2        |
| Appr      | oach    | 1832           | 2.4   | 1832               | 2.4     | 1.111        | 75.9             | LOS E               | 45.7           | 326.4 | 0.94            | 1.04              | 1.47     | 22.2        |
| All V     | ehicles | 6754           | 2.5   | 6213 <sup>N1</sup> | 2.7     | 1.133        | 113.2            | LOS F               | 55.2           | 392.5 | 0.94            | 1.25              | 1.65     | 14.7        |

♦♦ Network: N101 [Master

Model]

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

| Move      | Movement Performance - Pedestrians |                         |                         |       |                                   |                           |                 |                        |  |  |  |  |  |
|-----------|------------------------------------|-------------------------|-------------------------|-------|-----------------------------------|---------------------------|-----------------|------------------------|--|--|--|--|--|
| Mov<br>ID | Description                        | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Bacl<br>Pedestrian<br>ped | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate |  |  |  |  |  |
| P1        | South Full Crossing                | 53                      | 44.7                    | LOS E | 0.2                               | 0.2                       | 0.84            | 0.84                   |  |  |  |  |  |
| P2        | East Full Crossing                 | 53                      | 55.4                    | LOS E | 0.2                               | 0.2                       | 0.94            | 0.94                   |  |  |  |  |  |
| P3        | North Full Crossing                | 53                      | 30.8                    | LOS D | 0.1                               | 0.1                       | 0.70            | 0.70                   |  |  |  |  |  |
| P4        | West Full Crossing                 | 53                      | 51.7                    | LOS E | 0.2                               | 0.2                       | 0.91            | 0.91                   |  |  |  |  |  |
| All Pe    | destrians                          | 211                     | 45.6                    | LOS E |                                   |                           | 0.85            | 0.85                   |  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:56:15 AM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180427 SIDRA Network - Future AM Existing Layout - Post Dev No Growth.sip8

## Site: 3559 [10. NORTH ROAD / KOORNANG ROAD / TUCKER ROAD]

10. NORTH ROAD / KOORNAND ROAD / TUCKER ROAD

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 126 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

| Move      | ement P | erformand                  | ce - Vel         | nicles              |                         |                     |                             |                           |                 |                        |                     |                          |
|-----------|---------|----------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|------------------------|---------------------|--------------------------|
| Mov<br>ID | Turn    | Demand I<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate | Aver. No.<br>Cycles | Average<br>Speed<br>km/h |
| South     | : TUCKE | R ROAD                     | ,,,              | •,, 0               | 333                     |                     | 7011                        |                           |                 |                        |                     | 1(11)1                   |
| 1         | L2      | 228                        | 3.0              | 0.485               | 39.9                    | LOS D               | 10.6                        | 76.5                      | 0.81            | 0.79                   | 0.81                | 35.6                     |
| 2         | T1      | 180                        | 3.0              | 0.709               | 51.3                    | LOS D               | 10.3                        | 73.7                      | 0.94            | 0.81                   | 1.02                | 32.8                     |
| Appro     | ach     | 408                        | 3.0              | 0.709               | 44.9                    | LOS D               | 10.6                        | 76.5                      | 0.87            | 0.80                   | 0.90                | 34.3                     |
| East:     | NORTH   | ROAD                       |                  |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 4         | L2      | 136                        | 3.0              | 0.131               | 18.7                    | LOS B               | 3.8                         | 27.1                      | 0.49            | 0.70                   | 0.49                | 46.0                     |
| 5         | T1      | 2196                       | 3.0              | 0.962               | 47.9                    | LOS D               | 66.5                        | 477.4                     | 0.79            | 0.91                   | 1.02                | 35.                      |
| 6         | R2      | 163                        | 3.0              | 0.942               | 88.1                    | LOS F               | 12.2                        | 87.9                      | 1.00            | 1.04                   | 1.54                | 26.                      |
| Appro     | ach     | 2495                       | 3.0              | 0.962               | 49.0                    | LOS D               | 66.5                        | 477.4                     | 0.79            | 0.90                   | 1.03                | 35.                      |
| North     | : KOORI | NANG ROAI                  | D                |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 7         | L2      | 159                        | 3.0              | 0.262               | 38.3                    | LOS D               | 7.1                         | 50.9                      | 0.77            | 0.77                   | 0.77                | 38.                      |
| 8         | T1      | 203                        | 3.0              | 0.592               | 50.3                    | LOS D               | 11.5                        | 82.2                      | 0.96            | 0.79                   | 0.96                | 33.                      |
| Appro     | ach     | 362                        | 3.0              | 0.592               | 45.1                    | LOS D               | 11.5                        | 82.2                      | 0.88            | 0.78                   | 0.88                | 35.4                     |
| West:     | NORTH   | ROAD                       |                  |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 10        | L2      | 94                         | 3.0              | 0.090               | 18.4                    | LOS B               | 2.5                         | 18.2                      | 0.48            | 0.69                   | 0.48                | 45.                      |
| 11        | T1      | 1647                       | 3.0              | 0.696               | 18.6                    | LOS B               | 29.4                        | 210.8                     | 0.70            | 0.64                   | 0.70                | 47.                      |
| 12        | R2      | 57                         | 3.0              | 0.328               | 65.0                    | LOS E               | 3.4                         | 24.3                      | 0.97            | 0.75                   | 0.97                | 28.                      |
| Appro     | ach     | 1798                       | 3.0              | 0.696               | 20.1                    | LOS C               | 29.4                        | 210.8                     | 0.70            | 0.64                   | 0.70                | 46.0                     |
| All Ve    | hicles  | 5063                       | 3.0              | 0.962               | 38.1                    | LOS D               | 66.5                        | 477.4                     | 0.77            | 0.79                   | 0.89                | 38.7                     |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | Movement Performance - Pedestrians |                |                  |       |                            |                      |                 |                        |  |  |  |  |  |
|-----------|------------------------------------|----------------|------------------|-------|----------------------------|----------------------|-----------------|------------------------|--|--|--|--|--|
| Mov<br>ID | Description                        | Demand<br>Flow | Average<br>Delay |       | Average Bacl<br>Pedestrian | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate |  |  |  |  |  |
|           |                                    | ped/h          | sec              |       | ped                        | m                    |                 |                        |  |  |  |  |  |
| P1        | South Full Crossing                | 53             | 14.8             | LOS B | 0.1                        | 0.1                  | 0.49            | 0.49                   |  |  |  |  |  |
| P2        | East Full Crossing                 | 53             | 57.3             | LOS E | 0.2                        | 0.2                  | 0.95            | 0.95                   |  |  |  |  |  |
| P3        | North Full Crossing                | 53             | 3.8              | LOSA  | 0.0                        | 0.0                  | 0.25            | 0.25                   |  |  |  |  |  |
| P4        | West Full Crossing                 | 53             | 57.3             | LOS E | 0.2                        | 0.2                  | 0.95            | 0.95                   |  |  |  |  |  |
| All Pe    | destrians                          | 211            | 33.3             | LOS D |                            |                      | 0.66            | 0.66                   |  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

 $Project: P: V13600-13699 \ V136080 \ East \ Village - Integrated \ Transp\\ Modelling \ SIDRA\\ 180920-Updates\\ 180427 \ SIDRA \ Network - Future \ AM-Existing \ Layout - Post \ Dev \ No \ Growth.sip8$ 



Site: 3561 [6. NORTH ROAD / POATH ROAD / POET ROAD]

♦♦ Network: N101 [Master Model]

NORTH ROAD / POATH ROAD / POET ROAD

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 130 seconds (Site User-Given Cycle Time)

| Mo        | vement   | t Perform | ance  | - Vehic           | cles             |              |                  |                     |               |          |                 |                   |          |             |
|-----------|----------|-----------|-------|-------------------|------------------|--------------|------------------|---------------------|---------------|----------|-----------------|-------------------|----------|-------------|
| Mov<br>ID | Turn     | Demand    | Flows | Arrival           | Flows            | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Que |          | Prop.<br>Queued | Effective<br>Stop | Aver. A  | Averag<br>e |
|           |          | Total     |       | Total             | HV               |              |                  |                     | Vehicles [    | Distance |                 | Rate              | Cycles S | •           |
| Carr      | +L. DOE  | veh/h     | %     | veh/h             | %                | v/c          | sec              |                     | veh           | m        |                 |                   |          | km/h        |
|           |          | TROAD     | 0.0   | 444               | 0.0              | 0.000        | 70.4             | 100 5               | 40.7          | 440.0    | 4.00            | 4.00              | 4.00     | 40.0        |
| 1         | L2       | 111       | 2.9   | 111               | 2.9              | 0.863        | 70.1             | LOS E               | 16.7          | 119.8    | 1.00            | 1.00              | 1.26     | 16.0        |
| 2         | T1       | 16        | 0.0   | 16                | 0.0              | 0.863        | 66.6             | LOS E               | 16.7          | 119.8    | 1.00            | 1.00              | 1.26     | 25.1        |
| 3         | R2       | 111       | 2.9   | 111               | 2.9              | 0.863        | 70.1             | LOS E               | 16.7          | 119.8    | 1.00            | 1.00              | 1.26     | 25.2        |
| App       | roach    | 237       | 2.7   | 237               | 2.7              | 0.863        | 69.8             | LOS E               | 16.7          | 119.8    | 1.00            | 1.00              | 1.26     | 21.4        |
| Eas       | t: NORT  | H ROAD    |       |                   |                  |              |                  |                     |               |          |                 |                   |          |             |
| 4         | L2       | 49        | 2.1   | 49                | 2.1              | 0.878        | 28.3             | LOS C               | 55.8          | 402.7    | 0.88            | 0.85              | 0.91     | 39.1        |
| 5         | T1       | 1653      | 3.7   | 1653              | 3.7              | 0.878        | 23.4             | LOS C               | 55.8          | 402.7    | 0.75            | 0.75              | 0.82     | 37.0        |
| 6         | R2       | 111       | 2.9   | 111               | 2.9              | 0.658        | 34.3             | LOS C               | 4.6           | 33.0     | 0.96            | 0.84              | 1.04     | 39.5        |
| Арр       | roach    | 1813      | 3.6   | 1813              | 3.6              | 0.878        | 24.2             | LOS C               | 55.8          | 402.7    | 0.76            | 0.76              | 0.83     | 37.4        |
| Nort      | h: POA   | TH ROAD   |       |                   |                  |              |                  |                     |               |          |                 |                   |          |             |
| 7         | L2       | 161       | 3.3   | 161               | 3.3              | 0.379        | 40.0             | LOS D               | 8.4           | 60.6     | 0.86            | 0.78              | 0.86     | 33.7        |
| 8         | T1       | 17        | 0.0   | 17                | 0.0              | 0.379        | 35.4             | LOS D               | 8.4           | 60.6     | 0.86            | 0.78              | 0.86     | 32.5        |
| 9         | R2       | 76        | 2.8   | 76                | 2.8              | 0.299        | 56.5             | LOS E               | 4.3           | 30.8     | 0.92            | 0.76              | 0.92     | 19.9        |
| Арр       | roach    | 254       | 2.9   | 254               | 2.9              | 0.379        | 44.6             | LOS D               | 8.4           | 60.6     | 0.88            | 0.77              | 0.88     | 29.9        |
| Wes       | st: NOR  | TH ROAD   |       |                   |                  |              |                  |                     |               |          |                 |                   |          |             |
| 10        | L2       | 57        | 3.7   | 53                | 3.8              | 0.775        | 28.7             | LOS C               | 40.9          | 291.7    | 0.83            | 0.77              | 0.83     | 47.6        |
| 11        | T1       | 1733      | 2.1   | 1615              | 2.2              | 0.775        | 21.8             | LOS C               | 40.9          | 291.7    | 0.81            | 0.75              | 0.81     | 51.5        |
| 12        | R2       | 12        | 0.0   | 11                | 0.0              | 0.142        | 56.3             | LOS E               | 0.6           | 4.3      | 0.85            | 0.72              | 0.85     | 31.4        |
| Арр       | roach    | 1801      | 2.2   | 1679 <sup>N</sup> | <sup>1</sup> 2.2 | 0.775        | 22.2             | LOS C               | 40.9          | 291.7    | 0.81            | 0.75              | 0.81     | 51.2        |
| All \     | /ehicles | 4104      | 2.9   | 3982 <sup>N</sup> | <sup>1</sup> 3.0 | 0.878        | 27.4             | LOSC                | 55.8          | 402.7    | 0.81            | 0.77              | 0.85     | 41.6        |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

| Move      | ement Performance - Pe | destrians               |                         |       |                                  |                             |                 |                        |
|-----------|------------------------|-------------------------|-------------------------|-------|----------------------------------|-----------------------------|-----------------|------------------------|
| Mov<br>ID | Description            | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Bac<br>Pedestrian<br>ped | k of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate |
| P1        | South Full Crossing    | 53                      | 8.9                     | LOS A | 0.1                              | 0.1                         | 0.37            | 0.37                   |
| P2        | East Full Crossing     | 53                      | 48.4                    | LOS E | 0.2                              | 0.2                         | 0.86            | 0.86                   |
| P3        | North Full Crossing    | 53                      | 14.8                    | LOS B | 0.1                              | 0.1                         | 0.48            | 0.48                   |
| P4        | West Full Crossing     | 53                      | 48.4                    | LOS E | 0.2                              | 0.2                         | 0.86            | 0.86                   |
| All Pe    | edestrians             | 211                     | 30.1                    | LOS D |                                  |                             | 0.64            | 0.64                   |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:56:15 AM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180427 SIDRA Network - Future AM Existing Layout - Post Dev No Growth.sip8



Site: 1209 [5. EAST BOUNDARY ROAD / ARDENA COURT]

♦♦ Network: N101 [Master Model]

EAST BOUNDARY ROAD / ARDENA COURT

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 117 seconds (Site User-Given Cycle Time)

| Mov   | /ement   | : Performa | ance | - Vehic            | les  |       |         |         |                   |              |        |              |                 |            |
|-------|----------|------------|------|--------------------|------|-------|---------|---------|-------------------|--------------|--------|--------------|-----------------|------------|
| Mov   | Turn     | Demand F   | lows | Arrival I          | lows | Deg.  | Average |         | 95% Ba            |              | Prop.  | Effective    | Aver. A         |            |
| ID    |          | Total      | Ш\/  | Total              | HV   | Satn  | Delay   | Service | Que<br>Vehicles [ |              | Queued | Stop<br>Rate | No.<br>Cycles S | e<br>Spood |
|       |          | veh/h      |      | veh/h              | %    | v/c   | sec     |         | verlicies i       | nstance<br>m |        | Naic         | Cycles c        | km/h       |
| Sout  | th: EAS  | T BOUNDA   |      |                    | ,,,  | .,,   |         |         |                   |              |        |              |                 | ,          |
| 1     | L2       | 25         | 4.2  | 25                 | 4.2  | 0.022 | 15.2    | LOS B   | 0.5               | 3.9          | 0.40   | 0.66         | 0.40            | 42.4       |
| 2     | T1       | 1828       | 2.4  | 1828               | 2.4  | 0.782 | 16.7    | LOS B   | 37.3              | 266.1        | 0.78   | 0.72         | 0.78            | 42.8       |
| 3     | R2       | 52         | 2.0  | 52                 | 2.0  | 0.549 | 69.4    | LOS E   | 3.1               | 22.1         | 1.00   | 0.76         | 1.04            | 26.0       |
| Аррі  | roach    | 1905       | 2.4  | 1905               | 2.4  | 0.782 | 18.1    | LOS B   | 37.3              | 266.1        | 0.78   | 0.72         | 0.78            | 41.4       |
| East  | : ARDE   | NA COURT   | Γ    |                    |      |       |         |         |                   |              |        |              |                 |            |
| 4     | L2       | 37         | 2.9  | 37                 | 2.9  | 0.079 | 37.9    | LOS D   | 1.6               | 11.6         | 0.78   | 0.69         | 0.78            | 32.2       |
| 5     | T1       | 1          | 0.0  | 1                  | 0.0  | 0.079 | 34.5    | LOS C   | 1.6               | 11.6         | 0.78   | 0.69         | 0.78            | 28.3       |
| 6     | R2       | 39         | 2.7  | 39                 | 2.7  | 0.151 | 48.5    | LOS D   | 1.9               | 13.8         | 0.89   | 0.72         | 0.89            | 19.6       |
| Аррі  | roach    | 77         | 2.7  | 77                 | 2.7  | 0.151 | 43.3    | LOS D   | 1.9               | 13.8         | 0.84   | 0.70         | 0.84            | 26.3       |
| Nort  | h: EAS   | Γ BOUNDA   | RY R | DAC                |      |       |         |         |                   |              |        |              |                 |            |
| 7     | L2       | 5          | 0.0  | 5                  | 0.0  | 0.004 | 15.0    | LOS B   | 0.1               | 0.7          | 0.39   | 0.64         | 0.39            | 38.1       |
| 8     | T1       | 1536       | 2.1  | 1481               | 2.0  | 0.621 | 14.2    | LOS B   | 25.5              | 181.6        | 0.66   | 0.61         | 0.66            | 51.7       |
| 9     | R2       | 8          | 0.0  | 8                  | 0.0  | 0.085 | 66.1    | LOS E   | 0.5               | 3.3          | 0.98   | 0.66         | 0.98            | 22.4       |
| Аррі  | roach    | 1549       | 2.0  | 1495 <sup>N1</sup> | 2.0  | 0.621 | 14.5    | LOS B   | 25.5              | 181.6        | 0.66   | 0.61         | 0.66            | 51.3       |
| Wes   | t: ARDE  | NA COUR    | T    |                    |      |       |         |         |                   |              |        |              |                 |            |
| 10    | L2       | 9          | 0.0  | 9                  | 0.0  | 0.082 | 46.0    | LOS D   | 1.1               | 7.7          | 0.86   | 0.69         | 0.86            | 20.2       |
| 11    | T1       | 1          | 0.0  | 1                  | 0.0  | 0.082 | 42.6    | LOS D   | 1.1               | 7.7          | 0.86   | 0.69         | 0.86            | 26.7       |
| 12    | R2       | 13         | 0.0  | 13                 | 0.0  | 0.082 | 45.9    | LOS D   | 1.1               | 7.7          | 0.86   | 0.69         | 0.86            | 30.5       |
| Аррі  | roach    | 23         | 0.0  | 23                 | 0.0  | 0.082 | 45.8    | LOS D   | 1.1               | 7.7          | 0.86   | 0.69         | 0.86            | 26.7       |
| All V | ehicles/ | 3555       | 2.2  | 3500 <sup>N1</sup> | 2.3  | 0.782 | 17.3    | LOS B   | 37.3              | 266.1        | 0.73   | 0.67         | 0.73            | 45.0       |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

| Move      | ement Performance - Ped | lestrians               |                         |       |                                   |                             |                 |                        |
|-----------|-------------------------|-------------------------|-------------------------|-------|-----------------------------------|-----------------------------|-----------------|------------------------|
| Mov<br>ID | Description             | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Bacl<br>Pedestrian<br>ped | k of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate |
| P1        | South Full Crossing     | 53                      | 52.8                    | LOS E | 0.2                               | 0.2                         | 0.95            | 0.95                   |
| P2        | East Full Crossing      | 53                      | 11.1                    | LOS B | 0.1                               | 0.1                         | 0.44            | 0.44                   |
| P3        | North Full Crossing     | 53                      | 52.8                    | LOS E | 0.2                               | 0.2                         | 0.95            | 0.95                   |
| P4        | West Full Crossing      | 53                      | 10.3                    | LOS B | 0.1                               | 0.1                         | 0.42            | 0.42                   |
| All Pe    | edestrians              | 211                     | 31.7                    | LOS D |                                   |                             | 0.69            | 0.69                   |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:56:15 AM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180427 SIDRA Network - Future AM Existing Layout - Post Dev No Growth.sip8

V Site: 103a [3a (east). EAST BOUNDARY ROAD / NORTH DRIVE]

♦♦ Network: N101 [Master Model]

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane.

Site Category: (None) Giveway / Yield (Two-Way)

| Mov       | ement   | t Performa                 | ance       | - Vehic                   | cles             |                     |                         |                     |                                    |              |                 |                           |                            |                              |
|-----------|---------|----------------------------|------------|---------------------------|------------------|---------------------|-------------------------|---------------------|------------------------------------|--------------|-----------------|---------------------------|----------------------------|------------------------------|
| Mov<br>ID | Turn    | Demand F<br>Total<br>veh/h | HV         | Arrival<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Que<br>Vehicles [<br>veh | ue           | Prop.<br>Queued | Effective<br>Stop<br>Rate | Aver. A<br>No.<br>Cycles S | Averag<br>e<br>Speed<br>km/h |
| South     | n: EAS  | T BOUNDA                   | ARY R      | OAD                       |                  |                     |                         |                     |                                    |              |                 |                           |                            |                              |
| 3<br>3u   | R2<br>U | 240<br>11                  | 0.4<br>0.0 | 215<br>9                  | 0.5<br>0.0       | 0.797<br>0.797      | 34.8<br>47.7            | LOS D<br>LOS E      | 5.3<br>5.3                         | 37.3<br>37.3 | 0.95<br>0.95    | 1.32<br>1.32              | 2.27<br>2.27               | 6.1<br>4.8                   |
| Appro     |         | 251                        | 0.4        | <mark>224</mark> N        | 0.5              | 0.797               | 35.4                    | NA                  | 5.3                                | 37.3         | 0.95            | 1.32                      | 2.27                       | 6.1                          |
|           |         | TH DRIVE                   |            |                           |                  |                     |                         |                     |                                    |              |                 |                           |                            |                              |
| 4         | L2      | 265                        | 8.0        | 265                       | 8.0              | 0.261               | 8.0                     | LOS A               | 1.2                                | 8.7          | 0.55            | 0.73                      | 0.55                       | 47.7                         |
| 5         | T1      | 272                        | 0.0        | 272                       | 0.0              | 2.764               | 1609.8                  | LOS F               | 113.4                              | 793.8        | 1.00            | 7.30                      | 26.09                      | 1.1                          |
| Appro     | oach    | 537                        | 0.4        | 537                       | 0.4              | 2.764               | 818.3                   | LOS F               | 113.4                              | 793.8        | 0.78            | 4.06                      | 13.47                      | 2.2                          |
| North     | n: EAS  | T BOUNDA                   | RY R       | DAC                       |                  |                     |                         |                     |                                    |              |                 |                           |                            |                              |
| 7         | L2      | 197                        | 1.1        | 180                       | 1.1              | 0.361               | 3.5                     | LOS A               | 0.0                                | 0.0          | 0.00            | 0.15                      | 0.00                       | 55.4                         |
| 8         | T1      | 1307                       | 2.4        |                           | 2.5              | 0.361               | 0.0                     | LOS A               | 0.0                                | 0.0          | 0.00            | 0.06                      | 0.00                       | 53.3                         |
| Appro     | oach    | 1504                       | 2.2        | 1378 <sup>N</sup>         | <sup>1</sup> 2.3 | 0.361               | 0.5                     | NA                  | 0.0                                | 0.0          | 0.00            | 0.07                      | 0.00                       | 54.6                         |
| West      | : MEDI  | IAN                        |            |                           |                  |                     |                         |                     |                                    |              |                 |                           |                            |                              |
| 11        | T1      | 8                          | 0.0        | 8                         | 0.0              | 1.852               | 861.7                   | LOS F               | 4.1                                | 29.8         | 1.00            | 2.02                      | 5.57                       | 1.9                          |
| 12        | R2      | 56                         | 3.8        | 56                        | 3.8              | 1.852               | 909.0                   | LOS F               | 4.1                                | 29.8         | 1.00            | 2.02                      | 5.57                       | 0.1                          |
| Appro     | oach    | 64                         | 3.3        | 64                        | 3.3              | 1.852               | 902.8                   | LOS F               | 4.1                                | 29.8         | 1.00            | 2.02                      | 5.57                       | 0.3                          |
| All Ve    | ehicles | 2356                       | 1.7        | 2203 <sup>N</sup>         | <sup>1</sup> 1.8 | 2.764               | 229.6                   | NA                  | 113.4                              | 793.8        | 0.32            | 1.23                      | 3.68                       | 3.1                          |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:56:15 AM

Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180427 SIDRA Network - Future AM -

Existing Layout - Post Dev No Growth.sip8



V Site: 101 [1. MURRUMBEENA ROAD / LEILA ROAD]

♦♦ Network: N101 [Master Model]

