

Officer Precinct Structure Plan

Future Traffic Estimates and Road Infrastructure Requirements

For: Cardinia Shire Council

AUGUST 22, 2011

Project Name:	Officer Precinct Structure Plan
Project Number:	3004608
Report for:	Cardinia Shire Council

PREPARATION, REVIEW AND AUTHORISATION

Revision #	Date	Prepared by	Reviewed by	Approved for Issue by
1	03/06/11	D. Suppiah	D. Hitchins	D. Hitchins
2	22/08/11	D. Suppiah	D. Hitchins	D. Hitchins

ISSUE REGISTER

Distribution List	Date Issued	Number of Copies
Cardinia Shire Council (Hilary Rutledge):		
SMEC staff:		
Associates:		
Melbourne Office Library (SMEC office location):		
SMEC Project File:		

SMEC COMPANY DETAILS

SMEC Australia (Pty) Ltd

Level 2, 71 Queens Road, Melbourne, VIC, 3004

Tel: (03) 9514 1500

Fax: (03) 9514 1502

Email: derrick.hitchins@smec.com

www.smec.com

The information within this document is and shall remain the property of SMEC Australia (Pty) Ltd

TABLE OF CONTENTS

1	INTRODU	CTION	1
	1.1 Over	view	1
	1.2 Office	er Precinct Structure Plan Area	1
	1.3 Futur	e Development of the Precinct	4
	1.4 Traffi	c Modelling Towards the Determination of a Future Road Network	6
2	NETWOR	K TRAFFIC MODELLING	7
	2.1 Strate	egic Modelling using MITM	7
	2.1.1	Geographical Extent	8
	2.1.2	Model Performance	8
	2.1.3 l	JItimate Road Layout	9
	2.1.4 I	nterim Road Layout	9
	2.2 Micro	-simulation Model	10
	2.2.1	Model Choice	10
	2.2.2	Геmporal Scope	10
	2.2.3	Model Inputs and Assumptions	11
	2.2.4 l	Jitimate Micro-simulation Model Network	12
3	FUTURE F	ROAD NETWORK AND HIERARCHY	13
	3.1 Capa	city to Upgrade Existing Network	13
	3.2 Road	Hierarchy Assessment	14
	3.3 Netw	ork Improvements – Regional and Local	17
	3.3.1 E	Beaconsfield Interchange	17
	3.3.2	Cardinia Creek Crossings	17
	3.3.3	Cardinia Road Interchange	17
	3.3.4 F	Rix Road/ Bridge Road Delivery	18
4	SIDRA AN	IALYSIS	19
	4.1 Over	view	19
	4.2 Pede	strian and Cyclist Movements	20
5	DETAILE	INTERSECTION ANALYSIS	22
	5.1 O'Ne	ill Road/ Old Princes Highway	22
	5.1.1 I	nterim Scenario	22
	5.1.2 l	JItimate Scenario	22
	5.2 Old F	rinces Highway/ Princes Highway	23
	5.2.1 I	nterim Scenario	23
	5.2.2 l	JItimate Scenario	24
	5.3 White	eside Road/ Princes Highway	25

5	5.3.1	Interim Scenario	25
5	.3.2	Ultimate Scenario	26
5.4	Tim	bertop Boulevard/ Princes Highway	27
5	5.4.1	Interim Scenario	27
5	.4.2	Ultimate Scenario	27
5.5	Bay	view Road/ Princes Highway	28
5	5.5.1	Interim Scenario	28
5	.5.2	Ultimate Scenario	28
5.6	Tive	endale Road/ Princes Highway	29
5	5.6.1	Interim Scenario	29
5	.6.2	Ultimate Scenario	30
5.7	Sta	rling Road/ Princes Highway	31
5	5.7.1	Interim Scenario	31
5	.7.2	Ultimate Scenario	31
5.8	McN	Mullen Road/ Princes Highway	32
5	.8.1	Interim Scenario	32
5	.8.2	Ultimate Scenario	32
5.9	Bay	view Road/ Gumleaf Lane	33
5.10) Bay	view Road/ Rix Road	34
5	.10.1	Interim Scenario	34
5	.10.2	Ultimate Scenario	34
5.11	Offi	cer South Road/ Proposed Road	35
5	.11.1	Interim Scenario	35
5	.11.2	Ultimate Scenario	35
5.12	2 Offi	cer South Road/ Princes Freeway	36
5	.12.1	Interim Scenario	36
5	.12.2	Ultimate Scenario	36
5.13	3 Sun	mmary	37

APPENDIX 1 – MITM PLOTS

APPENDIX 2 – MICRO-SIMULATION VOLUME PLOTS AND TABLES

APPENDIX 3 – ROAD CROSS SECTIONS

APPENDIX 4 – SIDRA MOVEMENT DATA

1 INTRODUCTION

1.1 Overview

Cardinia Shire Council has prepared a Precinct Structure Plan (PSP) and associated Development Contributions Plan (DCP) for the Officer Precinct (the Precinct). SMEC Australia Pty Ltd has been engaged to assist with this process. SMEC's services include traffic modelling, refinement of the road hierarchy, preparation of functional layout plans and civil estimates for road and intersection construction for the purposes of the Development Contributions Plan (DCP).

1.2 Officer Precinct Structure Plan Area

The Precinct is located north of the Princes Freeway (Pakenham Bypass) between the existing Beaconsfield area and Gum Scrub Creek, as illustrated in Figure 1.

The Casey Cardinia Growth Area Framework Plan (DSE 2004) designates the Precinct for future residential development, identifying a new Major Activity Centre (MAC) adjacent to the existing Officer Railway Station. The Growth Area Framework Plan is implemented through the PSP.

The existing regional road network influences the development of the Precinct, with the Princes Highway running through the heart of the area and the Princes Freeway along its southern boundary. A number of new roads and road upgrades are planned to improve regional connectivity, including:

- Construction of Thompsons Road, Glasscocks Road/ Grices Road and associated Cardinia Creek crossings;
- Delivery of Officer South Road, Cardinia Road (south) and Soldiers Road to an urban arterial standard:
- Upgrade of the Beaconsfield freeway interchange (Princes Highway/ Princes Freeway), including construction of eastbound ramps; and
- Delivery of the Officer South Road freeway interchange, including both east and westbound ramps.

The staging of delivery of the regional road network upgrades has a direct relationship to the size and staging of the intersections and roads, which are outlined in this report.

The development of the Precinct and its road network is also influenced by the existing subdivision pattern and the presence of a number of existing road reserves (refer Figure 2). The abutting small lot subdivision affects the capacity for road upgrades, constraining opportunities for widening.

Figure 1 – Regional Context of Officer Precinct

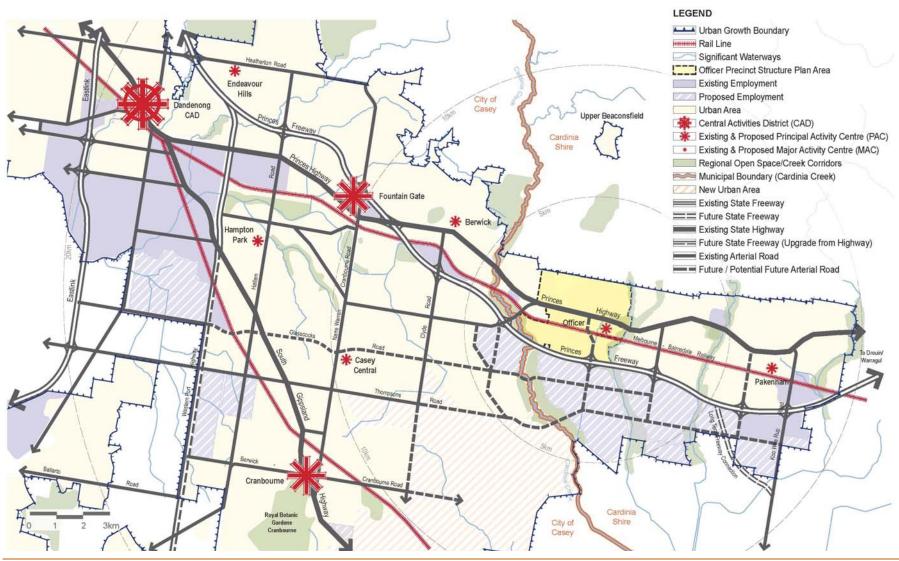
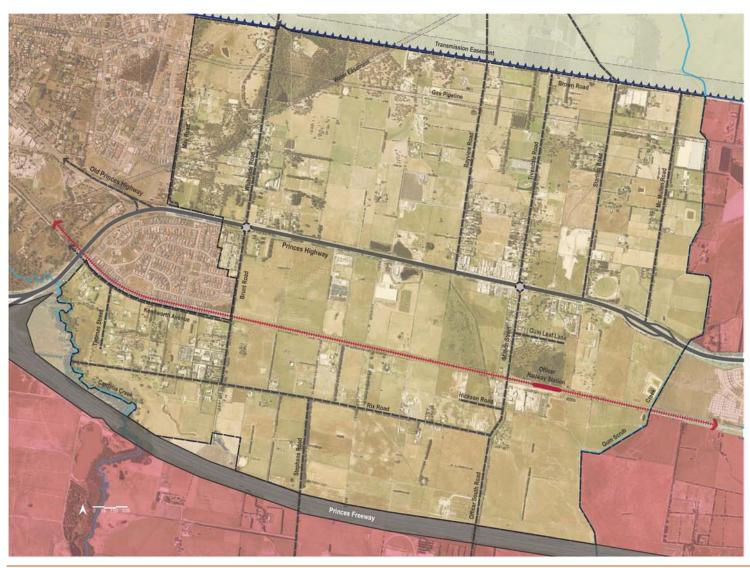



Figure 2 – Officer Precinct Structure Plan Area

1.3 Future Development of the Precinct

Substantial residential growth is planned for Officer delivering approximately 10,000 dwellings to the area, and increasing the population from 600 to 30,000 residents.

Key land use outcomes (refer Figure 3) include:

- Development of the Officer MAC adjacent to the Officer Railway Station, which is planned to accommodate up to 100,000 square meters of retail and commercial floor space.
- Establishment of over 600 dwellings in the core business and peripheral commercial areas of the Officer MAC.
- Conversion of existing businesses along the Princes Highway to showrooms and bulky goods type uses.
- Conversion of Station Street to a commercial and high density residential area.
- Development of a Neighbourhood Activity Centre (NAC) on the corner of Whiteside Road and the Princes Highway, providing 7,000 to 10,000 square meters of retail and commercial floor space.
- Development of approximately 35 hectares of land for new public schools.
- Establishment of district sports reserves east of McMullen Road on the Princes Highway, and east of Brunt Road abutting the rail line.
- Delivery of the North South Arterial connecting Officer South Road from Rix Road to Bayview Road.

To cater for this growth, substantive planning has been undertaken for the area, including traffic modelling of forecast future volumes, to determine the road network requirements.

Figure 3 - Officer Precinct Future Urban Structure Plan

1.4 Traffic Modelling Towards the Determination of a Future Road Network

Cardinia Shire Council has engaged SMEC to develop a transport model to better understand future travel patterns within Officer. The Department of Transport (DoT) has developed the Melbourne Integrated Transport Model (MITM) which is a strategic model that covers the entire metropolitan Melbourne area. The MITM modelling for Officer was produced from a process involving DoT, VicRoads, the Growth Areas Authority and Council. The version agreed as the basis for the Officer PSP is dated 08 December 2010.

This MITM model has been refined in a VISSIM micro-simulation model to improve the accuracy of travel patterns within Officer. The ultimate development scenario is considered in this analysis and represents the year 2031.

Tasks undertaken by SMEC include:

- Conversion of the MITM from a strategic model into a local network model to enable the design of intersections and the modification of the road hierarchy to create a functional road network and reasonable ultimate intersection designs.
- Subsequent re-run of the local traffic model to enable review/ adjustment of the local road hierarchy if substantial change is needed to generate reasonable intersection configurations.
- SIDRA analysis of all intersections, including adequate provision for turning movements.
- Advice on road and intersection staging and its implications for the DCP projects, including:
 - o Interim and ultimate configurations and triggers for delivery;
 - Interim and ultimate concepts for arterial roads and boulevard connector streets, most intersections; and
 - The grade separated crossing of the railway line at Brunt Road and the new North South Arterial.

2 NETWORK TRAFFIC MODELLING

2.1 Strategic Modelling using MITM

The Melbourne Integrated Transport Model (MITM) is the strategic model used by Cardinia Shire for the purposes of the Officer PSP. Although MITM is developed by the Department of Transport (DoT), SMEC has refined the strategic model within the PSP area. This involved developing a finer zone system, modifying network link characteristics and reviewing travel patterns.

The current MITM model represents a 2 Hour AM peak period. In terms of model performance, consideration of the time period is an important factor as different travel patterns are observed throughout the day. For example, an AM peak model may capture home-to-work trips, however shopping trips may occur outside this period.

As a starting point for refining MITM within the Officer area, the road network and land use assumptions from an earlier Nigel Ashton model were extracted and applied to MITM. In terms of comparison, the original MITM had 2272 zones while the latest MITM provided by the DoT has 2806 zones which provides an insight into the level of disaggregation that has occurred in Officer and other growth areas around Melbourne. This level of disaggregation within the growth areas is due to the refinement by VicRoads.

Prior to commencing the modelling works, the correspondence between Council, VicRoads, Department of Transport (DoT), Growth Areas Authority (GAA) and GTA Consultants (on behalf of GAA) was reviewed. This formed the basis for the strategic modelling critique. It is understood that the strategic model for this area was been refined to better reflect the intended long term development outcomes being sought for Officer. The review of correspondence assisted in verifying that these refinements have been adopted within the latest MITM model.

SMEC liaised with both GAA and DoT in regards to obtaining the strategic model for the Officer area. Prior to reviewing the strategic model internally, the calibration performance of the model developed by AECOM (on behalf of DoT) was provided. The calibration report indicates that the base year model of the area has been calibrated to a set of screenlines based on a matrix estimation process.

Matrix estimation is the process by which current year modelled volumes are adjusted based on observed traffic counts. It is an iterative process whereby the adjusted trip matrices are assigned to a road network in an iterative manner until convergence is achieved. The modelled numbers are then reviewed and the trip matrix is adjusted accordingly. This process is repeated until the adjusted trip matrix eventually produces a set of modelled volumes which closely resemble the survey counts.

Although it may be difficult to calibrate the strategic model in an outer metropolitan area, the use of matrix estimation to calibrate a base year model may reduce the level of confidence in the strategic model in producing travel patterns.

The original MITM developed within DoT represents the Officer coarsely due to the fact that assumptions in certain growth areas of the model have changed drastically as a result of recent planning works.

The strategic model was reviewed for anomalies using a series of *select link* analyses. Once the MITM was satisfactory, trip patterns in the form of trip matrices were extracted to be used as an input for the micro-simulation model.

2.1.1 Geographical Extent

The geographical scope of the model has been determined by the extent of the original Officer PSP Future Urban Structure plan (refer Figure 3). This includes the improved Beaconsfield interchange in the west, the future Officer South Road interchange and the existing Cardinia Road interchange in the east. The Princes Highway has also been updated to reflect the future intersection layouts along the route and the intersecting roads.

In addition, the intersection of O'Neill Road and Old Princes Highway was included due to its close proximity to the recently upgraded Princes Highway intersection. Figure 4 provides a layout of the overall model extent.

Figure 4 - MITM Model Coverage

Note that the geographical extent is limited to the model cut out that was produced by the DoT from MITM. If an origin-destination (OD) matrix traffic demand was taken from MITM directly then the scope of the model would be much greater and include all of the many other existing roads beyond the Precinct.

2.1.2 Model Performance

Unlike SIDRA or micro-simulation models, the MITM strategic model performs at a regional scale. Therefore, this model will highlight how the Cardinia Shire integrates with the remaining metropolitan Melbourne area. This includes determining the number of trips generated, distribution of trips, mode of travel and the route choice on the network.

Strategic modelling requires that the model first be deemed satisfactory based on a calibration and validation process. This process involves developing a current year (or base year) model and making comparisons alongside observed travel patterns. This may involve gathering counts and actual traffic information from various sources. It is this calibrated model that is used for testing future year scenarios.

The strategic model is expected to be robust in performance as it will be used as a source of input for many other decisions and therefore, credibility in modelling processes and outputs is essential.

The strategic model post matrix estimation shows an R-Squared statistic of 0.96 which is well above the recommended model calibration and validation criteria outlined by VicRoads. This is expected as the estimation process modifies trip matrices to more accurately align with the observed volumes to improve the R-Squared statistic.

2.1.3 Ultimate Road Layout

The ultimate model represents the year 2031 within the extent of MITM. The strategic model (MITM cutout) for Officer has been developed using a combination of the original Nigel Ashton model representing the Precinct and the more recent MITM. Although the Nigel Ashton model represents a daily time period, the network from the Nigel Ashton model was incorporated into the latest version of MITM.

The calibration and validation of a model for the Officer PSP is a difficult task considering that growth areas on the fringes of the metropolitan area are difficult to forecast in a strategic model. This is due to the variability in traffic volumes and travel patterns, which are influenced by:

- the level of trip generation within growth areas (dependent upon the rate and type of development); and
- the staging of infrastructure projects.

To simplify the calibration and validation process, a matrix estimation process has been undertaken in order to begin the future year model testing of MITM. The output of the matrix estimation process indicated that along with additional demand within the Precinct, there are minor anomalies in the model. These anomalies have been investigated and taken into account when reviewing the outputs of the micro-simulation model.

The main anomaly observed within the model is the level of traffic utilising the O'Neil Road connection to the north-west of Officer. It appears that this road link is operating well above capacity and this has been noted by DoT, GAA, VicRoads, Council and the consultants along with other minor anomalies.

2.1.4 Interim Road Layout

The interim model was developed using the ultimate scenario MITM and represents the year 2021. A number of future road network changes were identified to be excluded in the interim micro-simulation model. These changes accord with the most realistic expectation of an interim future network and form the basis of the DCP costings.

The following changes were made to the ultimate road network scenario to develop the interim scenario:

- All trip matrices were scaled to 80% of their original value, with the exception of the Officer Employment Precinct which was scaled to 15%.
- Removal of the Thompsons Road and Grices Road bridge crossings (thereby making the Princes Highway and Princes Freeway the only east-west access routes between Casey and Cardinia within the Urban Growth Boundary).
- Conversion of both the Beaconsfield and Cardinia Road interchanges with the Princes Freeway from signalised intersections to roundabouts.

- Removal of the east-facing ramps at both the Officer South Road and Beaconsfield interchanges.
- Maintaining the existing two-lane, two-way bridge over the Princes Freeway at Cardinia Road.
- Removal of the North South Arterial between Rix Road and the Gum Leaf Lane extension, utilising Station Street as the main north-south route.
- Removal of the Stephens Road freeway overpass.

2.2 Micro-simulation Model

2.2.1 Model Choice

A VISSIM micro-simulation model was developed for the Officer PSP. Micro-simulation modelling allows traffic patterns and vehicle behaviour to be modelled more accurately at a local road level. Although the current strategic model (MITM) is able to provide information about the travel demand on roads within the Precinct, the accuracy of the forecasted demands is greatly increased using micro-simulation. The inclusion of specific network details such as intersection layout and local traffic calming measures in the model allow for a more accurate determination of the required future intersection treatments, cross-sections and road layouts.