MURRUMBEENA ROAD / LEILA ROAD Site Category: (None) Giveway / Yield (Two-Way)

| Mov       | ement   | : Perform                | ance  | - Vehi                    | cles             |                     |                         |                     |                                    |       |                 |                           |                            |      |
|-----------|---------|--------------------------|-------|---------------------------|------------------|---------------------|-------------------------|---------------------|------------------------------------|-------|-----------------|---------------------------|----------------------------|------|
| Mov<br>ID | Turn    | Demand<br>Total<br>veh/h | HV    | Arrival<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Que<br>Vehicles I<br>veh | ue    | Prop.<br>Queued | Effective<br>Stop<br>Rate | Aver. A<br>No.<br>Cycles S | e    |
| Sout      | h: MUR  | RUMBEE                   | NA RO | AD                        |                  |                     |                         |                     |                                    |       |                 |                           |                            |      |
| 1         | L2      | 75                       | 1.4   | 61                        | 1.6              | 0.433               | 5.6                     | LOS A               | 0.0                                | 0.0   | 0.00            | 0.04                      | 0.00                       | 57.7 |
| 2         | T1      | 940                      | 1.6   | 771                       | 1.8              | 0.433               | 0.1                     | LOS A               | 0.0                                | 0.0   | 0.00            | 0.04                      | 0.00                       | 59.5 |
| Appr      | oach    | 1015                     | 1.6   | 832 <sup>N</sup>          | 1.8              | 0.433               | 0.5                     | NA                  | 0.0                                | 0.0   | 0.00            | 0.04                      | 0.00                       | 59.3 |
| East      | LEILA   | ROAD                     |       |                           |                  |                     |                         |                     |                                    |       |                 |                           |                            |      |
| 4         | L2      | 58                       | 9.1   | 38                        | 13.5             | 0.119               | 15.4                    | LOS C               | 0.4                                | 2.9   | 0.76            | 0.90                      | 0.76                       | 40.4 |
| 5         | T1      | 28                       | 0.0   | 18                        | 0.0              | 2.716               | 1647.4                  | LOS F               | 36.7                               | 263.0 | 1.00            | 2.08                      | 5.88                       | 2.0  |
| 6         | R2      | 87                       | 2.4   | 56                        | 3.7              | 2.716               | 1671.8                  | LOS F               | 36.7                               | 263.0 | 1.00            | 2.08                      | 5.88                       | 2.0  |
| Appr      | oach    | 174                      | 4.2   | 112 <sup>N</sup>          | <sup>1</sup> 6.5 | 2.716               | 1101.1                  | LOS F               | 36.7                               | 263.0 | 0.92            | 1.67                      | 4.13                       | 2.5  |
| North     | n: MUR  | RUMBEEI                  | NA RO | AD                        |                  |                     |                         |                     |                                    |       |                 |                           |                            |      |
| 7         | L2      | 47                       | 6.7   | 47                        | 6.7              | 0.027               | 5.6                     | LOS A               | 0.0                                | 0.0   | 0.00            | 0.57                      | 0.00                       | 50.9 |
| 8         | T1      | 906                      | 1.2   | 906                       | 1.2              | 0.471               | 0.1                     | LOS A               | 0.0                                | 0.0   | 0.00            | 0.00                      | 0.00                       | 59.9 |
| 9         | R2      | 58                       | 0.0   | 58                        | 0.0              | 0.079               | 9.9                     | LOS A               | 0.3                                | 2.4   | 0.64            | 0.79                      | 0.64                       | 46.9 |
| Appr      | oach    | 1012                     | 1.4   | 1012                      | 1.4              | 0.471               | 0.9                     | NA                  | 0.3                                | 2.4   | 0.04            | 0.07                      | 0.04                       | 57.7 |
| West      | : LEILA | ROAD                     |       |                           |                  |                     |                         |                     |                                    |       |                 |                           |                            |      |
| 10        | L2      | 95                       | 1.1   | 95                        | 1.1              | 0.169               | 10.0                    | LOS A               | 0.6                                | 4.5   | 0.62            | 0.82                      | 0.62                       | 46.4 |
| 12        | R2      | 39                       | 0.0   | 39                        | 0.0              | 1.347               | 546.6                   | LOS F               | 10.6                               | 74.0  | 1.00            | 1.62                      | 3.45                       | 3.0  |
| Appr      | oach    | 134                      | 8.0   | 134                       | 8.0              | 1.347               | 166.3                   | LOS F               | 10.6                               | 74.0  | 0.73            | 1.05                      | 1.45                       | 13.3 |
| All Ve    | ehicles | 2334                     | 1.6   | 2090 <sup>N</sup>         | 1.8              | 2.716               | 70.4                    | NA                  | 36.7                               | 263.0 | 0.11            | 0.21                      | 0.33                       | 22.6 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:56:15 AM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180427 SIDRA Network - Future AM -

Existing Layout - Post Dev No Growth.sip8

V Site: 104a [4a (east). EAST BOUNDARY ROAD / SOUTH

♦♦ Network: N101 [Master Model]

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane. Site Category: (None)

Giveway / Yield (Two-Way)

| Move      | Movement Performance - Vehicles |                |      |                                |         |              |                  |                     |                   |               |                 |                   |          |               |
|-----------|---------------------------------|----------------|------|--------------------------------|---------|--------------|------------------|---------------------|-------------------|---------------|-----------------|-------------------|----------|---------------|
| Mov<br>ID | Turn                            | Demand I       |      |                                |         | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Que     | ue            | Prop.<br>Queued | Effective<br>Stop | No.      | Averag<br>e   |
|           |                                 | Total<br>veh/h |      | Total veh/h                    | HV<br>% | v/c          | sec              |                     | Vehicles I<br>veh | Distance<br>m |                 | Rate              | Cycles S | Speed<br>km/h |
| South     | : EAS                           | T BOUNDA       |      |                                | /0      | V/C          | 300              |                     | VCII              | - '''         |                 |                   |          | IXIII/II      |
| 3         | R2                              | 284            | 0.4  | 284                            | 0.4     | 1.356        | 360.6            | LOS F               | 31.9              | 223.7         | 1.00            | 4.02              | 13.10    | 4.7           |
| 3u        | U                               | 134            | 3.1  | 134                            | 3.1     | 1.089        | 185.5            | LOS F               | 14.1              | 101.4         | 1.00            | 1.97              | 4.98     | 2.0           |
| Appro     | ach                             | 418            | 1.3  | 418                            | 1.3     | 1.356        | 304.6            | NA                  | 31.9              | 223.7         | 1.00            | 3.36              | 10.51    | 4.2           |
| East:     | NORT                            | H DRIVE        |      |                                |         |              |                  |                     |                   |               |                 |                   |          |               |
| 4         | L2                              | 254            | 0.0  | 254                            | 0.0     | 0.383        | 10.9             | LOS B               | 1.9               | 13.4          | 0.63            | 0.91              | 0.83     | 44.3          |
| 5         | T1                              | 275            | 0.0  | 275                            | 0.0     | 3.326        | 2125.7           | LOS F               | 129.3             | 904.9         | 1.00            | 4.66              | 16.69    | 0.9           |
| Appro     | ach                             | 528            | 0.0  | 528                            | 0.0     | 3.326        | 1110.5           | LOS F               | 129.3             | 904.9         | 0.82            | 2.86              | 9.07     | 1.6           |
| North     | : EAS1                          | BOUNDA         | RY R | OAD                            |         |              |                  |                     |                   |               |                 |                   |          |               |
| 7         | L2                              | 276            | 0.0  | 255                            | 0.0     | 0.396        | 5.5              | LOS A               | 0.0               | 0.0           | 0.00            | 0.20              | 0.00     | 54.7          |
| 8         | T1                              | 1361           | 2.5  | 1258                           | 2.4     | 0.396        | 0.0              | LOS A               | 0.0               | 0.0           | 0.00            | 0.08              | 0.00     | 54.4          |
| Appro     | ach                             | 1637           | 2.1  | 1513 <sup>N</sup>              | 2.0     | 0.396        | 0.9              | NA                  | 0.0               | 0.0           | 0.00            | 0.10              | 0.00     | 54.6          |
| All Ve    | hicles                          | 2583           | 1.5  | <mark>2459</mark> <sup>N</sup> | 1.6     | 3.326        | 291.0            | NA                  | 129.3             | 904.9         | 0.35            | 1.25              | 3.73     | 3.5           |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:56:15 AM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180427 SIDRA Network - Future AM -Existing Layout - Post Dev No Growth.sip8

V Site: 107 [7. NORTH ROAD / CROSBIE ROAD / COBAR

NORTH ROAD / CROSBIE ROAD / COBAR STREET

Site Category: (None) Giveway / Yield (Two-Way)

| Movement Performance - Vehicles |         |                |      |                   |         |              |                  |                     |                 |               |                 |                   |        |               |
|---------------------------------|---------|----------------|------|-------------------|---------|--------------|------------------|---------------------|-----------------|---------------|-----------------|-------------------|--------|---------------|
| Mov<br>ID                       | Turn    | Demand         |      |                   |         | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% B<br>Que    | eue           | Prop.<br>Queued | Effective<br>Stop | No.    | Averag<br>e   |
|                                 |         | Total<br>veh/h |      | Total<br>veh/h    | HV<br>% | v/c          | sec              |                     | Vehicles<br>veh | Distance<br>m |                 | Rate              | Cycles | Speed<br>km/h |
| Sout                            | h: COE  | BAR STRE       |      | VO11/11           | 70      | <b>V/O</b>   |                  |                     | VOII            |               |                 |                   |        | KITI/TI       |
| 1                               | L2      | 133            | 0.0  | 133               | 0.0     | 20.593       | 17687.7          | LOS F               | 143.4           | 1004.0        | 1.00            | 2.41              | 6.36   | 0.1           |
| 1a                              | L1      | 65             | 0.0  | 65                | 0.0     | 20.593       | 17708.4          | LOS F               | 143.4           | 1004.0        | 1.00            | 2.41              | 6.36   | 0.1           |
| 3                               | R2      | 106            | 1.0  | 106               | 1.0     | 17.719       | 15142.0          | LOS F               | 94.2            | 665.3         | 1.00            | 1.60              | 3.37   | 0.1           |
| Appr                            | oach    | 304            | 0.4  | 304               | 0.4     | 20.593       | 16802.5          | LOS F               | 143.4           | 1004.0        | 1.00            | 2.13              | 5.31   | 0.1           |
| East:                           | NORT    | H ROAD         |      |                   |         |              |                  |                     |                 |               |                 |                   |        |               |
| 4                               | L2      | 146            | 1.4  | 146               | 1.4     | 0.830        | 6.0              | LOS A               | 47.6            | 343.4         | 0.00            | 0.06              | 0.00   | 57.4          |
| 5                               | T1      | 1792           | 3.8  | 1792              | 3.8     | 0.830        | 12.3             | LOS B               | 47.6            | 343.4         | 0.20            | 0.04              | 0.42   | 45.9          |
| 6a                              | R1      | 72             | 7.4  | 72                | 7.4     | 1.000        | 159.6            | LOS F               | 5.5             | 41.0          | 1.00            | 1.42              | 2.89   | 12.5          |
| Appr                            | oach    | 2009           | 3.7  | 2009              | 3.7     | 1.000        | 17.1             | NA                  | 47.6            | 343.4         | 0.22            | 0.09              | 0.48   | 43.0          |
| North                           | West:   | CROSBIE        | ROAD | )                 |         |              |                  |                     |                 |               |                 |                   |        |               |
| 27a                             | L1      | 57             | 7.4  | 57                | 7.4     | 0.846        | 150.6            | LOS F               | 3.8             | 28.3          | 0.99            | 1.20              | 1.86   | 10.3          |
| 29b                             | R3      | 2              | 0.0  | 2                 | 0.0     | 0.909        | 1915.1           | LOS F               | 1.9             | 13.6          | 1.00            | 1.02              | 1.13   | 1.0           |
| Appr                            | oach    | 59             | 7.1  | 59                | 7.1     | 0.909        | 213.6            | LOS F               | 3.8             | 28.3          | 0.99            | 1.19              | 1.84   | 7.7           |
| West                            | : NOR   | TH ROAD        |      |                   |         |              |                  |                     |                 |               |                 |                   |        |               |
| 10b                             | L3      | 23             | 9.1  | 22                | 9.3     | 0.014        | 7.5              | LOS A               | 0.0             | 0.0           | 0.00            | 0.64              | 0.00   | 38.4          |
| 11                              | T1      | 1738           | 2.1  | 1656              | 2.1     | 0.839        | 5.1              | LOS A               | 3.4             | 24.3          | 0.03            | 0.16              | 0.03   | 43.6          |
| 12                              | R2      | 180            | 0.6  | 171               | 0.6     | 5.936        | 4501.4           | LOS F               | 53.0            | 372.8         | 1.00            | 2.30              | 7.91   | 0.5           |
| Appr                            | oach    | 1941           | 2.0  | 1849 <sup>N</sup> | 2.1     | 5.936        | 421.9            | NA                  | 53.0            | 372.8         | 0.12            | 0.37              | 0.76   | 1.7           |
| All Ve                          | ehicles | 4314           | 2.8  | 4222 <sup>N</sup> | 2.8     | 20.593       | 1406.7           | NA                  | 143.4           | 1004.0        | 0.24            | 0.37              | 0.97   | 1.2           |

♦♦ Network: N101 [Master

Model]

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:56:15 AM Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180427 SIDRA Network - Future AM -Existing Layout - Post Dev No Growth.sip8

Site: 3560 [2. NORTH ROAD / EAST BOUNDARY ROAD / MURRUMBEENA ROAD]

NORTH ROAD / EAST BOUNDARY ROAD / MURRUMBEENA ROAD

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 128 seconds (Site User-Given Cycle Time)

| Мо              | vemen    | t Performa        | ance  | - Vehic            | les |              |                  |                     |                |       |                 |                   |        |             |
|-----------------|----------|-------------------|-------|--------------------|-----|--------------|------------------|---------------------|----------------|-------|-----------------|-------------------|--------|-------------|
| Mo <sup>v</sup> | v Turn   |                   |       |                    |     | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Quei | Je    | Prop.<br>Queued | Effective<br>Stop | No.    | Averag<br>e |
|                 |          | Total             |       | Total              | HV  |              |                  |                     | Vehicles E     |       |                 | Rate              | Cycles |             |
| Sou             | ıth: FAS | veh/h<br>T BOUNDA |       | veh/h              | %   | v/c          | sec              |                     | veh            | m     |                 |                   |        | km/h        |
| 1               | L2       | 559               | 0.4   | 445                | 0.4 | 0.385        | 18.4             | LOS B               | 11.8           | 83.0  | 0.53            | 0.78              | 0.66   | 49.8        |
| 2               | T1       | 814               | 0.4   | 648                | 0.3 | 1.084        | 108.5            | LOS F               | 31.6           | 221.5 | 1.00            | 1.17              | 1.60   | 8.8         |
| 3               | R2       | 312               | 0.6   | 249                | 0.8 | 1.004        | 158.9            | LOS F               | 13.1           | 92.4  | 1.00            | 1.17              | 2.10   | 6.1         |
| -               |          | 1685              |       | 1342 <sup>N1</sup> |     | 1.076        | 87.9             | LOS F               | 31.6           | 221.5 | 0.84            | 1.05              | 1.38   | 16.2        |
|                 | roach    |                   | 0.4   | 1342               | 0.4 | 1.004        | 01.5             | LO3 1               | 31.0           | 221.5 | 0.04            | 1.05              | 1.50   | 10.2        |
| Eas             | -        | TH ROAD           |       |                    |     |              |                  |                     |                |       |                 |                   |        |             |
| 4               | L2       | 345               | 0.3   | 316                | 0.3 | 0.736        | 52.5             | LOS D               | 22.1           | 155.0 | 0.98            | 0.86              | 0.98   | 7.2         |
| 5               | T1       | 1347              | 8.0   | 1233               | 0.9 | 1.145        | 187.2            | LOS F               | 22.1           | 155.0 | 1.00            | 1.61              | 2.08   | 12.1        |
| 6               | R2       | 54                | 0.0   | 49                 | 0.0 | 0.835        | 80.1             | LOS F               | 5.3            | 37.1  | 1.00            | 0.90              | 1.38   | 4.8         |
| 6u              | U        | 29                | 0.0   | 27                 | 0.0 | 0.835        | 81.4             | LOS F               | 5.3            | 37.1  | 1.00            | 0.90              | 1.38   | 4.8         |
| App             | oroach   | 1775              | 0.7   | 1625 <sup>N1</sup> | 0.7 | 1.145        | 156.1            | LOS F               | 22.1           | 155.0 | 0.99            | 1.43              | 1.83   | 11.7        |
| Nor             | th: MUR  | RUMBEEN           | IA RO | AD                 |     |              |                  |                     |                |       |                 |                   |        |             |
| 7               | L2       | 106               | 1.9   | 101                | 1.9 | 0.812        | 65.0             | LOS E               | 22.6           | 159.5 | 1.00            | 0.97              | 1.44   | 19.4        |
| 8               | T1       | 745               | 0.4   | 712                | 0.4 | 1.160        | 155.6            | LOS F               | 58.1           | 408.4 | 1.00            | 1.45              | 1.96   | 9.2         |
| 9               | R2       | 136               | 0.7   | 130                | 0.8 | 0.900        | 82.3             | LOS F               | 9.3            | 65.7  | 1.00            | 0.99              | 1.45   | 28.1        |
| App             | roach    | 987               | 0.6   | 943 <sup>N1</sup>  | 0.6 | 1.160        | 135.8            | LOS F               | 58.1           | 408.4 | 1.00            | 1.34              | 1.83   | 12.0        |
| We              | st: NOR  | RTH ROAD          |       |                    |     |              |                  |                     |                |       |                 |                   |        |             |
| 10              | L2       | 107               | 3.7   | 107                | 3.7 | 0.127        | 17.3             | LOS B               | 4.0            | 28.9  | 0.51            | 0.61              | 0.51   | 49.0        |
| 11              | T1       | 1335              | 1.9   | 1335               | 1.9 | 0.848        | 26.5             | LOS C               | 42.5           | 302.4 | 0.79            | 0.73              | 0.81   | 40.1        |
| 12              | R2       | 548               | 0.4   | 548                | 0.4 | 1.180        | 238.5            | LOS F               | 77.5           | 543.9 | 1.00            | 1.47              | 2.36   | 8.9         |
| App             | roach    | 1990              | 1.6   | 1990               | 1.6 | 1.180        | 84.4             | LOS F               | 77.5           | 543.9 | 0.83            | 0.93              | 1.22   | 20.5        |
| All '           | Vehicles | 6437              | 0.9   | 5900 <sup>N1</sup> | 0.9 | 1.180        | 113.2            | LOS F               | 77.5           | 543.9 | 0.91            | 1.16              | 1.52   | 15.0        |

♦♦ Network: N101 [Master

Model]

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

| Movement Performance - Pedestrians |                     |                         |                         |       |                                   |                           |                 |                        |  |  |  |
|------------------------------------|---------------------|-------------------------|-------------------------|-------|-----------------------------------|---------------------------|-----------------|------------------------|--|--|--|
| Mov<br>ID                          | Description         | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Back<br>Pedestrian<br>ped | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate |  |  |  |
| P1                                 | South Full Crossing | 53                      | 55.4                    | LOS E | 0.2                               | 0.2                       | 0.93            | 0.93                   |  |  |  |
| P2                                 | East Full Crossing  | 53                      | 58.3                    | LOS E | 0.2                               | 0.2                       | 0.96            | 0.96                   |  |  |  |
| P3                                 | North Full Crossing | 53                      | 25.1                    | LOS C | 0.1                               | 0.1                       | 0.63            | 0.63                   |  |  |  |
| P4                                 | West Full Crossing  | 53                      | 58.3                    | LOS E | 0.2                               | 0.2                       | 0.96            | 0.96                   |  |  |  |
| All Pe                             | destrians           | 211                     | 49.3                    | LOS E |                                   |                           | 0.87            | 0.87                   |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:56:31 AM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180427 SIDRA Network - Future PM Existing Layout - Post Dev No Growth.sip8

## Site: 3559 [10. NORTH ROAD / KOORNANG ROAD / TUCKER ROAD PM]

10. NORTH ROAD / KOORNAND ROAD / TUCKER ROAD

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 126 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

| Movement Performance - Vehicles |          |                |         |             |              |          |                 |               |        |           |           |               |
|---------------------------------|----------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------|
| Mov                             | Turn     | Demand F       |         | Deg.        | Average      | Level of | 95% Back        | of Queue      | Prop.  |           | Aver. No. |               |
| ID                              |          | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay<br>sec | Service  | Vehicles<br>veh | Distance<br>m | Queued | Stop Rate | Cycles    | Speed<br>km/h |
| South                           | 1: TUCKE | ER ROAD        |         |             |              |          |                 |               |        |           |           |               |
| 1                               | L2       | 191            | 1.1     | 0.389       | 39.8         | LOS D    | 8.8             | 61.9          | 0.80   | 0.78      | 0.80      | 35.7          |
| 2                               | T1       | 198            | 1.1     | 0.864       | 63.7         | LOS E    | 12.9            | 91.3          | 0.98   | 0.97      | 1.29      | 29.5          |
| Appro                           | oach     | 388            | 1.1     | 0.864       | 52.0         | LOS D    | 12.9            | 91.3          | 0.89   | 0.88      | 1.05      | 32.2          |
| East:                           | NORTH    | ROAD           |         |             |              |          |                 |               |        |           |           |               |
| 4                               | L2       | 193            | 1.1     | 0.180       | 18.7         | LOS B    | 5.4             | 38.4          | 0.50   | 0.71      | 0.50      | 46.6          |
| 5                               | T1       | 1969           | 0.5     | 0.814       | 19.1         | LOS B    | 33.5            | 235.3         | 0.70   | 0.65      | 0.71      | 47.3          |
| 6                               | R2       | 173            | 1.2     | 0.844       | 73.1         | LOS E    | 11.6            | 81.8          | 1.00   | 0.93      | 1.27      | 29.3          |
| Appro                           | oach     | 2335           | 0.6     | 0.844       | 23.0         | LOSC     | 33.5            | 235.3         | 0.71   | 0.67      | 0.74      | 45.2          |
| North                           | : KOORI  | NANG ROAD      | )       |             |              |          |                 |               |        |           |           |               |
| 7                               | L2       | 201            | 1.0     | 0.335       | 40.0         | LOS D    | 9.3             | 65.7          | 0.80   | 0.79      | 0.80      | 37.8          |
| 8                               | T1       | 197            | 1.1     | 0.641       | 53.3         | LOS D    | 11.4            | 80.7          | 0.98   | 0.81      | 0.98      | 32.2          |
| Appro                           | oach     | 398            | 1.1     | 0.641       | 46.6         | LOS D    | 11.4            | 80.7          | 0.89   | 0.80      | 0.89      | 35.0          |
| West:                           | NORTH    | ROAD           |         |             |              |          |                 |               |        |           |           |               |
| 10                              | L2       | 99             | 1.1     | 0.093       | 17.9         | LOS B    | 2.6             | 18.6          | 0.47   | 0.69      | 0.47      | 45.4          |
| 11                              | T1       | 1933           | 1.7     | 0.856       | 23.5         | LOS C    | 39.6            | 281.4         | 0.75   | 0.72      | 0.79      | 45.1          |
| 12                              | R2       | 169            | 1.2     | 0.829       | 72.1         | LOS E    | 11.2            | 79.5          | 1.00   | 0.91      | 1.24      | 27.2          |
| Appro                           | oach     | 2201           | 1.7     | 0.856       | 27.0         | LOSC     | 39.6            | 281.4         | 0.76   | 0.73      | 0.81      | 43.2          |
| All Ve                          | hicles   | 5322           | 1.1     | 0.864       | 28.5         | LOS C    | 39.6            | 281.4         | 0.76   | 0.72      | 0.80      | 42.4          |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Movement Performance - Pedestrians |                     |                |                  |       |                           |                        |                 |                        |  |  |  |  |
|------------------------------------|---------------------|----------------|------------------|-------|---------------------------|------------------------|-----------------|------------------------|--|--|--|--|
| Mov<br>ID                          | Description         | Demand<br>Flow | Average<br>Delay |       | Average Bac<br>Pedestrian | k of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate |  |  |  |  |
|                                    |                     | ped/h          | sec              |       | ped                       | m                      |                 |                        |  |  |  |  |
| P1                                 | South Full Crossing | 53             | 14.3             | LOS B | 0.1                       | 0.1                    | 0.48            | 0.48                   |  |  |  |  |
| P2                                 | East Full Crossing  | 53             | 57.3             | LOS E | 0.2                       | 0.2                    | 0.95            | 0.95                   |  |  |  |  |
| P3                                 | North Full Crossing | 53             | 4.3              | LOSA  | 0.0                       | 0.0                    | 0.26            | 0.26                   |  |  |  |  |
| P4                                 | West Full Crossing  | 53             | 57.3             | LOS E | 0.2                       | 0.2                    | 0.95            | 0.95                   |  |  |  |  |
| All Pedestrians                    |                     | 211            | 33.3             | LOS D |                           |                        | 0.66            | 0.66                   |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

 $Project: P: V13600-13699 \ V136080 \ East \ Village - Integrated \ Transp\\ Modelling \ SIDRA\\ 180920-Updates\\ 180427 \ SIDRA \ Network - Future \ PM-Existing \ Layout - Post \ Dev \ No \ Growth.sip8$ 



Site: 3561 [6. NORTH ROAD / POATH ROAD / POET ROAD]

♦♦ Network: N101 [Master Model]