The micro-simulation model can also be used to visually assess the performance and in particular, design features such as lane lengths, number of lanes and signal operation.

VISSIM micro-simulation modelling software represents the behaviour of individual vehicles/ drivers and the interactions between them. These models are flexible and sophisticated tools that combine a wide range of behavioural parameters, involving an element of randomness, and can be adapted to model most traffic conditions to a fine degree of detail.

2.2.2 Temporal Scope

The micro-simulation model is based on the road network and traffic flows extracted from the MITM 2031 model. The model comprises two one-hour peak models that represent the AM and PM peak periods for the year 2031.

Note that it is the preference of the SMEC project team to build and calibrate a 2010 model before building the 2031 model; however this task was not part of the consultant's brief.

The normal process of building a micro-simulation model has been followed and is summarised as follows:

- Define the standard road types and characteristics;
- Code the road components into the model based on plans produced by SMEC's design team;
- Code the signal operations;
- Define the vehicle parameters;
- Include public transport route and timetable information;
- Include public transport facilities and signal priorities as provided by DoT; and
- Input static traffic demand.

Once operational, the model is reviewed and the traffic signals are adjusted where possible to reach an optimal performance.

2.2.3 Model Inputs and Assumptions

The following outlines the various inputs and assumptions required to build the ultimate year 2031 micro-simulation model. The risks and errors associated with each assumption are stated along with a preferred alternative where possible.

Road Layout

The road layout is based entirely on the design drawings developed by SMEC. The road layout accurately represents the design and should not require any assumptions.

Road Types

Road types are used by VISSIM to assign characteristics to segments of a road based on a grouping by road classification and speed. Typical input characteristics include speed, capacity, lane width, shoulder width, and other technical traffic modelling inputs.

These characteristics are usually defined as part of the base model calibration process. Since there will be no base model to calibrate, the default VISSIM values are used where inputs are not known. Known inputs include speed and lane width. For the purpose of the model, all roads are to have a lane width of 3.5m. Speeds (posted) range from 50km/h to 90km/h, and as per the existing conditions. Note that posted speeds are defined as design speed minus 10km/h.

Vehicle Types

Two vehicle types are to be used in the micro-simulation model as per the level of detail able to be extracted from MITM, i.e. 'Cars' and 'HCVs'.

The vehicle input parameters have been applied based on the default parameters supplied in the VISSIM Modelling Manual. The 'car' and 'HCV' vehicle parameters are as defined in the manual and apply to the car and truck vehicle types respectively.

Signals

Signal phasing and timing is a key input to the model. SIDRA analyses have been conducted for a number of intersections within the Officer PSP for the interim (2021) and ultimate (2031) modelled years. Part of the output from these models is optimised signal phasing.

Where signal plans have not been developed, signal phasing has been determined based on the settings at intersections in the nearby vicinity.

Assumptions made in regards to the signal phasing are:

- Cycle time = 120 seconds (or 60 seconds for minor intersections with double cycling);
- Yellow time = 4 seconds; and
- Red time = 2 seconds.

Traffic Demand

It is the preferred methodology of the SMEC project team to build micro-simulation models based on origin-destination (OD) matrices. This method allows for the input of traffic at the 'edges' of the model, and once loaded on to the network each vehicle can take whichever is the preferred route. This requires OD matrices output from the MITM model in a cordon defined by the Precinct. Traffic demand is then dynamically assigned to the model until a point of convergence is reached.

Public Transport

The public transport assumptions have been derived from the strategic model.

As part the modelling exercise no information was provided that details bus priority at the signalised intersections. As a result, no priority has been given to approaching buses at the signalised intersections in the micro-simulation model.

2.2.4 Ultimate Micro-simulation Model Network

VicRoads have suggested a number of changes to the various intersections to accord with their expectations of the future traffic conditions and their minimum desirable intersection requirements for the future, i.e. double right turn lanes, etc. Although earlier versions of the AM modelling did not include these features, VicRoads have advised they require several of the Princes Highway intersections to include additional turning lanes and additional stand-up lanes to accord with the long term intersection requirements of the Princes Highway corridor. Desirable features include:

- 6 lane cross section;
- Double right turn lanes;
- Give way/siganlised left turn pockets;
- Continuous bicycle lanes; and
- Pedestrian crossing facilities across all approaches.

3 FUTURE ROAD NETWORK AND HIERARCHY

The outputs of the traffic modelling have been applied to the Future Urban Structure Plan. Through an iterative process, the road hierarchy proposed in the final plan (refer Figure 5) illustrates a network that will appropriately cater for the traffic movements generated by the Precinct at ultimate development.

3.1 Capacity to Upgrade Existing Network

The road reserve widths, existing infrastructure and native vegetation to be retained along existing roads (refer *Officer Native Vegetation Precinct Plan, June 2011*) affect the road hierarchy and cross sections that apply within the Precinct.

The cross sections (refer Appendix 3) generally accord with those set out in the GAA PSP Note for roads, and the Cardinia Shire standard drawings.

The potential to upgrade the following existing roads is affected by a number of constraints, including:

Princes Highway:

- is currently a four-lane two-way divided road connecting Beaconsfield to Berwick and further to the east
- o road reserve varies from 60 to 100 meters in width
- o carriageway varies in alignment within the road reserve and in several cases, sits too close to the property boundary to allow for service roads.

Station Street:

- has an existing 10 meter wide pavement with kerb and channel, overhead power lines and other infrastructure
- o road reserve is approximately 20 meters wide
- is lined with existing small lot subdivisions, restricting the scope for road widening.

• Gum Leaf Lane:

- o comprises an existing 18 meter wide road reserve
- has small, shallow depth lots on both sides, limiting the scope for road widening.

Officer South Road:

- o comprises an existing 20 meter wide road reserve
- has a freeway underpass already constructed, constraining the freeway interchange design.

Rix Road (east of Brunt Road):

- o road reserve is approximately 20 meters wide
- has substantial native vegetation on the north side that is to be retained in the Officer Native Vegetation Precinct Plan, June 2011
- o has overhead power lines located on the north side.

Rix Road (immediately west of Brunt Road):

- o road reserve is approximately 20 meters wide
- has substantial native vegetation on the south side that is to be retained in the Officer Native Vegetation Precinct Plan, June 2011.

Stephens Road:

- o road reserve is approximately 20 meters wide.
- Kenilworth Avenue:
 - road reserve is up to 20 meters wide

- o has overhead power lines on the south side
- has substantial native vegetation on the north side that is to be retained in the Officer Native Vegetation Precinct Plan, June 2011
- o abuts the rail reserve to the north, limiting the scope for road widening
- is lined with existing small lot subdivisions along the southern edge of the street.

• Thomas Street:

- o road reserve is up to 20 meters wide
- has Cardinia Creek parkland to the west, limiting the scope for future road widening.

May Road:

- o road reserve is approximately 20 meters wide
- has substantial native vegetation to the north that is to be retained in the Officer Native Vegetation Precinct Plan, June 2011.

Whiteside Road:

- o road reserve is approximately 20 meters wide
- has substantial native vegetation to the north that is to be retained in the Officer Native Vegetation Precinct Plan, June 2011.

Bayview Road:

- o road reserve is approximately 20 meters wide
- o has overhead power lines along the west side
- has small, township scale lots on the east side and a school with existing planning permits on the west side, which limit the scope for road widening.

Tivendale Road:

- o road reserve is approximately 20 meters wide
- o has overhead power lines along the west side
- has small, township scale lots, a school and existing businesses on the west side and a number of small lots on the east side, which limit the scope for road widening
- o northern section is already partially sealed with urban standard pavement and kerb and channel constructed.

Starling Road:

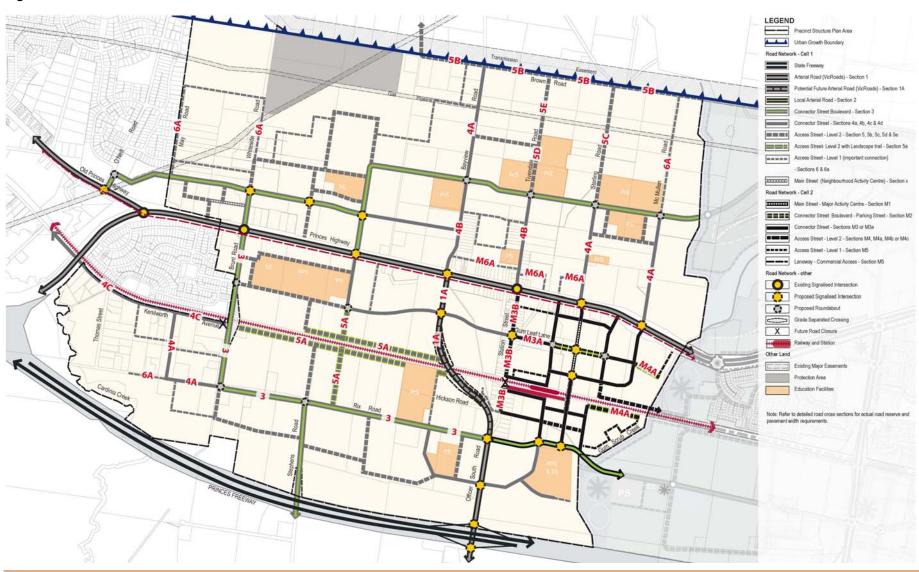
- o road reserve is approximately 20 meters wide
- o has overhead power lines along the east side
- has an existing recreation reserve on the east side of the Princes Highway.

McMullen Road:

- o road reserve is approximately 20 meters wide
- o has an existing recreation reserve on the west side of the Princes Highway.

3.2 Road Hierarchy Assessment

The road network, hierarchy and cross sections that are applied to the roads within the Precinct have been guided by the outputs of the VISSIM micro-simulation model and the constraints outlined in the previous section.


Both the GAA and Cardinia Shire have standards relating to the daily vehicular capacity of particular road types. To assess the suitability of individual roads to carry the volumes forecast in the micro-simulation model, a number of select points were created to produce specific 'traffic counts' across the network. These have been tabulated against the volume thresholds of the GAA and Cardinia Shire for the Ultimate scenario (refer Appendix 2).

A number of roads appear to carry traffic volumes higher than their classification; however it is considered that the overall network has enough capacity to carry the expected level of traffic demand. Considerations in regards to the current volumes are as follows:

- East-West Connector Boulevard: It is expected that the traffic demands on minor roads to the North-East of the Precinct would realign to the Connector due to the excess capacity.
- Main Street Underpass: The volumes indicate that this section of road is carrying almost 10,000 vehicles per day. It should be noted that this is accepted due to the limitations of rail crossings adjacent to the town centre.
- Rix Road: It is expected that volumes would redistribute more evenly towards the south of the Precinct. The current model is dependent on the zone connector locations which load traffic to the model at specific points.

Figure 5 - Road Network Plan

3.3 Network Improvements – Regional and Local

The Officer Precinct has been modelled for the interim and ultimate scenarios; however certain improvements outside the Precinct are expected to have an impact on forecasted travel patterns.

Major improvements which are likely to have an impact include:

- Delivery of a freeway standard bypass connection from the Princes Freeway to Healesville-Koo Wee Rup Road;
- Widening of both Clyde Road and Narre Warren-Cranbourne Road;
- Changes in land use (including the development of the area shown as 'new urban area' in Figure 1);
- Delivery of the connection between the Beaconsfield interchange (Princes Highway/ Princes Freeway) and O'Shea Road; and
- Delivery of the Cardinia Creek crossings at Thompsons Road and Glasscocks Road/ Grices Road, and associated arterial road infrastructure.

It should be noted that although network changes will have an impact on travel patterns, the level of trip generation from the new development will impact on the distribution of traffic in the model is uncertain due to the nature of matrix estimation.

3.3.1 Beaconsfield Interchange

The modelling undertaken for the Officer PSP has demonstrated that an upgrade of the Beaconsfield interchange is likely to be required within the next 10 years.

The additional traffic generated by the development of the Officer PSP area is likely to increase volumes to the point where the interchange cannot function as uncontrolled roundabouts (assuming O'Shea Road is connected to the southern roundabout). At a minimum, ramp metering is likely to be required in the short term.

3.3.2 Cardinia Creek Crossings

The impact of bringing forward the delivery of regional east-west roads, including Thompsons Road and Glasscocks Road/ Grices Road, to alleviate the Beaconsfield interchange should be further investigated.

The modelling indicates that the through movements from Casey to Cardinia are likely to adversely impact on the function of this interchange, which will be exacerbated if the interchange remains in its current form. Alternative connections to provide a choice of route may improve the function of this interchange.

3.3.3 Cardinia Road Interchange

The modelling undertaken for the Officer PSP has demonstrated a high level of dependence on the Cardinia Road interchange for access to and from the Princes Freeway in the interim scenario. During this period, the model suggests that the Princes Highway through Officer will experience high levels of congestion, making access to the Princes Freeway via Cardinia Road a more attractive choice.

The need for an upgrade of the Cardinia Road interchange, including delivery of the second bridge, should be closely monitored as the Officer Precinct develops.

3.3.4 Rix Road/ Bridge Road Delivery

The modelling undertaken for the Officer PSP has demonstrated a high number of vehicles choosing to access the Princes Freeway via Cardinia Road (a full diamond interchange) in the interim scenario. As a result, the early delivery of Rix Road/ Bridge Road to a four-lane, divided local arterial standard should be prioritised.

4.1 Overview

Analyses of a number of intersections were undertaken using SIDRA. Turning movement data extracted from the VISSIM micro-simulation model was used to inform the intersection design. SIDRA has been used to assess individual traffic signal controlled sites.

Where required, VISSIM micro-simulation modelling techniques have been used to demonstrate the coordination of traffic signals for the control of multiple traffic signal controlled sites. Traffic signal performance analysis has included selected midblock capacity analyses to guide the design and operational requirements of traffic signals. Analyses have been undertaken for the future 2031 design year.

The following design and operational requirements have been achieved:

- Lane configuration, signal phasing and coordination requirements at the traffic signals to ensure the safe and efficient operation of the road network for the current and future design traffic flows, as specified;
- Traffic signal integration within the VicRoads SCATS® system, which is used to monitor and control traffic signal operation; and
- The needs of all road users (e.g. private vehicles, heavy vehicles, freight, buses, pedestrians and cyclists) are taken into account.

Whereas micro-simulation is used for small, local area traffic analysis and intersection planning and design, SIDRA is used to confirm actual intersection layouts and preferred signal phasing settings. As an advanced micro-analytical evaluation tool, SIDRA is able to analyse lane-by-lane vehicle behaviour and optimise traffic signal timings to suit. It is a well known traffic analysis package used by traffic professionals throughout the world for intersection capacity, level of service and performance analysis, and design checks.

The modelling undertaken using SIDRA has confirmed that the traffic signal design and operation of individual sites satisfies the performance criteria as specified in Table 1 below.

Table 1 - SIDRA performance criteria

ITEM	NEW TRAFFIC SIGNALS
Degree of Saturation for each existing and new signal site	≤ 0.9
Level of Service (LOS)	"LOS D" or better

General descriptions of the operating conditions for each of the levels of service are as follows:

LOS A describes primarily free-flow operations. Average operating speeds at the free-flow speed generally prevail. Vehicles are almost completely unimpeded in their ability to manoeuvre within the traffic stream. Even at the maximum density for LOS A, the average spacing between vehicles is about 160m, or 26 car lengths, which affords the motorist with a high level of physical and psychological comfort. The effects of incidents or point breakdowns are easily absorbed at this level.

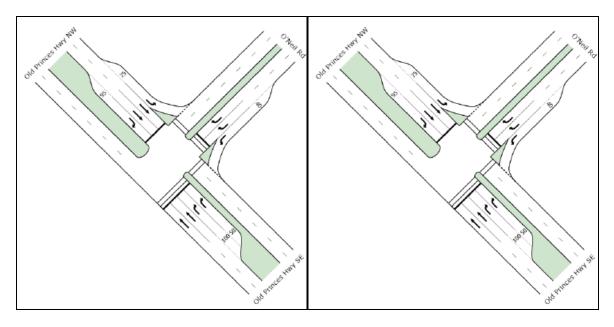
- LOS B also represents reasonably free flow, and speeds at the free-flow speed are generally maintained. The lowest average spacing between vehicles is about 110m, or 18 car lengths. The ability to manoeuvre within the traffic the traffic stream is only slightly restricted, and the general level of physical and psychological comfort provided to drivers is still easily absorbed, though local deterioration in service may be more severe than for LOS A.
- LOS C provides for flow with speeds still at or near the free flow speed of the freeway. Freedom to manoeuvre within the traffic stream is noticeably restricted at LOS C, and lane changes require more vigilance on the part of the driver. Minimum average spacings are in the range of 70m, or 11 car lengths. Minor incidents may still be absorbed, but the local deterioration in service will be substantial. Queues may be expected to form behind any significant blockage.
- LOS D is the level at which speeds begin to decline slightly with increasing flows.
 In this range, density begins to deteriorate somewhat more quickly with increasing flow. Freedom to manoeuvre within the traffic stream is more noticeably limited, and the driver experiences reduced physical and psychological comfort levels. Even minor incidents can be expected to create queuing, because the traffic stream has little space to absorb disruptions.
- At its lower boundary, LOS E describes operation at capacity. Operations in this level are volatile, because there are virtually no useable gaps in the traffic stream. Vehicles are spaced at approximately 6 car lengths, leaving little room to manoeuvre within the traffic stream. Any disruption to the traffic stream, such as vehicles entering from a ramp or a vehicle changing lanes can cause following vehicles to give way to admit the vehicle. This can establish a disruption wave that propagates throughout the upstream traffic flow. At capacity the traffic stream has no ability to dissipate even the most minor disruptions, and any incident can be expected to produce a serious breakdown with extensive queuing.
- LOS F describes breakdowns in vehicular flow. Such conditions generally exist
 within queues forming behind breakdown points. Such breakdowns occur for a
 number of reasons. Recurring points of congestion exist, such as merge or
 weaving areas, where the number of vehicles arriving is greater than the number
 of vehicles discharged. In forecasting situations, any location presents a problem
 when the projected peak hour (or other) flow rate exceeds the estimated capacity
 of the location.

The SIDRA works include a PM Peak analysis which is based on the Memorandum developed by GTA Consultants (25/10/10). The PM SIDRA works are based on inverting AM peak flows and modifying values to cater for heavy town centre traffic expected to be observed in the PM peak. It should be noted that the level of commuter traffic has been reduced to develop the PM peak SIDRAs.

The outputs extracted from the SIDRA analysis can be seen in Appendix 4.

4.2 Pedestrian and Cyclist Movements

All pedestrian and cyclist movements are incorporated in the traffic signal layouts. The pedestrians and cyclists share the same signal group within the phase in which they run.


Pedestrians and cyclists using the pedestrian crossings have been allocated crossing time in the SIDRA models and lanterns would be provided post construction. It is assumed that all pedestrian facilities will be utilised by both pedestrians and cyclists.

Currently, SIDRA assumes that 50 pedestrians pass through each movement per hour. It should be noted that this is a conservative assumption as pedestrian movements tend only to be considered when pedestrian signals are activated.

5 DETAILED INTERSECTION ANALYSIS

5.1 O'Neill Road/ Old Princes Highway

The interim and ultimate layout of the O'Neill Road/ Old Princes Highway intersection is shown below.

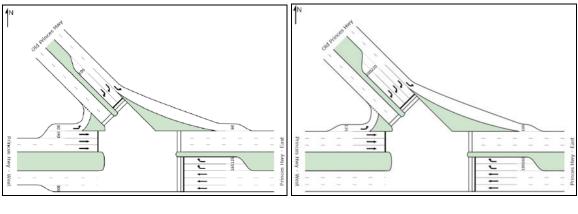
Interim layout

Ultimate layout

5.1.1 Interim Scenario

Performance Measure	AM Peak	PM Peak
Degree of Saturation	0.678	0.633
Level of Service	В	В

The results show that the O'Neill Road/ Old Princes Highway intersection is expected to operate below capacity in 2021, and satisfies the performance criteria specified in Table 1.


5.1.2 Ultimate Scenario

Performance Measure	AM Peak	PM Peak
Degree of Saturation	0.623	0.693
Level of Service	В	В

The results show that the O'Neill Road/ Old Princes Highway intersection is expected to operate below capacity in 2031, and satisfies the performance criteria specified in Table 1.

5.2 Old Princes Highway/ Princes Highway

The interim and ultimate layout of the Old Princes Highway/ Princes Highway intersection is shown below.

Interim layout

Ultimate layout

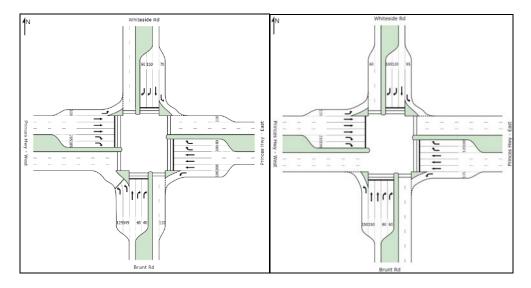
SIDRA cannot model a continuous left turn lane with a signalised pedestrian crossing therefore we have modelled the intersection with a continuous left turn lane only.

To determine the impact of a signalised pedestrian crossing on the continuous left turn lane, we have isolated the continuous left turn traffic lane and assessed its performance with pedestrian operated signals.

5.2.1 Interim Scenario

Performance Measure	AM Peak	PM Peak			
Intersection					
Degree of Saturation	0.783	0.940			
Level of Service	С	D			
Traffic Lane with Pedestrian Operated Signals					
Degree of Saturation	0.286	0.356			
Level of Service	Α	А			

The results show that the Old Princes Highway/ Princes Highway intersection is expected to operate below capacity in 2021, and satisfies the performance criteria specified in Table 1.


5.2.2 Ultimate Scenario

Performance Measure	AM Peak	PM Peak		
Intersection				
Degree of Saturation	0.829	0.911		
Level of Service	С	D		
Traffic Lane with Pedestrian Operated Signals				
Degree of Saturation	0.382	0.764		
Level of Service	Α	С		

The results show that the Old Princes Highway/ Princes Highway intersection is expected to operate below capacity in 2031, and satisfies the performance criteria specified in Table 1.

5.3 Whiteside Road/ Princes Highway

The interim and ultimate layout of the Whiteside Road/ Princes Highway intersection is shown below.

Interim layout

Ultimate layout

5.3.1 Interim Scenario

Performance Measure	AM Peak	PM Peak
Degree of Saturation	1.000*	1.252
Level of Service	F ¹	F ¹

^{* -} short lane effect

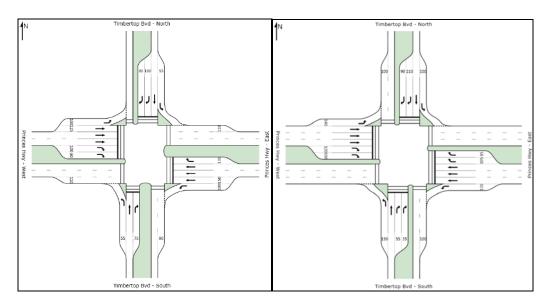
The results show that the Whiteside Road/ Princes Highway intersection is expected to operate above capacity in 2021 due to the following movements:

- In the AM peak hour:
 - Right turn movement on Princes Highway, west approach is operating at LOS F
- In the PM peak hour:
 - Through movement on Princes Highway, east approach is operating at LOS F
 - Right turn movement on Princes Highway, west approach is operating at LOS F.

¹ - approved by VicRoads

5.3.2 Ultimate Scenario

Performance Measure	AM Peak	PM Peak
Degree of Saturation	0.843	1.073
Level of Service	С	F ¹


¹ - approved by VicRoads

The results show that the Whiteside Road/ Princes Highway intersection is expected to operate below capacity in the AM peak hour in 2031, and satisfies the performance criteria specified in Table 1. In the PM peak hour, the intersection is shown to operate above capacity due to the following movements:

- Right turn movement on Princes Highway, west approach is operating at LOS F
- Through movement on Princes Highway, east approach is operating at LOS F
- Through movement on Brunt Road is operating at LOS E.

5.4 Timbertop Boulevard/ Princes Highway

The interim and ultimate layout of the Timbertop Boulevard/ Princes Highway intersection is shown below.

Interim layout

Ultimate layout

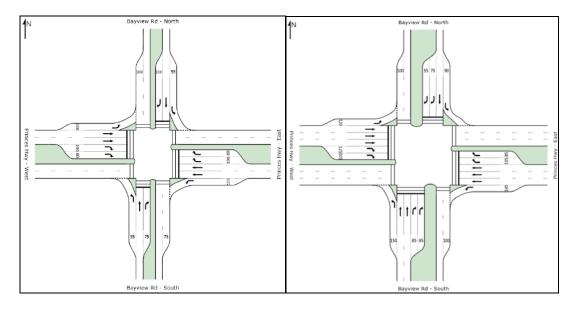
5.4.1 Interim Scenario

Performance Measure	AM Peak	PM Peak
Degree of Saturation	0.712	1.085
Level of Service	С	F ¹

¹ - approved by VicRoads

The results show that the Whiteside Road/ Princes Highway intersection is expected to operate above capacity in 2021 due to the following movements:

- In the PM peak hour:
 - Through movement on Princes Highway, east approach is operating at LOS F
 - Right turn movement on Princes Highway, west approach is operating at LOS F.


5.4.2 Ultimate Scenario

Performance Measure	AM Peak	PM Peak
Degree of Saturation	0.658	0.868
Level of Service	В	С

The results show that the Timbertop Boulevard/ Princes Highway intersection is expected to operate below capacity in 2031, and satisfies the performance criteria specified in Table 1.

5.5 Bayview Road/ Princes Highway

The interim and ultimate layout of the Bayview Road/ Princes Highway intersection is shown below.

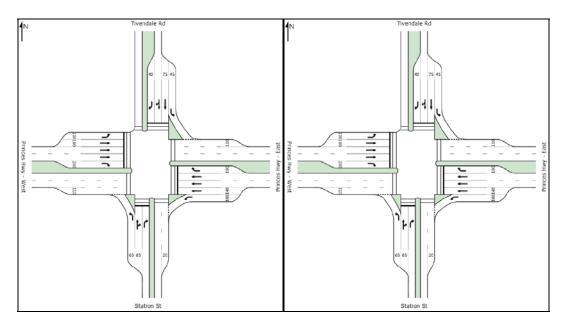
Interim layout

Ultimate layout

5.5.1 Interim Scenario

Performance Measure	AM Peak	PM Peak
Degree of Saturation	0.765	0.950
Level of Service	С	D

The results show that the Bayview Road/ Princes Highway intersection is expected to operate below capacity in 2021, and satisfies the performance criteria specified in Table 1.


5.5.2 Ultimate Scenario

Performance Measure	AM Peak	PM Peak
Degree of Saturation	0.725	0.732
Level of Service	С	С

The results show that the Bayview Road/ Princes Highway intersection is expected to operate below capacity in 2031, and satisfies the performance criteria specified in Table 1.

5.6 Tivendale Road/ Princes Highway

The interim and ultimate layout of the Tivendale Road/ Princes Highway intersection is shown below.

Interim layout

Ultimate layout

5.6.1 Interim Scenario

Performance Measure	AM Peak	PM Peak
Degree of Saturation	0.794	1.177
Level of Service	С	F ¹

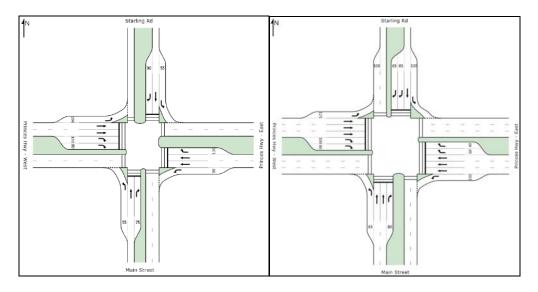
¹ - approved by VicRoads

The results show that the Tivendale Road/ Princes Highway intersection is expected to operate below capacity in the AM peak hour in 2021, and satisfies the performance criteria specified in Table 1. In the PM peak hour, the intersection is shown to operate above capacity due to the following movements:

- Right turn and through movement on Princes Highway, east approach is operating at LOS F
- Right turn movement on Princes Highway, west approach is operating at LOS F.
- Right turn movement on Station Street, south approach is operating at LOS F.

5.6.2 Ultimate Scenario

Performance Measure	AM Peak	PM Peak
Degree of Saturation	0.652	0.993
Level of Service	В	E ¹


¹ - approved by VicRoads

The results show that the Tivendale Road/ Princes Highway intersection is expected to operate below capacity in the AM peak hour in 2031, and satisfies the performance criteria specified in Table 1. In the PM peak hour, the intersection is shown to operate above capacity due to the following movements:

- Right turn movement on Princes Highway, west approach is operating at LOS E
- Through movement on Princes Highway, east approach is operating at LOS E
- Tivendale Road is operating at LOS E.

5.7 Starling Road/ Princes Highway

The interim and ultimate layout of the Starling Road/ Princes Highway intersection is shown below.

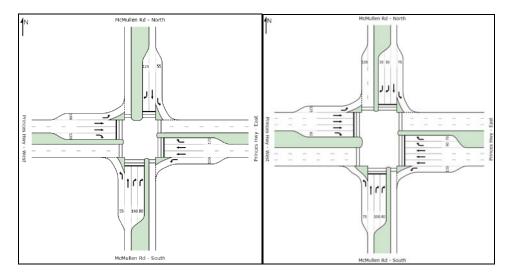
Interim layout

Ultimate layout

5.7.1 Interim Scenario

Performance Measure	AM Peak	PM Peak
Degree of Saturation	0.702	0.821
Level of Service	С	С

The results show that the Starling Road/ Princes Highway intersection is expected to operate below capacity in 2021, and satisfies the performance criteria specified in Table 1.


5.7.2 Ultimate Scenario

Performance Measure	AM Peak	PM Peak
Degree of Saturation	0.537	0.735
Level of Service	А	С

The results show that the Starling Road/ Princes Highway intersection is expected to operate below capacity in 2031, and satisfies the performance criteria specified in Table 1.

5.8 McMullen Road/ Princes Highway

The interim and ultimate layout of the McMullen Road/ Princes Highway intersection is shown below.

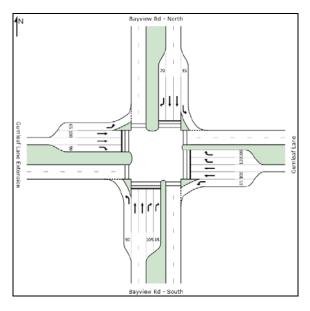
Interim layout

Ultimate layout

5.8.1 Interim Scenario

Performance Measure	AM Peak	PM Peak
Degree of Saturation	0.682	0.841
Level of Service	В	С

The results show that the McMullen Road/ Princes Highway intersection is expected to operate below capacity in 2021, and satisfies the performance criteria specified in Table 1.

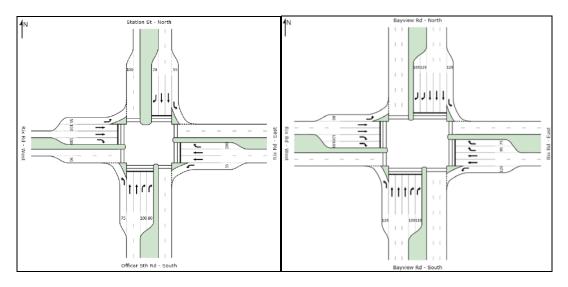

5.8.2 Ultimate Scenario

Performance Measure	AM Peak	PM Peak
Degree of Saturation	0.567	0.696
Level of Service	А	В

The results show that the McMullen Road/ Princes Highway intersection is expected to operate below capacity in 2031, and satisfies the performance criteria specified in Table 1.

5.9 Bayview Road/ Gumleaf Lane

The ultimate layout of the Bayview Road/ Gumleaf Lane intersection is shown below.



Performance Measure	AM Peak	PM Peak
Degree of Saturation	0.586	0.821
Level of Service	А	С

The results show that the Bayview Road/ Gumleaf Lane intersection is expected to operate below capacity in 2031, and satisfies the performance criteria specified in Table 1.

5.10 Bayview Road/ Rix Road

The interim and ultimate layout of the Bayview Road/ Rix Road intersection is shown below.

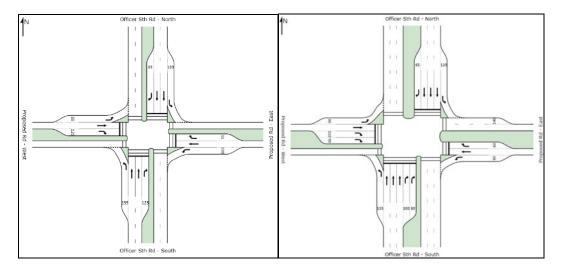
Interim layout

Ultimate layout

5.10.1 Interim Scenario

Performance Measure	AM Peak	PM Peak
Degree of Saturation	0.446	0.593
Level of Service	А	А

The results show that the Bayview Road/ Rix Road intersection is expected to operate below capacity in 2021, and satisfies the performance criteria specified in Table 1.


5.10.2 Ultimate Scenario

Performance Measure	AM Peak	PM Peak
Degree of Saturation	0.647	0.660
Level of Service	В	В

The results show that the Bayview Road/ Rix Road intersection is expected to operate below capacity in 2031, and satisfies the performance criteria specified in Table 1.

5.11 Officer South Road/ Proposed Road

The interim and ultimate layout of the Officer South Road/ Proposed Road intersection is shown below.

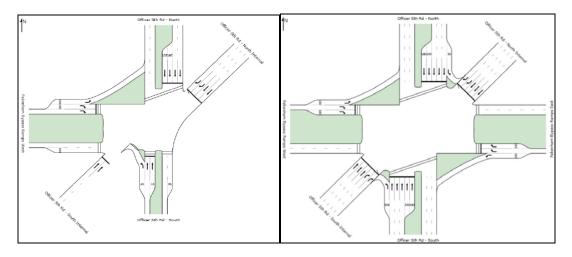
Interim layout

Ultimate layout

5.11.1 Interim Scenario

Performance Measure	AM Peak	PM Peak
Degree of Saturation	0.893	0.867
Level of Service	С	С

The results show that the Officer South Road/ Proposed Road intersection is expected to operate below capacity in 2021, and satisfies the performance criteria specified in Table 1.


5.11.2 Ultimate Scenario

Performance Measure	AM Peak	PM Peak
Degree of Saturation	0.797	0.862
Level of Service	С	С

The results show that the Officer South Road/ Proposed Road intersection is expected to operate below capacity in 2031, and satisfies the performance criteria specified in Table 1.

5.12 Officer South Road/ Princes Freeway

The interim and ultimate layout of the Officer South Road/ Princes Freeway interchange is shown below.

Interim layout

Ultimate layout

5.12.1 Interim Scenario

Performance Measure	AM Peak	PM Peak
Degree of Saturation	0.917	1.000*
Level of Service	D	E ¹

^{* -} short lane effect

The results show that the South Road/ Princes Freeway intersection is expected to operate above capacity in 2021 due to the following movements:

- In the PM peak hour:
 - Left turn movement on Officer South Road, south approach is operating at LOS E

5.12.2 Ultimate Scenario

Performance Measure	AM Peak	PM Peak
Degree of Saturation	1.000*	1.000*
Level of Service	E ¹	E ¹

^{* -} short lane effect

The results show that the Officer South Road/ Princes Freeway interchange is expected to operate above capacity in 2031 due to the following movements:

¹ - approved by VicRoads

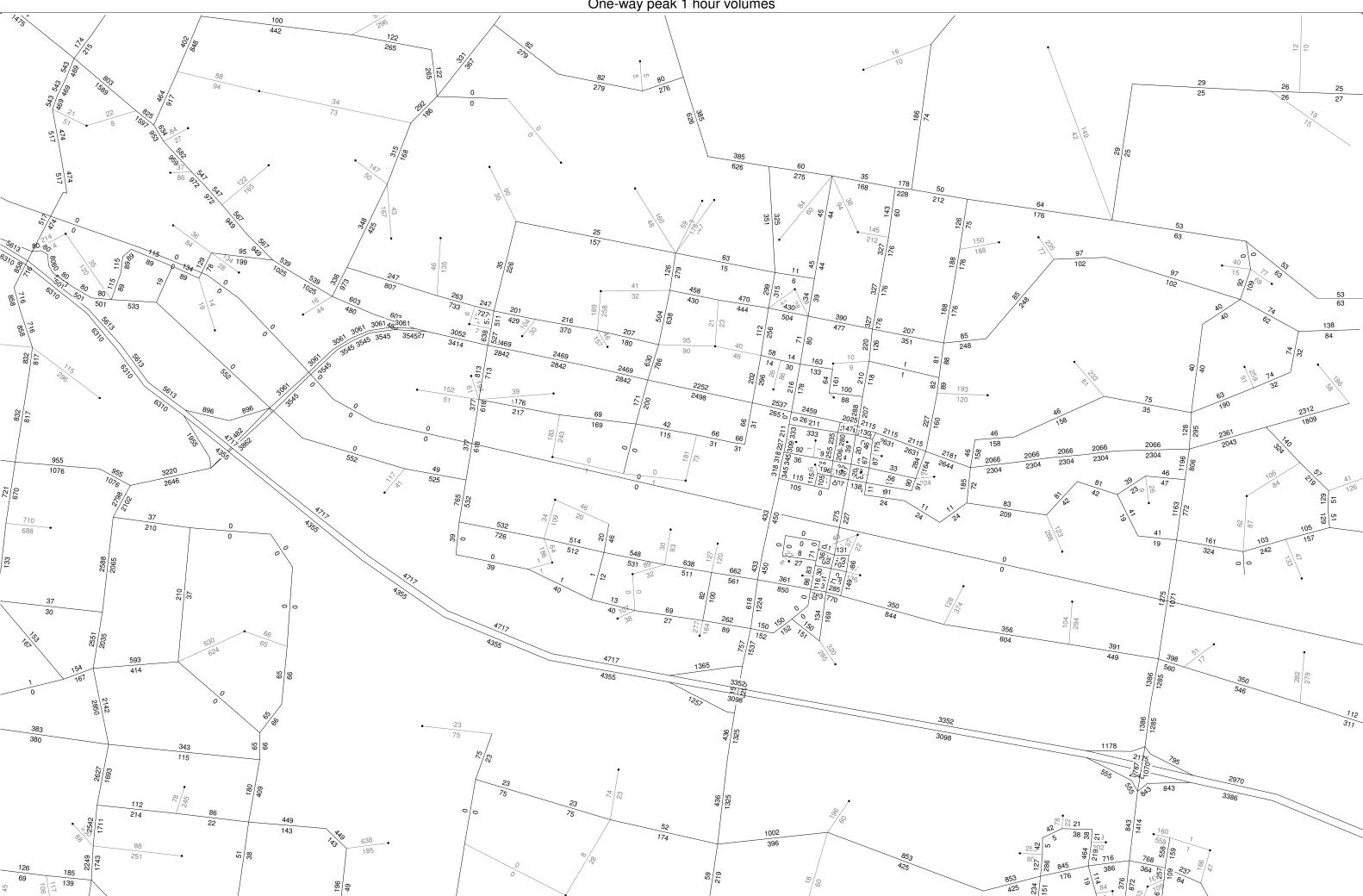
¹ - approved by VicRoads

- Left turn movement on Pakenham Bypass off-ramp, east approach is operating at LOS E due to short lane effect in the AM peak hour
- Left turn movement on Officer South Road, south approach is operating at LOS E due to short lane effect in the PM peak hour.