NORTH ROAD / POATH ROAD / POET ROAD

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 130 seconds (Site User-Given Cycle Time)

| Мо        | vement   | t Perform | ance  | - Vehi            | cles  |              |                  |                     |                |         |                 |                   |             |             |
|-----------|----------|-----------|-------|-------------------|-------|--------------|------------------|---------------------|----------------|---------|-----------------|-------------------|-------------|-------------|
| Mov<br>ID | / Turn   | Demand    | Flows | Arrival           | Flows | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Quei |         | Prop.<br>Queued | Effective<br>Stop | Aver<br>No. | Averag<br>e |
|           |          | Total     |       | Total             | HV    |              |                  |                     | Vehicles E     | istance |                 | Rate              | Cycles S    |             |
| 0         | 4b. DOE  | veh/h     | %     | veh/h             | %     | v/c          | sec              |                     | veh            | m       |                 |                   |             | km/h        |
|           | -        | TROAD     | 4.0   |                   |       | 0.700        | 07.4             |                     |                | =0.0    | 4.00            |                   |             | 40.4        |
| 1         | L2       | 55        | 1.9   | 55                | 1.9   | 0.708        | 67.4             | LOS E               | 8.0            | 56.6    | 1.00            | 0.87              | 1.11        | 16.4        |
| 2         | T1       | 13        | 0.0   | 13                | 0.0   | 0.708        | 64.0             | LOS E               | 8.0            | 56.6    | 1.00            | 0.87              | 1.11        | 25.6        |
| 3         | R2       | 55        | 1.9   | 55                | 1.9   | 0.708        | 67.4             | LOS E               | 8.0            | 56.6    | 1.00            | 0.87              | 1.11        | 25.7        |
| App       | roach    | 122       | 1.7   | 122               | 1.7   | 0.708        | 67.0             | LOS E               | 8.0            | 56.6    | 1.00            | 0.87              | 1.11        | 22.0        |
| Eas       | t: NORT  | H ROAD    |       |                   |       |              |                  |                     |                |         |                 |                   |             |             |
| 4         | L2       | 25        | 0.0   | 25                | 0.0   | 0.761        | 20.1             | LOS C               | 41.3           | 290.7   | 0.71            | 0.67              | 0.71        | 43.0        |
| 5         | T1       | 1599      | 0.7   | 1599              | 0.7   | 0.761        | 12.1             | LOS B               | 41.3           | 290.7   | 0.62            | 0.58              | 0.62        | 47.9        |
| 6         | R2       | 98        | 1.1   | 98                | 1.1   | 0.539        | 28.2             | LOS C               | 3.5            | 24.6    | 0.88            | 0.80              | 0.88        | 42.3        |
| App       | roach    | 1722      | 0.7   | 1722              | 0.7   | 0.761        | 13.1             | LOS B               | 41.3           | 290.7   | 0.64            | 0.59              | 0.64        | 47.1        |
| Nor       | th: POA  | TH ROAD   |       |                   |       |              |                  |                     |                |         |                 |                   |             |             |
| 7         | L2       | 238       | 0.9   | 238               | 0.9   | 0.693        | 46.2             | LOS D               | 15.1           | 106.1   | 0.96            | 0.83              | 0.96        | 32.0        |
| 8         | T1       | 44        | 0.0   | 44                | 0.0   | 0.693        | 41.6             | LOS D               | 15.1           | 106.1   | 0.96            | 0.83              | 0.96        | 30.8        |
| 9         | R2       | 76        | 1.4   | 76                | 1.4   | 0.243        | 53.8             | LOS D               | 4.1            | 29.4    | 0.89            | 0.76              | 0.89        | 20.4        |
| App       | roach    | 358       | 0.9   | 358               | 0.9   | 0.693        | 47.2             | LOS D               | 15.1           | 106.1   | 0.94            | 0.82              | 0.95        | 29.8        |
| Wes       | st: NOR  | TH ROAD   |       |                   |       |              |                  |                     |                |         |                 |                   |             |             |
| 10        | L2       | 89        | 1.2   | 80                | 1.3   | 0.740        | 26.2             | LOS C               | 38.1           | 271.6   | 0.78            | 0.73              | 0.78        | 48.9        |
| 11        | T1       | 1668      | 1.9   | 1490              | 2.1   | 0.740        | 18.7             | LOS B               | 38.1           | 271.6   | 0.74            | 0.68              | 0.74        | 53.4        |
| 12        | R2       | 25        | 0.0   | 23                | 0.0   | 0.232        | 40.7             | LOS D               | 1.1            | 7.6     | 0.74            | 0.75              | 0.74        | 35.4        |
| App       | roach    | 1783      | 1.8   | 1592 <sup>N</sup> | 2.0   | 0.740        | 19.4             | LOS B               | 38.1           | 271.6   | 0.74            | 0.69              | 0.74        | 52.8        |
| All \     | /ehicles | 3985      | 1.2   | 3794 <sup>N</sup> | 1.3   | 0.761        | 20.7             | LOSC                | 41.3           | 290.7   | 0.72            | 0.66              | 0.73        | 45.8        |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

| Move   | Movement Performance - Pedestrians |        |         |          |              |          |        |           |  |  |  |  |  |  |  |
|--------|------------------------------------|--------|---------|----------|--------------|----------|--------|-----------|--|--|--|--|--|--|--|
| Mov    |                                    | Demand | Average | Level of | Average Back | of Queue | Prop.  | Effective |  |  |  |  |  |  |  |
| ID     | Description                        | Flow   | Delay   | Service  | Pedestrian   | Distance | Queued | Stop Rate |  |  |  |  |  |  |  |
|        |                                    | ped/h  | sec     |          | ped          | m        |        |           |  |  |  |  |  |  |  |
| P1     | South Full Crossing                | 53     | 7.8     | LOSA     | 0.1          | 0.1      | 0.35   | 0.35      |  |  |  |  |  |  |  |
| P2     | East Full Crossing                 | 53     | 51.0    | LOS E    | 0.2          | 0.2      | 0.89   | 0.89      |  |  |  |  |  |  |  |
| P3     | North Full Crossing                | 53     | 13.4    | LOS B    | 0.1          | 0.1      | 0.45   | 0.45      |  |  |  |  |  |  |  |
| P4     | West Full Crossing                 | 53     | 51.0    | LOS E    | 0.2          | 0.2      | 0.89   | 0.89      |  |  |  |  |  |  |  |
| All Pe | destrians                          | 211    | 30.8    | LOS D    |              |          | 0.64   | 0.64      |  |  |  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:56:31 AM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180427 SIDRA Network - Future PM Existing Layout - Post Dev No Growth.sip8



Site: 1209 [5. EAST BOUNDARY ROAD / ARDENA COURT]

♦♦ Network: N101 [Master Model]

EAST BOUNDARY ROAD / ARDENA COURT

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 116 seconds (Site User-Given Cycle Time)

|           |         | Performa |       |                   |       |       |         |         |                    |       |        |              |          |            |
|-----------|---------|----------|-------|-------------------|-------|-------|---------|---------|--------------------|-------|--------|--------------|----------|------------|
| Mov<br>ID | Turn    | Demand F | Flows | Arrival           | Flows | Deg.  | Average |         | 95% Ba             |       | Prop.  | Effective    | Aver. A  |            |
| טו        |         | Total    | HV    | Total             | HV    | Satn  | Delay   | Service | Quei<br>Vehicles E |       | Queued | Stop<br>Rate | Cycles S | e<br>Speed |
|           |         | veh/h    |       | veh/h             | %     | v/c   | sec     |         | veh                | m     |        | rtato        | 0,0000   | km/h       |
| Sout      | h: EAS  | T BOUNDA | RY R  | OAD               |       |       |         |         |                    |       |        |              |          |            |
| 1         | L2      | 18       | 0.0   | 18                | 0.0   | 0.016 | 15.1    | LOS B   | 0.4                | 2.6   | 0.40   | 0.66         | 0.40     | 42.4       |
| 2         | T1      | 1597     | 0.4   | 1597              | 0.4   | 0.666 | 15.0    | LOS B   | 28.9               | 203.1 | 0.70   | 0.64         | 0.70     | 44.6       |
| 3         | R2      | 126      | 0.8   | 126               | 8.0   | 0.722 | 65.5    | LOS E   | 7.4                | 52.5  | 1.00   | 0.84         | 1.13     | 26.7       |
| Appr      | oach    | 1741     | 0.4   | 1741              | 0.4   | 0.722 | 18.7    | LOS B   | 28.9               | 203.1 | 0.72   | 0.66         | 0.73     | 41.0       |
| East      | ARDE    | NA COURT | Γ     |                   |       |       |         |         |                    |       |        |              |          |            |
| 4         | L2      | 91       | 0.0   | 91                | 0.0   | 0.164 | 34.5    | LOS C   | 3.8                | 26.5  | 0.76   | 0.71         | 0.76     | 33.5       |
| 5         | T1      | 2        | 0.0   | 2                 | 0.0   | 0.164 | 31.1    | LOS C   | 3.8                | 26.5  | 0.76   | 0.71         | 0.76     | 29.1       |
| 6         | R2      | 75       | 0.0   | 75                | 0.0   | 0.287 | 50.2    | LOS D   | 3.8                | 26.6  | 0.92   | 0.75         | 0.92     | 19.3       |
| Appr      | oach    | 167      | 0.0   | 167               | 0.0   | 0.287 | 41.5    | LOS D   | 3.8                | 26.6  | 0.83   | 0.73         | 0.83     | 27.5       |
| North     | n: EAST | BOUNDA   | RY R  | DAC               |       |       |         |         |                    |       |        |              |          |            |
| 7         | L2      | 5        | 0.0   | 5                 | 0.0   | 0.005 | 17.1    | LOS B   | 0.1                | 0.8   | 0.44   | 0.64         | 0.44     | 37.0       |
| 8         | T1      | 1721     | 0.3   | 1709              | 0.3   | 0.765 | 19.6    | LOS B   | 36.0               | 252.9 | 0.82   | 0.75         | 0.82     | 47.1       |
| 9         | R2      | 8        | 0.0   | 8                 | 0.0   | 0.087 | 65.6    | LOS E   | 0.5                | 3.3   | 0.98   | 0.66         | 0.98     | 22.5       |
| Appr      | oach    | 1735     | 0.3   | 1723 <sup>N</sup> | 0.3   | 0.765 | 19.8    | LOS B   | 36.0               | 252.9 | 0.82   | 0.75         | 0.82     | 46.8       |
| West      | :: ARDE | NA COUR  | Т     |                   |       |       |         |         |                    |       |        |              |          |            |
| 10        | L2      | 21       | 0.0   | 21                | 0.0   | 0.170 | 48.2    | LOS D   | 2.2                | 15.6  | 0.89   | 0.72         | 0.89     | 19.7       |
| 11        | T1      | 1        | 0.0   | 1                 | 0.0   | 0.170 | 44.8    | LOS D   | 2.2                | 15.6  | 0.89   | 0.72         | 0.89     | 26.2       |
| 12        | R2      | 23       | 0.0   | 23                | 0.0   | 0.170 | 48.1    | LOS D   | 2.2                | 15.6  | 0.89   | 0.72         | 0.89     | 29.9       |
| Appr      | oach    | 45       | 0.0   | 45                | 0.0   | 0.170 | 48.1    | LOS D   | 2.2                | 15.6  | 0.89   | 0.72         | 0.89     | 25.7       |
| All Ve    | ehicles | 3688     | 0.3   | 3677 <sup>N</sup> | 0.3   | 0.765 | 20.6    | LOSC    | 36.0               | 252.9 | 0.77   | 0.70         | 0.78     | 42.4       |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

| Move   | Movement Performance - Pedestrians |        |         |          |              |          |        |           |  |  |  |  |  |  |  |
|--------|------------------------------------|--------|---------|----------|--------------|----------|--------|-----------|--|--|--|--|--|--|--|
| Mov    |                                    | Demand | Average | Level of | Average Back | of Queue | Prop.  | Effective |  |  |  |  |  |  |  |
| ID     | Description                        | Flow   | Delay   | Service  | Pedestrian   | Distance | Queued | Stop Rate |  |  |  |  |  |  |  |
|        |                                    | ped/h  | sec     |          | ped          | m        |        |           |  |  |  |  |  |  |  |
| P1     | South Full Crossing                | 53     | 52.3    | LOS E    | 0.2          | 0.2      | 0.95   | 0.95      |  |  |  |  |  |  |  |
| P2     | East Full Crossing                 | 53     | 13.5    | LOS B    | 0.1          | 0.1      | 0.48   | 0.48      |  |  |  |  |  |  |  |
| P3     | North Full Crossing                | 53     | 52.3    | LOS E    | 0.2          | 0.2      | 0.95   | 0.95      |  |  |  |  |  |  |  |
| P4     | West Full Crossing                 | 53     | 10.4    | LOS B    | 0.1          | 0.1      | 0.42   | 0.42      |  |  |  |  |  |  |  |
| All Pe | destrians                          | 211    | 32.1    | LOS D    |              |          | 0.70   | 0.70      |  |  |  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:56:31 AM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180427 SIDRA Network - Future PM Existing Layout - Post Dev No Growth.sip8

V Site: 103a [3a (east). EAST BOUNDARY ROAD / NORTH DRIVE]

♦♦ Network: N101 [Master Model]

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane.

Site Category: (None) Giveway / Yield (Two-Way)

| Mov       | ement   | : Perform         | ance  | - Vehic                       | eles        |              |                  |                     |                             |       |                 |                           |                            |                      |
|-----------|---------|-------------------|-------|-------------------------------|-------------|--------------|------------------|---------------------|-----------------------------|-------|-----------------|---------------------------|----------------------------|----------------------|
| Mov<br>ID | Turn    | Demand I<br>Total | Flows |                               | Flows<br>HV | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Que<br>Vehicles [ | ue    | Prop.<br>Queued | Effective<br>Stop<br>Rate | Aver. A<br>No.<br>Cycles S | Averag<br>e<br>Speed |
|           |         | veh/h             |       | veh/h                         | %           | v/c          | sec              |                     | veh                         | m     |                 |                           | - 7                        | km/h                 |
| Sout      | h: EAS  | T BOUNDA          | ARY R | OAD                           |             |              |                  |                     |                             |       |                 |                           |                            |                      |
| 3         | R2      | 204               | 0.0   | 176                           | 0.0         | 0.824        | 44.1             | LOS E               | 5.3                         | 37.2  | 0.97            | 1.34                      | 2.37                       | 5.8                  |
| 3u        | U       | 17                | 0.0   | 15                            | 0.0         | 0.824        | 56.9             | LOS F               | 5.3                         | 37.2  | 0.97            | 1.34                      | 2.37                       | 3.8                  |
| Appr      | oach    | 221               | 0.0   | <mark>191</mark> <sup>N</sup> | 0.0         | 0.824        | 45.1             | NA                  | 5.3                         | 37.2  | 0.97            | 1.34                      | 2.37                       | 5.7                  |
| East      | NORT    | H DRIVE           |       |                               |             |              |                  |                     |                             |       |                 |                           |                            |                      |
| 4         | L2      | 358               | 0.0   | 358                           | 0.0         | 0.347        | 8.4              | LOS A               | 2.0                         | 13.8  | 0.57            | 0.78                      | 0.64                       | 47.2                 |
| 5         | T1      | 273               | 0.0   | 273                           | 0.0         | 3.013        | 1834.3           | LOS F               | 119.2                       | 834.3 | 1.00            | 7.15                      | 25.73                      | 1.0                  |
| Appr      | oach    | 631               | 0.0   | 631                           | 0.0         | 3.013        | 797.9            | LOS F               | 119.2                       | 834.3 | 0.76            | 3.53                      | 11.49                      | 2.2                  |
| North     | n: EAST | Γ BOUNDA          | RY R  | DAD                           |             |              |                  |                     |                             |       |                 |                           |                            |                      |
| 7         | L2      | 278               | 0.0   | 245                           | 0.0         | 0.389        | 3.5              | LOS A               | 0.0                         | 0.0   | 0.00            | 0.19                      | 0.00                       | 55.2                 |
| 8         | T1      | 1420              | 0.4   | 1255                          | 0.5         | 0.389        | 0.0              | LOS A               | 0.0                         | 0.0   | 0.00            | 0.07                      | 0.00                       | 52.3                 |
| Appr      | oach    | 1698              | 0.4   | 1500 <sup>N</sup>             | 0.4         | 0.389        | 0.6              | NA                  | 0.0                         | 0.0   | 0.00            | 0.09                      | 0.00                       | 54.2                 |
| West      | t: MEDI | AN                |       |                               |             |              |                  |                     |                             |       |                 |                           |                            |                      |
| 11        | T1      | 4                 | 0.0   | 4                             | 0.0         | 1.023        | 271.7            | LOS F               | 4.3                         | 29.8  | 1.00            | 1.25                      | 2.15                       | 4.8                  |
| 12        | R2      | 26                | 0.0   | 26                            | 0.0         | 1.023        | 369.4            | LOS F               | 4.3                         | 29.8  | 1.00            | 1.25                      | 2.15                       | 0.2                  |
| Appr      | oach    | 31                | 0.0   | 31                            | 0.0         | 1.023        | 355.9            | LOS F               | 4.3                         | 29.8  | 1.00            | 1.25                      | 2.15                       | 0.9                  |
| All V     | ehicles | 2580              | 0.2   | 2352 <sup>N</sup>             | 0.3         | 3.013        | 222.5            | NA                  | 119.2                       | 834.3 | 0.29            | 1.13                      | 3.30                       | 3.5                  |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:56:31 AM

Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180427 SIDRA Network - Future PM -

Existing Layout - Post Dev No Growth.sip8



V Site: 101 [1. MURRUMBEENA ROAD / LEILA ROAD]

♦♦ Network: N101 [Master Model]

MURRUMBEENA ROAD / LEILA ROAD Site Category: (None) Giveway / Yield (Two-Way)

| Mov       | ement    | : Performa                 | ance        | - Vehic           | :les |                     |                         |                     |                                    |       |                 |                           |                            |      |
|-----------|----------|----------------------------|-------------|-------------------|------|---------------------|-------------------------|---------------------|------------------------------------|-------|-----------------|---------------------------|----------------------------|------|
| Mov<br>ID | Turn     | Demand I<br>Total<br>veh/h | Flows<br>HV |                   |      | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Que<br>Vehicles [<br>veh | ue    | Prop.<br>Queued | Effective<br>Stop<br>Rate | Aver. A<br>No.<br>Cycles S | ě    |
| Sout      | h: MUR   | RUMBEEN                    | NA RO       | AD                |      |                     |                         |                     |                                    |       |                 |                           |                            |      |
| 1         | L2       | 91                         | 1.2         | 78                | 1.3  | 0.461               | 5.6                     | LOS A               | 0.0                                | 0.0   | 0.00            | 0.05                      | 0.00                       | 57.7 |
| 2         | T1       | 940                        | 0.3         | 814               | 0.4  | 0.461               | 0.1                     | LOS A               | 0.0                                | 0.0   | 0.00            | 0.05                      | 0.00                       | 59.4 |
| Appr      | oach     | 1031                       | 0.4         | 892 <sup>N</sup>  | 0.5  | 0.461               | 0.6                     | NA                  | 0.0                                | 0.0   | 0.00            | 0.05                      | 0.00                       | 59.2 |
| East      | : LEILA  | ROAD                       |             |                   |      |                     |                         |                     |                                    |       |                 |                           |                            |      |
| 4         | L2       | 88                         | 4.8         | 60                | 6.8  | 0.192               | 16.4                    | LOS C               | 0.6                                | 4.6   | 0.80            | 0.92                      | 0.83                       | 39.5 |
| 5         | T1       | 35                         | 0.0         | 23                | 0.0  | 1.152               | 353.9                   | LOS F               | 17.3                               | 123.0 | 1.00            | 1.70                      | 4.28                       | 11.2 |
| 6         | R2       | 142                        | 1.5         | 95                | 2.1  | 1.152               | 235.6                   | LOS F               | 17.3                               | 123.0 | 1.00            | 1.70                      | 4.28                       | 11.2 |
| Appr      | oach     | 265                        | 2.4         | 177 <sup>N</sup>  | 3.4  | 1.152               | 177.1                   | LOS F               | 17.3                               | 123.0 | 0.93            | 1.44                      | 3.12                       | 13.2 |
| North     | n: MUR   | RUMBEEN                    | IA RO       | AD                |      |                     |                         |                     |                                    |       |                 |                           |                            |      |
| 7         | L2       | 136                        | 8.0         | 136               | 8.0  | 0.074               | 5.6                     | LOS A               | 0.0                                | 0.0   | 0.00            | 0.58                      | 0.00                       | 50.9 |
| 8         | T1       | 962                        | 0.3         | 962               | 0.3  | 0.498               | 0.1                     | LOS A               | 0.0                                | 0.0   | 0.00            | 0.00                      | 0.00                       | 59.8 |
| 9         | R2       | 66                         | 1.6         | 66                | 1.6  | 0.107               | 10.9                    | LOS B               | 0.4                                | 3.0   | 0.68            | 0.87                      | 0.68                       | 46.3 |
| Appr      | oach     | 1164                       | 0.5         | 1164              | 0.5  | 0.498               | 1.3                     | NA                  | 0.4                                | 3.0   | 0.04            | 0.12                      | 0.04                       | 57.0 |
| West      | t: LEILA | ROAD                       |             |                   |      |                     |                         |                     |                                    |       |                 |                           |                            |      |
| 10        | L2       | 98                         | 0.0         | 98                | 0.0  | 0.198               | 10.8                    | LOS B               | 0.7                                | 4.9   | 0.68            | 0.85                      | 0.69                       | 45.9 |
| 12        | R2       | 35                         | 0.0         | 35                | 0.0  | 2.305               | 1422.0                  | LOS F               | 18.3                               | 128.2 | 1.00            | 1.64                      | 3.64                       | 1.2  |
| Appr      | oach     | 133                        | 0.0         | 133               | 0.0  | 2.305               | 380.4                   | LOS F               | 18.3                               | 128.2 | 0.76            | 1.06                      | 1.46                       | 6.7  |
| All Ve    | ehicles  | 2593                       | 0.6         | 2366 <sup>N</sup> | 0.7  | 2.305               | 35.4                    | NA                  | 18.3                               | 128.2 | 0.13            | 0.24                      | 0.33                       | 32.3 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:56:31 AM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180427 SIDRA Network - Future PM -

Existing Layout - Post Dev No Growth.sip8

V Site: 104a [4a (east). EAST BOUNDARY ROAD / SOUTH

♦♦ Network: N101 [Master Model]

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane. Site Category: (None)

Giveway / Yield (Two-Way)

| Move      | ement  | Perform        | ance | - Vehic           | cles    |              |                  |                     |                 |               |                 |                   |        |               |
|-----------|--------|----------------|------|-------------------|---------|--------------|------------------|---------------------|-----------------|---------------|-----------------|-------------------|--------|---------------|
| Mov<br>ID | Turn   | Demand I       |      |                   |         | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Β<br>Que    | eue           | Prop.<br>Queued | Effective<br>Stop | No.    | Averag<br>e   |
|           |        | Total<br>veh/h |      | Total<br>veh/h    | HV<br>% | v/c          | sec              |                     | Vehicles<br>veh | Distance<br>m |                 | Rate              | Cycles | Speed<br>km/h |
| South     | n: EAS | T BOUNDA       |      |                   | 70      | V/C          | 300              |                     | VCII            | - '''         |                 |                   |        | KIII/II       |
| 3         | R2     | 268            | 0.0  | 268               | 0.0     | 1.683        | 652.2            | LOS F               | 32.0            | 223.7         | 1.00            | 4.53              | 15.65  | 2.8           |
| 3u        | U      | 163            | 1.3  | 163               | 1.3     | 1.000        | 95.0             | LOS F               | 8.9             | 63.0          | 1.00            | 1.73              | 4.14   | 3.8           |
| Appro     | ach    | 432            | 0.5  | 432               | 0.5     | 1.683        | 441.5            | NA                  | 32.0            | 223.7         | 1.00            | 3.47              | 11.30  | 2.9           |
| East:     | SOUT   | H DRIVE        |      |                   |         |              |                  |                     |                 |               |                 |                   |        |               |
| 4         | L2     | 368            | 0.0  | 368               | 0.0     | 0.690        | 17.5             | LOS C               | 5.0             | 34.7          | 0.83            | 1.18              | 1.69   | 38.3          |
| 5         | T1     | 282            | 0.0  | 282               | 0.0     | 4.128        | 2850.8           | LOS F               | 145.8           | 1020.7        | 1.00            | 3.96              | 14.01  | 0.6           |
| Appro     | oach   | 651            | 0.0  | 651               | 0.0     | 4.128        | 1246.2           | LOS F               | 145.8           | 1020.7        | 0.90            | 2.39              | 7.03   | 1.4           |
| North     | : EAST | BOUNDA         | RY R | OAD               |         |              |                  |                     |                 |               |                 |                   |        |               |
| 7         | L2     | 234            | 0.0  | 214               | 0.0     | 0.432        | 5.5              | LOS A               | 0.0             | 0.0           | 0.00            | 0.15              | 0.00   | 55.3          |
| 8         | T1     | 1593           | 0.4  |                   | 0.4     | 0.432        | 0.0              | LOS A               | 0.0             | 0.0           | 0.00            | 0.06              | 0.00   | 55.4          |
| Appro     | ach    | 1826           | 0.3  | 1670 <sup>N</sup> | 0.3     | 0.432        | 0.7              | NA                  | 0.0             | 0.0           | 0.00            | 0.08              | 0.00   | 55.4          |
| All Ve    | hicles | 2908           | 0.3  | 2752 <sup>N</sup> | 0.3     | 4.128        | 364.2            | NA                  | 145.8           | 1020.7        | 0.37            | 1.16              | 3.43   | 2.8           |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:56:31 AM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180427 SIDRA Network - Future PM -Existing Layout - Post Dev No Growth.sip8

V Site: 107 [7. NORTH ROAD / CROSBIE ROAD / COBAR

NORTH ROAD / CROSBIE ROAD / COBAR STREET

Site Category: (None) Giveway / Yield (Two-Way)

| Mov       | ement   | Perform           | nance | - Vehi            | cles  |              |                  |                     |              |        |                 |                   |             |             |
|-----------|---------|-------------------|-------|-------------------|-------|--------------|------------------|---------------------|--------------|--------|-----------------|-------------------|-------------|-------------|
| Mov<br>ID | Turn    | Demand            | Flows | Arrival           | Flows | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% B<br>Que |        | Prop.<br>Queued | Effective<br>Stop | Aver<br>No. | Averag<br>e |
|           |         | Total             |       | Total             | HV    |              |                  |                     | Vehicles     |        |                 | Rate              | Cycles      |             |
| Sout      | n: COE  | veh/h<br>BAR STRE |       | veh/h             | %     | v/c          | sec              |                     | veh          | m      |                 |                   |             | km/h        |
| 1         | L2      | 172               | 0.0   | 172               | 0.0   | 24.556       | 21249.1          | LOS F               | 180.2        | 1261.5 | 1.00            | 2.48              | 6.57        | 0.1         |
| 1a        | <br>L1  | 77                | 0.0   | 77                | 0.0   | 24.556       | 21266.9          | LOS F               | 180.2        | 1261.5 | 1.00            | 2.48              | 6.57        | 0.1         |
| 3         | R2      | 155               | 0.0   | 155               | 0.0   | 25.789       | 22389.3          | LOS F               | 139.2        | 974.7  | 1.00            | 1.60              | 3.39        | 0.1         |
| Appr      | oach    | 403               | 0.0   | 403               | 0.0   | 25.789       | 21690.1          | LOS F               | 180.2        | 1261.5 | 1.00            | 2.15              | 5.35        | 0.1         |
| East:     | NORT    | H ROAD            |       |                   |       |              |                  |                     |              |        |                 |                   |             |             |
| 4         | L2      | 87                | 0.0   | 87                | 0.0   | 0.787        | 5.9              | LOS A               | 34.4         | 241.9  | 0.00            | 0.03              | 0.00        | 57.8        |
| 5         | T1      | 1671              | 0.7   | 1671              | 0.7   | 0.787        | 32.1             | LOS D               | 34.4         | 241.9  | 0.14            | 0.03              | 0.46        | 33.8        |
| 6a        | R1      | 64                | 1.6   | 64                | 1.6   | 1.184        | 321.6            | LOS F               | 10.7         | 76.2   | 1.00            | 1.66              | 3.95        | 6.7         |
| Appr      | oach    | 1822              | 0.7   | 1822              | 0.7   | 1.184        | 41.0             | NA                  | 34.4         | 241.9  | 0.16            | 0.09              | 0.56        | 30.6        |
| North     | West:   | CROSBIE           | ROAD  | )                 |       |              |                  |                     |              |        |                 |                   |             |             |
| 27a       | L1      | 119               | 0.9   | 119               | 0.9   | 1.022        | 158.7            | LOS F               | 9.7          | 68.4   | 1.00            | 1.66              | 3.79        | 9.8         |
| 29b       | R3      | 4                 | 0.0   | 4                 | 0.0   | 1.000        | 1108.2           | LOS F               | 2.1          | 14.8   | 1.00            | 1.05              | 1.27        | 1.7         |
| Appr      | oach    | 123               | 0.9   | 123               | 0.9   | 1.022        | 191.1            | LOS F               | 9.7          | 68.4   | 1.00            | 1.64              | 3.70        | 8.4         |
| West      | : NOR   | TH ROAD           |       |                   |       |              |                  |                     |              |        |                 |                   |             |             |
| 10b       | L3      | 43                | 4.9   | 41                | 5.0   | 0.026        | 7.4              | LOS A               | 0.0          | 0.0    | 0.00            | 0.64              | 0.00        | 38.4        |
| 11        | T1      | 1677              | 1.9   | 1602              | 1.9   | 0.779        | 7.5              | LOS A               | 5.2          | 36.9   | 0.06            | 0.16              | 0.09        | 37.0        |
| 12        | R2      | 177               | 0.0   | 169               | 0.0   | 2.857        | 1724.4           | LOS F               | 53.3         | 372.8  | 1.00            | 2.91              | 10.82       | 1.3         |
| Appr      | oach    | 1897              | 1.8   | 1812 <sup>N</sup> | 1.8   | 2.857        | 167.5            | NA                  | 53.3         | 372.8  | 0.15            | 0.43              | 1.09        | 4.1         |
| All Ve    | ehicles | 4245              | 1.1   | 4160 <sup>N</sup> | 1.1   | 25.789       | 2198.5           | NA                  | 180.2        | 1261.5 | 0.26            | 0.48              | 1.35        | 0.8         |