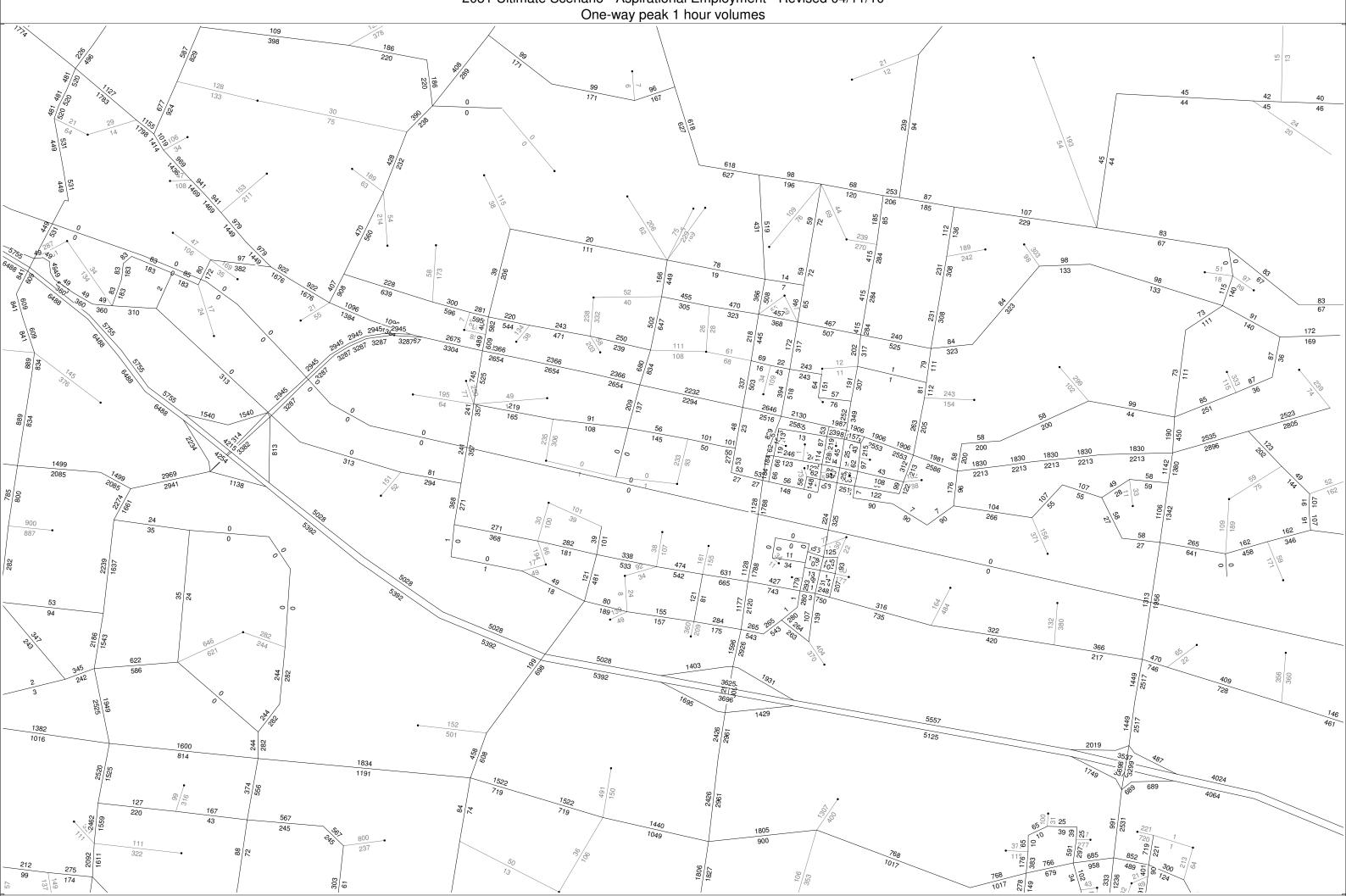
5.13 Summary

A summary of the intersections shown to operate above capacity in the SIDRA analysis is provided below:

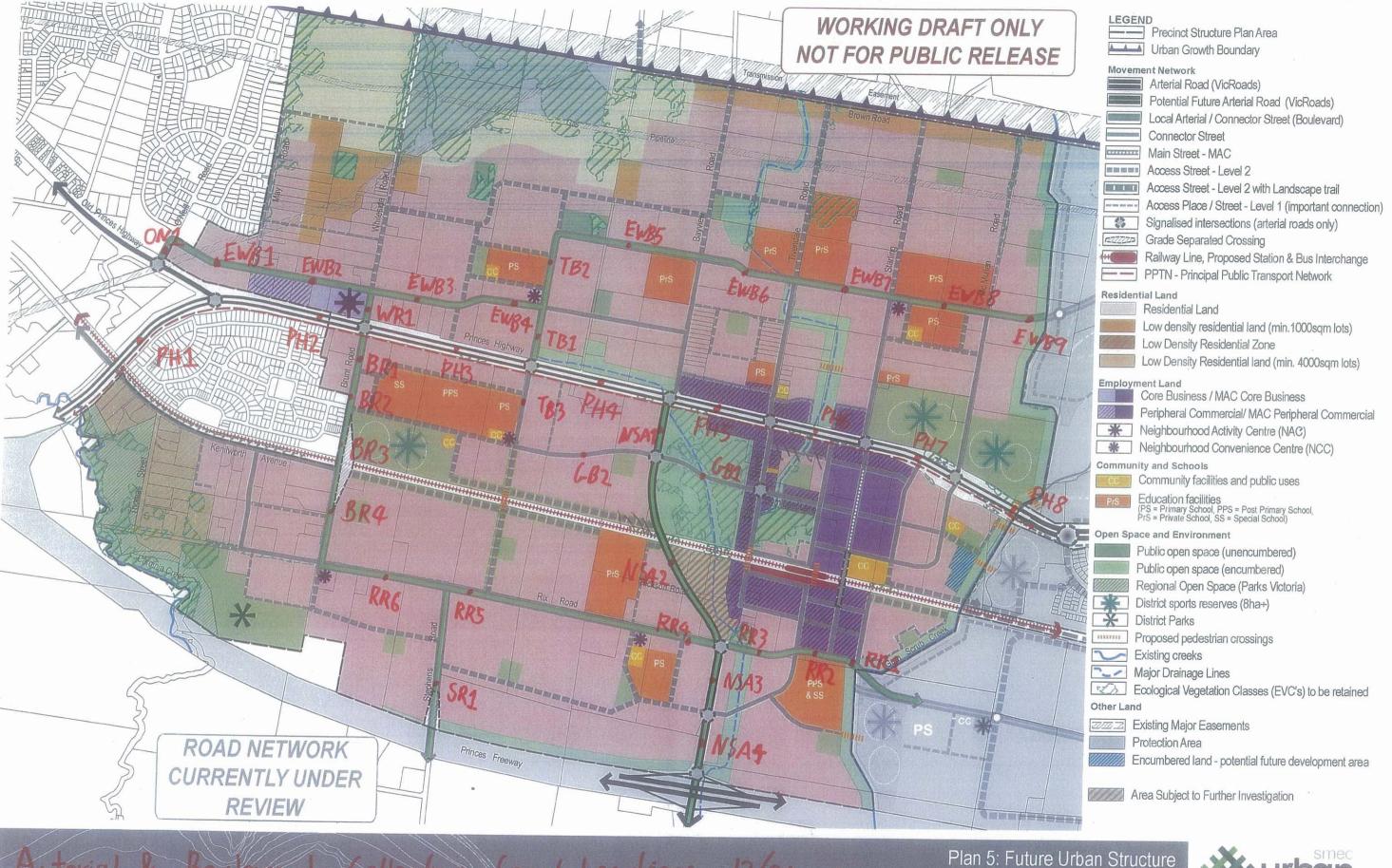
- Whiteside Road/ Princes Highway signalised intersection during the AM and PM peak hour in 2021
- Whiteside Road/ Princes Highway signalised intersection during the PM peak hour in 2031
- Timbertop Boulevard/ Princes Highway signalised intersection during the PM peak hour in 2021
- Tivendale Road/ Princes Highway signalised intersection during the PM peak hour in 2021
- Tivendale Road/ Princes Highway signalised intersection during the PM peak hour in 2031
- Officer South Road/ Princes Freeway signalised interchange during the PM and PM peak hours in 2021
- Officer South Road/ Princes Freeway signalised interchange during the AM and PM peak hours in 2031.


The operation of the signalised intersections listed above can be improved through the refinement of signal timings and coordination by VicRoads. This improvement is possible based on the micro-simulation model which shows that the interim and ultimate network would operate efficiently with the projected traffic volumes.

APPENDIX 1 – MITM PLOTS



Officer Precinct Model


2021 Interim Scenario - Aspirational Employment - Revised 17/02/10
One-way peak 1 hour volumes

Officer Precinct Model
2031 Ultimate Scenario - Aspirational Employment - Revised 04/11/10
One-way peak 1 hour volumes

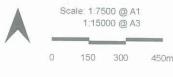
APPENDIX 2 - MICRO-SIMULATION VOLUME PLOTS AND TABLES

WORKING DRAFT ONLY NOT FOR PUBLIC RELEASE

A1 please note:
A3 This plan is based on preliminary information
only and may be subject to change as a result

only and may be subject to change as a result of formal Council/Authority advice, detailed site investigations and confirmation by survey

ref. 3410344U date: 31 March 2011 rev. X drawn: HW checked; DL planning & urban design melbourne - tel 9869 0800 © smec australia pty ltd abn 47 065 475 149 trading as smec urban


Officer Precinct Structure Plan

WORKING DRAFT ONLY NOT FOR PUBLIC RELEASE

This plan is based on preliminary information

only and may be subject to change as a result of formal Council/Authority advice, detailed site investigations and confirmation by survey

ref.: 3410344U date: 31 March 2011 rev.: X drawn: HW checked: DL

planning & urban design melbourne - tel 9869 0800 © smec australia pty ltd abn 47 065 475 149 trading as smec urban

Officer PSP – 2021 Interim Volumes with revised North-South arterial alignment (Vehicles per day)

Detector Points		Shire Council		AA	VISSIM (vpc
Detector Forms	Volume	Category	Volume	Category	VISSIIVI (VPC
ON1	Less than	Local Arterial	7,000 to 12,000	Connector Street	18290
	10,000	(2 Lane Divided)		Boulevard	
EWB1	Less than	Local Arterial	7,000 to 12,000	Connector Street	8320
	10,000	(2 Lane Divided)		Boulevard	
EWB2	Less than	Local Arterial	7,000 to 12,000	Connector Street	7400
	10,000	(2 Lane Divided)		Boulevard	
EWB3	Less than	Local Arterial	7,000 to 12,000	Connector Street	7680
	10,000	(2 Lane Divided)		Boulevard	
EWB4	Less than	Local Arterial	7,000 to 12,000	Connector Street	8020
	10,000	(2 Lane Divided)		Boulevard	
EWB5	Less than	Local Arterial	7,000 to 12,000	Connector Street	5040
	10,000	(2 Lane Divided)		Boulevard	
EWB6	Less than	Local Arterial	7,000 to 12,000	Connector Street	6440
	10,000	(2 Lane Divided)		Boulevard	
EWB7	Less than	Local Arterial	7,000 to 12,000	Connector Street	5630
	10,000	(2 Lane Divided)		Boulevard	
EWB8	Less than	Local Arterial	7,000 to 12,000	Connector Street	4650
	10,000	(2 Lane Divided)		Boulevard	
EWB9	Less than	Local Arterial	7,000 to 12,000	Connector Street	3260
	10,000	(2 Lane Divided)	, ,	Boulevard	
WR1	Less than	Local Arterial	7,000 to 12,000	Connector Street	10810
	10,000	(2 Lane Divided)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Boulevard	
TB1	Less than	Local Arterial	7,000 to 12,000	Connector Street	6140
.52	10,000	(2 Lane Divided)	,,000 to 12,000	Boulevard	02.0
TB2	Less than	Local Arterial	7,000 to 12,000	Connector Street	6780
152	10,000	(2 Lane Divided)	7,000 to 12,000	Boulevard	0,00
TB3	Less than	Local Arterial	3,000 to 7,000	Connector Street	7490
.55	10,000	(Undivided)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(Undivided)	7 .50
PH1	Generally	Arterial Road	40,000 +	Primary Arterial	56200
	15,000+	7 ii ceriai rioda	10,000	Road	30200
PH2	Generally	Arterial Road	40,000 +	Primary Arterial	43860
2	15,000+	7 ii ceriai rioda	10,000	Road	13000
PH3	Generally	Arterial Road	40,000 +	Primary Arterial	30250
1113	15,000+	Arteriaritoda	40,000	Road	30230
PH4	Generally	Arterial Road	40,000 +	Primary Arterial	21000
1114	15,000+	Arteriarroad	40,000	Road	21000
PH5	Generally	Arterial Road	40,000 +	Primary Arterial	22170
1115	15,000+	Arteriaritoau	40,000	Road	22170
PH6	Generally	Arterial Road	40,000 +	Primary Arterial	24900
1110	15,000+	Arteriaritoau	40,000	Road	24300
PH7	Generally	Arterial Road	40,000 +	Primary Arterial	28600
PIII/	15,000+	Arterial Noau	40,000 +	Road	28000
PH8	Generally	Arterial Road	40,000 +	Primary Arterial	32130
FIIO	15,000+	Arterial Noau	40,000 +	Road	32130
DD1	· · · · · · · · · · · · · · · · · · ·	Local Arterial	7.000 to 12.000		21140
BR1	Less than 10,000	Local Arterial (2 Lane Divided)	7,000 to 12,000	Connector Street Boulevard	21140
BR2			7,000 to 12,000		17010
DKZ	Less than	Local Arterial	7,000 (0 12,000	Connector Street	17810
DDG	10,000	(2 Lane Divided)	7.000 to 42.000	Boulevard	40040
BR3	Less than	Local Arterial	7,000 to 12,000	Connector Street	10610
2004	10,000	(2 Lane Divided)	7,000 10,000	Boulevard	40040
BR4	Less than	Local Arterial	7,000 to 12,000	Connector Street	10640
	10,000	(2 Lane Divided)		Boulevard	

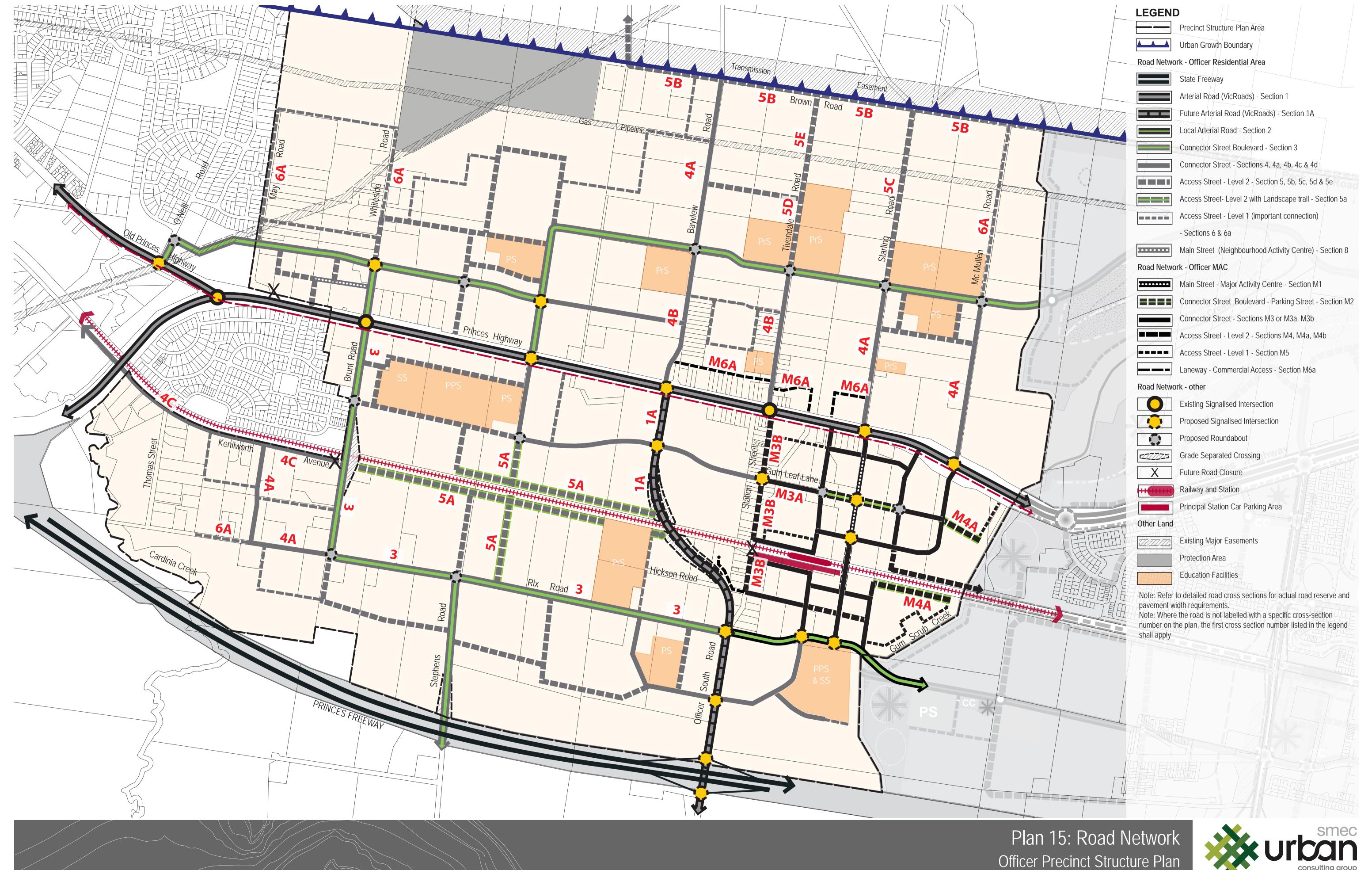
Detector Points	Cardinia	Shire Council	G	iAA	\/ICCIM (wad)
	Volume	Category	Volume	Category	VISSIM (vpd)
NSA1	Less than 3,000	Collector Street	Up to 2,000	Local Access (Level 1)	3900
NSA2	N/A	N/A	N/A	N/A	N/A
NSA3	Generally 15,000+	Local Arterial (4 Lane Divided)	40,000 +	Primary Arterial Road	14780
NSA4	Generally 15,000+	Local Arterial (4 Lane Divided)	40,000 +	Primary Arterial Road	25290
RR1	More than 10,000	Local Arterial (4 Lane Divided)	12,000 to 40,000	Secondary Arterial Road	18200
RR2	More than 10,000	Local Arterial (4 Lane Divided)	12,000 to 40,000	Secondary Arterial Road	14220
RR3	More than 10,000	Local Arterial (4 Lane Divided)	12,000 to 40,000	Local Arterial Road	11530
RR4	Less than 10,000	Local Arterial (2 Lane Divided)	7,000 to 12,000	Connector Street Boulevard	8220
RR5	Less than 10,000	Local Arterial (2 Lane Divided)	7,000 to 12,000	Connector Street Boulevard	10410
RR6	Less than 10,000	Local Arterial (2 Lane Divided)	7,000 to 12,000	Connector Street Boulevard	11870
SR1	N/A	N/A	N/A	N/A	N/A
GB1	Less than 10,000	Local Arterial (Undivided)	3,000 to 7,000	Connector Street (Undivided)	15350
GB2	Less than 10,000	Local Arterial (Undivided)	3,000 to 7,000	Connector Street (Undivided)	13230
1	Less than 500	Local Street	Up to 2,000	Local Access (Level 1)	328
2	Less than 500	Local Street	Up to 2,000	Local Access (Level 1)	3952
3	Less than 3,000	Collector Street	2,000 to 3,000	Local Access (Level 2)	5848
4	Less than 500	Local Street	Up to 2,000	Local Access (Level 1)	2008
5	Less than 500	Local Street	Up to 2,000	Local Access (Level 1)	520
6	Less than 3,000	Collector Street	2,000 to 3,000	Local Access (Level 2)	4568
7	Less than 3,000	Collector Street	2,000 to 3,000	Local Access (Level 2)	2032
8	Less than 3,000	Collector Street	2,000 to 3,000	Local Access (Level 2)	1072
9	Less than 3,000	Collector Street	2,000 to 3,000	Local Access (Level 2)	3568
10	Less than 3,000	Collector Street	2,000 to 3,000	Local Access (Level 2)	2744
11	Less than 500	Local Street	Up to 2,000	Local Access (Level 1)	3504
12	Less than 10,000	Local Arterial (Undivided)	3,000 to 7,000	Connector Street (Undivided)	4128
13	Less than 10,000	Local Arterial (Undivided)	3,000 to 7,000	Connector Street (Undivided)	4136

Detector Points	Cardinia S	Shire Council	G	GAA	VISSIM (vpd)
Detector Folints	Volume	Category	Volume	Category	vissiivi (vpu)
14	Less than	Local Arterial	3,000 to 7,000	Connector Street	5768
	10,000	(Undivided)		(Undivided)	
15	Less than	Collector Street	2,000 to 3,000	Local Access	7936
	3,000			(Level 2)	
16	Less than	Collector Street	2,000 to 3,000	Local Access	5616
	3,000			(Level 2)	
17	Less than	Collector Street	2,000 to 3,000	Local Access	4856
	3,000			(Level 2)	
18	Less than	Collector Street	2,000 to 3,000	Local Access	3128
	3,000			(Level 2)	
19	Less than	Collector Street	2,000 to 3,000	Local Access	1768
	3,000			(Level 2)	
20	Less than 500	Local Street	Up to 2,000	Local Access	1568
			-	(Level 1)	
21	Less than	Collector Street	2,000 to 3,000	Local Access	2208
	3,000		, ,	(Level 2)	
22	Less than	Collector Street	2,000 to 3,000	Local Access	1680
	3,000		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(Level 2)	
23	Less than	Local Arterial	3,000 to 7,000	Connector Street	6672
	10,000	(Undivided)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(Undivided)	
24	Less than	Local Arterial	3,000 to 7,000	Connector Street	3472
	10,000	(Undivided)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(Undivided)	0.72
25	Less than	Local Arterial	3,000 to 7,000	Connector Street	4824
	10,000	(Undivided)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(Undivided)	.02.
26	Less than	Local Arterial	3,000 to 7,000	Connector Street	4376
20	10,000	(Undivided)	3,000 to 7,000	(Undivided)	4370
27	Less than	Local Arterial	3,000 to 7,000	Connector Street	2472
2,	10,000	(Undivided)	3,000 to 7,000	(Undivided)	2-1,2
28	Less than	Collector Street	2,000 to 3,000	Local Access	3824
20	3,000	Concettor Street	2,000 to 3,000	(Level 2)	3021
29	Less than	Local Arterial	3,000 to 7,000	Connector Street	2160
	10,000	(Undivided)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(Undivided)	
30	Less than	Local Arterial	3,000 to 7,000	Connector Street	1312
30	10,000	(Undivided)	3,000 to 7,000	(Undivided)	1312
31	Less than	Local Arterial	3,000 to 7,000	Connector Street	1584
31	10,000	(Undivided)	3,000 to 7,000	(Undivided)	130 1
32	Less than	Local Arterial	3,000 to 7,000	Connector Street	5392
32	10,000	(Undivided)	3,000 to 7,000	(Undivided)	3332
33	Less than	Local Arterial	3,000 to 7,000	Connector Street	3152
	10,000	(Undivided)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(Undivided)	3131
34	Less than	Local Arterial	3,000 to 7,000	Connector Street	2152
34	10,000	(Undivided)	3,000 to 7,000	(Undivided)	2132
35	Less than	Main Street	3,000 to 7,000	Connector Street	2232
55	10,000	Collector Street	3,000 10 7,000	(Undivided)	
36	Less than	Main Street	3,000 to 7,000	Connector Street	3128
30	10,000	Collector Street	3,000 to 7,000	(Undivided)	3120
37	Less than	Local Arterial	3,000 to 7,000	Connector Street	3184
5,	10,000	(Undivided)	3,000 to 7,000	(Undivided)	3104
38	Less than	Local Arterial	3,000 to 7,000	Connector Street	4456
30	10,000	(Undivided)	3,000 10 7,000	(Undivided)	7430
39	Less than	Local Arterial	3,000 to 7,000	Connector Street	3488
39			3,000 to 7,000		3488
	10,000	(Undivided)		(Undivided)	

Detector Points	Cardinia :	Shire Council	G	BAA .	VISSIM (vpd)
Detector Foints	Volume	Category	Volume	Category	vissiivi (vpu)
40	Less than	Local Arterial	3,000 to 7,000	Connector Street	4008
	10,000	(Undivided)		(Undivided)	
41	Less than	Local Arterial	3,000 to 7,000	Connector Street	3784
	10,000	(Undivided)		(Undivided)	
42	Less than	Local Arterial	3,000 to 7,000	Connector Street	9264
	10,000	(Undivided)		(Undivided)	
43	Less than	Local Arterial	3,000 to 7,000	Connector Street	8792
	10,000	(Undivided)		(Undivided)	
44	Less than	Local Arterial	3,000 to 7,000	Connector Street	8312
	10,000	(Undivided)		(Undivided)	
45	Less than	Local Arterial	3,000 to 7,000	Connector Street	1120
	10,000	(Undivided)		(Undivided)	
46	Less than	Local Arterial	3,000 to 7,000	Connector Street	7656
	10,000	(Undivided)		(Undivided)	
47	Less than	Local Arterial	3,000 to 7,000	Connector Street	5288
	10,000	(Undivided)		(Undivided)	
48	Less than	Local Arterial	3,000 to 7,000	Connector Street	4744
	10,000	(Undivided)		(Undivided)	
49	Less than	Local Arterial	3,000 to 7,000	Connector Street	2240
	10,000	(Undivided)		(Undivided)	
50	Less than	Local Arterial	3,000 to 7,000	Connector Street	4216
	10,000	(Undivided)		(Undivided)	
51	Less than	Local Arterial	3,000 to 7,000	Connector Street	4680
	10,000	(Undivided)		(Undivided)	
52	Less than	Local Arterial	3,000 to 7,000	Connector Street	6008
	10,000	(Undivided)		(Undivided)	
53	Less than	Local Arterial	3,000 to 7,000	Connector Street	6680
	10,000	(Undivided)		(Undivided)	
54	Less than	Local Arterial	3,000 to 7,000	Connector Street	2936
	10,000	(Undivided)		(Undivided)	
55	Redundant marl	(er			
	Treduttatie man				
56	Less than	Collector Street	2,000 to 3,000	Local Access	1872
	3,000			(Level 2)	
57	Redundant marl	vor.			
37	Reduildant man	Kei			
58	Less than	Collector Street	2,000 to 3,000	Local Access	1672
	3,000			(Level 2)	
59	Less than	Collector Street	2,000 to 3,000	Local Access	1304
	3,000			(Level 2)	
60	Less than 500	Local Street	Up to 2,000	Local Access	672
				(Level 1)	
61	Less than	Local Arterial	3,000 to 7,000	Connector Street	2672
	10,000	(Undivided)		(Undivided)	
62	Less than	Local Arterial	3,000 to 7,000	Connector Street	3352
	10,000	(Undivided)		(Undivided)	
63	Less than 500	Local Street	Up to 2,000	Local Access	816
				(Level 1)	
64	Less than	Local Arterial	3,000 to 7,000	Connector Street	4088
	10,000	(Undivided)		(Undivided)	
65	Less than	Local Arterial	3,000 to 7,000	Connector Street	4112
	10,000	(Undivided)		(Undivided)	
		·		·	·

Officer PSP – 2031 Ultimate Volumes with revised North-South arterial alignment (Vehicles per day)

Detector	Cardinia	Shire Council		GAA	VISSIM (vp
Points	Volume	Category	Volume	Category	
ON1	Less than	Local Arterial	7,000 to	Connector Street	17510
	10,000	(2 Lane Divided)	12,000	Boulevard	
EWB1	Less than	Local Arterial	7,000 to	Connector Street	6810
	10,000	(2 Lane Divided)	12,000	Boulevard	
EWB2	Less than	Local Arterial	7,000 to	Connector Street	6270
	10,000	(2 Lane Divided)	12,000	Boulevard	
EWB3	Less than	Local Arterial	7,000 to	Connector Street	7660
	10,000	(2 Lane Divided)	12,000	Boulevard	
EWB4	Less than	Local Arterial	7,000 to	Connector Street	8410
	10,000	(2 Lane Divided)	12,000	Boulevard	
EWB5	Less than	Local Arterial	7,000 to	Connector Street	6110
	10,000	(2 Lane Divided)	12,000	Boulevard	
EWB6	Less than	Local Arterial	7,000 to	Connector Street	7340
	10,000	(2 Lane Divided)	12,000	Boulevard	70.0
EWB7	Less than	Local Arterial	7,000 to	Connector Street	7760
	10,000	(2 Lane Divided)	12,000	Boulevard	,,,,,
EWB8	Less than	Local Arterial	7,000 to	Connector Street	7040
	10,000	(2 Lane Divided)	12,000	Boulevard	7040
EWB9	Less than	Local Arterial	7,000 to	Connector Street	4140
2003	10,000	(2 Lane Divided)	12,000	Boulevard	7140
WR1	Less than	Local Arterial	7,000 to	Connector Street	10780
WILL	10,000	(2 Lane Divided)	12,000	Boulevard	10780
TB1	Less than	Local Arterial	7,000 to	Connector Street	9830
IDI	10,000	(2 Lane Divided)	12,000	Boulevard	9630
TB2	Less than	Local Arterial	7,000 to	Connector Street	11040
162	10,000	(2 Lane Divided)	12,000	Boulevard	11040
TB3	Less than	Local Arterial	3,000 to 7,000	Connector Street	?
163	10,000	(Undivided)	3,000 to 7,000	(Undivided)	r
PH1		Arterial Road	40,000 +	· · · · · · · · · · · · · · · · · · ·	55350
NUT.	Generally	Arteriai Road	40,000 +	Primary Arterial Road	55250
PH2	15,000+	Arterial Road	40.000 +		45240
PHZ	Generally	Arteriai Road	40,000 +	Primary Arterial Road	45310
DUID	15,000+	Autovial Dand	40.000		27240
PH3	Generally	Arterial Road	40,000 +	Primary Arterial	37240
DUIA	15,000+	A	40.000	Road	011-0
PH4	Generally	Arterial Road	40,000 +	Primary Arterial	31170
5115	15,000+		40.000	Road	2222
PH5	Generally	Arterial Road	40,000 +	Primary Arterial	32690
	15,000+			Road	
PH6	Generally	Arterial Road	40,000 +	Primary Arterial	28110
	15,000+			Road	
PH7	Generally	Arterial Road	40,000 +	Primary Arterial	29790
	15,000+			Road	
PH8	Generally	Arterial Road	40,000 +	Primary Arterial	33810
	15,000+			Road	
BR1	Less than	Local Arterial	7,000 to	Connector Street	14510
	10,000	(2 Lane Divided)	12,000	Boulevard	
BR2	Less than	Local Arterial	7,000 to	Connector Street	11070
	10,000	(2 Lane Divided)	12,000	Boulevard	
BR3	Less than	Local Arterial	7,000 to	Connector Street	9230
	10,000	(2 Lane Divided)	12,000	Boulevard	
BR4	Less than	Local Arterial	7,000 to	Connector Street	9290
	10,000	(2 Lane Divided)	12,000	Boulevard	


Detector	Cardinia Shire Council		GAA		VISSIM (vpd)
Points	Volume	Category	Volume	Category	
NSA1	Generally 15,000+	VicRoads Arterial	40,000 +	Primary Arterial Road	10780
NSA2	Generally 15,000+	VicRoads Arterial	40,000 +	Primary Arterial Road	18020
NSA3	Generally 15,000+	VicRoads Arterial	40,000 +	Primary Arterial Road	26470
NSA4	Generally 15,000+	VicRoads Arterial	40,000 +	Primary Arterial Road	40780
RR1	More than 10,000	Local Arterial (4 lane divided)	12,000 to 40,000	Secondary Arterial	18980
RR2	More than 10,000	Local Arterial (4 lane divided)	12,000 to 40,000	Secondary Arterial	19110
RR3	More than 10,000	Local Arterial (4 lane divided)	12,000 to 40,000	Secondary Arterial	18520
RR4	Less than 10,000	Local Arterial (2 Lane Divided)	7,000 to 12,000	Connector Street Boulevard	6980
RR5	Less than 10,000	Local Arterial (2 Lane Divided)	7,000 to 12,000	Connector Street Boulevard	8230
RR6	Less than 10,000	Local Arterial (2 Lane Divided)	7,000 to 12,000	Connector Street Boulevard	9070
SR1	Less than 10,000	Local Arterial (2 Lane Divided)	7,000 to 12,000	Connector Street Boulevard	8550
GB1	Less than 10,000	Local Arterial (Undivided)	3,000 to 7,000	Connector Street (Undivided)	10110
GB2	Less than 10,000	Local Arterial (Undivided)	3,000 to 7,000	Connector Street (Undivided)	3510
1	Less than 500	Local Street	Up to 2,000	Access Street (Level 1)	496
2	Less than 500	Local Street	Up to 2,000	Access Street (Level 1)	3400
3	Less than 3,000	Collector Street	2,000 to 3,000	Access Street (Level 2)	6096
4	Less than 500	Local Street	Up to 2,000	Access Street (Level 1)	2688
5	Less than 500	Local Street	Up to 2,000	Access Street (Level 1)	640
6	Less than 3,000	Collector Street	2,000 to 3,000	Access Street (Level 2)	3856
7	Less than 3,000	Collector Street	2,000 to 3,000	Access Street (Level 2)	1592
8	Less than 3,000	Collector Street	2,000 to 3,000	Access Street (Level 2)	1960
9	Less than 3,000	Collector Street	2,000 to 3,000	Access Street (Level 2)	2976
10	Less than 3,000	Collector Street	2,000 to 3,000	Access Street (Level 2)	3792
11	Less than 500	Local Street	Up to 2,000	Access Street (Level 1)	3896
12	Less than 10,000	Local Arterial (Undivided)	3,000 to 7,000	Collector Street (Undivided)	3496
13	Less than 10,000	Local Arterial (Undivided)	3,000 to 7,000	Connector Street (Undivided)	5816

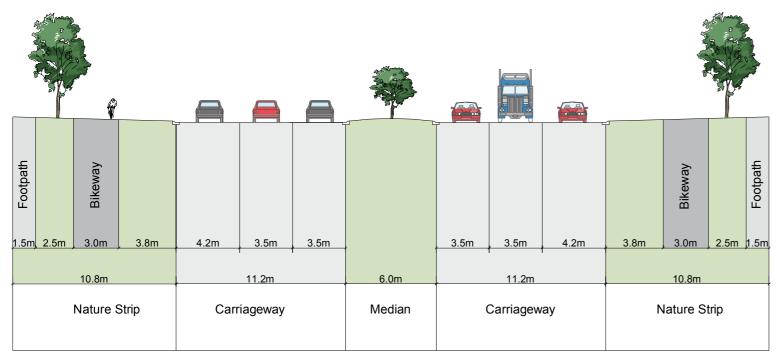
Detector	Cardinia Shire Council		GAA		VISSIM (vpd)
Points	Volume	Category	Volume	Category	
14	Less than	Local Arterial	3,000 to 7,000	Connector Street	7248
	10,000	(Undivided)		(Undivided)	
15	Less than 3,000	Collector Street	2,000 to 3,000	Access Street	9704
				(Level 2)	
16	Less than 3,000	Collector Street	2,000 to 3,000	Access Street	5976
				(Level 2)	
17	Less than 3,000	Collector Street	2,000 to 3,000	Access Street	5768
				(Level 2)	
18	Less than 3,000	Collector Street	2,000 to 3,000	Access Street	3952
				(Level 2)	
19	Less than 3,000	Collector Street	2,000 to 3,000	Access Street	2592
=				(Level 2)	
20	Less than 500	Local Street	Up to 2,000	Access Street	2096
			, ,	(Level 2)	
21	Less than 3,000	Collector Street	2,000 to 3,000	Access Street	2968
	,,,,,,,		, , , , , , , , , , , , , , , , , , , ,	(Level 2)	
22	Less than 3,000	Collector Street	2,000 to 3,000	Access Street	2296
	2000 0.10.1. 0,000	303313. 31. 331		(Level 2)	2230
23	Less than	Local Arterial	3,000 to 7,000	Connector Street	5648
	10,000	(Undivided)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(Undivided)	3010
24	Less than	Local Arterial	3,000 to 7,000	Connector Street	5184
24	10,000	(Undivided)	3,000 10 7,000	(Undivided)	3104
25	Less than	Local Arterial	3,000 to 7,000	Connector Street	5840
23	10,000	(Undivided)	3,000 to 7,000	(Undivided)	3640
26	Less than	Local Arterial	3,000 to 7,000	Connector Street	5272
20	10,000	(Undivided)	3,000 to 7,000	(Undivided)	3272
27	Less than	Local Arterial	3,000 to 7,000	Connector Street	2592
27	10,000	(Undivided)	3,000 to 7,000	(Undivided)	2392
28	Less than 3,000	Collector Street	2,000 to 3,000	Access Street	2256
20	2033 111011 3,000	Concetor Street	2,000 to 3,000	(Level 2)	2230
29	Less than	Local Arterial	3,000 to 7,000	Connector Street	2040
23	10,000	(Undivided)	3,000 to 7,000	(Undivided)	2040
30	Less than	Local Arterial	3,000 to 7,000	Connector Street	1224
30	10,000	(Undivided)	3,000 to 7,000	(Undivided)	1224
31	Less than	Local Arterial	3,000 to 7,000	Connector Street	1336
31	10,000	(Undivided)	3,000 to 7,000	(Undivided)	1550
32	Less than	Local Arterial	3,000 to 7,000	Connector Street	5048
32	10,000	(Undivided)	3,000 to 7,000	(Undivided)	3046
33	Less than	Local Arterial	3,000 to 7,000	Connector Street	2520
33	10,000	(Undivided)	3,000 to 7,000	(Undivided)	2520
21	Less than	Local Arterial	3,000 to 7,000	Connector Street	1544
34	10,000	(Undivided)	3,000 to 7,000	(Undivided)	1544
35	Less than	Main Street	3,000 to 7,000	Connector Street	3408
33	10,000	Collector Street	3,000 to 7,000	(Undivided)	3406
36	Less than	Main Street	3,000 to 7,000	Connector Street	2702
	10,000	Collector Street	3,000 10 7,000	(Undivided)	2792
37	Less than	Local Arterial	3,000 to 7,000	Connector Street	4200
			3,000 10 7,000		4288
38	10,000	(Undivided)	2 000 to 7 000	(Undivided)	4040
	Less than 10,000	Local Arterial	3,000 to 7,000	Connector Street	4040
	10.000	(Undivided)	1	(Undivided)	
39	Less than	Local Arterial	3,000 to 7,000	Connector Street	2240