♦♦ Network: N101 [Master

Model]

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

### SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Friday, 21 September 2018 10:56:31 AM Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180427 SIDRA Network - Future PM -Existing Layout - Post Dev No Growth.sip8

# E.2 With Mitigating Works

Site: 3560 [2. NORTH ROAD / EAST BOUNDARY ROAD / MURRUMBEENA ROAD]

NORTH ROAD / EAST BOUNDARY ROAD / MURRUMBEENA ROAD

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Network User-Given Cycle Time)

| Mov       | /ement   | t Perform      | ance  | - Vehi         | cles    |              |                  |                     |                   |              |                 |                   |          |               |
|-----------|----------|----------------|-------|----------------|---------|--------------|------------------|---------------------|-------------------|--------------|-----------------|-------------------|----------|---------------|
| Mov<br>ID | Turn     | Demand         | Flows | Arrival        | Flows   | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Quet    |              | Prop.<br>Queued | Effective<br>Stop | Aver. A  | Averag<br>e   |
|           |          | Total<br>veh/h | %     | Total<br>veh/h | HV<br>% | v/c          | sec              |                     | Vehicles D<br>veh | istance<br>m |                 | Rate              | Cycles S | Speed<br>km/h |
| Sout      | th: EAS  | T BOUNDA       | ARY R | OAD            |         |              |                  |                     |                   |              |                 |                   |          |               |
| 1         | L2       | 713            | 2.8   | 713            | 2.8     | 0.664        | 19.6             | LOS B               | 22.7              | 162.6        | 0.59            | 0.77              | 0.59     | 49.1          |
| 2         | T1       | 837            | 1.5   | 837            | 1.5     | 0.666        | 27.6             | LOS C               | 22.4              | 159.0        | 0.71            | 0.67              | 0.71     | 26.7          |
| 3         | R2       | 436            | 1.4   | 436            | 1.4     | 0.860        | 63.9             | LOS E               | 16.8              | 119.3        | 1.00            | 0.88              | 1.12     | 14.3          |
| 3u        | U        | 64             | 0.0   | 64             | 0.0     | 0.860        | 64.9             | LOS E               | 15.6              | 110.2        | 1.00            | 0.88              | 1.13     | 14.2          |
|           | roach    | 2049           | 1.9   | 2049           | 1.9     | 0.860        | 33.7             | LOS C               | 22.7              | 162.6        | 0.74            | 0.76              | 0.77     | 31.8          |
| East      | : NOR    | TH ROAD        |       |                |         |              |                  |                     |                   |              |                 |                   |          |               |
| 4         | L2       | 397            | 2.1   | 397            | 2.1     | 0.752        | 43.1             | LOS D               | 21.7              | 155.0        | 0.94            | 0.86              | 0.94     | 8.8           |
| 5         | T1       | 1456           | 3.6   | 1456           | 3.6     | 0.866        | 48.9             | LOS D               | 21.7              | 155.0        | 0.99            | 0.95              | 1.07     | 31.6          |
| 6         | R2       | 58             | 5.5   | 58             | 5.5     | 0.302        | 66.6             | LOS E               | 3.6               | 26.2         | 0.97            | 0.75              | 0.97     | 5.7           |
| 6u        | U        | 1              | 0.0   | 1              | 0.0     | 0.302        | 67.8             | LOS E               | 3.6               | 26.2         | 0.97            | 0.75              | 0.97     | 5.7           |
|           | roach    | 1912           |       | 1912           | 3.4     | 0.866        | 48.2             | LOS D               | 21.7              | 155.0        | 0.98            | 0.93              | 1.04     | 28.1          |
| Nort      | h: MUR   | RUMBEEN        | NA RO | AD             |         |              |                  |                     |                   |              |                 |                   |          |               |
| 7         | L2       | 85             | 3.7   | 85             | 3.7     | 0.838        | 57.7             | LOS E               | 30.7              | 219.2        | 0.98            | 0.96              | 1.30     | 21.4          |
| 8         | T1       | 802            | 1.8   | 802            | 1.8     | 0.838        | 53.6             | LOS D               | 30.7              | 219.2        | 0.99            | 0.96              | 1.22     | 21.1          |
| 9         | R2       | 140            | 1.5   | 140            | 1.5     | 0.694        | 73.3             | LOS E               | 9.1               | 64.7         | 1.00            | 0.82              | 1.05     | 30.0          |
| Аррі      | roach    | 1027           | 1.9   | 1027           | 1.9     | 0.838        | 56.6             | LOS E               | 30.7              | 219.2        | 0.99            | 0.94              | 1.21     | 23.0          |
| Wes       | t: NOR   | TH ROAD        |       |                |         |              |                  |                     |                   |              |                 |                   |          |               |
| 10        | L2       | 75             | 4.2   | 75             | 4.2     | 0.839        | 53.6             | LOS D               | 31.9              | 227.8        | 0.96            | 0.94              | 1.25     | 30.0          |
| 11        | T1       | 1437           | 2.1   | 1437           | 2.1     | 0.839        | 46.9             | LOS D               | 32.0              | 227.8        | 0.94            | 0.90              | 1.10     | 30.2          |
| 12        | R2       | 320            | 3.3   | 320            | 3.3     | 0.803        | 74.5             | LOS E               | 10.7              | 77.1         | 1.00            | 0.88              | 1.19     | 22.7          |
| Аррі      | roach    | 1832           | 2.4   | 1832           | 2.4     | 0.839        | 52.0             | LOS D               | 32.0              | 227.8        | 0.95            | 0.90              | 1.12     | 28.6          |
| All V     | ehicles/ | 6820           | 2.4   | 6820           | 2.4     | 0.866        | 46.1             | LOS D               | 32.0              | 227.8        | 0.90            | 0.87              | 1.01     | 28.2          |

**申申** Network: N101 [Master

Model]

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | ement Performance - Ped | estrians                |                         |       |                                   |                             |                 |                        |
|-----------|-------------------------|-------------------------|-------------------------|-------|-----------------------------------|-----------------------------|-----------------|------------------------|
| Mov<br>ID | Description             | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Bacl<br>Pedestrian<br>ped | k of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate |
| P1        | South Full Crossing     | 53                      | 45.0                    | LOS E | 0.2                               | 0.2                         | 0.83            | 0.83                   |
| P2        | East Full Crossing      | 53                      | 51.0                    | LOS E | 0.2                               | 0.2                         | 0.89            | 0.89                   |
| P3        | North Full Crossing     | 53                      | 41.7                    | LOS E | 0.2                               | 0.2                         | 0.80            | 0.80                   |
| P4        | West Full Crossing      | 53                      | 48.4                    | LOS E | 0.2                               | 0.2                         | 0.86            | 0.86                   |
| All Pe    | edestrians              | 211                     | 46.5                    | LOS E |                                   |                             | 0.85            | 0.85                   |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Thursday, 20 September 2018 5:10:48 PM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180920 SIDRA Network - Future AM Post Dev No Growth - TfV&VR response.sip8

# Site: 3559 [10. NORTH ROAD / KOORNANG ROAD / TUCKER ROAD PM]

10. NORTH ROAD / KOORNAND ROAD / TUCKER ROAD

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 126 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

| Mov    | ement P  | erformand      | e - Vel | nicles      |              |          |                 |               |        |           |           |               |
|--------|----------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------|
| Mov    | Turn     | Demand F       | lows    | Deg.        | Average      | Level of | 95% Back        | of Queue      | Prop.  | Effective | Aver. No. | Average       |
| ID     |          | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay<br>sec | Service  | Vehicles<br>veh | Distance<br>m | Queued | Stop Rate | Cycles    | Speed<br>km/h |
| South  | n: TUCKE | R ROAD         |         | .,.         |              |          |                 |               |        |           |           |               |
| 1      | L2       | 191            | 1.1     | 0.389       | 39.8         | LOS D    | 8.8             | 61.9          | 0.80   | 0.78      | 0.80      | 35.7          |
| 2      | T1       | 198            | 1.1     | 0.864       | 63.7         | LOS E    | 12.9            | 91.3          | 0.98   | 0.97      | 1.29      | 29.5          |
| Appro  | oach     | 388            | 1.1     | 0.864       | 52.0         | LOS D    | 12.9            | 91.3          | 0.89   | 0.88      | 1.05      | 32.2          |
| East:  | NORTH    | ROAD           |         |             |              |          |                 |               |        |           |           |               |
| 4      | L2       | 193            | 1.1     | 0.180       | 18.7         | LOS B    | 5.4             | 38.4          | 0.50   | 0.71      | 0.50      | 46.6          |
| 5      | T1       | 1969           | 0.5     | 0.845       | 21.8         | LOS C    | 38.2            | 268.3         | 0.71   | 0.68      | 0.75      | 45.9          |
| 6      | R2       | 173            | 1.2     | 0.844       | 73.1         | LOS E    | 11.6            | 81.8          | 1.00   | 0.93      | 1.27      | 29.3          |
| Appro  | oach     | 2335           | 0.6     | 0.845       | 25.4         | LOS C    | 38.2            | 268.3         | 0.72   | 0.70      | 0.77      | 44.1          |
| North  | : KOORI  | NANG ROAD      | )       |             |              |          |                 |               |        |           |           |               |
| 7      | L2       | 201            | 1.0     | 0.335       | 40.0         | LOS D    | 9.3             | 65.7          | 0.80   | 0.79      | 0.80      | 37.8          |
| 8      | T1       | 197            | 1.1     | 0.641       | 53.3         | LOS D    | 11.4            | 80.7          | 0.98   | 0.81      | 0.98      | 32.2          |
| Appro  | oach     | 398            | 1.1     | 0.641       | 46.6         | LOS D    | 11.4            | 80.7          | 0.89   | 0.80      | 0.89      | 35.0          |
| West   | : NORTH  | ROAD           |         |             |              |          |                 |               |        |           |           |               |
| 10     | L2       | 99             | 1.1     | 0.093       | 17.9         | LOS B    | 2.6             | 18.6          | 0.47   | 0.69      | 0.47      | 45.4          |
| 11     | T1       | 1933           | 1.7     | 0.856       | 23.5         | LOS C    | 39.6            | 281.4         | 0.75   | 0.72      | 0.79      | 45.1          |
| 12     | R2       | 169            | 1.2     | 0.829       | 72.1         | LOS E    | 11.2            | 79.5          | 1.00   | 0.91      | 1.24      | 27.2          |
| Appro  | oach     | 2201           | 1.7     | 0.856       | 27.0         | LOS C    | 39.6            | 281.4         | 0.76   | 0.73      | 0.81      | 43.2          |
| All Ve | ehicles  | 5322           | 1.1     | 0.864       | 29.6         | LOS C    | 39.6            | 281.4         | 0.76   | 0.73      | 0.82      | 42.0          |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | ement Performance - Ped | estrians       |                  |       |                            |                      |                 |                        |
|-----------|-------------------------|----------------|------------------|-------|----------------------------|----------------------|-----------------|------------------------|
| Mov<br>ID | Description             | Demand<br>Flow | Average<br>Delay |       | Average Back<br>Pedestrian | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate |
|           |                         | ped/h          | sec              |       | ped                        | m                    |                 |                        |
| P1        | South Full Crossing     | 53             | 14.3             | LOS B | 0.1                        | 0.1                  | 0.48            | 0.48                   |
| P2        | East Full Crossing      | 53             | 57.3             | LOS E | 0.2                        | 0.2                  | 0.95            | 0.95                   |
| P3        | North Full Crossing     | 53             | 4.3              | LOSA  | 0.0                        | 0.0                  | 0.26            | 0.26                   |
| P4        | West Full Crossing      | 53             | 57.3             | LOS E | 0.2                        | 0.2                  | 0.95            | 0.95                   |
| All Pe    | destrians               | 211            | 33.3             | LOS D |                            |                      | 0.66            | 0.66                   |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

 $Project: P: V13600-13699 \ V136080 \ East \ Village - Integrated \ Transp\\ Modelling \ SIDRA\\ V180920-Updates\\ V180920 \ SIDRA \ Network - Future \ PM-Post \ Dev \ No \ Growth - TfV\\ VR \ response. Sip8$ 



Site: 3561 [6. NORTH ROAD / POATH ROAD / POET ROAD]

**申申** Network: N101 [Master Model]

NORTH ROAD / POATH ROAD / POET ROAD

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 130 seconds (Site User-Given Cycle Time)

| Mov       | /ement   | t Perform | ance  | - Vehi  | cles  |              |                  |                     |                |         |                 |                   |             |             |
|-----------|----------|-----------|-------|---------|-------|--------------|------------------|---------------------|----------------|---------|-----------------|-------------------|-------------|-------------|
| Mov<br>ID | Turn     | Demand    | Flows | Arrival | Flows | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Quei |         | Prop.<br>Queued | Effective<br>Stop | Aver<br>No. | Averag<br>e |
|           |          | Total     |       | Total   | HV    |              |                  |                     | Vehicles D     | istance |                 | Rate              | Cycles S    |             |
| Carr      | 4b. DOE  | veh/h     | %     | veh/h   | %     | v/c          | sec              |                     | veh            | m       |                 |                   |             | km/h        |
|           |          | TROAD     | 0.0   | 444     | 0.0   | 0.007        | 00.7             | 100 5               | 40.0           | 445.0   | 4.00            | 0.07              | 4.04        | 40.5        |
| 1         | L2       | 111       | 2.9   | 111     | 2.9   | 0.837        | 66.7             | LOS E               | 16.2           | 115.8   | 1.00            | 0.97              | 1.21        | 16.5        |
| 2         | T1       | 16        | 0.0   | 16      | 0.0   | 0.837        | 63.3             | LOS E               | 16.2           | 115.8   | 1.00            | 0.97              | 1.21        | 25.7        |
| 3         | R2       | 111       | 2.9   | 111     | 2.9   | 0.837        | 66.7             | LOS E               | 16.2           | 115.8   | 1.00            | 0.97              | 1.21        | 25.8        |
| App       | roach    | 237       | 2.7   | 237     | 2.7   | 0.837        | 66.5             | LOS E               | 16.2           | 115.8   | 1.00            | 0.97              | 1.21        | 21.9        |
| East      | t: Nort  | H ROAD    |       |         |       |              |                  |                     |                |         |                 |                   |             |             |
| 4         | L2       | 49        | 2.1   | 49      | 2.1   | 0.826        | 23.2             | LOS C               | 48.3           | 348.8   | 0.81            | 0.76              | 0.81        | 41.4        |
| 5         | T1       | 1653      | 3.7   | 1653    | 3.7   | 0.826        | 16.3             | LOS B               | 48.3           | 348.8   | 0.70            | 0.67              | 0.72        | 43.1        |
| 6         | R2       | 111       | 2.9   | 111     | 2.9   | 0.702        | 39.7             | LOS D               | 5.1            | 36.7    | 1.00            | 0.86              | 1.13        | 37.3        |
| App       | roach    | 1813      | 3.6   | 1813    | 3.6   | 0.826        | 17.9             | LOS B               | 48.3           | 348.8   | 0.72            | 0.68              | 0.75        | 42.3        |
| Nort      | h: POA   | TH ROAD   |       |         |       |              |                  |                     |                |         |                 |                   |             |             |
| 7         | L2       | 161       | 3.3   | 161     | 3.3   | 0.379        | 40.0             | LOS D               | 8.4            | 60.6    | 0.86            | 0.78              | 0.86        | 33.7        |
| 8         | T1       | 17        | 0.0   | 17      | 0.0   | 0.379        | 35.4             | LOS D               | 8.4            | 60.6    | 0.86            | 0.78              | 0.86        | 32.5        |
| 9         | R2       | 76        | 2.8   | 76      | 2.8   | 0.287        | 55.4             | LOS E               | 4.2            | 30.4    | 0.91            | 0.76              | 0.91        | 20.1        |
| App       | roach    | 254       | 2.9   | 254     | 2.9   | 0.379        | 44.3             | LOS D               | 8.4            | 60.6    | 0.87            | 0.77              | 0.87        | 30.0        |
| Wes       | t: NOR   | TH ROAD   |       |         |       |              |                  |                     |                |         |                 |                   |             |             |
| 10        | L2       | 57        | 3.7   | 57      | 3.7   | 0.836        | 30.2             | LOS C               | 47.2           | 336.4   | 0.89            | 0.83              | 0.89        | 46.8        |
| 11        | T1       | 1733      | 2.1   | 1733    | 2.1   | 0.836        | 23.6             | LOS C               | 47.2           | 336.4   | 0.86            | 0.80              | 0.87        | 50.5        |
| 12        | R2       | 12        | 0.0   | 12      | 0.0   | 0.143        | 49.3             | LOS D               | 0.6            | 4.3     | 0.80            | 0.73              | 0.80        | 33.1        |
| App       | roach    | 1801      | 2.2   | 1801    | 2.2   | 0.836        | 23.9             | LOS C               | 47.2           | 336.4   | 0.86            | 0.80              | 0.87        | 50.2        |
| All V     | /ehicles | 4104      | 2.9   | 4104    | 2.9   | 0.837        | 25.0             | LOSC                | 48.3           | 348.8   | 0.81            | 0.76              | 0.83        | 43.2        |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | Movement Performance - Pedestrians |                         |                         |       |                                   |                           |                 |                        |  |  |  |  |  |
|-----------|------------------------------------|-------------------------|-------------------------|-------|-----------------------------------|---------------------------|-----------------|------------------------|--|--|--|--|--|
| Mov<br>ID | Description                        | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Back<br>Pedestrian<br>ped | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate |  |  |  |  |  |
| P1        | South Full Crossing                | 53                      | 8.9                     | LOS A | 0.1                               | 0.1                       | 0.37            | 0.37                   |  |  |  |  |  |
| P2        | East Full Crossing                 | 53                      | 48.4                    | LOS E | 0.2                               | 0.2                       | 0.86            | 0.86                   |  |  |  |  |  |
| P3        | North Full Crossing                | 53                      | 14.8                    | LOS B | 0.1                               | 0.1                       | 0.48            | 0.48                   |  |  |  |  |  |
| P4        | West Full Crossing                 | 53                      | 48.4                    | LOS E | 0.2                               | 0.2                       | 0.86            | 0.86                   |  |  |  |  |  |
| All Pe    | destrians                          | 211                     | 30.1                    | LOS D |                                   |                           | 0.64            | 0.64                   |  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Thursday, 20 September 2018 5:10:48 PM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180920 SIDRA Network - Future AM Post Dev No Growth - TfV&VR response.sip8



Site: 1209 [5. EAST BOUNDARY ROAD / ARDENA COURT]

**申申** Network: N101 [Master Model]

EAST BOUNDARY ROAD / ARDENA COURT

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 130 seconds (Site User-Given Cycle Time)

| Mov   | ement   | Performa | ance | - Vehi  | cles  |       |         |         |                   |       |        |              |                 |            |
|-------|---------|----------|------|---------|-------|-------|---------|---------|-------------------|-------|--------|--------------|-----------------|------------|
| Mov   | Turn    | Demand F | lows | Arrival | Flows | Deg.  | Average |         | 95% Ba            |       | Prop.  | Effective    | Aver. A         |            |
| ID    |         | Total    | Н\/  | Total   | HV    | Satn  | Delay   | Service | Que<br>Vehicles [ |       | Queued | Stop<br>Rate | No.<br>Cycles S | e<br>Speed |
|       |         | veh/h    |      | veh/h   | %     | v/c   | sec     |         | verildies i       | m     |        | Nate         | Cycles c        | km/h       |
| Sout  | h: EAS  | T BOUNDA | RY R | OAD     |       |       |         |         |                   |       |        |              |                 |            |
| 1     | L2      | 25       | 4.2  | 25      | 4.2   | 0.019 | 11.1    | LOS B   | 0.4               | 3.0   | 0.28   | 0.65         | 0.28            | 44.5       |
| 2     | T1      | 1828     | 2.4  | 1828    | 2.4   | 0.650 | 8.9     | LOS A   | 28.7              | 205.3 | 0.54   | 0.51         | 0.54            | 52.3       |
| 3     | R2      | 52       | 2.0  | 52      | 2.0   | 0.611 | 77.4    | LOS E   | 3.5               | 24.8  | 1.00   | 0.77         | 1.09            | 24.6       |
| Appr  | oach    | 1905     | 2.4  | 1905    | 2.4   | 0.650 | 10.8    | LOS B   | 28.7              | 205.3 | 0.55   | 0.52         | 0.55            | 49.2       |
| East  | : ARDE  | NA COURT | Γ    |         |       |       |         |         |                   |       |        |              |                 |            |
| 4     | L2      | 37       | 2.9  | 37      | 2.9   | 0.163 | 54.0    | LOS D   | 2.1               | 15.1  | 0.92   | 0.71         | 0.92            | 28.2       |
| 5     | T1      | 1        | 0.0  | 1       | 0.0   | 0.163 | 50.6    | LOS D   | 2.1               | 15.1  | 0.92   | 0.71         | 0.92            | 25.2       |
| 6     | R2      | 39       | 2.7  | 39      | 2.7   | 0.302 | 67.2    | LOS E   | 2.4               | 17.5  | 0.98   | 0.73         | 0.98            | 16.4       |
| Appr  | oach    | 77       | 2.7  | 77      | 2.7   | 0.302 | 60.6    | LOS E   | 2.4               | 17.5  | 0.95   | 0.72         | 0.95            | 22.6       |
| Nort  | h: EAST | BOUNDA   | RY R | DAC     |       |       |         |         |                   |       |        |              |                 |            |
| 7     | L2      | 5        | 0.0  | 5       | 0.0   | 0.004 | 11.0    | LOS B   | 0.1               | 0.6   | 0.27   | 0.63         | 0.27            | 41.2       |
| 8     | T1      | 1536     | 2.1  | 1536    | 2.1   | 0.544 | 7.8     | LOS A   | 20.8              | 148.1 | 0.47   | 0.44         | 0.47            | 59.2       |
| 9     | R2      | 8        | 0.0  | 8       | 0.0   | 0.098 | 73.5    | LOS E   | 0.5               | 3.8   | 0.98   | 0.67         | 0.98            | 22.0       |
| Appr  | oach    | 1549     | 2.0  | 1549    | 2.0   | 0.544 | 8.1     | LOS A   | 20.8              | 148.1 | 0.47   | 0.44         | 0.47            | 58.6       |
| Wes   | t: ARDE | NA COUR  | T    |         |       |       |         |         |                   |       |        |              |                 |            |
| 10    | L2      | 9        | 0.0  | 9       | 0.0   | 0.173 | 59.8    | LOS E   | 1.4               | 9.5   | 0.96   | 0.70         | 0.96            | 17.6       |
| 11    | T1      | 1        | 0.0  | 1       | 0.0   | 0.173 | 56.3    | LOS E   | 1.4               | 9.5   | 0.96   | 0.70         | 0.96            | 24.2       |
| 12    | R2      | 13       | 0.0  | 13      | 0.0   | 0.173 | 59.6    | LOS E   | 1.4               | 9.5   | 0.96   | 0.70         | 0.96            | 27.3       |
| Appr  | oach    | 23       | 0.0  | 23      | 0.0   | 0.173 | 59.5    | LOS E   | 1.4               | 9.5   | 0.96   | 0.70         | 0.96            | 23.7       |
| All V | ehicles | 3555     | 2.2  | 3555    | 2.2   | 0.650 | 11.0    | LOS B   | 28.7              | 205.3 | 0.53   | 0.49         | 0.53            | 51.7       |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Movement Performance - Pedestrians |                     |                         |                         |       |                                   |                           |                 |                        |  |  |  |  |
|------------------------------------|---------------------|-------------------------|-------------------------|-------|-----------------------------------|---------------------------|-----------------|------------------------|--|--|--|--|
| Mov<br>ID                          | Description         | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Back<br>Pedestrian<br>ped | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate |  |  |  |  |
| P1                                 | South Full Crossing | 53                      | 59.3                    | LOS E | 0.2                               | 0.2                       | 0.96            | 0.96                   |  |  |  |  |
| P2                                 | East Full Crossing  | 53                      | 6.5                     | LOSA  | 0.1                               | 0.1                       | 0.32            | 0.32                   |  |  |  |  |
| P3                                 | North Full Crossing | 53                      | 59.3                    | LOS E | 0.2                               | 0.2                       | 0.96            | 0.96                   |  |  |  |  |
| P4                                 | West Full Crossing  | 53                      | 5.9                     | LOSA  | 0.1                               | 0.1                       | 0.30            | 0.30                   |  |  |  |  |
| All Pe                             | destrians           | 211                     | 32.7                    | LOS D |                                   |                           | 0.63            | 0.63                   |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Thursday, 20 September 2018 5:10:48 PM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180920 SIDRA Network - Future AM Post Dev No Growth - TfV&VR response.sip8

Site: 001av [001a. EAST BOUNDARY ROAD BETWEEN NORTH ROAD AND NORTH DRIVE - Signals]