Detector	Cardinia S	Shire Council	GAA		VISSIM (vpd)
Points	Volume	Category	Volume	Category	
40	Less than	Local Arterial	3,000 to 7,000	Connector Street	2864
	10,000	(Undivided)		(Undivided)	
41	Less than	Local Arterial	3,000 to 7,000	Connector Street	2568
	10,000	(Undivided)		(Undivided)	
42	Less than	Local Arterial	3,000 to 7,000	Connector Street	4176
	10,000	(Undivided)		(Undivided)	
43	Less than	Local Arterial	3,000 to 7,000	Connector Street	4576
	10,000	(Undivided)		(Undivided)	
44	Less than	Local Arterial	3,000 to 7,000	Connector Street	760
	10,000	(Undivided)		(Undivided)	
45	Less than	Local Arterial	3,000 to 7,000	Connector Street	760
	10,000	(Undivided)		(Undivided)	
46	Less than	Local Arterial	3,000 to 7,000	Connector Street	9568
	10,000	(Undivided)		(Undivided)	
47	Less than	Local Arterial	3,000 to 7,000	Connector Street	5216
.,	10,000	(Undivided)		(Undivided)	
48	Less than	Local Arterial	3,000 to 7,000	Connector Street	4704
	10,000	(Undivided)		(Undivided)	
49	Less than	Local Arterial	3,000 to 7,000	Connector Street	3408
.5	10,000	(Undivided)		(Undivided)	
50	Less than	Local Arterial	3,000 to 7,000	Connector Street	4160
	10,000	(Undivided)		(Undivided)	
51	Less than	Local Arterial	3,000 to 7,000	Connector Street	5984
	10,000	(Undivided)		(Undivided)	
52	Less than	Local Arterial	3,000 to 7,000	Connector Street	7416
-	10,000	(Undivided)		(Undivided)	
53	Less than	Local Arterial	3,000 to 7,000	Connector Street	8104
	10,000	(Undivided)		(Undivided)	
54	Less than	Local Arterial	3,000 to 7,000	Connector Street	2832
	10,000	(Undivided)		(Undivided)	
55	Redundant marker				•
55	Reduildant market	l			
56	Less than 3,000	Collector Street	2,000 to 3,000	Access Street	3712
				(Level 2)	
57	Redundant marker	r			
					_
58	Less than 3,000	Collector Street	2,000 to 3,000	Access Street	1008
				(Level 2)	
59	Less than 3,000	Collector Street	2,000 to 3,000	Access Street	640
				(Level 2)	
60	Less than 500	Local Street	Up to 2,000	Access Street	144
				(Level 1)	
61	Less than	Local Arterial	3,000 to 7,000	Connector Street	1552
	10,000	(Undivided)		(Undivided)	
62	Less than	Local Arterial	3,000 to 7,000	Connector Street	1656
	10,000	(Undivided)		(Undivided)	
63	Less than 500	Local Street	Up to 2,000	Access Street	1104
				(Level 1)	
64	Less than	Local Arterial	3,000 to 7,000	Connector Street	2688
	10,000	(Undivided)		(Undivided)	
65	Less than	Local Arterial	3,000 to 7,000	Connector Street	2688
	10,000	(Undivided)		(Undivided)	

APPENDIX 3 – ROAD CROSS SECTIONS

DRAFT

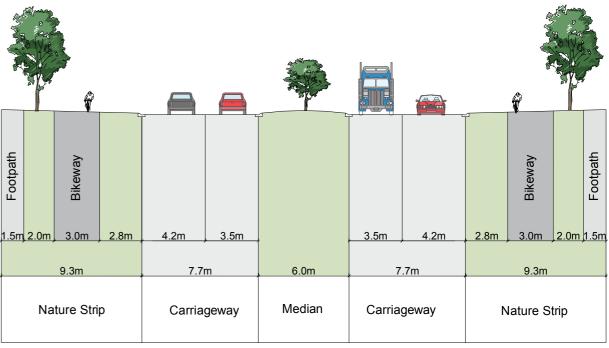
please note:


This plan is based on preliminary information only and may be subject to change as a result of formal Council/Authority advice, detailed site investigations and confirmation by survey

ref.: 3410344 date: 16 June 2011 rev.: E-1 drawn: DM

checked: DL

planning & urban design melbourne - tel 9869 0800 © sm urban pty ltd abn 99 124 206 819 trading as smec urban



50m Road Reserve

Section 1: Arterial Road: VicRoads Declared Road (6 lanes) Arterial Road: Future VicRoads Declared Road (6 lanes)

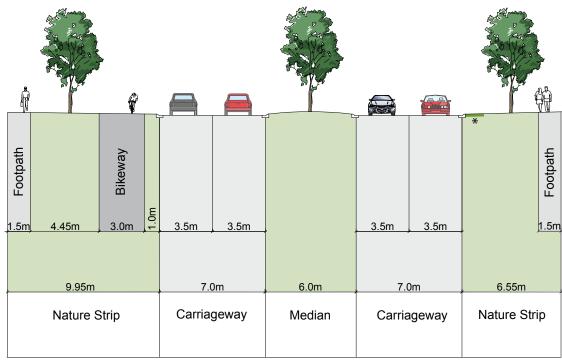
- Road reservation of 50m has been set aside.
- Provision for up to six lane Arterial Road.
- No direct vehicular access to Arterial Roads is permitted from abutting properties. For properties abutting Arterial Roads, access is to be provided from the internal street network, which should include 'loop roads' that run parallel to the Arterial Road (consistent with the Section 7 Service Road Cross Section).
- The implementation of this cross section is subject to approval by VicRoads, Department of Transport and the Growth Areas Authority
- * 'Grass Verge' will form part of slip lanes, turning lanes etc where required. Otherwise it will form an extension of the nature strip.

40m Road Reserve

Section 1a: Arterial Road: Future VicRoads Declared Road (4 lanes)

- Road reservation of 40m has been set aside.
- No direct vehicular access to Arterial Roads is permitted from abutting properties. For properties abutting Arterial Roads, access is to be provided from the internal street network, which should include 'loop roads' that run parallel to the Arterial Road (consistent with the Section 7 Service Road Cross Section).
- The implementation of this cross section is subject to approval by VicRoads, Department of Transport and the Growth Areas Authority
- * 'Grass Verge' will form part of slip lanes, turning lanes etc where required. Otherwise it will form an extension of the nature strip.

Road Cross Sections - Arterial Roads Officer Precinct Structure Plan

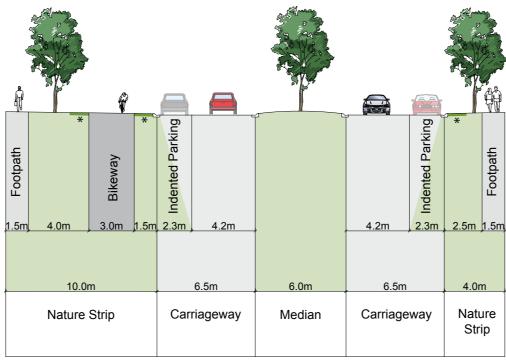


ref.: 3410344U date: 08 June 2011 rev.: D drawn: DL

checked: DM

planning & urban design melbourne - tel 9869 0800 © smec australia pty ltd abn 47 065 475 149 trading as smec urban

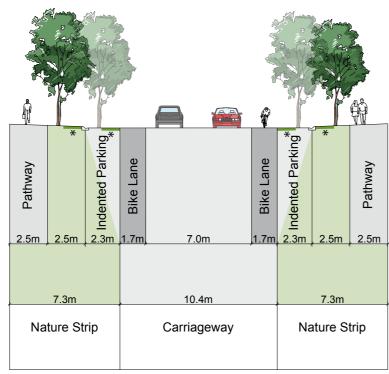
36.5m Road Reserve


Section 2: Local Arterial Road (Council Road)

- Based on Cardinia Shire Council Standard Drawing Local Arterial Road (divided).
- Where this street type abuts a school, the verge should be hardstand with tree grates rather than grassed & planted.
- Widened to accommodate trunk services with all services including drainage at back of kerb.
- The implementation of this cross section is subject to approval by the Department of Transport and the Growth Areas Authority.

Road Cross Sections - Bikeway Alternatives Officer Precinct Structure Plan

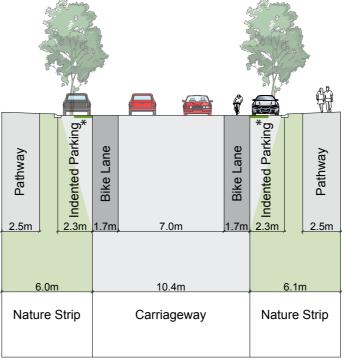
^{* 1.5}m setback from kerb to trees and poles.


33m Road Reserve

Section 3: Connector Street Boulevard

- On-street parking with indented bays and tree outstands are allowed subject to traffic volumes.
- Based on Cardinia Shire Council Standard Drawing Local Arterial Road (divided).
- Where this street type abuts a school, the verge should be hardstand with tree grates rather than grassed & planted.
- The implementation of this cross section is subject to approval by the Department of Transport and the Growth Areas Authority

* 1.5m setback from kerb to trees and poles.



25m Road Reserve

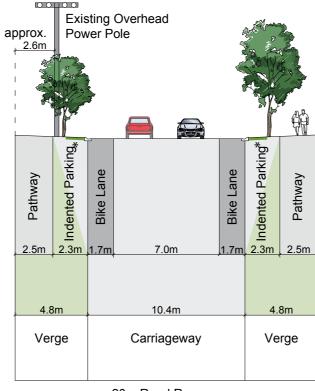
Section 4: Connector Street

- Based on Cardinia Shire Council Standard Drawing Local Arterial Road (undivided).
- Where street abuts schools, indented parking and hardstand verge should be provided.

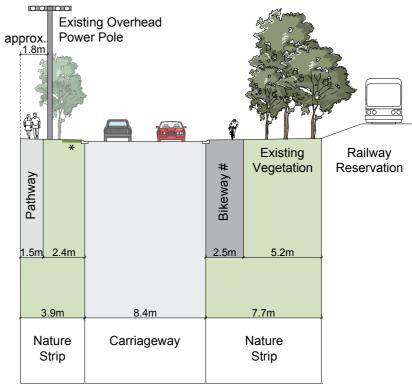
22.5m Road Reserve

Section 4a: Connector Street

- This section applies to Starling Road & McMullen Road between the Connector Street Boulevard and the Princes Highway, part of Bayview Road and part of Rix Road (west of Brunt).
- 2.5m widening of existing 20m road reserve and shared path to be provided from west side of Starling Road, to east side of McMullen Road, to east side of Bayview Road and south side of Rix Road.
- Based on Cardinia Shire Council Standard Drawing Local Arterial Road (undivided).
- Where street abuts schools, indented parking and hardstand verge should be provided.


Road Cross Sections - Connector Streets Officer Precinct Structure Plan

^{* 1.5}m setback from kerb to trees and poles.


^{* 1.5}m setback from kerb to trees and poles.

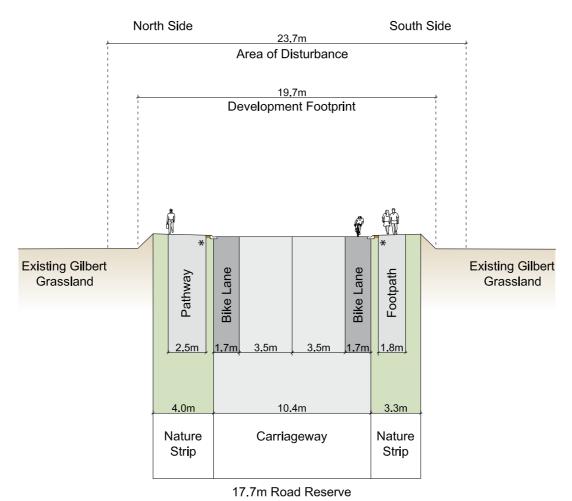
20m Road Reserve

Section 4b: Connector Street

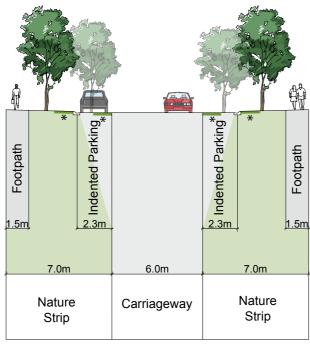
- This section applies to Bayview Road and Tivendale Road (between Princes Highway & the Connector Street Boulevard).
- Hardstand verge with indented parking to be provided between power poles, where possible.
- Outstands between powerpoles must be provided, incorporating street trees

20m Road Reserve

Section 4c: Connector Street

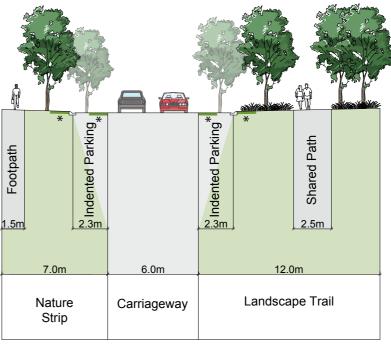

- This section applies to Kenilworth Avenue.
- * 1.5m setback from kerb to trees and poles.

Road Cross Sections - Connector Streets Officer Precinct Structure Plan


^{* 1.5}m setback from kerb to trees and poles.

Section 4d: Connector Street

- This is the typical cross section for the east-west road through the Gilbert reserve, from the North-South Arterial to Station Street.
- Assumes 1:1 batters.
- * 0.5m setback to shared pathway.



20m Road Reserve

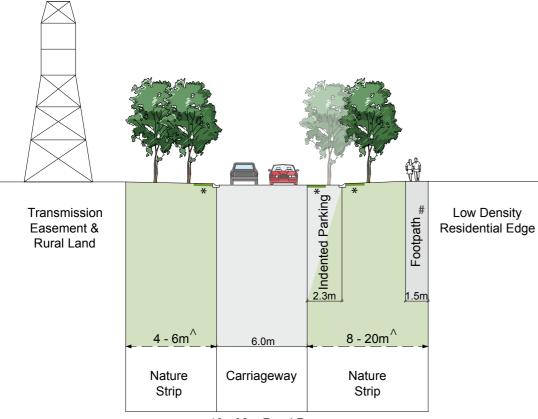
Section 5: Access Street - Level 2

- Two circulation lanes plus indented parking on both sides.
- Where road reserve abuts public open space, footpath is required on the developed edge only as long as footpaths are provided within the reserve & are readily accessible from the street.
- When this street type abuts a school, the verge should be hardstand with tree grates rather than grassed & planted.
- Trees must be provided in outstands.

25m Road Reserve

Section 5a: Access Street -Level 2 with Shared Landscape Trail

- Two circulation lanes plus indented parking on both sides.
- Where road reserve abuts public open space, footpath is required on the developed edge only as long as footpaths are provided within the reserve & are readily accessible from the street.
- 2.5m shared path is to be constructed as a meandering trail.


Road Cross Sections - Access Street Level 2 Officer Precinct Structure Plan

^{* 1.5}m setback from kerb to trees and poles.


^{* 1.5}m setback from kerb to trees and poles.

18 - 32m Road Reserve

Section 5b: Access Street -Level 2 Rural Style Road

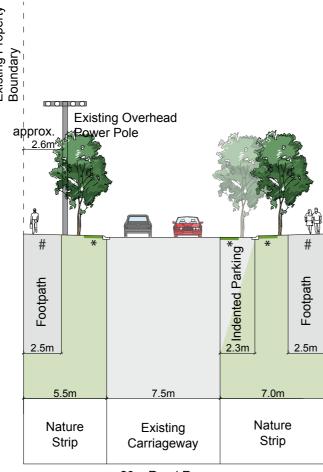
- This section applies to Brown Road.
- Indented parking to be provided along developed edge, between existing native vegetation.
- Where native vegetation constrains delivery of a footpath and services within the existing road reserve, additional land may need to be provided as part of the subdivision of abutting land.
- Detailed road design to be prepared to the satisfaction of CFA.
- * 1.5m setback from kerb to trees and poles.
- # Location of footpath varies to fit with existing vegetation.
- ↑ Width varies to accommodate existing vegetation.

20m Road Reserve

Section 5c: Access Street - Level 2 Constrained Type 1

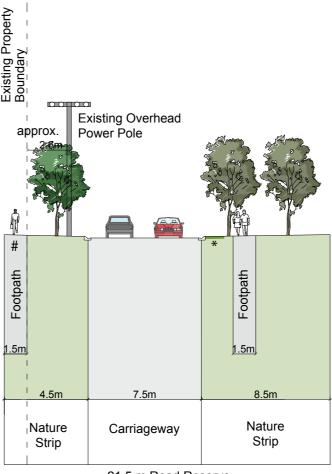
- Two circulation lanes plus indented parking on both sides.
- Where road reserve abuts public open space, footpath is required on the developed edge only as long as footpaths are provided within the reserve & are readily accessible from the street.
- When this street type abuts a school, the verge should be hardstand with tree grates rather than grassed & planted.
- Trees must be provided in outstands on the side where overhead powerlines exist.
- On the side where native vegetation is to be retained, indented parking is to be provided between vegetated areas.
- Where native vegetation constrains delivery of a footpath and services within the existing road reserve, additional land may need to be provided as part of the subdivision of abutting land.
- * 1.5m setback from kerb to trees and poles.
- # Location of footpath varies to fit with existing vegetation. 2.5m path required abutting school sites.