EAST BOUNDARY ROAD BETWEEN NORTH ROAD AND NORTH DRIVE - east

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Network User-Given Cycle Time)

| Mov       | <b>Movement Performance - Vehicles</b><br>Mov Turn Demand Flows Arrival Flows Deg. Average Level of 95% Back of Prop. Effective Aver. Averag |                    |      |                           |                  |                     |                         |                     |                                    |       |                 |                           |                            |      |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|---------------------------|------------------|---------------------|-------------------------|---------------------|------------------------------------|-------|-----------------|---------------------------|----------------------------|------|--|
| Mov<br>ID | Turn                                                                                                                                         | Demand Fotal veh/h | HV   | Arrival<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Que<br>Vehicles [<br>veh | ue    | Prop.<br>Queued | Effective<br>Stop<br>Rate | Aver. A<br>No.<br>Cycles S | ě    |  |
| Sou       | th: East                                                                                                                                     | Boundary           |      |                           |                  |                     |                         |                     |                                    |       |                 |                           |                            |      |  |
| 1         | L2                                                                                                                                           | 7                  | 0.0  | 7                         | 0.0              | 0.215               | 10.7                    | LOS B               | 2.3                                | 15.9  | 0.16            | 0.17                      | 0.43                       | 50.9 |  |
| 2         | T1                                                                                                                                           | 1679               | 0.0  | 1679                      | 0.0              | 0.689               | 13.1                    | LOS B               | 24.5                               | 171.8 | 0.50            | 0.46                      | 0.54                       | 24.7 |  |
| 3         | R2                                                                                                                                           | 145                | 0.0  | 145                       | 0.0              | 0.678               | 73.9                    | LOS E               | 9.5                                | 66.5  | 1.00            | 0.82                      | 1.03                       | 20.6 |  |
| App       | roach                                                                                                                                        | 1832               | 0.0  | 1832                      | 0.0              | 0.689               | 17.9                    | LOS B               | 24.5                               | 171.8 | 0.54            | 0.49                      | 0.58                       | 23.6 |  |
| East      | t: NORT                                                                                                                                      | H DR               |      |                           |                  |                     |                         |                     |                                    |       |                 |                           |                            |      |  |
| 4         | L2                                                                                                                                           | 265                | 0.0  | 265                       | 0.0              | 0.657               | 41.2                    | LOS D               | 12.9                               | 90.2  | 0.94            | 0.95                      | 1.21                       | 25.9 |  |
| 6         | R2                                                                                                                                           | 272                | 0.0  | 272                       | 0.0              | 0.657               | 56.2                    | LOS E               | 12.9                               | 90.2  | 0.98            | 0.86                      | 1.05                       | 21.4 |  |
| App       | roach                                                                                                                                        | 537                | 0.0  | 537                       | 0.0              | 0.657               | 48.8                    | LOS D               | 12.9                               | 90.2  | 0.96            | 0.90                      | 1.13                       | 23.4 |  |
| Nort      | h: East                                                                                                                                      | Boundary I         | Road |                           |                  |                     |                         |                     |                                    |       |                 |                           |                            |      |  |
| 7         | L2                                                                                                                                           | 205                | 0.0  | 205                       | 0.0              | 0.501               | 24.0                    | LOS C               | 21.1                               | 147.5 | 0.69            | 0.75                      | 0.97                       | 41.9 |  |
| 8         | T1                                                                                                                                           | 1365               | 0.0  | 1365                      | 0.0              | 0.501               | 21.0                    | LOS C               | 27.7                               | 193.7 | 0.76            | 0.72                      | 0.84                       | 28.0 |  |
| App       | roach                                                                                                                                        | 1571               | 0.0  | 1571                      | 0.0              | 0.501               | 21.4                    | LOS C               | 27.7                               | 193.7 | 0.75            | 0.72                      | 0.86                       | 30.9 |  |
| Wes       | t: GEOF                                                                                                                                      | RGE ST             |      |                           |                  |                     |                         |                     |                                    |       |                 |                           |                            |      |  |
| 10        | L2                                                                                                                                           | 75                 | 0.0  | 75                        | 0.0              | 0.349               | 64.1                    | LOS E               | 4.5                                | 31.4  | 0.96            | 0.77                      | 0.96                       | 19.5 |  |
| App       | roach                                                                                                                                        | 75                 | 0.0  | 75                        | 0.0              | 0.349               | 64.1                    | LOS E               | 4.5                                | 31.4  | 0.96            | 0.77                      | 0.96                       | 19.5 |  |
| All V     | /ehicles                                                                                                                                     | 4014               | 0.0  | 4014                      | 0.0              | 0.689               | 24.3                    | LOSC                | 27.7                               | 193.7 | 0.69            | 0.64                      | 0.77                       | 26.3 |  |

♦♦ Network: N101 [Master

Model]

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move   | Movement Performance - Pedestrians |               |              |         |                   |               |        |           |  |  |  |  |  |
|--------|------------------------------------|---------------|--------------|---------|-------------------|---------------|--------|-----------|--|--|--|--|--|
| Mov    | Description                        | Demand        | Average      |         | Average Back      |               | Prop.  | Effective |  |  |  |  |  |
| ID     | Description                        | Flow<br>ped/h | Delay<br>sec | Service | Pedestrian<br>ped | Distance<br>m | Queued | Stop Rate |  |  |  |  |  |
| P1     | South Full Crossing                | 53            | 59.3         | LOS E   | 0.2               | 0.2           | 0.96   | 0.96      |  |  |  |  |  |
| P2     | East Full Crossing                 | 53            | 15.8         | LOS B   | 0.1               | 0.1           | 0.49   | 0.49      |  |  |  |  |  |
| P4     | West Full Crossing                 | 53            | 14.3         | LOS B   | 0.1               | 0.1           | 0.47   | 0.47      |  |  |  |  |  |
| All Pe | All Pedestrians                    |               | 29.8         | LOS C   |                   |               | 0.64   | 0.64      |  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Organisation: GTA CONSULTANTS | Processed: Thursday, 20 September 2018 5:10:48 PM

Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180920 SIDRA Network - Future AM - Post Dev No Growth - TfV&VR response.sip8

Site: 101vv [1. MURRUMBEENA ROAD / LEILA ROAD - Signals]

MURRUMBEENA ROAD / LEILA ROAD

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Network User-Given Cycle Time)

| Mov       | /emen    | t Perform      | nance | - Vehi      | cles    |              |                  |                     |                |              |                 |                   |          |               |
|-----------|----------|----------------|-------|-------------|---------|--------------|------------------|---------------------|----------------|--------------|-----------------|-------------------|----------|---------------|
| Mov<br>ID | Turn     | Demand         |       |             |         | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Quei | ıe           | Prop.<br>Queued | Effective<br>Stop | Aver. A  | ě             |
|           |          | Total<br>veh/h |       | Total veh/h | HV<br>% | v/c          | sec              |                     | Vehicles D     | istance<br>m |                 | Rate              | Cycles S | Speed<br>km/h |
| Sout      | th: MUF  | RRUMBEE        |       |             | 70      | V/C          | 366              |                     | VEII           | - '''        | _               |                   | _        | KIII/II       |
| 1         | L2       | 75             | 1.4   | 75          | 1.4     | 0.053        | 7.0              | LOS A               | 0.4            | 3.1          | 0.13            | 0.60              | 0.13     | 48.6          |
| 2         | T1       | 940            | 1.6   | 940         | 1.6     | 0.720        | 5.5              | LOS A               | 18.2           | 129.0        | 0.34            | 0.32              | 0.34     | 54.9          |
| Аррі      | roach    | 1015           | 1.6   | 1015        | 1.6     | 0.720        | 5.6              | LOS A               | 18.2           | 129.0        | 0.32            | 0.34              | 0.32     | 54.3          |
| East      | :: LEILA | ROAD           |       |             |         |              |                  |                     |                |              |                 |                   |          |               |
| 4         | L2       | 60             | 8.8   | 60          | 8.8     | 0.603        | 73.8             | LOS E               | 5.8            | 42.6         | 1.00            | 0.78              | 1.02     | 18.3          |
| 5         | T1       | 28             | 0.0   | 28          | 0.0     | 0.603        | 68.1             | LOS E               | 5.8            | 42.6         | 1.00            | 0.78              | 1.02     | 27.7          |
| 6         | R2       | 87             | 2.4   | 87          | 2.4     | 0.493        | 62.5             | LOS E               | 5.3            | 37.6         | 1.00            | 0.77              | 1.00     | 29.4          |
| Аррі      | roach    | 176            | 4.2   | 176         | 4.2     | 0.603        | 67.3             | LOS E               | 5.8            | 42.6         | 1.00            | 0.78              | 1.01     | 25.8          |
| Nort      | h: MUR   | RUMBEE         | NA RO | AD          |         |              |                  |                     |                |              |                 |                   |          |               |
| 7         | L2       | 47             | 6.7   | 47          | 6.7     | 0.029        | 5.9              | LOS A               | 0.1            | 1.1          | 0.10            | 0.59              | 0.10     | 50.3          |
| 8         | T1       | 906            | 1.2   | 906         | 1.2     | 0.794        | 9.9              | LOS A               | 29.3           | 206.9        | 0.57            | 0.53              | 0.57     | 45.4          |
| 9         | R2       | 58             | 0.0   | 58          | 0.0     | 0.232        | 20.4             | LOS C               | 1.8            | 12.9         | 0.52            | 0.71              | 0.52     | 41.3          |
| Аррі      | roach    | 1012           | 1.4   | 1012        | 1.4     | 0.794        | 10.3             | LOS B               | 29.3           | 206.9        | 0.54            | 0.54              | 0.54     | 45.2          |
| Wes       | t: LEIL  | A ROAD         |       |             |         |              |                  |                     |                |              |                 |                   |          |               |
| 10        | L2       | 95             | 1.1   | 95          | 1.1     | 0.668        | 71.5             | LOS E               | 6.2            | 43.9         | 1.00            | 0.82              | 1.09     | 26.1          |
| 12        | R2       | 39             | 0.0   | 39          | 0.0     | 0.225        | 56.2             | LOS E               | 2.2            | 15.4         | 0.96            | 0.72              | 0.96     | 19.8          |
| Аррі      | roach    | 134            | 8.0   | 134         | 8.0     | 0.668        | 67.0             | LOS E               | 6.2            | 43.9         | 0.99            | 0.79              | 1.05     | 24.7          |
| All V     | ehicles/ | 2336           | 1.6   | 2336        | 1.6     | 0.794        | 15.8             | LOS B               | 29.3           | 206.9        | 0.51            | 0.48              | 0.51     | 44.1          |

♦♦ Network: N101 [Master

Model]

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | Movement Performance - Pedestrians |                         |                         |       |                                   |                           |                 |                        |  |  |  |  |  |  |
|-----------|------------------------------------|-------------------------|-------------------------|-------|-----------------------------------|---------------------------|-----------------|------------------------|--|--|--|--|--|--|
| Mov<br>ID | Description                        | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Back<br>Pedestrian<br>ped | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate |  |  |  |  |  |  |
| P1        | South Full Crossing                | 53                      | 59.3                    | LOS E | 0.2                               | 0.2                       | 0.96            | 0.96                   |  |  |  |  |  |  |
| P2        | East Full Crossing                 | 53                      | 7.8                     | LOSA  | 0.1                               | 0.1                       | 0.35            | 0.35                   |  |  |  |  |  |  |
| P4        | West Full Crossing                 | 53                      | 7.8                     | LOSA  | 0.1                               | 0.1                       | 0.35            | 0.35                   |  |  |  |  |  |  |
| All Pe    | destrians                          | 158                     | 25.0                    | LOS C |                                   |                           | 0.55            | 0.55                   |  |  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

 $Project: P: V13600-13699 \ V136080 \ East \ Village - Integrated \ Transp\\ Modelling \ SIDRA\\ V180920-Updates\\ V180920-Upda$ 

Site: 104av [4a (east). EAST BOUNDARY ROAD / SOUTH DRIVE - Signals]

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane.

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Network User-Given Cycle Time)

| Mov       | ement   | : Performa | ance · | - Vehi  | cles  |              |                  |                     |                |         |                 |                   |                |             |
|-----------|---------|------------|--------|---------|-------|--------------|------------------|---------------------|----------------|---------|-----------------|-------------------|----------------|-------------|
| Mov<br>ID | Turn    | Demand F   | lows   | Arrival | Flows | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Quei |         | Prop.<br>Queued | Effective<br>Stop | Aver. A<br>No. | Averag<br>e |
|           |         | Total      |        | Total   | HV    |              |                  |                     | Vehicles D     | istance |                 | Rate              | Cycles S       | _           |
| 0 41      | EAO     | veh/h      |        | veh/h   | %     | v/c          | sec              |                     | veh            | m       |                 |                   |                | km/h        |
|           |         | T BOUNDA   |        | _       |       |              |                  |                     |                |         |                 |                   |                |             |
| 2         | T1      | 1555       | 0.0    | 1555    | 0.0   | 0.503        | 10.8             | LOS B               | 18.0           | 126.0   | 0.51            | 0.46              | 0.51           | 39.0        |
| 3         | R2      | 389        | 0.3    | 389     | 0.3   | 0.646        | 53.3             | LOS D               | 16.4           | 115.1   | 0.96            | 0.84              | 0.96           | 17.7        |
| 3u        | U       | 134        | 3.1    | 134     | 3.1   | 0.646        | 55.6             | LOS E               | 13.8           | 97.8    | 0.96            | 0.84              | 0.96           | 16.0        |
| Appro     | oach    | 2078       | 0.3    | 2078    | 0.3   | 0.646        | 21.6             | LOS C               | 18.0           | 126.0   | 0.63            | 0.56              | 0.63           | 27.2        |
| East:     | SOUT    | H DRIVE    |        |         |       |              |                  |                     |                |         |                 |                   |                |             |
| 4         | L2      | 254        | 0.0    | 254     | 0.0   | 0.329        | 13.9             | LOS B               | 6.4            | 44.9    | 0.48            | 0.71              | 0.48           | 41.5        |
| 6         | R2      | 275        | 0.0    | 275     | 0.0   | 0.614        | 63.5             | LOS E               | 9.0            | 63.1    | 0.99            | 0.81              | 0.99           | 19.9        |
| Appro     | oach    | 528        | 0.0    | 528     | 0.0   | 0.614        | 39.7             | LOS D               | 9.0            | 63.1    | 0.74            | 0.76              | 0.75           | 26.5        |
| North     | n: EAST | Γ BOUNDA   | RY RO  | DAD     |       |              |                  |                     |                |         |                 |                   |                |             |
| 7         | L2      | 276        | 0.0    | 276     | 0.0   | 0.198        | 8.4              | LOS A               | 3.6            | 25.5    | 0.26            | 0.62              | 0.26           | 48.6        |
| 8         | T1      | 1361       | 2.5    | 1361    | 2.5   | 0.640        | 17.0             | LOS B               | 20.5           | 146.7   | 0.57            | 0.51              | 0.57           | 21.6        |
| 9u        | U       | 2          | 0.0    | 2       | 0.0   | 0.037        | 76.8             | LOS E               | 0.1            | 1.0     | 1.00            | 0.62              | 1.00           | 6.7         |
| Appro     | oach    | 1639       | 2.1    | 1639    | 2.1   | 0.640        | 15.6             | LOS B               | 20.5           | 146.7   | 0.52            | 0.53              | 0.52           | 28.9        |
| All Ve    | ehicles | 4245       | 0.9    | 4245    | 0.9   | 0.646        | 21.6             | LOS C               | 20.5           | 146.7   | 0.60            | 0.57              | 0.60           | 27.5        |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move   | Movement Performance - Pedestrians |        |         |         |              |          |        |           |  |  |  |  |  |  |
|--------|------------------------------------|--------|---------|---------|--------------|----------|--------|-----------|--|--|--|--|--|--|
| Mov    | Description                        | Demand | Average |         | Average Back |          | Prop.  | Effective |  |  |  |  |  |  |
| ID     | Description                        | Flow   | Delay   | Service | Pedestrian   | Distance | Queued | Stop Rate |  |  |  |  |  |  |
|        |                                    | ped/h  | sec     |         | ped          | m        |        |           |  |  |  |  |  |  |
| P1     | South Full Crossing                | 53     | 59.3    | LOS E   | 0.2          | 0.2      | 0.96   | 0.96      |  |  |  |  |  |  |
| P2     | East Full Crossing                 | 53     | 59.3    | LOS E   | 0.2          | 0.2      | 0.96   | 0.96      |  |  |  |  |  |  |
| All Pe | destrians                          | 105    | 59.3    | LOS E   |              |          | 0.96   | 0.96      |  |  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Organisation: GTA CONSULTANTS | Processed: Thursday, 20 September 2018 5:10:48 PM

Organisation: GTA CONSULTANTS | Processed: Milage - Integrated Transp\Modelling\SIDRA\180920-Updates\180920 SIDRA Network - Future AM - Post Dev No Growth - TfV&VR response.sip8

Site: 107v [7. NORTH ROAD / CROSBIE ROAD / COBAR STREET - Signals]

NORTH ROAD / CROSBIE ROAD / COBAR STREET

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Network User-Given Cycle Time)

| Mov       | ement   | t Perform       | ance | - Vehi           | cles  |              |                  |                     |                              |       |                 |                           |                            |                      |
|-----------|---------|-----------------|------|------------------|-------|--------------|------------------|---------------------|------------------------------|-------|-----------------|---------------------------|----------------------------|----------------------|
| Mov<br>ID | Turn    | Demand<br>Total |      | Arrival<br>Total | Flows | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Quet<br>Vehicles D | ле    | Prop.<br>Queued | Effective<br>Stop<br>Rate | Aver. A<br>No.<br>Cycles S | Averag<br>e<br>Speed |
|           |         | veh/h           |      | veh/h            | %     | v/c          | sec              |                     | veh                          | m     |                 |                           | -,                         | km/h                 |
| Sout      | h: COE  | BAR STRE        | ET   |                  |       |              |                  |                     |                              |       |                 |                           |                            |                      |
| 1         | L2      | 133             | 0.0  | 133              | 0.0   | 0.299        | 43.4             | LOS D               | 6.7                          | 46.8  | 0.86            | 0.75                      | 0.86                       | 20.7                 |
| 2         | T1      | 65              | 0.0  | 65               | 0.0   | 0.790        | 66.9             | LOS E               | 11.4                         | 80.2  | 1.00            | 0.92                      | 1.17                       | 17.4                 |
| 3         | R2      | 106             | 1.0  | 106              | 1.0   | 0.790        | 69.9             | LOS E               | 11.4                         | 80.2  | 1.00            | 0.92                      | 1.17                       | 17.4                 |
| Appr      | oach    | 304             | 0.3  | 304              | 0.3   | 0.790        | 57.7             | LOS E               | 11.4                         | 80.2  | 0.94            | 0.85                      | 1.03                       | 18.7                 |
| East:     | NORT    | H ROAD          |      |                  |       |              |                  |                     |                              |       |                 |                           |                            |                      |
| 4         | L2      | 146             | 1.4  | 146              | 1.4   | 0.108        | 9.2              | LOS A               | 2.1                          | 15.0  | 0.30            | 0.65                      | 0.30                       | 45.0                 |
| 5         | T1      | 1792            | 3.8  | 1792             | 3.8   | 0.838        | 19.2             | LOS B               | 42.6                         | 308.0 | 0.78            | 0.72                      | 0.78                       | 41.1                 |
| 6         | R2      | 72              | 0.0  | 72               | 0.0   | 0.626        | 74.0             | LOS E               | 4.7                          | 33.1  | 1.00            | 0.79                      | 1.07                       | 21.6                 |
| Appr      | oach    | 2009            | 3.5  | 2009             | 3.5   | 0.838        | 20.4             | LOS C               | 42.6                         | 308.0 | 0.75            | 0.72                      | 0.76                       | 40.2                 |
| North     | n: CRO  | SBIE ROA        | D    |                  |       |              |                  |                     |                              |       |                 |                           |                            |                      |
| 7         | L2      | 57              | 0.0  | 57               | 0.0   | 0.497        | 72.8             | LOS E               | 3.7                          | 25.9  | 1.00            | 0.75                      | 1.00                       | 18.1                 |
| Appr      | oach    | 57              | 0.0  | 57               | 0.0   | 0.497        | 72.8             | LOS E               | 3.7                          | 25.9  | 1.00            | 0.75                      | 1.00                       | 18.1                 |
| West      | :: NOR  | TH ROAD         |      |                  |       |              |                  |                     |                              |       |                 |                           |                            |                      |
| 10        | L2      | 23              | 0.0  | 23               | 0.0   | 0.669        | 18.9             | LOS B               | 31.8                         | 226.3 | 0.63            | 0.66                      | 0.63                       | 26.5                 |
| 11        | T1      | 1738            | 2.1  | 1738             | 2.1   | 0.669        | 13.6             | LOS B               | 31.8                         | 226.7 | 0.63            | 0.66                      | 0.63                       | 26.6                 |
| 12        | R2      | 180             | 0.6  | 180              | 0.6   | 0.791        | 71.3             | LOS E               | 11.9                         | 84.0  | 1.00            | 0.87                      | 1.16                       | 19.2                 |
| Appr      | oach    | 1941            | 1.9  | 1941             | 1.9   | 0.791        | 19.0             | LOS B               | 31.8                         | 226.7 | 0.67            | 0.68                      | 0.68                       | 23.9                 |
| All Ve    | ehicles | 4312            | 2.5  | 4312             | 2.5   | 0.838        | 23.1             | LOSC                | 42.6                         | 308.0 | 0.73            | 0.71                      | 0.75                       | 32.4                 |

♦♦ Network: N101 [Master

Model]

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | Movement Performance - Pedestrians |                         |                         |       |                                  |                             |                 |                        |  |  |  |  |  |
|-----------|------------------------------------|-------------------------|-------------------------|-------|----------------------------------|-----------------------------|-----------------|------------------------|--|--|--|--|--|
| Mov<br>ID | Description                        | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Bac<br>Pedestrian<br>ped | k of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate |  |  |  |  |  |
| P1        | South Full Crossing                | 53                      | 12.1                    | LOS B | 0.1                              | 0.1                         | 0.43            | 0.43                   |  |  |  |  |  |
| P3        | North Full Crossing                | 53                      | 8.9                     | LOSA  | 0.1                              | 0.1                         | 0.37            | 0.37                   |  |  |  |  |  |
| P4        | West Full Crossing                 | 53                      | 59.3                    | LOS E | 0.2                              | 0.2                         | 0.96            | 0.96                   |  |  |  |  |  |
| All Pe    | edestrians                         | 158                     | 26.7                    | LOS C |                                  |                             | 0.59            | 0.59                   |  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

 $Project: P: V13600-13699 \ V136080 \ East \ Village - Integrated \ Transp\\ Modelling \ SIDRA\\ V180920-Updates\\ V180920-Upda$ 

Site: 3560 [2. NORTH ROAD / EAST BOUNDARY ROAD / MURRUMBEENA ROAD ]

NORTH ROAD / EAST BOUNDARY ROAD / MURRUMBEENA ROAD

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Network User-Given Cycle Time)

| Mov   | emen    | t Perform | ance  | - Vehi  | cles  |       |       |          |                    |       |        |              |                 |            |
|-------|---------|-----------|-------|---------|-------|-------|-------|----------|--------------------|-------|--------|--------------|-----------------|------------|
| Mov   | Turn    | Demand    | Flows | Arrival | Flows | Deg.  |       | Level of | 95% Ba             |       | Prop.  | Effective    | Aver. A         | · ·        |
| ID    |         | Total     | HV    | Total   | HV    | Satn  | Delay | Service  | Queu<br>Vehicles D |       | Queued | Stop<br>Rate | No.<br>Cycles S | e<br>Speed |
|       |         | veh/h     | %     | veh/h   | %     | v/c   | sec   |          | veh                | m     |        | . 15.15      |                 | km/h       |
|       |         | T BOUNDA  |       |         |       |       |       |          |                    |       |        |              |                 |            |
| 1     | L2      | 588       | 3.4   | 588     | 3.4   | 0.548 | 23.8  | LOS C    | 24.1               | 173.9 | 0.78   | 0.82         | 0.78            | 46.4       |
| 2     | T1      | 857       | 1.5   | 857     | 1.5   | 0.935 | 71.1  | LOS E    | 40.8               | 289.0 | 1.00   | 1.04         | 1.26            | 13.5       |
| 3     | R2      | 328       | 1.9   | 328     | 1.9   | 0.916 | 74.7  | LOS E    | 12.7               | 90.6  | 1.00   | 0.91         | 1.25            | 12.6       |
| 3u    | U       | 31        | 0.0   | 31      | 0.0   | 0.916 | 75.7  | LOS E    | 12.1               | 85.9  | 1.00   | 0.91         | 1.26            | 12.6       |
| Appr  | oach    | 1804      | 2.2   | 1804    | 2.2   | 0.935 | 56.4  | LOS E    | 40.8               | 289.0 | 0.93   | 0.94         | 1.10            | 23.0       |
| East  | : NOR   | TH ROAD   |       |         |       |       |       |          |                    |       |        |              |                 |            |
| 4     | L2      | 363       | 2.3   | 363     | 2.3   | 0.804 | 43.3  | LOS D    | 21.6               | 155.0 | 0.97   | 0.88         | 1.00            | 8.8        |
| 5     | T1      | 1418      | 3.7   | 1418    | 3.7   | 0.926 | 60.5  | LOS E    | 21.6               | 155.0 | 1.00   | 1.04         | 1.20            | 28.0       |
| 6     | R2      | 57        | 5.6   | 57      | 5.6   | 0.734 | 75.8  | LOS E    | 5.9                | 42.5  | 1.00   | 0.84         | 1.17            | 5.0        |
| 6u    | U       | 31        | 0.0   | 31      | 0.0   | 0.734 | 77.2  | LOS E    | 5.9                | 42.5  | 1.00   | 0.84         | 1.17            | 5.0        |
| Appr  | oach    | 1868      | 3.4   | 1868    | 3.4   | 0.926 | 57.9  | LOS E    | 21.6               | 155.0 | 0.99   | 1.00         | 1.16            | 25.0       |
| Nort  | h: MUR  | RRUMBEEN  | NA RO | AD      |       |       |       |          |                    |       |        |              |                 |            |
| 7     | L2      | 112       | 2.8   | 112     | 2.8   | 0.915 | 66.7  | LOS E    | 33.0               | 234.9 | 1.00   | 1.05         | 1.42            | 19.2       |
| 8     | T1      | 784       | 1.9   | 784     | 1.9   | 0.915 | 61.3  | LOS E    | 33.0               | 234.9 | 0.97   | 1.01         | 1.30            | 19.3       |
| 9     | R2      | 147       | 1.4   | 147     | 1.4   | 0.876 | 76.0  | LOS E    | 10.0               | 70.8  | 1.00   | 0.89         | 1.20            | 29.4       |
| Appr  | oach    | 1043      | 1.9   | 1043    | 1.9   | 0.915 | 63.9  | LOS E    | 33.0               | 234.9 | 0.98   | 1.00         | 1.29            | 21.3       |
| Wes   | t: NOR  | RTH ROAD  |       |         |       |       |       |          |                    |       |        |              |                 |            |
| 10    | L2      | 113       | 2.8   | 113     | 2.8   | 0.642 | 39.2  | LOS D    | 29.2               | 208.1 | 0.85   | 0.83         | 1.14            | 36.0       |
| 11    | T1      | 1405      | 2.1   | 1405    | 2.1   | 0.642 | 30.8  | LOS C    | 29.2               | 208.1 | 0.82   | 0.74         | 0.92            | 37.4       |
| 12    | R2      | 577       | 1.8   | 577     | 1.8   | 0.953 | 87.7  | LOS F    | 22.1               | 157.2 | 0.99   | 1.03         | 1.46            | 20.3       |
| Appr  | oach    | 2095      | 2.1   | 2095    | 2.1   | 0.953 | 46.9  | LOS D    | 29.2               | 208.1 | 0.86   | 0.83         | 1.08            | 30.3       |
| All V | ehicles | 6811      | 2.4   | 6811    | 2.4   | 0.953 | 55.1  | LOS E    | 40.8               | 289.0 | 0.93   | 0.93         | 1.14            | 25.4       |

**申申** Network: N101 [Master

Model]

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | Movement Performance - Pedestrians |                         |                         |       |                                   |                           |                 |                        |  |  |  |  |  |
|-----------|------------------------------------|-------------------------|-------------------------|-------|-----------------------------------|---------------------------|-----------------|------------------------|--|--|--|--|--|
| Mov<br>ID | Description                        | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Bacl<br>Pedestrian<br>ped | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate |  |  |  |  |  |
| P1        | South Full Crossing                | 53                      | 48.4                    | LOS E | 0.2                               | 0.2                       | 0.86            | 0.86                   |  |  |  |  |  |
| P2        | East Full Crossing                 | 53                      | 53.7                    | LOS E | 0.2                               | 0.2                       | 0.91            | 0.91                   |  |  |  |  |  |
| P3        | North Full Crossing                | 53                      | 31.9                    | LOS D | 0.1                               | 0.1                       | 0.70            | 0.70                   |  |  |  |  |  |
| P4        | West Full Crossing                 | 53                      | 54.6                    | LOS E | 0.2                               | 0.2                       | 0.92            | 0.92                   |  |  |  |  |  |
| All Pe    | destrians                          | 211                     | 47.1                    | LOS E |                                   |                           | 0.85            | 0.85                   |  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Thursday, 20 September 2018 5:25:13 PM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180920 SIDRA Network - Future PM Post Dev No Growth - TfV&VR response.sip8

# Site: 3559 [10. NORTH ROAD / KOORNANG ROAD / TUCKER ROAD PM]

10. NORTH ROAD / KOORNAND ROAD / TUCKER ROAD

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 126 seconds (Site User-Given Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

| Move   | ement P | erformano      | e - Vel | nicles      |              |          |                 |               |        | _         |           |               |
|--------|---------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------|
| Mov    | Turn    | Demand F       | lows    | Deg.        | Average      | Level of | 95% Back        | of Queue      | Prop.  | Effective | Aver. No. | Average       |
| ID     |         | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay<br>sec | Service  | Vehicles<br>veh | Distance<br>m | Queued | Stop Rate | Cycles    | Speed<br>km/h |
| South  | : TUCKE | R ROAD         |         |             |              |          |                 |               |        |           |           |               |
| 1      | L2      | 191            | 1.1     | 0.389       | 39.8         | LOS D    | 8.8             | 61.9          | 0.80   | 0.78      | 0.80      | 35.7          |
| 2      | T1      | 198            | 1.1     | 0.864       | 63.7         | LOS E    | 12.9            | 91.3          | 0.98   | 0.97      | 1.29      | 29.5          |
| Appro  | ach     | 388            | 1.1     | 0.864       | 52.0         | LOS D    | 12.9            | 91.3          | 0.89   | 0.88      | 1.05      | 32.2          |
| East:  | NORTH   | ROAD           |         |             |              |          |                 |               |        |           |           |               |
| 4      | L2      | 193            | 1.1     | 0.180       | 18.7         | LOS B    | 5.4             | 38.4          | 0.50   | 0.71      | 0.50      | 46.6          |
| 5      | T1      | 1969           | 0.5     | 0.845       | 21.8         | LOS C    | 38.2            | 268.3         | 0.71   | 0.68      | 0.75      | 45.9          |
| 6      | R2      | 173            | 1.2     | 0.844       | 73.1         | LOS E    | 11.6            | 81.8          | 1.00   | 0.93      | 1.27      | 29.3          |
| Appro  | ach     | 2335           | 0.6     | 0.845       | 25.4         | LOS C    | 38.2            | 268.3         | 0.72   | 0.70      | 0.77      | 44.1          |
| North  | : KOORI | NANG ROAD      | )       |             |              |          |                 |               |        |           |           |               |
| 7      | L2      | 201            | 1.0     | 0.335       | 40.0         | LOS D    | 9.3             | 65.7          | 0.80   | 0.79      | 0.80      | 37.8          |
| 8      | T1      | 197            | 1.1     | 0.641       | 53.3         | LOS D    | 11.4            | 80.7          | 0.98   | 0.81      | 0.98      | 32.2          |
| Appro  | ach     | 398            | 1.1     | 0.641       | 46.6         | LOS D    | 11.4            | 80.7          | 0.89   | 0.80      | 0.89      | 35.0          |
| West:  | NORTH   | ROAD           |         |             |              |          |                 |               |        |           |           |               |
| 10     | L2      | 99             | 1.1     | 0.093       | 17.9         | LOS B    | 2.6             | 18.6          | 0.47   | 0.69      | 0.47      | 45.4          |
| 11     | T1      | 1933           | 1.7     | 0.856       | 23.5         | LOS C    | 39.6            | 281.4         | 0.75   | 0.72      | 0.79      | 45.1          |
| 12     | R2      | 169            | 1.2     | 0.829       | 72.1         | LOS E    | 11.2            | 79.5          | 1.00   | 0.91      | 1.24      | 27.2          |
| Appro  | ach     | 2201           | 1.7     | 0.856       | 27.0         | LOS C    | 39.6            | 281.4         | 0.76   | 0.73      | 0.81      | 43.2          |
| All Ve | hicles  | 5322           | 1.1     | 0.864       | 29.6         | LOSC     | 39.6            | 281.4         | 0.76   | 0.73      | 0.82      | 42.0          |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | Movement Performance - Pedestrians |                |                  |       |                            |                        |                 |                        |  |  |  |  |  |
|-----------|------------------------------------|----------------|------------------|-------|----------------------------|------------------------|-----------------|------------------------|--|--|--|--|--|
| Mov<br>ID | Description                        | Demand<br>Flow | Average<br>Delay |       | Average Bacl<br>Pedestrian | k of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate |  |  |  |  |  |
|           |                                    | ped/h          | sec              |       | ped                        | m                      |                 |                        |  |  |  |  |  |
| P1        | South Full Crossing                | 53             | 14.3             | LOS B | 0.1                        | 0.1                    | 0.48            | 0.48                   |  |  |  |  |  |
| P2        | East Full Crossing                 | 53             | 57.3             | LOS E | 0.2                        | 0.2                    | 0.95            | 0.95                   |  |  |  |  |  |
| P3        | North Full Crossing                | 53             | 4.3              | LOSA  | 0.0                        | 0.0                    | 0.26            | 0.26                   |  |  |  |  |  |
| P4        | West Full Crossing                 | 53             | 57.3             | LOS E | 0.2                        | 0.2                    | 0.95            | 0.95                   |  |  |  |  |  |
| All Pe    | All Pedestrians                    |                | 33.3             | LOS D |                            |                        | 0.66            | 0.66                   |  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

 $Project: P: V13600-13699 \ V136080 \ East \ Village - Integrated \ Transp\\ Modelling \ SIDRA\\ V180920-Updates\\ V180920 \ SIDRA \ Network - Future \ PM-Post \ Dev \ No \ Growth - TfV\\ VR \ response. Sip8$ 



Site: 3561 [6. NORTH ROAD / POATH ROAD / POET ROAD]

**♦** Network: N101 [Master Model]

NORTH ROAD / POATH ROAD / POET ROAD

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 130 seconds (Site User-Given Cycle Time)

| Mov       | Movement Performance - Vehicles  Mov Turn Demand Flows Arrival Flows Deg. Average Level of 95% Back of Prop. Effective Aver. Average |                |     |             |         |              |                  |                     |            |       |                 |                   |        |      |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|-------------|---------|--------------|------------------|---------------------|------------|-------|-----------------|-------------------|--------|------|
| Mov<br>ID | Turn                                                                                                                                 |                |     |             |         | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | Que        | ıe    | Prop.<br>Queued | Effective<br>Stop | No.    | ě    |
|           |                                                                                                                                      | Total<br>veh/h |     | Total veh/h | HV<br>% | v/c          | 222              |                     | Vehicles D |       |                 | Rate              | Cycles |      |
| Sout      | th: POE                                                                                                                              | T ROAD         | 70  | ven/n       | 70      | V/C          | sec              |                     | veh        | m     |                 |                   |        | km/h |
| 1         | L2                                                                                                                                   | 55             | 5.8 | 55          | 5.8     | 0.803        | 72.8             | LOS E               | 8.4        | 61.2  | 1.00            | 0.95              | 1.24   | 15.6 |
| 2         | T1                                                                                                                                   | 13             | 0.0 | 13          | 0.0     | 0.803        | 69.3             | LOS E               | 8.4        | 61.2  | 1.00            | 0.95              | 1.24   | 24.7 |
| 3         | R2                                                                                                                                   | 55             | 5.8 | 55          | 5.8     | 0.803        | 72.7             | LOS E               | 8.4        | 61.2  | 1.00            | 0.95              | 1.24   | 24.6 |
| Аррі      | roach                                                                                                                                | 122            | 5.2 | 122         | 5.2     | 0.803        | 72.4             | LOS E               | 8.4        | 61.2  | 1.00            | 0.95              | 1.24   | 21.1 |
| East      | : NORT                                                                                                                               | H ROAD         |     |             |         |              |                  |                     |            |       |                 |                   |        |      |
| 4         | L2                                                                                                                                   | 25             | 4.2 | 25          | 4.2     | 0.762        | 19.6             | LOS B               | 40.5       | 292.6 | 0.70            | 0.66              | 0.70   | 43.2 |
| 5         | T1                                                                                                                                   | 1599           | 3.8 | 1599        | 3.8     | 0.762        | 11.6             | LOS B               | 40.5       | 292.6 | 0.62            | 0.57              | 0.62   | 48.5 |
| 6         | R2                                                                                                                                   | 98             | 3.2 | 98          | 3.2     | 0.612        | 35.4             | LOS D               | 4.3        | 31.1  | 0.97            | 0.83              | 1.01   | 39.0 |
| Appı      | roach                                                                                                                                | 1722           | 3.8 | 1722        | 3.8     | 0.762        | 13.1             | LOS B               | 40.5       | 292.6 | 0.64            | 0.59              | 0.64   | 47.1 |
| Nort      | h: POAT                                                                                                                              | TH ROAD        |     |             |         |              |                  |                     |            |       |                 |                   |        |      |
| 7         | L2                                                                                                                                   | 238            | 2.2 | 238         | 2.2     | 0.725        | 48.1             | LOS D               | 15.5       | 110.3 | 0.97            | 0.85              | 1.00   | 31.4 |
| 8         | T1                                                                                                                                   | 44             | 0.0 | 44          | 0.0     | 0.725        | 43.6             | LOS D               | 15.5       | 110.3 | 0.97            | 0.85              | 1.00   | 30.3 |
| 9         | R2                                                                                                                                   | 76             | 2.8 | 76          | 2.8     | 0.252        | 54.8             | LOS D               | 4.2        | 30.0  | 0.90            | 0.76              | 0.90   | 20.2 |
| Appı      | roach                                                                                                                                | 358            | 2.1 | 358         | 2.1     | 0.725        | 49.0             | LOS D               | 15.5       | 110.3 | 0.96            | 0.83              | 0.98   | 29.3 |
| Wes       | t: NOR1                                                                                                                              | TH ROAD        |     |             |         |              |                  |                     |            |       |                 |                   |        |      |
| 10        | L2                                                                                                                                   | 89             | 2.4 | 89          | 2.4     | 0.823        | 27.6             | LOS C               | 46.8       | 333.7 | 0.85            | 0.80              | 0.85   | 48.1 |
| 11        | T1                                                                                                                                   | 1668           | 2.2 | 1668        | 2.2     | 0.823        | 20.0             | LOS C               | 46.8       | 333.7 | 0.79            | 0.74              | 0.80   | 52.6 |
| 12        | R2                                                                                                                                   | 25             | 0.0 | 25          | 0.0     | 0.265        | 40.5             | LOS D               | 1.2        | 8.6   | 0.74            | 0.75              | 0.74   | 35.4 |
| Appı      | roach                                                                                                                                | 1783           | 2.2 | 1783        | 2.2     | 0.823        | 20.7             | LOS C               | 46.8       | 333.7 | 0.80            | 0.74              | 0.80   | 52.0 |
| All V     | ehicles                                                                                                                              | 3985           | 3.0 | 3985        | 3.0     | 0.823        | 21.5             | LOS C               | 46.8       | 333.7 | 0.75            | 0.69              | 0.76   | 45.6 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | Movement Performance - Pedestrians |                         |                         |       |                                   |                           |                 |                        |  |  |  |  |  |  |
|-----------|------------------------------------|-------------------------|-------------------------|-------|-----------------------------------|---------------------------|-----------------|------------------------|--|--|--|--|--|--|
| Mov<br>ID | Description                        | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Back<br>Pedestrian<br>ped | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate |  |  |  |  |  |  |
| P1        | South Full Crossing                | 53                      | 7.5                     | LOS A | 0.1                               | 0.1                       | 0.34            | 0.34                   |  |  |  |  |  |  |
| P2        | East Full Crossing                 | 53                      | 51.9                    | LOS E | 0.2                               | 0.2                       | 0.89            | 0.89                   |  |  |  |  |  |  |
| P3        | North Full Crossing                | 53                      | 13.0                    | LOS B | 0.1                               | 0.1                       | 0.45            | 0.45                   |  |  |  |  |  |  |
| P4        | West Full Crossing                 | 53                      | 51.9                    | LOS E | 0.2                               | 0.2                       | 0.89            | 0.89                   |  |  |  |  |  |  |
| All Pe    | destrians                          | 211                     | 31.0                    | LOS D |                                   |                           | 0.64            | 0.64                   |  |  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Thursday, 20 September 2018 5:25:13 PM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180920 SIDRA Network - Future PM Post Dev No Growth - TfV&VR response.sip8



Site: 1209 [5. EAST BOUNDARY ROAD / ARDENA COURT]

**♦** Network: N101 [Master Model]

EAST BOUNDARY ROAD / ARDENA COURT

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 130 seconds (Site User-Given Cycle Time)

| Мо        | vement   | t Perform        | ance   | - Vehi | cles       |              |                  |                     |               |       |                 |                   |          |      |
|-----------|----------|------------------|--------|--------|------------|--------------|------------------|---------------------|---------------|-------|-----------------|-------------------|----------|------|
| Mov<br>ID | / Turn   | Demand           |        |        |            | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Que | ue    | Prop.<br>Queued | Effective<br>Stop | Aver. A  | ě    |
|           |          | Total            |        | Total  | HV         |              |                  |                     | Vehicles [    |       |                 | Rate              | Cycles S |      |
| Cou       | th. FAC  | veh/h<br>T BOUND |        | veh/h  | %          | v/c          | sec              |                     | veh           | m     |                 |                   |          | km/h |
|           |          |                  |        | -      | <b>5</b> 0 | 0.044        | 44.4             | 1 00 D              | 0.0           | 0.4   | 0.00            | 0.04              | 0.00     | 44.5 |
| 1         | L2       | 18               | 5.9    | 18     | 5.9        | 0.014        | 11.1             | LOS B               | 0.3           | 2.1   | 0.28            | 0.64              | 0.28     | 44.5 |
| 2         | T1       | 1597             |        | 1597   | 2.7        | 0.567        | 8.0              | LOS A               | 22.4          | 160.3 | 0.49            | 0.45              | 0.49     | 53.7 |
| 3         | R2       | 126              | 8.0    | 126    | 8.0        | 0.635        | 68.6             | LOS E               | 8.0           | 56.3  | 1.00            | 0.81              | 1.03     | 26.2 |
| App       | roach    | 1741             | 2.6    | 1741   | 2.6        | 0.635        | 12.4             | LOS B               | 22.4          | 160.3 | 0.52            | 0.48              | 0.52     | 46.9 |
| Eas       | t: ARDE  | NA COUR          | Т      |        |            |              |                  |                     |               |       |                 |                   |          |      |
| 4         | L2       | 91               | 1.2    | 91     | 1.2        | 0.277        | 49.4             | LOS D               | 5.0           | 35.3  | 0.90            | 0.74              | 0.90     | 29.4 |
| 5         | T1       | 2                | 0.0    | 2      | 0.0        | 0.277        | 46.0             | LOS D               | 5.0           | 35.3  | 0.90            | 0.74              | 0.90     | 26.0 |
| 6         | R2       | 75               | 1.4    | 75     | 1.4        | 0.596        | 70.3             | LOS E               | 4.9           | 34.6  | 1.00            | 0.79              | 1.04     | 16.0 |
| App       | roach    | 167              | 1.3    | 167    | 1.3        | 0.596        | 58.7             | LOS E               | 5.0           | 35.3  | 0.94            | 0.76              | 0.96     | 23.6 |
| Nor       | th: EAS  | T BOUNDA         | ARY RO | DAC    |            |              |                  |                     |               |       |                 |                   |          |      |
| 7         | L2       | 5                | 0.0    | 5      | 0.0        | 0.004        | 13.4             | LOS B               | 0.1           | 0.7   | 0.33            | 0.63              | 0.33     | 39.8 |
| 8         | T1       | 1721             | 1.8    | 1721   | 1.8        | 0.664        | 12.9             | LOS B               | 31.3          | 222.6 | 0.63            | 0.59              | 0.63     | 53.7 |
| 9         | R2       | 8                | 0.0    | 8      | 0.0        | 0.098        | 73.5             | LOS E               | 0.5           | 3.8   | 0.98            | 0.67              | 0.98     | 22.0 |
| App       | roach    | 1735             | 1.8    | 1735   | 1.8        | 0.664        | 13.2             | LOS B               | 31.3          | 222.6 | 0.64            | 0.59              | 0.64     | 53.3 |
| Wes       | st: ARDE | ENA COUF         | RT     |        |            |              |                  |                     |               |       |                 |                   |          |      |
| 10        | L2       | 21               | 0.0    | 21     | 0.0        | 0.408        | 64.1             | LOS E               | 2.8           | 19.6  | 0.99            | 0.74              | 0.99     | 16.9 |
| 11        | T1       | 1                | 0.0    | 1      | 0.0        | 0.408        | 60.7             | LOS E               | 2.8           | 19.6  | 0.99            | 0.74              | 0.99     | 23.6 |
| 12        | R2       | 23               | 0.0    | 23     | 0.0        | 0.408        | 64.0             | LOS E               | 2.8           | 19.6  | 0.99            | 0.74              | 0.99     | 26.5 |
| App       | roach    | 45               | 0.0    | 45     | 0.0        | 0.408        | 63.9             | LOS E               | 2.8           | 19.6  | 0.99            | 0.74              | 0.99     | 22.5 |
| All \     | /ehicles | 3688             | 2.1    | 3688   | 2.1        | 0.664        | 15.5             | LOS B               | 31.3          | 222.6 | 0.60            | 0.55              | 0.60     | 46.9 |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Mov<br>ID | Description         | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec | Level of Ave<br>Service P |     | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate |
|-----------|---------------------|-------------------------|-------------------------|---------------------------|-----|---------------------------|-----------------|------------------------|
| P1        | South Full Crossing | 53                      | 59.3                    | LOS E                     | 0.2 | 0.2                       | 0.96            | 0.96                   |
| P2        | East Full Crossing  | 53                      | 9.3                     | LOSA                      | 0.1 | 0.1                       | 0.38            | 0.38                   |
| P3        | North Full Crossing | 53                      | 59.3                    | LOS E                     | 0.2 | 0.2                       | 0.96            | 0.96                   |
| P4        | West Full Crossing  | 53                      | 5.9                     | LOSA                      | 0.1 | 0.1                       | 0.30            | 0.30                   |
| All Pe    | destrians           | 211                     | 33.4                    | LOS D                     |     |                           | 0.65            | 0.65                   |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2018 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GTA CONSULTANTS | Processed: Thursday, 20 September 2018 5:25:13 PM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180920 SIDRA Network - Future PM Post Dev No Growth - TfV&VR response.sip8

Site: 001av [001a. EAST BOUNDARY ROAD / NORTH DRIVE]

EAST BOUNDARY ROAD BETWEEN NORTH ROAD AND NORTH DRIVE - east

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Network User-Given Cycle Time)

| Mον       | Movement Performance - Vehicles  Mov Turn Demand Flows Arrival Flows Deg. Average Level of 95% Back of Prop. Effective Aver. Average |                            |      |                           |                  |                     |                         |                     |                                    |               |                 |                           |                            |              |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------|---------------------------|------------------|---------------------|-------------------------|---------------------|------------------------------------|---------------|-----------------|---------------------------|----------------------------|--------------|
| Mov<br>ID | Turn                                                                                                                                 | Demand I<br>Total<br>veh/h | HV   | Arrival<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Que<br>Vehicles [<br>veh | ue            | Prop.<br>Queued | Effective<br>Stop<br>Rate | Aver. A<br>No.<br>Cycles S | e            |
| Sou       | th: East                                                                                                                             | Boundary                   |      | VGH/H                     | /0               | V/C                 | 360                     |                     | Ven                                | - '''         |                 |                           |                            | KIII/II      |
| 1         | L2                                                                                                                                   | 22                         | 0.0  | 22                        | 0.0              | 0.201               | 12.9                    | LOS B               | 3.0                                | 21.1          | 0.19            | 0.23                      | 0.49                       | 48.2         |
| 2         | T1<br>R2                                                                                                                             | 1502<br>168                | 0.0  | 1502<br>168               | 0.0<br>0.0       | 0.616<br>0.620      | 14.0<br>70.4            | LOS B<br>LOS E      | 22.2<br>10.8                       | 155.3<br>75.4 | 0.51<br>1.00    | 0.47<br>0.82              | 0.55<br>1.00               | 24.0<br>21.3 |
| -         | roach                                                                                                                                | 1693                       | 0.0  | 1693                      | 0.0              | 0.620               | 19.6                    | LOS B               | 22.2                               | 155.3         | 0.55            | 0.50                      | 0.59                       | 23.5         |
| East      | : NORT                                                                                                                               | H DR                       |      |                           |                  |                     |                         |                     |                                    |               |                 |                           |                            |              |
| 4         | L2                                                                                                                                   | 365                        | 0.0  | 365                       | 0.0              | 0.589               | 31.0                    | LOS C               | 15.1                               | 105.8         | 0.86            | 0.94                      | 1.09                       | 30.2         |
| 6         | R2                                                                                                                                   | 265                        | 0.0  | 265                       | 0.0              | 0.589               | 52.2                    | LOS D               | 15.1                               | 105.8         | 0.94            | 0.84                      | 0.98                       | 22.4         |
| App       | roach                                                                                                                                | 631                        | 0.0  | 631                       | 0.0              | 0.589               | 39.9                    | LOS D               | 15.1                               | 105.8         | 0.90            | 0.90                      | 1.04                       | 26.4         |
| Nort      | h: East                                                                                                                              | Boundary I                 | Road |                           |                  |                     |                         |                     |                                    |               |                 |                           |                            |              |
| 7         | L2                                                                                                                                   | 282                        | 0.0  | 282                       | 0.0              | 0.616               | 23.8                    | LOS C               | 20.0                               | 141.5         | 0.59            | 0.73                      | 0.91                       | 41.7         |
| 8         | T1                                                                                                                                   | 1460                       | 2.3  | 1460                      | 2.3              | 0.616               | 12.5                    | LOS B               | 20.0                               | 141.5         | 0.43            | 0.43                      | 0.51                       | 35.5         |
| App       | roach                                                                                                                                | 1742                       | 1.9  | 1742                      | 1.9              | 0.616               | 14.4                    | LOS B               | 20.0                               | 141.5         | 0.45            | 0.48                      | 0.57                       | 37.3         |
| Wes       | t: GEOI                                                                                                                              | RGE ST                     |      |                           |                  |                     |                         |                     |                                    |               |                 |                           |                            |              |
| 10        | L2                                                                                                                                   | 4                          | 0.0  | 4                         | 0.0              | 0.037               | 69.1                    | LOS E               | 0.3                                | 1.8           | 0.96            | 0.64                      | 0.96                       | 18.6         |
| App       | roach                                                                                                                                | 4                          | 0.0  | 4                         | 0.0              | 0.037               | 69.1                    | LOS E               | 0.3                                | 1.8           | 0.96            | 0.64                      | 0.96                       | 18.6         |
| All V     | ehicles/                                                                                                                             | 4069                       | 0.8  | 4069                      | 8.0              | 0.620               | 20.6                    | LOSC                | 22.2                               | 155.3         | 0.56            | 0.55                      | 0.66                       | 29.8         |

♦♦ Network: N101 [Master

Model]