Road Cross Sections - Access Street Level 2 Officer Precinct Structure Plan



ref.: 3410344U date: 08 June 2011 rev.: C drawn: RL

checked: DL


planning & urban design melbourne - tel 9869 0800 © smec australia pty ltd abn 47 065 475 149 trading as smec urban

20m Road Reserve

Section 5d: Access Street - Level 2 Constrained Type 2

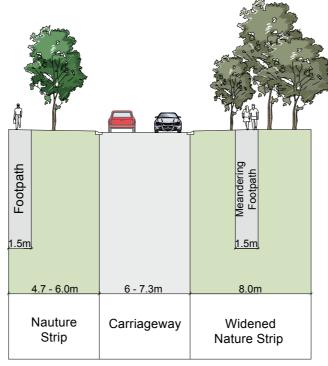
- This section applies to Tivendale Road, north of the Connector Street Boulevard where the pavement, kerb and channel including major drainage pipes have already been constructed.
- * 1.5m setback from kerb to trees and poles.
- # 2.5m footpath required abutting school sites.

21.5 m Road Reserve


Section 5e: Access Street - Level 2 Constrained Type 3

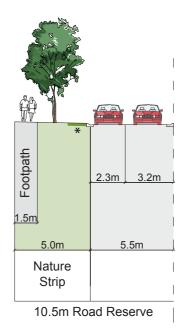
- This section applies to Tivendale Road, north of the Connector Street Boulevard, where there is no existing pavement.
- Additional land to be provided from west for footpath, enabling vegetation retention on the east side and street trees on the west side, avoiding existing power poles.
- * 1.5m setback from kerb to trees and poles.
- # 1.5m footpath to be delivered as part of abutting development on the west side.

Road Cross Sections - Access Street Level 2 Officer Precinct Structure Plan



16m Road Reserve

Section 6: Access Street - Level 1


- Sufficient pavement width for two circulation lanes plus 'informal' on-street parking (unmarked spaces).
- Refer to Cardinia Shire Council Standard drawing Local Street for minimum standards.
- Where road reserve abuts public open space, footpath is required on the developed edge only as long as footpaths are provided within the reserve & are readily accessible from the street.
- All services, including drainage, are to be located back of kerb.

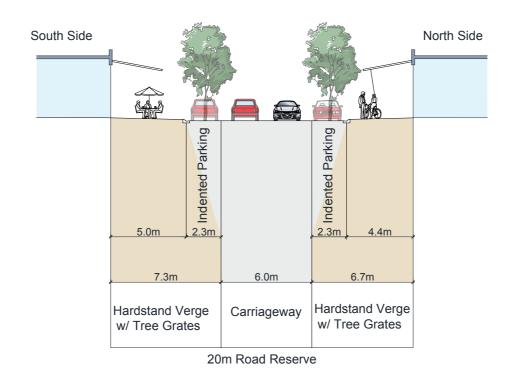
20m Road Reserve

Section 6a: Access Street -Level 1 Rural Style Road

- This section applies to McMullen Road, north of the Connector Boulevard.
- Sufficient pavement width for two circulation lanes plus 'informal' on-street parking (unmarked spaces).
- 6m carriageway permitted if vehicle passing areas provided (i.e indented bays).
- Design should minimise impact on existing vegetation within road reserve
- * 1.5m setback from kerb to trees and poles.
- # Location of footpath varies to accommodate existing vegetation.

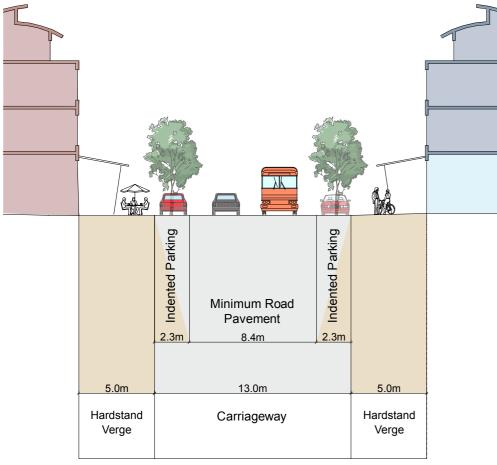
Abuts Arterial Section 1 or 2

Section 7: Service Road


- Parallel parking on developed edge of road.
- Single-lane, one way traffic.
- May be utilised for either service roads, connecting to an Arterial Road (Section 1 or 2) or 'loop roads' that run parallel to an Arterial Road.
- * 1.5m setback from kerb to trees and poles.

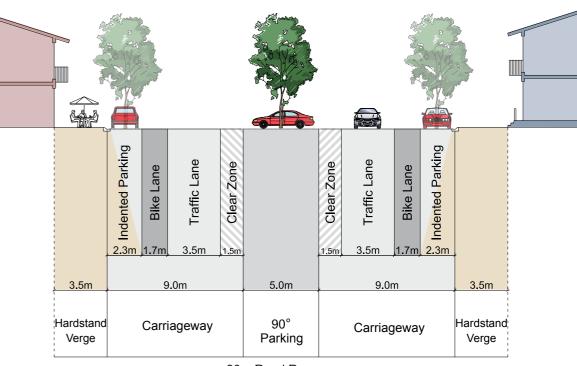
Road Cross Sections - Access Street Level 1 & Service Road
Officer Precinct Structure Plan

checked: DL


^{1.5}m setback from kerb to trees and poles.

Section 8: Access Street Level 2 - Neighbourhood Activity Centre Main Street

Road Cross Sections - NAC Main Streets Officer Precinct Structure Plan

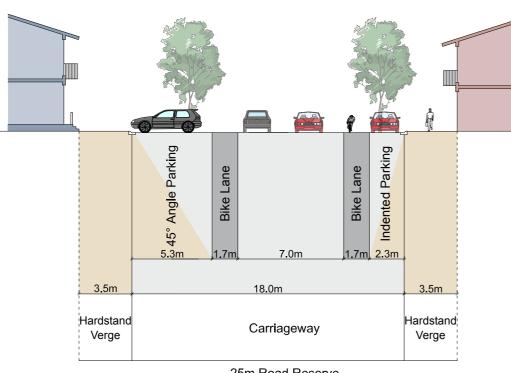


23m Road Reserve

Section M1: Main Street - Major Activity Centre

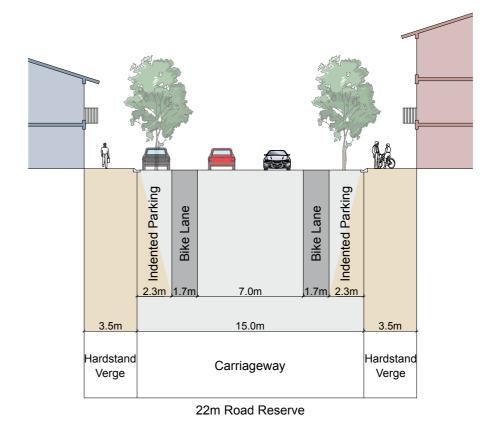
■ Hardstand verges & tree grates provided in indented parking areas.

30m Road Reserve


Section M2: Connector Street Boulevard - Parking Street

- Hardstand verges with tree grates to be provided.
- Outstands must accommodate street trees.
- On-street parking design is to meet relevant standards/guidelines.

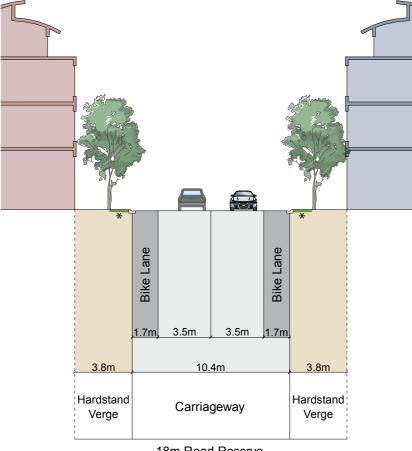
Road Cross Sections - MAC Main Streets Officer Precinct Structure Plan



25m Road Reserve

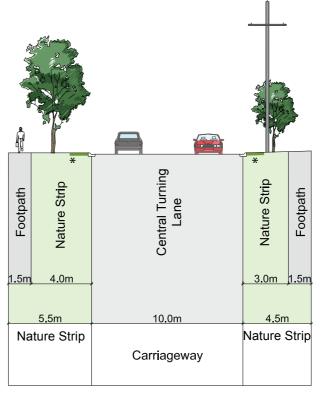
Section M3: Connector Street - Option 1

- Hardstand verges & tree grates provided in indented parking areas.
- If this cross section is applied it is to be to the satisfaction of the Department of Transport


Section M3: Connector Street - Option 2

■ Hardstand verges & tree grates provided in indented parking areas.

Road Cross Sections - MAC Connector Streets Officer Precinct Structure Plan



18m Road Reserve

Section M3a: Connector Street - Constrained Type 1

- No on street parking provided.
- Hardstand verges & tree grates provided.
- This section applies to the existing length of Gum Leaf

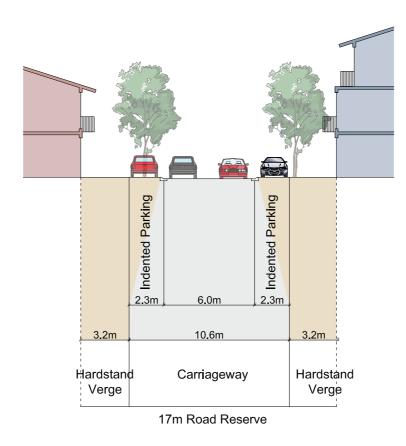
1.5m setback from kerb to trees and poles.

20.0m Road Reserve

Section M3b: Conncector Street -Constrained Type 2

- This section applies to Station Street and Officer South Road from Rix Road to Princes Highway.
- Extension of existing pavement kerb and channel in Station Street could accommodate up to three lanes with in carriageway.
- Existing footpath west side of rail line.
- Interim cross section. At Ultimate (when the North-South Arterial is constructed and the Station Street level crossing is closed) carriageway line marking could be modified to provide on-road bike lanes.

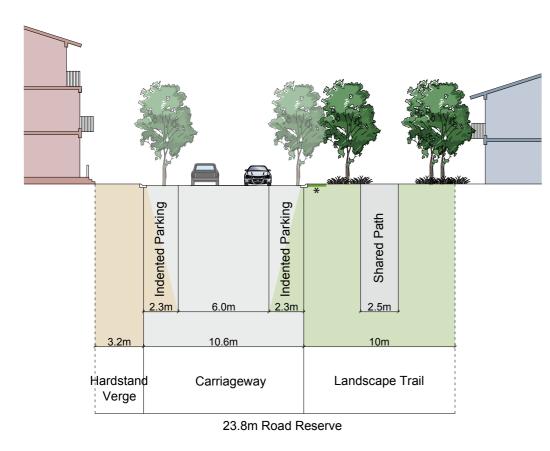
* 1.5m setback from kerb to trees and poles.


Road Cross Sections - MAC Connector Streets Officer Precinct Structure Plan

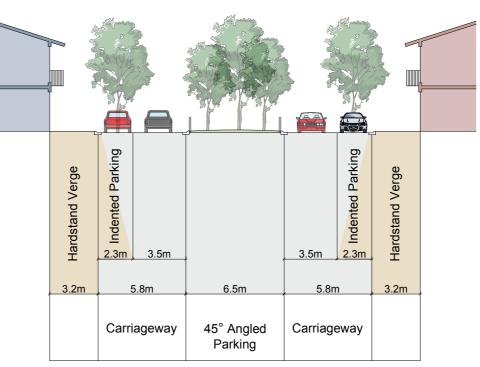
ref.: 3410344U rev.: B drawn: DM checked: DL

planning & urban design date: 27 May 2011 melbourne - tel 9869 0800 © smec australia pty ltd abn 47 065 475 149 trading as smec urban

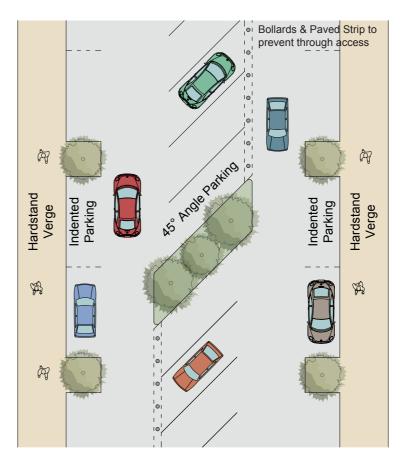
Section M4: Access Street - Level 2


■ Hardstand verges & tree grates provided in indented parking areas.

Road Cross Sections - MAC Access Street Level 2 Officer Precinct Structure Plan



checked: HW

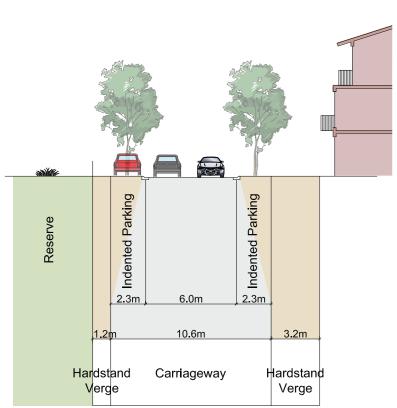


Section M4a: Access Street -Level 2 with Shared Landscape Trail

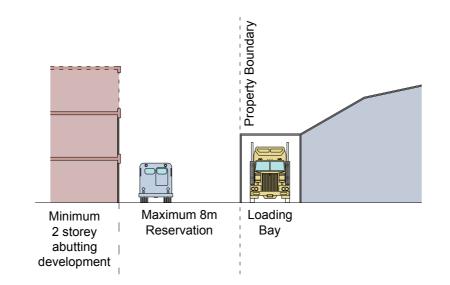
- Where road reserve abuts public open space, footpath is required on the developed edge only as long as footpaths are provided within the reserve & are readily accessible from the street.
- 2.5m pathway is to be constructed as a meandering trail.
- Hardstand verges & tree grates provided in indented parking areas.

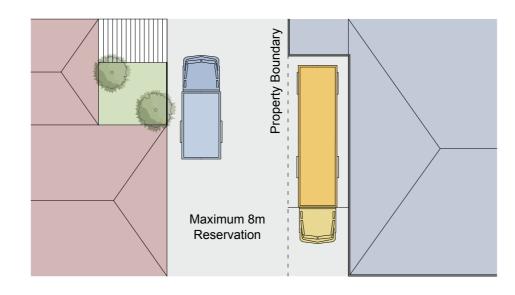
24.5m Road Reserve

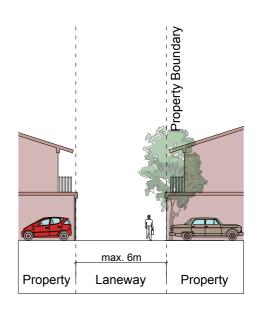
Section M4b: Access Street - Level 2 Parking Street

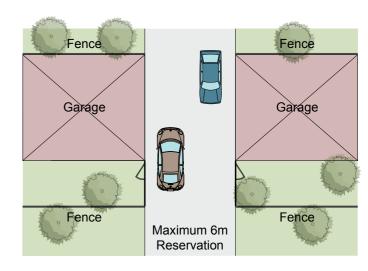

On street parking design is to meet relevant standards/guidelines

Road Cross Sections - Access Street Level 2 Officer Precinct Structure Plan






^{* 1.5}m setback from kerb to trees and poles.



15m Road Reserve

Section M5: Access Street - Level 1

- Hardstand verges & tree grates provided in indented parking areas.
- Optional indented parking abutting open space to the satisfaction of the responsible authority.
- Subject to services being delivered in an alternative location (ie outside of this road reserve)

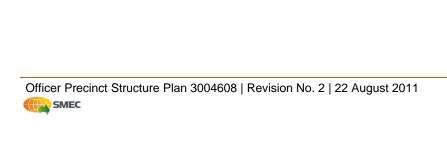
Section M6a: Laneway - Commercial Access

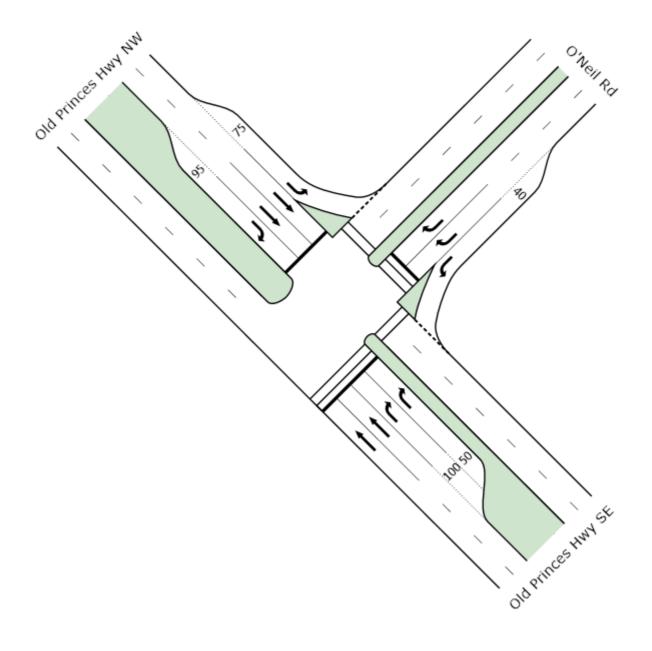
■ Buildings & fences to be built to the edge of the Laneway Road Reserve.

Section M6b: Laneway - Residential Access

■ Buildings & fences to be built to the edge of the Laneway Road Reserve.