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move   | Movement Performance - Pedestrians |               |              |         |                   |               |        |           |  |  |  |  |  |
|--------|------------------------------------|---------------|--------------|---------|-------------------|---------------|--------|-----------|--|--|--|--|--|
| Mov    | Description                        | Demand        | Average      |         | Average Bacl      |               | Prop.  | Effective |  |  |  |  |  |
| ID     | Description                        | Flow<br>ped/h | Delay<br>sec | Service | Pedestrian<br>ped | Distance<br>m | Queued | Stop Rate |  |  |  |  |  |
| P1     | South Full Crossing                | 53            | 59.3         | LOS E   | 0.2               | 0.2           | 0.96   | 0.96      |  |  |  |  |  |
| P2     | East Full Crossing                 | 53            | 22.3         | LOS C   | 0.1               | 0.1           | 0.59   | 0.59      |  |  |  |  |  |
| P4     | West Full Crossing                 | 53            | 13.4         | LOS B   | 0.1               | 0.1           | 0.45   | 0.45      |  |  |  |  |  |
| All Pe | destrians                          | 158           | 31.7         | LOS D   |                   |               | 0.67   | 0.67      |  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Organisation: GTA CONSULTANTS | Processed: Thursday, 20 September 2018 5:25:13 PM

Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180920 SIDRA Network - Future PM - Post Dev No Growth - TfV&VR response.sip8

Site: 101vv [1. MURRUMBEENA ROAD / LEILA ROAD - Signals]

♦♦ Network: N101 [Master Model]

MURRUMBEENA ROAD / LEILA ROAD

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Network User-Given Cycle Time)

| Mov       | ement    | t Perform                | ance  | - Vehi                    | cles             |                     |                         |                     |                                     |       |                 |                           |                            |                              |
|-----------|----------|--------------------------|-------|---------------------------|------------------|---------------------|-------------------------|---------------------|-------------------------------------|-------|-----------------|---------------------------|----------------------------|------------------------------|
| Mov<br>ID | Turn     | Demand<br>Total<br>veh/h | HV    | Arrival<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Quei<br>Vehicles E<br>veh | ue    | Prop.<br>Queued | Effective<br>Stop<br>Rate | Aver. A<br>No.<br>Cycles S | Averag<br>e<br>Speed<br>km/h |
| Sout      | h: MUF   | RRUMBEE                  |       |                           | 70               | V/C                 | 300                     |                     | VEII                                | - ''' |                 |                           |                            | KIII/II                      |
| 1         | L2       | 91                       | 1.2   | 91                        | 1.2              | 0.066               | 6.7                     | LOS A               | 0.4                                 | 2.6   | 0.08            | 0.59                      | 0.08                       | 48.8                         |
| 2         | T1       | 940                      | 1.6   | 940                       | 1.6              | 0.753               | 5.0                     | LOS A               | 16.7                                | 118.5 | 0.31            | 0.29                      | 0.31                       | 55.3                         |
| Appr      | oach     | 1031                     | 1.5   | 1031                      | 1.5              | 0.753               | 5.2                     | LOS A               | 16.7                                | 118.5 | 0.29            | 0.32                      | 0.29                       | 54.6                         |
| East      | : LEILA  | ROAD                     |       |                           |                  |                     |                         |                     |                                     |       |                 |                           |                            |                              |
| 4         | L2       | 93                       | 5.7   | 93                        | 5.7              | 0.868               | 76.5                    | LOS E               | 8.8                                 | 63.6  | 1.00            | 0.97                      | 1.38                       | 17.8                         |
| 5         | T1       | 35                       | 0.0   | 35                        | 0.0              | 0.868               | 70.9                    | LOS E               | 8.8                                 | 63.6  | 1.00            | 0.97                      | 1.38                       | 27.1                         |
| 6         | R2       | 142                      | 1.5   | 142                       | 1.5              | 0.792               | 59.9                    | LOS E               | 8.5                                 | 60.2  | 1.00            | 0.87                      | 1.20                       | 30.0                         |
| Appr      | oach     | 269                      | 2.7   | 269                       | 2.7              | 0.868               | 67.0                    | LOS E               | 8.8                                 | 63.6  | 1.00            | 0.92                      | 1.29                       | 25.8                         |
| North     | n: MUR   | RUMBEEN                  | NA RO | AD                        |                  |                     |                         |                     |                                     |       |                 |                           |                            |                              |
| 7         | L2       | 136                      | 2.3   | 136                       | 2.3              | 0.082               | 5.9                     | LOS A               | 0.4                                 | 3.1   | 0.11            | 0.60                      | 0.11                       | 50.3                         |
| 8         | T1       | 962                      | 1.1   | 962                       | 1.1              | 0.897               | 22.6                    | LOS C               | 43.8                                | 309.6 | 0.65            | 0.67                      | 0.73                       | 34.6                         |
| 9         | R2       | 66                       | 0.0   | 66                        | 0.0              | 0.275               | 21.9                    | LOS C               | 2.3                                 | 15.8  | 0.55            | 0.73                      | 0.55                       | 40.6                         |
| Appr      | oach     | 1164                     | 1.2   | 1164                      | 1.2              | 0.897               | 20.6                    | LOS C               | 43.8                                | 309.6 | 0.58            | 0.66                      | 0.65                       | 36.4                         |
| West      | t: LEILA | ROAD                     |       |                           |                  |                     |                         |                     |                                     |       |                 |                           |                            |                              |
| 10        | L2       | 98                       | 1.1   | 98                        | 1.1              | 0.863               | 80.1                    | LOS F               | 6.9                                 | 49.1  | 1.00            | 0.96                      | 1.39                       | 24.5                         |
| 12        | R2       | 35                       | 0.0   | 35                        | 0.0              | 0.195               | 53.4                    | LOS D               | 1.9                                 | 13.3  | 0.95            | 0.72                      | 0.95                       | 20.5                         |
| Appr      | oach     | 133                      | 8.0   | 133                       | 8.0              | 0.863               | 73.1                    | LOS E               | 6.9                                 | 49.1  | 0.99            | 0.90                      | 1.28                       | 23.8                         |
| All V     | ehicles  | 2597                     | 1.5   | 2597                      | 1.5              | 0.897               | 22.0                    | LOSC                | 43.8                                | 309.6 | 0.53            | 0.56                      | 0.61                       | 40.0                         |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | Movement Performance - Pedestrians |                         |                         |       |                                  |                             |                 |                        |  |  |  |  |  |  |
|-----------|------------------------------------|-------------------------|-------------------------|-------|----------------------------------|-----------------------------|-----------------|------------------------|--|--|--|--|--|--|
| Mov<br>ID | Description                        | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Bac<br>Pedestrian<br>ped | k of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate |  |  |  |  |  |  |
| P1        | South Full Crossing                | 53                      | 59.3                    | LOS E | 0.2                              | 0.2                         | 0.96            | 0.96                   |  |  |  |  |  |  |
| P2        | East Full Crossing                 | 53                      | 8.9                     | LOSA  | 0.1                              | 0.1                         | 0.37            | 0.37                   |  |  |  |  |  |  |
| P4        | West Full Crossing                 | 53                      | 8.9                     | LOSA  | 0.1                              | 0.1                         | 0.37            | 0.37                   |  |  |  |  |  |  |
| All Pe    | destrians                          | 158                     | 25.7                    | LOS C |                                  |                             | 0.57            | 0.57                   |  |  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

 $Project: P: V13600-13699 \ V136080 \ East \ Village - Integrated \ Transp\\ Modelling \ SIDRA\\ V180920-Updates\\ V180920 \ SIDRA \ Network - Future \ PM-Post \ Dev \ No \ Growth - TfV\\ VR \ response. Sip8$ 

Site: 104av [4a (east). EAST BOUNDARY ROAD / SOUTH DRIVE]

♦♦ Network: N101 [Master Model]

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane.

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Network User-Given Cycle Time)

| Mov       | emen    | t Perform | ance  | - Vehi  | cles  |              |                  |                     |                |       |                 |                   |                |             |
|-----------|---------|-----------|-------|---------|-------|--------------|------------------|---------------------|----------------|-------|-----------------|-------------------|----------------|-------------|
| Mov<br>ID | Turn    | Demand I  | Flows | Arrival | Flows | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Quei | ue    | Prop.<br>Queued | Effective<br>Stop | Aver. A<br>No. | Averag<br>e |
|           |         | Total     |       | Total   | HV    |              |                  |                     | Vehicles E     |       |                 | Rate              | Cycles S       |             |
| 0         | A O     | veh/h     |       | veh/h   | %     | v/c          | sec              |                     | veh            | m     |                 |                   |                | km/h        |
|           |         | T BOUNDA  |       | _       |       |              |                  |                     |                |       |                 |                   |                |             |
| 2         | T1      | 1395      | 0.0   | 1395    | 0.0   | 0.380        | 9.6              | LOS A               | 13.1           | 91.9  | 0.47            | 0.42              | 0.47           | 40.7        |
| 3         | R2      | 321       | 0.3   | 321     | 0.3   | 0.613        | 52.8             | LOS D               | 15.4           | 108.2 | 0.95            | 0.83              | 0.95           | 18.0        |
| 3u        | U       | 163       | 2.6   | 163     | 2.6   | 0.613        | 55.3             | LOS E               | 12.3           | 87.3  | 0.95            | 0.83              | 0.95           | 16.0        |
| Appr      | oach    | 1879      | 0.3   | 1879    | 0.3   | 0.613        | 20.9             | LOS C               | 15.4           | 108.2 | 0.59            | 0.52              | 0.59           | 27.3        |
| East      | : NORT  | H DRIVE   |       |         |       |              |                  |                     |                |       |                 |                   |                |             |
| 4         | L2      | 368       | 0.0   | 368     | 0.0   | 0.513        | 14.5             | LOS B               | 11.1           | 77.8  | 0.57            | 0.75              | 0.57           | 41.0        |
| 6         | R2      | 282       | 0.0   | 282     | 0.0   | 0.600        | 63.9             | LOS E               | 9.2            | 64.1  | 0.99            | 0.81              | 0.99           | 19.8        |
| Appr      | oach    | 651       | 0.0   | 651     | 0.0   | 0.600        | 35.9             | LOS D               | 11.1           | 77.8  | 0.75            | 0.77              | 0.75           | 28.0        |
| North     | n: EAS  | T BOUNDA  | RY R  | DAC     |       |              |                  |                     |                |       |                 |                   |                |             |
| 7         | L2      | 234       | 0.0   | 234     | 0.0   | 0.166        | 7.0              | LOS A               | 1.5            | 10.4  | 0.13            | 0.59              | 0.13           | 50.1        |
| 8         | T1      | 1593      | 2.1   | 1593    | 2.1   | 0.631        | 9.7              | LOS A               | 14.7           | 104.9 | 0.35            | 0.31              | 0.35           | 29.9        |
| 9u        | U       | 21        | 0.0   | 21      | 0.0   | 0.337        | 79.6             | LOS E               | 1.4            | 10.1  | 1.00            | 0.71              | 1.00           | 6.5         |
| Appr      | oach    | 1847      | 1.8   | 1847    | 1.8   | 0.631        | 10.1             | LOS B               | 14.7           | 104.9 | 0.33            | 0.35              | 0.33           | 34.0        |
| All Ve    | ehicles | 4377      | 0.9   | 4377    | 0.9   | 0.631        | 18.6             | LOS B               | 15.4           | 108.2 | 0.50            | 0.49              | 0.50           | 29.0        |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move   | ement Performance - Ped | estrians |         |         |              |          |        |           |
|--------|-------------------------|----------|---------|---------|--------------|----------|--------|-----------|
| Mov    | Description             | Demand   | Average |         | Average Back |          | Prop.  | Effective |
| ID     | Description             | Flow     | Delay   | Service | Pedestrian   | Distance | Queued | Stop Rate |
|        |                         | ped/h    | sec     |         | ped          | m        |        |           |
| P1     | South Full Crossing     | 53       | 59.3    | LOS E   | 0.2          | 0.2      | 0.96   | 0.96      |
| P2     | East Full Crossing      | 53       | 59.3    | LOS E   | 0.2          | 0.2      | 0.96   | 0.96      |
| All Pe | All Pedestrians         |          | 59.3    | LOS E   |              |          | 0.96   | 0.96      |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Organisation: GTA CONSULTANTS | Processed: Thursday, 20 September 2018 5:25:13 PM

Organisation: GTA CONSULTATION | Trocessed: Introduction | Trocessed:

Site: 107v [7. NORTH ROAD / CROSBIE ROAD / COBAR STREET - Signals]

NORTH ROAD / CROSBIE ROAD / COBAR STREET

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 130 seconds (Site User-Given Cycle Time)

| Mov       | ement   | : Performa                 | ance | - Vehi                    | cles _           |                     |                  |                     |                             |                |                 |                           |                            |      |
|-----------|---------|----------------------------|------|---------------------------|------------------|---------------------|------------------|---------------------|-----------------------------|----------------|-----------------|---------------------------|----------------------------|------|
| Mov<br>ID | Turn    | Demand I<br>Total<br>veh/h | HV   | Arrival<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay | Level of<br>Service | 95% Ba<br>Que<br>Vehicles D | ue<br>Distance | Prop.<br>Queued | Effective<br>Stop<br>Rate | Aver. A<br>No.<br>Cycles S |      |
| Sout      | h: COF  | BAR STRE                   |      | ven/n                     | 70               | V/C                 | sec              |                     | veh                         | m              |                 |                           |                            | km/h |
| 1         | L2      | 172                        | 0.0  | 172                       | 0.0              | 0.334               | 39.6             | LOS D               | 8.3                         | 58.0           | 0.84            | 0.76                      | 0.84                       | 21.6 |
| 2         | <br>T1  | 77                         | 0.0  | 77                        | 0.0              | 0.800               | 63.7             | LOS E               | 15.2                        | 106.8          | 1.00            | 0.92                      | 1.14                       | 17.8 |
| 3         | R2      | 155                        | 0.7  | 155                       | 0.7              | 0.800               | 66.4             | LOS E               | 15.2                        | 106.8          | 1.00            | 0.92                      | 1.14                       | 17.8 |
| Appr      | oach    | 403                        | 0.3  | 403                       | 0.3              | 0.800               | 54.5             | LOS D               | 15.2                        | 106.8          | 0.93            | 0.85                      | 1.01                       | 19.2 |
| East      | : NORT  | H ROAD                     |      |                           |                  |                     |                  |                     |                             |                |                 |                           |                            |      |
| 4         | L2      | 87                         | 2.4  | 87                        | 2.4              | 0.065               | 9.0              | LOS A               | 1.2                         | 8.7            | 0.29            | 0.64                      | 0.29                       | 45.1 |
| 5         | T1      | 1671                       | 4.0  | 1671                      | 4.0              | 0.814               | 21.2             | LOS C               | 39.4                        | 285.0          | 0.80            | 0.74                      | 0.80                       | 39.8 |
| 6         | R2      | 64                         | 0.0  | 64                        | 0.0              | 0.375               | 67.3             | LOS E               | 4.0                         | 27.8           | 0.98            | 0.76                      | 0.98                       | 22.9 |
| Appr      | oach    | 1822                       | 3.8  | 1822                      | 3.8              | 0.814               | 22.2             | LOS C               | 39.4                        | 285.0          | 0.79            | 0.74                      | 0.79                       | 39.1 |
| North     | n: CRO  | SBIE ROA                   | D    |                           |                  |                     |                  |                     |                             |                |                 |                           |                            |      |
| 7         | L2      | 119                        | 0.0  | 119                       | 0.0              | 0.694               | 70.9             | LOS E               | 7.7                         | 54.2           | 1.00            | 0.83                      | 1.09                       | 18.5 |
| Appr      | oach    | 119                        | 0.0  | 119                       | 0.0              | 0.694               | 70.9             | LOS E               | 7.7                         | 54.2           | 1.00            | 0.83                      | 1.09                       | 18.5 |
| West      | t: NOR  | TH ROAD                    |      |                           |                  |                     |                  |                     |                             |                |                 |                           |                            |      |
| 10        | L2      | 43                         | 0.0  | 43                        | 0.0              | 0.727               | 24.7             | LOS C               | 34.4                        | 244.8          | 0.76            | 0.75                      | 0.76                       | 20.9 |
| 11        | T1      | 1677                       | 2.1  | 1677                      | 2.1              | 0.727               | 19.4             | LOS B               | 34.4                        | 244.8          | 0.76            | 0.75                      | 0.76                       | 21.0 |
| 12        | R2      | 177                        | 0.6  | 177                       | 0.6              | 0.777               | 70.7             | LOS E               | 11.6                        | 81.9           | 1.00            | 0.87                      | 1.15                       | 19.3 |
| Appr      | oach    | 1897                       | 1.9  | 1897                      | 1.9              | 0.777               | 24.3             | LOS C               | 34.4                        | 244.8          | 0.78            | 0.76                      | 0.79                       | 20.5 |
| All V     | ehicles | 4241                       | 2.5  | 4241                      | 2.5              | 0.814               | 27.6             | LOSC                | 39.4                        | 285.0          | 0.80            | 0.76                      | 0.82                       | 29.5 |

♦♦ Network: N101 [Master

Model]

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | Movement Performance - Pedestrians |                         |                         |       |                                   |                           |                 |                        |  |  |  |  |  |  |
|-----------|------------------------------------|-------------------------|-------------------------|-------|-----------------------------------|---------------------------|-----------------|------------------------|--|--|--|--|--|--|
| Mov<br>ID | Description                        | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Back<br>Pedestrian<br>ped | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate |  |  |  |  |  |  |
| P1        | South Full Crossing                | 53                      | 14.3                    | LOS B | 0.1                               | 0.1                       | 0.47            | 0.47                   |  |  |  |  |  |  |
| P3        | North Full Crossing                | 53                      | 12.5                    | LOS B | 0.1                               | 0.1                       | 0.44            | 0.44                   |  |  |  |  |  |  |
| P4        | West Full Crossing                 | 53                      | 59.3                    | LOS E | 0.2                               | 0.2                       | 0.96            | 0.96                   |  |  |  |  |  |  |
| All Pe    | All Pedestrians                    |                         | 28.7                    | LOS C |                                   |                           | 0.62            | 0.62                   |  |  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

 $Project: P: V13600-13699 \ V136080 \ East \ Village - Integrated \ Transp\\ Modelling \ SIDRA\\ V180920-Updates\\ V180920 \ SIDRA \ Network - Future \ PM-Post \ Dev \ No \ Growth - TfV\\ VR \ response. Sip8$ 

# Appendi

# Appendix F

SIDRA Intersection –Future Site Access Intersection Results

Site: 001av [001a. EAST BOUNDARY ROAD BETWEEN NORTH ROAD AND NORTH DRIVE - Signals]

EAST BOUNDARY ROAD BETWEEN NORTH ROAD AND NORTH DRIVE - east

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Network User-Given Cycle Time)

| Mov       | Movement Performance - Vehicles  Mov Turn Demand Flows Arrival Flows Deg. Average Level of 95% Back of Prop. Effective Aver. Average |                |      |             |         |              |                  |                     |                   |               |                 |                   |          |               |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------|----------------|------|-------------|---------|--------------|------------------|---------------------|-------------------|---------------|-----------------|-------------------|----------|---------------|
| Mov<br>ID | Turn                                                                                                                                 |                |      |             |         | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | Que               | ue            | Prop.<br>Queued | Effective<br>Stop | No.      | e             |
|           |                                                                                                                                      | Total<br>veh/h |      | Total veh/h | HV<br>% | v/c          | sec              |                     | Vehicles [<br>veh | Distance<br>m |                 | Rate              | Cycles S | Speed<br>km/h |
| South     | n: East                                                                                                                              | Boundary       |      | VC11/11     | 70      | V/C          | 300              |                     | VCII              |               |                 |                   |          | KITI/TI       |
| 1         | L2                                                                                                                                   | 7              | 0.0  | 7           | 0.0     | 0.215        | 10.7             | LOS B               | 2.3               | 15.9          | 0.16            | 0.17              | 0.43     | 50.9          |
| 2         | T1                                                                                                                                   | 1679           | 0.0  | 1679        | 0.0     | 0.689        | 13.1             | LOS B               | 24.5              | 171.8         | 0.50            | 0.46              | 0.54     | 24.7          |
| 3         | R2                                                                                                                                   | 145            | 0.0  | 145         | 0.0     | 0.678        | 73.9             | LOS E               | 9.5               | 66.5          | 1.00            | 0.82              | 1.03     | 20.6          |
| Appro     | oach                                                                                                                                 | 1832           | 0.0  | 1832        | 0.0     | 0.689        | 17.9             | LOS B               | 24.5              | 171.8         | 0.54            | 0.49              | 0.58     | 23.6          |
| East:     | NORT                                                                                                                                 | H DR           |      |             |         |              |                  |                     |                   |               |                 |                   |          |               |
| 4         | L2                                                                                                                                   | 265            | 0.0  | 265         | 0.0     | 0.657        | 41.2             | LOS D               | 12.9              | 90.2          | 0.94            | 0.95              | 1.21     | 25.9          |
| 6         | R2                                                                                                                                   | 272            | 0.0  | 272         | 0.0     | 0.657        | 56.2             | LOS E               | 12.9              | 90.2          | 0.98            | 0.86              | 1.05     | 21.4          |
| Appro     | oach                                                                                                                                 | 537            | 0.0  | 537         | 0.0     | 0.657        | 48.8             | LOS D               | 12.9              | 90.2          | 0.96            | 0.90              | 1.13     | 23.4          |
| North     | ı: East                                                                                                                              | Boundary I     | Road |             |         |              |                  |                     |                   |               |                 |                   |          |               |
| 7         | L2                                                                                                                                   | 205            | 0.0  | 205         | 0.0     | 0.501        | 24.0             | LOS C               | 21.1              | 147.5         | 0.69            | 0.75              | 0.97     | 41.9          |
| 8         | T1                                                                                                                                   | 1365           | 0.0  | 1365        | 0.0     | 0.501        | 21.0             | LOS C               | 27.7              | 193.7         | 0.76            | 0.72              | 0.84     | 28.0          |
| Appro     | oach                                                                                                                                 | 1571           | 0.0  | 1571        | 0.0     | 0.501        | 21.4             | LOS C               | 27.7              | 193.7         | 0.75            | 0.72              | 0.86     | 30.9          |
| West      | : GEOF                                                                                                                               | RGE ST         |      |             |         |              |                  |                     |                   |               |                 |                   |          |               |
| 10        | L2                                                                                                                                   | 75             | 0.0  | 75          | 0.0     | 0.349        | 64.1             | LOS E               | 4.5               | 31.4          | 0.96            | 0.77              | 0.96     | 19.5          |
| Appro     | oach                                                                                                                                 | 75             | 0.0  | 75          | 0.0     | 0.349        | 64.1             | LOS E               | 4.5               | 31.4          | 0.96            | 0.77              | 0.96     | 19.5          |
| All Ve    | ehicles                                                                                                                              | 4014           | 0.0  | 4014        | 0.0     | 0.689        | 24.3             | LOS C               | 27.7              | 193.7         | 0.69            | 0.64              | 0.77     | 26.3          |

♦♦ Network: N101 [Master

Model]

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | Movement Performance - Pedestrians |                         |                         |       |                                   |                           |                 |                        |  |  |  |  |  |  |
|-----------|------------------------------------|-------------------------|-------------------------|-------|-----------------------------------|---------------------------|-----------------|------------------------|--|--|--|--|--|--|
| Mov<br>ID | Description                        | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Back<br>Pedestrian<br>ped | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate |  |  |  |  |  |  |
| P1        | South Full Crossing                | 53                      | 59.3                    | LOS E | 0.2                               | 0.2                       | 0.96            | 0.96                   |  |  |  |  |  |  |
| P2        | East Full Crossing                 | 53                      | 15.8                    | LOS B | 0.1                               | 0.1                       | 0.49            | 0.49                   |  |  |  |  |  |  |
| P4        | West Full Crossing                 | 53                      | 14.3                    | LOS B | 0.1                               | 0.1                       | 0.47            | 0.47                   |  |  |  |  |  |  |
| All Pe    | destrians                          | 158                     | 29.8                    | LOS C |                                   |                           | 0.64            | 0.64                   |  |  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Organisation: GTA CONSULTANTS | Processed: Thursday, 20 September 2018 5:25:07 PM

Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180920 SIDRA Network - Future AM - Post Dev With Growth - TfV&VR response.sip8

Site: 104av [4a (east). EAST BOUNDARY ROAD / SOUTH DRIVE - Signals]

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane.

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Network User-Given Cycle Time)

| Mov       | ement             | Performa          | ance  | - Vehi       | cles  |              |                  |                     |                |       |                 |                   |                |             |
|-----------|-------------------|-------------------|-------|--------------|-------|--------------|------------------|---------------------|----------------|-------|-----------------|-------------------|----------------|-------------|
| Mov<br>ID | Turn              | Demand I          | Flows | Arrival      | Flows | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Quet |       | Prop.<br>Queued | Effective<br>Stop | Aver. A<br>No. | Averag<br>e |
|           |                   | Total             |       | Total        | HV    | /-           |                  |                     | Vehicles D     |       |                 | Rate              | Cycles S       |             |
| South     | n: EAS            | veh/h<br>T BOUNDA |       | veh/h<br>OAD | %     | v/c          | sec              |                     | veh            | m     |                 |                   |                | km/h        |
| 2         | T1                | 1555              | 0.0   | 1555         | 0.0   | 0.503        | 10.8             | LOS B               | 18.0           | 126.0 | 0.51            | 0.46              | 0.51           | 39.0        |
| 3         | R2                | 389               | 0.3   | 389          | 0.3   | 0.646        | 53.3             | LOS D               | 16.4           | 115.1 | 0.96            | 0.84              | 0.96           | 17.7        |
| 3u        | U                 | 134               | 3.1   | 134          | 3.1   | 0.646        | 55.6             | LOS E               | 13.8           | 97.8  | 0.96            | 0.84              | 0.96           | 16.0        |
| Appro     | oach              | 2078              | 0.3   | 2078         | 0.3   | 0.646        | 21.6             | LOS C               | 18.0           | 126.0 | 0.63            | 0.56              | 0.63           | 27.2        |
| East:     | East: SOUTH DRIVE |                   |       |              |       |              |                  |                     |                |       |                 |                   |                |             |
| 4         | L2                | 254               | 0.0   | 254          | 0.0   | 0.329        | 13.9             | LOS B               | 6.4            | 44.9  | 0.48            | 0.71              | 0.48           | 41.5        |
| 6         | R2                | 275               | 0.0   | 275          | 0.0   | 0.614        | 63.5             | LOS E               | 9.0            | 63.1  | 0.99            | 0.81              | 0.99           | 19.9        |
| Appro     | oach              | 528               | 0.0   | 528          | 0.0   | 0.614        | 39.7             | LOS D               | 9.0            | 63.1  | 0.74            | 0.76              | 0.75           | 26.5        |
| North     | : EAS             | Γ BOUNDA          | RY R  | DAC          |       |              |                  |                     |                |       |                 |                   |                |             |
| 7         | L2                | 276               | 0.0   | 276          | 0.0   | 0.198        | 8.4              | LOS A               | 3.6            | 25.5  | 0.26            | 0.62              | 0.26           | 48.6        |
| 8         | T1                | 1361              | 2.5   | 1361         | 2.5   | 0.640        | 17.0             | LOS B               | 20.5           | 146.7 | 0.57            | 0.51              | 0.57           | 21.6        |
| 9u        | U                 | 2                 | 0.0   | 2            | 0.0   | 0.037        | 76.8             | LOS E               | 0.1            | 1.0   | 1.00            | 0.62              | 1.00           | 6.7         |
| Appro     | oach              | 1639              | 2.1   | 1639         | 2.1   | 0.640        | 15.6             | LOS B               | 20.5           | 146.7 | 0.52            | 0.53              | 0.52           | 28.9        |
| All Ve    | ehicles           | 4245              | 0.9   | 4245         | 0.9   | 0.646        | 21.6             | LOSC                | 20.5           | 146.7 | 0.60            | 0.57              | 0.60           | 27.5        |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move   | ement Performance - Ped | estrians      |              |         |                   |               |        |           |
|--------|-------------------------|---------------|--------------|---------|-------------------|---------------|--------|-----------|
| Mov    | Description             | Demand        | Average      |         | Average Back      |               | Prop.  | Effective |
| ID     | Description             | Flow<br>ped/h | Delay<br>sec | Service | Pedestrian<br>ped | Distance<br>m | Queued | Stop Rate |
| P1     | South Full Crossing     | 53            | 59.3         | LOS E   | 0.2               | 0.2           | 0.96   | 0.96      |
| P2     | East Full Crossing      | 53            | 59.3         | LOS E   | 0.2               | 0.2           | 0.96   | 0.96      |
| All Pe | destrians               | 105           | 59.3         | LOS E   |                   |               | 0.96   | 0.96      |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Organisation: GTA CONSULTANTS | Processed: Thursday, 20 September 2018 5:25:07 PM

Organisation: GTA CONSULTANTS | Processed: Milage - Integrated Transp\Modelling\SIDRA\180920-Updates\180920 SIDRA Network - Future AM - Post Dev With Growth - TfV&VR response.sip8

Site: 107v [7. NORTH ROAD / CROSBIE ROAD / COBAR STREET - Signals]

NORTH ROAD / CROSBIE ROAD / COBAR STREET

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Network User-Given Cycle Time)

| Mov       | emen    | t Perform      | ance | - Vehi      | cles    |              |                  |                     |                   |              |                 |                   |          |               |
|-----------|---------|----------------|------|-------------|---------|--------------|------------------|---------------------|-------------------|--------------|-----------------|-------------------|----------|---------------|
| Mov<br>ID | Turn    | Demand<br>     |      |             |         | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Quei    | ıe           | Prop.<br>Queued | Effective<br>Stop | Aver. A  | ě             |
|           |         | Total<br>veh/h |      | Total veh/h | HV<br>% | v/c          | sec              |                     | Vehicles E<br>veh | istance<br>m |                 | Rate              | Cycles S | Speed<br>km/h |
| South     | h: COI  | BAR STRE       |      |             | ,,      | .,.          |                  |                     |                   |              |                 |                   |          |               |
| 1         | L2      | 133            | 0.0  | 133         | 0.0     | 0.299        | 43.4             | LOS D               | 6.7               | 46.8         | 0.86            | 0.75              | 0.86     | 20.7          |
| 2         | T1      | 65             | 0.0  | 65          | 0.0     | 0.790        | 66.9             | LOS E               | 11.4              | 80.2         | 1.00            | 0.92              | 1.17     | 17.4          |
| 3         | R2      | 106            | 1.0  | 106         | 1.0     | 0.790        | 69.9             | LOS E               | 11.4              | 80.2         | 1.00            | 0.92              | 1.17     | 17.4          |
| Appr      | oach    | 304            | 0.3  | 304         | 0.3     | 0.790        | 57.7             | LOS E               | 11.4              | 80.2         | 0.94            | 0.85              | 1.03     | 18.7          |
| East:     | NORT    | TH ROAD        |      |             |         |              |                  |                     |                   |              |                 |                   |          |               |
| 4         | L2      | 146            | 1.4  | 146         | 1.4     | 0.108        | 9.2              | LOS A               | 2.1               | 15.0         | 0.30            | 0.65              | 0.30     | 45.0          |
| 5         | T1      | 1792           | 3.8  | 1792        | 3.8     | 0.838        | 19.2             | LOS B               | 42.6              | 308.0        | 0.78            | 0.72              | 0.78     | 41.1          |
| 6         | R2      | 72             | 0.0  | 72          | 0.0     | 0.626        | 74.0             | LOS E               | 4.7               | 33.1         | 1.00            | 0.79              | 1.07     | 21.6          |
| Appr      | oach    | 2009           | 3.5  | 2009        | 3.5     | 0.838        | 20.4             | LOS C               | 42.6              | 308.0        | 0.75            | 0.72              | 0.76     | 40.2          |
| North     | n: CRO  | SBIE ROA       | D    |             |         |              |                  |                     |                   |              |                 |                   |          |               |
| 7         | L2      | 57             | 0.0  | 57          | 0.0     | 0.497        | 72.8             | LOS E               | 3.7               | 25.9         | 1.00            | 0.75              | 1.00     | 18.1          |
| Appr      | oach    | 57             | 0.0  | 57          | 0.0     | 0.497        | 72.8             | LOS E               | 3.7               | 25.9         | 1.00            | 0.75              | 1.00     | 18.1          |
| West      | : NOR   | TH ROAD        |      |             |         |              |                  |                     |                   |              |                 |                   |          |               |
| 10        | L2      | 23             | 0.0  | 23          | 0.0     | 0.669        | 18.9             | LOS B               | 31.8              | 226.3        | 0.63            | 0.66              | 0.63     | 26.5          |
| 11        | T1      | 1738           | 2.1  | 1738        | 2.1     | 0.669        | 13.6             | LOS B               | 31.8              | 226.7        | 0.63            | 0.66              | 0.63     | 26.6          |
| 12        | R2      | 180            | 0.6  | 180         | 0.6     | 0.791        | 71.3             | LOS E               | 11.9              | 84.0         | 1.00            | 0.87              | 1.16     | 19.2          |
| Appro     | oach    | 1941           | 1.9  | 1941        | 1.9     | 0.791        | 19.0             | LOS B               | 31.8              | 226.7        | 0.67            | 0.68              | 0.68     | 23.9          |
| All Ve    | ehicles | 4312           | 2.5  | 4312        | 2.5     | 0.838        | 23.1             | LOSC                | 42.6              | 308.0        | 0.73            | 0.71              | 0.75     | 32.4          |

♦♦ Network: N101 [Master

Model]

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Move      | Movement Performance - Pedestrians |                         |                         |       |                                  |                             |                 |                        |  |  |  |  |  |
|-----------|------------------------------------|-------------------------|-------------------------|-------|----------------------------------|-----------------------------|-----------------|------------------------|--|--|--|--|--|
| Mov<br>ID | Description                        | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Bac<br>Pedestrian<br>ped | k of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate |  |  |  |  |  |
| P1        | South Full Crossing                | 53                      | 12.1                    | LOS B | 0.1                              | 0.1                         | 0.43            | 0.43                   |  |  |  |  |  |
| P3        | North Full Crossing                | 53                      | 8.9                     | LOSA  | 0.1                              | 0.1                         | 0.37            | 0.37                   |  |  |  |  |  |
| P4        | West Full Crossing                 | 53                      | 59.3                    | LOS E | 0.2                              | 0.2                         | 0.96            | 0.96                   |  |  |  |  |  |
| All Pe    | edestrians                         | 158                     | 26.7                    | LOS C |                                  |                             | 0.59            | 0.59                   |  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

 $Project: P: V13600-13699 \ V136080 \ East \ Village - Integrated \ Transp\\ Modelling \ SIDRA\\ V180920-Updates\\ V180920 \ SIDRA \ Network - Future \ AM-Post \ Dev \ With \ Growth - TfV\&VR \ response. sip8$ 

Site: 001av [001a. EAST BOUNDARY ROAD / NORTH DRIVE]

EAST BOUNDARY ROAD BETWEEN NORTH ROAD AND NORTH DRIVE - east

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Network User-Given Cycle Time)

| Mov       | ement   | t Perform                | ance | - Vehic                   | cles             |                     |                         |                     |                                   |       |                 |                           |                        |                              |
|-----------|---------|--------------------------|------|---------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------------|-------|-----------------|---------------------------|------------------------|------------------------------|
| Mov<br>ID | Turn    | Demand<br>Total<br>veh/h | HV   | Arrival<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Bar<br>Que<br>Vehicles<br>veh | eue   | Prop.<br>Queued | Effective<br>Stop<br>Rate | Aver.<br>No.<br>Cycles | Averag<br>e<br>Speed<br>km/h |
| South     | า: East | Boundary                 |      |                           |                  |                     |                         |                     |                                   |       |                 |                           |                        |                              |
| 1         | L2      | 22                       | 0.0  | 22                        | 0.0              | 0.210               | 13.3                    | LOS B               | 3.5                               | 24.8  | 0.20            | 0.24                      | 0.50                   | 47.9                         |
| 2         | T1      | 1565                     | 0.0  | 1565                      | 0.0              | 0.642               | 14.0                    | LOS B               | 24.9                              | 174.3 | 0.52            | 0.48                      | 0.56                   | 24.1                         |
| 3         | R2      | 168                      | 0.0  | 168                       | 0.0              | 0.620               | 70.3                    | LOS E               | 10.8                              | 75.4  | 1.00            | 0.82                      | 1.00                   | 21.3                         |
| Appro     |         | 1756                     | 0.0  | 1756                      | 0.0              | 0.642               | 19.4                    | LOS B               | 24.9                              | 174.3 | 0.56            | 0.51                      | 0.61                   | 23.6                         |
| East:     | NORT    | H DR                     |      |                           |                  |                     |                         |                     |                                   |       |                 |                           |                        |                              |
| 4         | L2      | 365                      | 0.0  | 365                       | 0.0              | 0.624               | 34.1                    | LOS C               | 15.5                              | 108.5 | 0.88            | 0.96                      | 1.15                   | 28.8                         |
| 6         | R2      | 265                      | 0.0  | 265                       | 0.0              | 0.624               | 52.6                    | LOS D               | 15.5                              | 108.5 | 0.95            | 0.85                      | 1.00                   | 22.3                         |
| Appro     | oach    | 631                      | 0.0  | 631                       | 0.0              | 0.624               | 41.9                    | LOS D               | 15.5                              | 108.5 | 0.91            | 0.91                      | 1.08                   | 25.7                         |
| North     | ı: East | Boundary                 | Road |                           |                  |                     |                         |                     |                                   |       |                 |                           |                        |                              |
| 7         | L2      | 282                      | 0.0  | 282                       | 0.0              | 0.648               | 24.8                    | LOS C               | 22.3                              | 157.6 | 0.62            | 0.75                      | 0.95                   | 41.2                         |
| 8         | T1      | 1517                     |      | 1514                      | 2.2              | 0.648               | 13.2                    | LOS B               | 22.3                              | 157.6 | 0.45            | 0.45                      | 0.54                   | 34.8                         |
| Appro     | oach    | 1799                     | 1.9  | 1796 <sup>N</sup>         | <sup>1</sup> 1.9 | 0.648               | 15.0                    | LOS B               | 22.3                              | 157.6 | 0.48            | 0.50                      | 0.60                   | 36.6                         |
| West      | : GEOI  | RGE ST                   |      |                           |                  |                     |                         |                     |                                   |       |                 |                           |                        |                              |
| 10        | L2      | 4                        | 0.0  | 4                         | 0.0              | 0.049               | 72.1                    | LOS E               | 0.3                               | 1.9   | 0.98            | 0.64                      | 0.98                   | 18.0                         |
| Appro     | oach    | 4                        | 0.0  | 4                         | 0.0              | 0.049               | 72.1                    | LOS E               | 0.3                               | 1.9   | 0.98            | 0.64                      | 0.98                   | 18.0                         |
| All Ve    | ehicles | 4189                     | 0.8  | 4187 <sup>N</sup>         | 0.8              | 0.648               | 20.9                    | LOSC                | 24.9                              | 174.3 | 0.58            | 0.57                      | 0.68                   | 29.4                         |

♦♦ Network: N101 [Master

Model]

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

| Move      | Movement Performance - Pedestrians |                         |                         |       |                                   |                           |                 |                        |  |  |  |  |  |  |
|-----------|------------------------------------|-------------------------|-------------------------|-------|-----------------------------------|---------------------------|-----------------|------------------------|--|--|--|--|--|--|
| Mov<br>ID | Description                        | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Back<br>Pedestrian<br>ped | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate |  |  |  |  |  |  |
| P1        | South Full Crossing                | 53                      | 59.3                    | LOS E | 0.2                               | 0.2                       | 0.96            | 0.96                   |  |  |  |  |  |  |
| P2        | East Full Crossing                 | 53                      | 22.3                    | LOS C | 0.1                               | 0.1                       | 0.59            | 0.59                   |  |  |  |  |  |  |
| P4        | West Full Crossing                 | 53                      | 12.5                    | LOS B | 0.1                               | 0.1                       | 0.44            | 0.44                   |  |  |  |  |  |  |
| All Pe    | All Pedestrians                    |                         | 31.4                    | LOS D |                                   |                           | 0.66            | 0.66                   |  |  |  |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Organisation: GTA CONSULTANTS | Processed: Thursday, 20 September 2018 5:24:55 PM

Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180920 SIDRA Network - Future PM - Post Dev With Growth - TfV&VR response.sip8

Site: 104av [4a (east). EAST BOUNDARY ROAD / SOUTH **DRIVE**1

♦♦ Network: N101 [Master Model]

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane.

Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Network User-Given Cycle Time)

| Movement Performance - Vehicles |                                                         |          |      |                     |                  |              |                  |                     |                |       |                 |                   |                |             |
|---------------------------------|---------------------------------------------------------|----------|------|---------------------|------------------|--------------|------------------|---------------------|----------------|-------|-----------------|-------------------|----------------|-------------|
| Mov<br>ID                       | Turn                                                    | Demand I | lows | Arrival             | Flows            | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Ba<br>Quei | ue    | Prop.<br>Queued | Effective<br>Stop | Aver. A<br>No. | Averag<br>e |
|                                 |                                                         | Total    |      | Total               | HV               |              |                  |                     | Vehicles E     |       |                 | Rate              | Cycles S       |             |
| 0                               | veh/h % veh/h % v/c sec veh m South: EAST BOUNDARY ROAD |          |      |                     |                  |              |                  |                     |                |       | km/h            |                   |                |             |
|                                 |                                                         |          |      | -                   |                  |              |                  |                     |                |       |                 |                   |                |             |
| 2                               | T1                                                      | 1458     | 0.0  | 1458                | 0.0              | 0.426        | 9.9              | LOS A               | 15.0           | 105.3 | 0.48            | 0.43              | 0.48           | 40.2        |
| 3                               | R2                                                      | 321      | 0.3  | 321                 | 0.3              | 0.633        | 53.8             | LOS D               | 15.6           | 109.4 | 0.96            | 0.83              | 0.96           | 17.9        |
| 3u                              | U                                                       | 163      | 2.6  | 163                 | 2.6              | 0.633        | 56.3             | LOS E               | 12.4           | 88.3  | 0.96            | 0.83              | 0.96           | 15.8        |
| Appr                            | oach                                                    | 1942     | 0.3  | 1942                | 0.3              | 0.633        | 21.0             | LOS C               | 15.6           | 109.4 | 0.60            | 0.53              | 0.60           | 27.3        |
| East                            | : NORT                                                  | H DRIVE  |      |                     |                  |              |                  |                     |                |       |                 |                   |                |             |
| 4                               | L2                                                      | 368      | 0.0  | 368                 | 0.0              | 0.528        | 15.3             | LOS B               | 11.7           | 82.2  | 0.60            | 0.76              | 0.60           | 40.3        |
| 6                               | R2                                                      | 282      | 0.0  | 282                 | 0.0              | 0.641        | 64.8             | LOS E               | 9.7            | 67.7  | 1.00            | 0.82              | 1.02           | 19.6        |
| Appr                            | oach                                                    | 651      | 0.0  | 651                 | 0.0              | 0.641        | 36.7             | LOS D               | 11.7           | 82.2  | 0.77            | 0.79              | 0.78           | 27.6        |
| North                           | n: EAS                                                  | T BOUNDA | RY R | DAC                 |                  |              |                  |                     |                |       |                 |                   |                |             |
| 7                               | L2                                                      | 234      | 0.0  | 233                 | 0.0              | 0.165        | 7.3              | LOS A               | 1.7            | 11.7  | 0.14            | 0.59              | 0.14           | 49.8        |
| 8                               | T1                                                      | 1649     | 2.0  | 1647                | 2.0              | 0.641        | 9.8              | LOS A               | 15.5           | 110.6 | 0.36            | 0.32              | 0.36           | 29.7        |
| 9u                              | U                                                       | 21       | 0.0  | 21                  | 0.0              | 0.344        | 79.7             | LOS E               | 1.4            | 10.1  | 1.00            | 0.71              | 1.00           | 6.5         |
| Appr                            | oach                                                    | 1904     | 1.8  | 1902 <sup>N</sup>   | <sup>1</sup> 1.8 | 0.641        | 10.3             | LOS B               | 15.5           | 110.6 | 0.34            | 0.36              | 0.34           | 33.7        |
| All Ve                          | ehicles                                                 | 4497     | 0.9  | <mark>4494</mark> N | 0.9              | 0.641        | 18.8             | LOS B               | 15.6           | 110.6 | 0.51            | 0.49              | 0.52           | 28.9        |

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

| Movement Performance - Pedestrians |                     |                         |                         |       |                                   |                           |                 |                        |  |  |  |
|------------------------------------|---------------------|-------------------------|-------------------------|-------|-----------------------------------|---------------------------|-----------------|------------------------|--|--|--|
| Mov<br>ID                          | Description         | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Back<br>Pedestrian<br>ped | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate |  |  |  |
| P1                                 | South Full Crossing | 53                      | 59.3                    | LOS E | 0.2                               | 0.2                       | 0.96            | 0.96                   |  |  |  |
| P2                                 | East Full Crossing  | 53                      | 59.3                    | LOS E | 0.2                               | 0.2                       | 0.96            | 0.96                   |  |  |  |
| All Pe                             | destrians           | 105                     | 59.3                    | LOS E |                                   |                           | 0.96            | 0.96                   |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Organisation: GTA CONSULTANTS | Processed: Thursday, 20 September 2018 5:24:55 PM
Project: P:\V13600-13699\V136080 East Village - Integrated Transp\Modelling\SIDRA\180920-Updates\180920 SIDRA Network - Future PM -Post Dev With Growth - TfV&VR response.sip8

Site: 107v [7. NORTH ROAD / CROSBIE ROAD / COBAR STREET - Signals]

NORTH ROAD / CROSBIE ROAD / COBAR STREET

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 130 seconds (Site User-Given Cycle Time)

| Movement Performance - Vehicles |         |          |             |              |     |                     |                         |                     |                                    |       |                 |                           |                        |                              |
|---------------------------------|---------|----------|-------------|--------------|-----|---------------------|-------------------------|---------------------|------------------------------------|-------|-----------------|---------------------------|------------------------|------------------------------|
| Mov<br>ID                       | Turn    |          | Flows<br>HV |              |     | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Que<br>Vehicles [<br>veh | ue    | Prop.<br>Queued | Effective<br>Stop<br>Rate | Aver.<br>No.<br>Cycles | Averag<br>e<br>Speed<br>km/h |
| South                           | h: COE  | BAR STRE |             | V C I I/ I I | 70  | V/O                 |                         |                     | VOI1                               |       |                 |                           |                        | IXIII/II                     |
| 1                               | L2      | 172      | 0.0         | 172          | 0.0 | 0.425               | 44.0                    | LOS D               | 8.9                                | 62.2  | 0.89            | 0.78                      | 0.89                   | 20.5                         |
| 2                               | T1      | 77       | 0.0         | 77           | 0.0 | 0.889               | 73.0                    | LOS E               | 16.5                               | 116.3 | 1.00            | 1.03                      | 1.32                   | 16.4                         |
| 3                               | R2      | 155      | 0.7         | 155          | 0.7 | 0.889               | 75.8                    | LOS E               | 16.5                               | 116.3 | 1.00            | 1.03                      | 1.32                   | 16.4                         |
| Appr                            | oach    | 403      | 0.3         | 403          | 0.3 | 0.889               | 61.7                    | LOS E               | 16.5                               | 116.3 | 0.95            | 0.92                      | 1.13                   | 17.9                         |
| East:                           | NORT    | H ROAD   |             |              |     |                     |                         |                     |                                    |       |                 |                           |                        |                              |
| 4                               | L2      | 87       | 2.4         | 87           | 2.4 | 0.063               | 8.6                     | LOS A               | 1.1                                | 8.1   | 0.27            | 0.64                      | 0.27                   | 45.3                         |
| 5                               | T1      | 1754     | 3.8         | 1754         | 3.8 | 0.908               | 35.8                    | LOS D               | 55.0                               | 397.6 | 0.88            | 0.91                      | 1.00                   | 32.2                         |
| 6                               | R2      | 64       | 0.0         | 64           | 0.0 | 0.409               | 68.7                    | LOS E               | 4.0                                | 28.1  | 0.99            | 0.76                      | 0.99                   | 22.6                         |
| Appr                            | oach    | 1905     | 3.6         | 1905         | 3.6 | 0.908               | 35.7                    | LOS D               | 55.0                               | 397.6 | 0.85            | 0.90                      | 0.97                   | 32.5                         |
| North                           | n: CRO  | SBIE ROA | ۸D          |              |     |                     |                         |                     |                                    |       |                 |                           |                        |                              |
| 7                               | L2      | 119      | 0.0         | 119          | 0.0 | 0.757               | 73.5                    | LOS E               | 7.9                                | 55.6  | 1.00            | 0.86                      | 1.17                   | 18.0                         |
| Appr                            | oach    | 119      | 0.0         | 119          | 0.0 | 0.757               | 73.5                    | LOS E               | 7.9                                | 55.6  | 1.00            | 0.86                      | 1.17                   | 18.0                         |
| West                            | : NOR   | TH ROAD  |             |              |     |                     |                         |                     |                                    |       |                 |                           |                        |                              |
| 10                              | L2      | 43       | 0.0         | 43           | 0.0 | 0.736               | 23.2                    | LOS C               | 34.4                               | 244.8 | 0.74            | 0.74                      | 0.74                   | 22.1                         |
| 11                              | T1      | 1763     | 2.0         | 1763         | 2.0 | 0.736               | 17.9                    | LOS B               | 34.4                               | 244.8 | 0.74            | 0.74                      | 0.74                   | 22.2                         |
| 12                              | R2      | 177      | 0.6         | 177          | 0.6 | 0.888               | 80.3                    | LOS F               | 12.7                               | 89.2  | 1.00            | 0.94                      | 1.36                   | 17.9                         |
| Appr                            | oach    | 1983     | 1.9         | 1983         | 1.9 | 0.888               | 23.6                    | LOS C               | 34.4                               | 244.8 | 0.76            | 0.76                      | 0.80                   | 20.8                         |
| All Ve                          | ehicles | 4411     | 2.4         | 4411         | 2.4 | 0.908               | 33.6                    | LOSC                | 55.0                               | 397.6 | 0.83            | 0.83                      | 0.91                   | 26.6                         |

♦♦ Network: N101 [Master

Model]

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Movement Performance - Pedestrians |                     |                         |                         |       |                                  |                             |                 |                        |  |  |  |
|------------------------------------|---------------------|-------------------------|-------------------------|-------|----------------------------------|-----------------------------|-----------------|------------------------|--|--|--|
| Mov<br>ID                          | Description         | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Bac<br>Pedestrian<br>ped | k of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate |  |  |  |
| P1                                 | South Full Crossing | 53                      | 12.5                    | LOS B | 0.1                              | 0.1                         | 0.44            | 0.44                   |  |  |  |
| P3                                 | North Full Crossing | 53                      | 11.2                    | LOS B | 0.1                              | 0.1                         | 0.42            | 0.42                   |  |  |  |
| P4                                 | West Full Crossing  | 53                      | 59.3                    | LOS E | 0.2                              | 0.2                         | 0.96            | 0.96                   |  |  |  |
| All Pe                             | destrians           | 158                     | 27.7                    | LOS C |                                  |                             | 0.60            | 0.60                   |  |  |  |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

 $Project: P: V13600-13699 \ V136080 \ East \ Village - Integrated \ Transp\\ Modelling \ SIDRA\\ V180920-Updates\\ V180920 \ SIDRA \ Network - Future \ PM-Post \ Dev \ With \ Growth - TfV\&VR \ response.sip8$ 

Melbourne

A Level 25, 55 Collins Street PO Box 24055 MELBOURNE VIC 3000 P +613 9851 9600

Sydney

A Level 16, 207 Kent Street SYDNEY NSW 2000 P +612 8448 1800 Brisbane

A Ground Floor, 283 Elizabe BRISBANE QLD 4000 GPO Box 115 BRISBANE QLD 4001 2 +617 3113 5000 E brisbane@ata.com.au

Canberra

A Level 4, 15 Moore Street CANBERRA ACT 2600 P +612 6243 4826 canberra@gta.com.au delaide

Suite 4, Level 1, 136 The Parade PO Box 3421 NORWOOD SA 5067 +618 8334 3600 adelaide@gta.com.au

Perth

A Level 2, 5 Mill Street
PERTH WA 6000
PO Box 7025, Cloisters Square
PERTH WA 6850
P +618 6169 1000
E perth@gta.com.au