Road Cross Sections - Access Street - Level 1 & Laneways Officer Precinct Structure Plan





APPENDIX 4 – SIDRA MOVEMENT DATA

INTERIM

Intersection 591 - AM Peak - 27/07/11 O'Neil Rd Old Princes Hwy

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and Pe	erform	ance													
	[Deman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Cap. I	Prob.
	L	Т	R	Total	HV	Сар.	Satn	Util.	Delay	Service		Distance	Length	Type		Block.
0 11 = 1	veh/h			veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South East:																
Lane 1	0	117	0	117	5.0	843	0.139	100	17.8	LOSA	3.0	22.0	240	_	0.0	0.0
Lane 2	0	117	0	117	5.0	843	0.139	100	17.8	LOS A	3.0	22.0	240	_	0.0	0.0
Lane 3	0	0	320	320	5.0	472 ¹	0.678	100	43.4	LOS B	13.6	99.4	100 T	urn Bay	0.0	4.5
Lane 4	0	0	190	190	5.0	280 ¹	0.678	100	41.7	LOS B	7.3	53.6	50 T	urn Bay	0.0	11.3
Approach	0	234	511	744	5.0		0.678		34.9	LOS B	13.6	99.4				
North East:	O'Neil I	Rd														
Lane 1	285	0	0	285	5.0	789 ¹	0.362	100	8.1	LOS A	0.8	5.8	40 T	urn Bay	0.0	0.0
Lane 2	0	0	431	431	5.0	649	0.663	100	40.2	LOS B	19.2	140.4	60	_	0.0	84.7
Lane 3	0	0	431	431	5.0	649	0.663	100	40.2	LOS B	19.2	140.4	60	_	0.0	84.7
Approach	285	0	861	1146	5.0		0.663		32.2	LOS B	19.2	140.4				
North West	Old Pri	inces F	lwy NW	!												
Lane 1	262	0	0	262	5.0	804 ¹	0.326	100	10.6	LOS A	0.9	6.4	75 T	urn Bay	0.0	0.0
Lane 2	0	157	0	157	5.0	302	0.521	100	50.9	LOSA	8.3	60.8	430	_	0.0	0.0
Lane 3	0	157	0	157	5.0	302	0.521	100	50.9	LOSA	8.3	60.8	430	_	0.0	0.0
Lane 4	0	0	1	1	5.0	91	0.012	100	72.8	LOS A	0.1	0.4	95 T	urn Bay	0.0	0.0
Approach	262	315	1	578	5.0		0.521		32.6	LOS A	8.3	60.8		•		
Intersection				2468	5.0		0.678		33.1	LOS B	19.2	140.4				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

1 Reduced capacity due to a short lane effect

Processed: Friday, 29 July 2011 8:55:47 AM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 27July)-Interim2021-AM&PM\Revised SIDRA_110727 (FinalInterim)\591.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 591 - AM peak - 27/07/11

Intersection 591 - PM Peak - 27/07/11 O'Neil Rd Old Princes Hwy

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and Pe	erform	nance													
		Deman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Cap. F	Prob.
	L	T	R	Total	HV	Сар.	Satn	Util.	Delay	Service	Vehicles	Distance	Length	Туре		Block.
	veh/h			veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South East:			lwy SE													
Lane 1	0	218	0	218	5.0	1129	0.193	100	7.1	LOSA	3.1	22.8	240	_	0.0	0.0
Lane 2	0	218	0	218	5.0	1129	0.193	100	7.1	LOSA	3.1	22.8	240	_	0.0	0.0
Lane 3	0	0	164	164	5.0	272	0.602	100	62.7	LOS B	8.9	65.2	100 T	urn Bay	0.0	0.0
Lane 4	0	0	122	122	5.0	202 ¹	0.602	100	61.3	LOS B	6.4	46.9	50 T	urn Bay	0.0	0.0
Approach	0	437	285	722	5.0		0.602		28.8	LOS B	8.9	65.2				
North East:	O'Neil I	Rd														
Lane 1	511	0	0	511	5.0	865 ¹	0.590	100	8.3	LOS A	1.9	14.0	40 T	urn Bay	0.0	0.0
Lane 2	0	0	131	131	5.0	377	0.347	100	51.7	LOSA	6.2	45.2	60	_	0.0	0.0
Lane 3	0	0	131	131	5.0	377	0.347	100	51.7	LOSA	6.2	45.2	60	_	0.0	0.0
Approach	511	0	262	773	5.0		0.590		23.0	LOS A	6.2	45.2				
North West:	Old Pri	inces F	lwy NW	!												
Lane 1	861	0	0	861	5.0	1360 ¹	0.633	100	11.3	LOS B	3.7	27.0	75 T	urn Bay	0.0	0.0
Lane 2	0	184	0	184	5.0	938	0.196	100	14.1	LOSA	4.2	30.5	430	_	0.0	0.0
Lane 3	0	184	0	184	5.0	938	0.196	100	14.1	LOSA	4.2	30.5	430	_	0.0	0.0
Lane 4	0	0	1	1	5.0	91	0.012	100	72.8	LOS A	0.1	0.4	95 T	urn Bay	0.0	0.0
Approach	861	367	1	1229	5.0		0.633		12.2	LOS B	4.2	30.5		<u> </u>		
Intersection				2724	5.0		0.633		19.7	LOS B	8.9	65.2				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

1 Reduced capacity due to a short lane effect

Processed: Friday, 29 July 2011 8:55:48 AM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 27July)-Interim2021-AM&PM\Revised SIDRA_110727 (FinalInterim)\591.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 591 - PM peak - 27/07/11

Intersection 591 - AM Peak - 27/07/11

O'Neil Rd Old Princes Hwy

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Leading Right Turn Input Sequence: A, A1, B, C Output Sequence: A, A1, B, C

Phase Timing Results

Phase	Α	A1	В	С
Green Time (sec)	6	28	19	43
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	12	34	25	49
Phase Split	10 %	28 %	21 %	41 %

Processed: Friday, 29 July 2011 8:55:47 AM SIDRA INTERSECTION 5.1.5.2006

Intersection 591 - PM Peak - 27/07/11

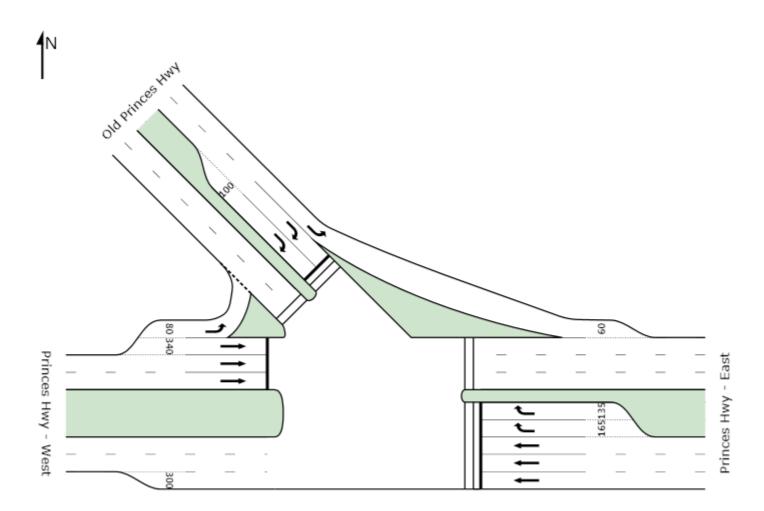
O'Neil Rd Old Princes Hwy


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Leading Right Turn Input Sequence: A, A1, B, C Output Sequence: A, A1, B, C

Phase Timing Results


Phase	Α	A1	В	С
Green Time (sec)	6	6	59	25
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	12	12	65	31
Phase Split	10 %	10 %	54 %	26 %

Processed: Friday, 29 July 2011 8:55:48 AM SIDRA INTERSECTION 5.1.5.2006

Intersection 593 / 595 - AM Peak - 27/07/11 Princes Hwy Old Princes Hwy

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erform	nance													
	ı	Deman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Cap. F	Prob.
	L	Τ.	R	Total	HV	Сар.	Satn	Util.	Delay	Service	Vehicles	Distance	Length	Type	Adj. E	
			veh/h	veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
East: Prince	es Hwy															
Lane 1	0	827	0	827	5.0	1415	0.584	100	1.7	LOSA	5.3	38.9	500	_	0.0	0.0
Lane 2	0	827	0	827	5.0	1415	0.584	100	1.7	LOSA	5.3	38.9	500	_	0.0	0.0
Lane 3	0	827	0	827	5.0	1415	0.584	100	1.7	LOSA	5.3	38.9	500	-	0.0	0.0
Lane 4	0	0	90	90	5.0	242	0.373	100	61.2	LOS A	4.8	34.8	165 T	Turn Bay	0.0	0.0
Lane 5	0	0	90	90	5.0	242	0.373	100	61.2	LOS A	4.8	34.8	135 T	Turn Bay	0.0	0.0
Approach	0	2481	180	2661	5.0		0.584		5.7	LOSA	5.3	38.9				
North West	:: Old Pr	inces l	Hwy													
Lane 1	252	0	0	252	5.0	1812	0.139	100	9.6	Χ	Х	X	240	_	0.0	X
Lane 2	0	0	175	175	5.0	287	0.609	100	64.5	LOS B	9.5	69.3	240	_	0.0	0.0
Lane 3	0	0	175	175	5.0	287	0.609	100	64.5	LOS B	9.5	69.3	100 T	urn Bay	0.0	0.0
Approach	252	0	349	601	5.0		0.609		41.5	LOS B	9.5	69.3				
West: Princ	es Hwy	- Wes	t													
Lane 1	567	0	0	567	5.0	1426 ¹	0.398	100	13.2	LOS A	1.8	13.4	80 T	Turn Bay	0.0	0.0
Lane 2	0	834	0	834	5.0	1065	0.783	100	14.7	LOS C	29.5	215.3	340 T	urn Bay	0.0	0.0
Lane 3	0	834	0	834	5.0	1065	0.783	100	14.7	LOS C	29.5	215.3	500	_	0.0	0.0
Lane 4	0	834	0	834	5.0	1065	0.783	100	14.7	LOS C	29.5	215.3	500	_	0.0	0.0
Approach	567	2501	0	3068	5.0		0.783		14.4	LOS C	29.5	215.3				
Intersection	ı			6331	5.0		0.783		13.3	LOS C	29.5	215.3				

X: Not applicable for Continuous lane.

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

1 Reduced capacity due to a short lane effect

Processed: Friday, 29 July 2011 9:01:07 AM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Intersection 593 / 595 - PM Peak - 27/07/11 Princes Hwy Old Princes Hwy

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erform	nance													
	ı	Deman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Cap.	Prob.
	L	Τ.	R	Total	HV	Cap.	Satn	Util.	Delay	Service	Vehicles	Distance	Length	Type		Block.
D.			veh/h	veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
East: Prince	,															
Lane 1	0	987	0	987	5.0	1399	0.705	100	2.0	LOS C	8.6	62.7	500	-	0.0	0.0
Lane 2	0	987	0	987	5.0	1399	0.705	100	2.0	LOS C	8.6	62.7	500	_	0.0	0.0
Lane 3	0	987	0	987	5.0	1399	0.705	100	2.0	LOS C	8.6	62.7	500	_	0.0	0.0
Lane 4	0	0	187	187	5.0	242	0.774	100	66.9	LOS C	11.1	81.1	165 T	urn Bay	0.0	0.0
Lane 5	0	0	187	187	5.0	242	0.774	100	66.9	LOS C	11.1	81.1	135 T	urn Bay	0.0	0.0
Approach	0	2961	374	3335	5.0		0.774		9.3	LOS C	11.1	81.1		•		
North West	:: Old Pr	inces F	lwy													
Lane 1	314	0	0	314	5.0	1812	0.173	100	9.6	Χ	X	X	240	_	0.0	Χ
Lane 2	0	0	284	284	5.0	302	0.940	100	84.0	LOS D	19.8	144.4	240	_	0.0	0.0
Lane 3	0	0	284	284	5.0	302	0.940	100	84.0	LOS D	19.8	144.4	100 T	urn Bay	0.0	38.6
Approach	314	0	567	881	5.0		0.940		57.5	LOS D	19.8	144.4		•		
West: Princ	es Hwy	- Wes	t													
Lane 1	349	0	0	349	5.0	1422 ¹	0.246	100	13.3	LOS A	1.1	7.8	80 T	urn Bay	0.0	0.0
Lane 2	0	976	0	976	5.0	1049	0.930	100	32.2	LOS D	57.9	422.4	340 T	urn Bay	0.0	24.7
Lane 3	0	976	0	976	5.0	1049	0.930	100	32.2	LOS D	57.9	422.4	500		0.0	0.0
Lane 4	0	976	0	976	5.0	1049	0.930	100	32.2	LOS D	57.9	422.4	500	_	0.0	0.0
Approach	349	2929	0	3279	5.0		0.930		30.2	LOS D	57.9	422.4				
Intersection	1			7495	5.0		0.940		24.1	LOS D	57.9	422.4				

X: Not applicable for Continuous lane.

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

1 Reduced capacity due to a short lane effect

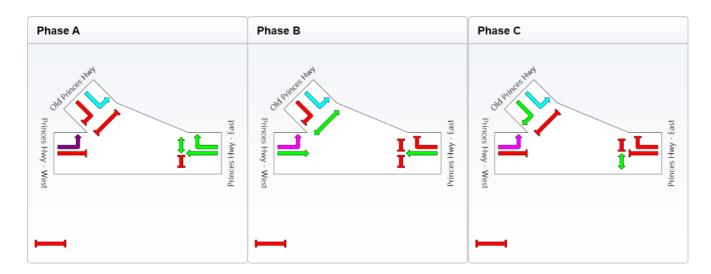
Processed: Friday, 29 July 2011 9:01:08 AM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

PHASING SUMMARY

Site: 593 / 595 - AM Peak - 27/07/11 - Continuous

Intersection 593 / 595 - AM Peak - 27/07/11 Princes Hwy Old Princes Hwy


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Custom Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	16	67	19
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	22	73	25
Phase Split	18 %	61 %	21 %

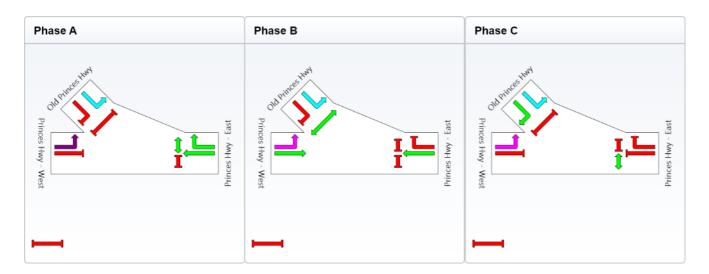
Processed: Friday, 29 July 2011 9:01:07 AM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

PHASING SUMMARY

Site: 593 / 595 - PM Peak - 27/07/11 - Continuous

Intersection 593 / 595 - PM Peak - 27/07/11
Princes Hwy
Old Princes Hwy
Signals - Fixed Time - Cycle Time = 120 secon

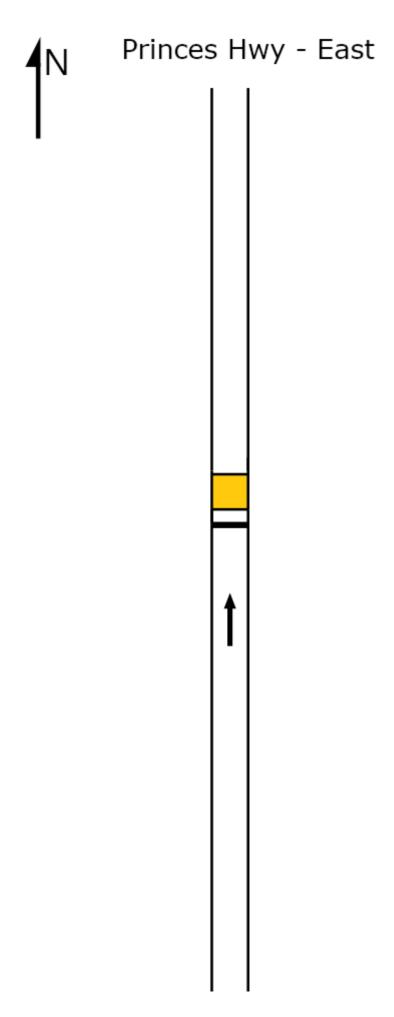

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Custom Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	16	66	20
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	22	72	26
Phase Split	18 %	60 %	22 %



Processed: Friday, 29 July 2011 9:01:08 AM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Old Princes Hwy

Site: 593 / 595 - AM Peak - 27/07/11 - Ped signals

Signalised pedestrian crossing across one-way road
Pedestrian Crossing (Signals) - Actuated Cycle Time = 26 seconds

		eman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Cap. F	Prob.
	L	Т	R	Total	HV	Cap.	Satn	Util.	Delay	Service	Vehicles	Distance	Length	Type	Adj. E	Block.
	veh/h	veh/h	veh/h	veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: Old	Princes	Hwy														
Lane 1	0	252	0	252	5.0	881	0.286	100	5.1	LOSA	2.1	15.2	240	_	0.0	0.0
Approach	0	252	0	252	5.0		0.286		5.1	LOS A	2.1	15.2				
Intersection	l			252	5.0		0.286		5.1	LOSA	2.1	15.2				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

Processed: Thursday, 28 July 2011 9:49:59 AM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

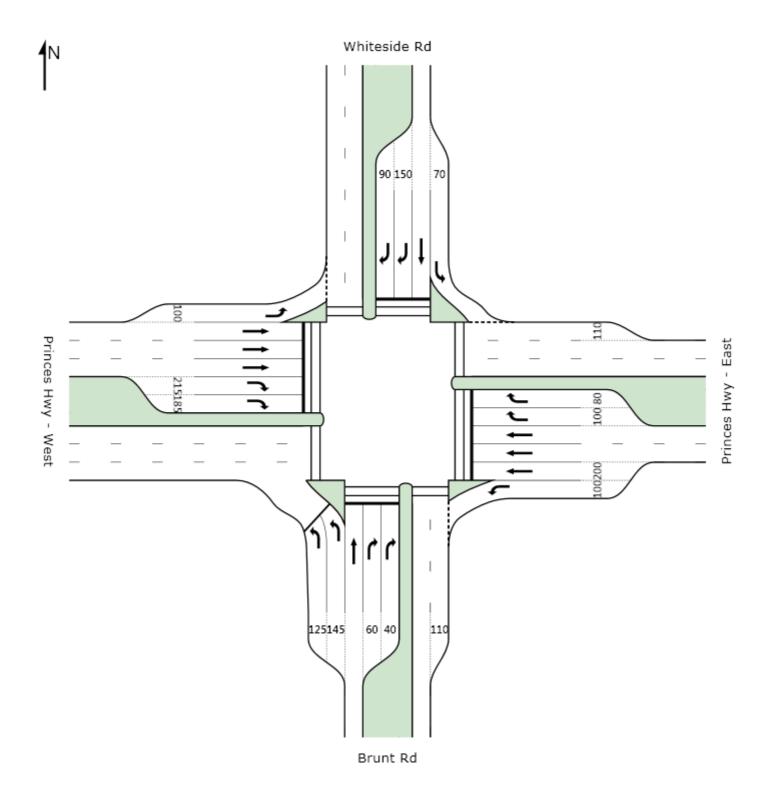
Site: 593 / 595 - PM Peak - 27/07/11 - Ped signals

Signalised pedestrian crossing across one-way road
Pedestrian Crossing (Signals) - Actuated Cycle Time = 26 seconds

Lane Use	and P	erforn	nance													
		Deman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Cap. I	Prob.
	L	Т	R	Total	HV	Сар.	Satn	Util.	Delay	Service	Vehicles	Distance	Length	Type	Adj. l	Block.
	veh/h	veh/h	veh/h	veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: Old	Princes	Hwy														
Lane 1	0	314	0	314	5.0	881	0.356	100	5.3	LOSA	2.7	19.7	240	_	0.0	0.0
Approach	0	314	0	314	5.0		0.356		5.3	LOS A	2.7	19.7				
Intersection	1			314	5.0		0.356		5.3	LOS A	2.7	19.7				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.


Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

Processed: Thursday, 28 July 2011 9:49:59 AM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Intersection 598 - AM Peak - 27/07/11 Princes Hwy

Whiteside Rd / Brunt Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erform	ance												
		Demand		Total	HV	Сар.	Deg.	Lane Util.	Average		95% Back		Lane SL		Prob.
	veh/h	T veh/h	R veh/h	veh/h		veh/h	Satn v/c	UIII. %	Delay sec	Service	Vehicles veh	Distance	Length Type m	Adj. %	Block.
South: Brun		V G I I/ I I	VC11/11	VC11/11	/0	VC11/11	V/ O	/0	300		VOII			/0	/0
Lane 1	488	0	0	488	5.0	718 ¹	0.679	100	28.9	LOS B	15.7	114.4	125 Turn Ba	y 0.0	0.0
Lane 2	527	0	0	527	5.0	776 ¹	0.679	100	29.5	LOS B	17.7	129.6	145 Turn Ba	y 0.0	0.0
Lane 3	0	111	0	111	5.0	302	0.366	100	52.2	LOS A	5.6	41.1	160 –	0.0	0.0
Lane 4	0	0	28	28	5.0	247 ¹	0.113	100	57.3	LOS A	1.3	9.7	60 Turn Ba	y 0.0	0.0
Lane 5	0	0	20	20	5.0	173 ¹	0.113	100	56.9	LOS A	0.9	6.7	40 Turn Ba	y 0.0	0.0
Approach	1015	111	47	1173	5.0		0.679		32.5	LOS B	17.7	129.6			
East: Prince	s Hwy	- East													
Lane 1	24	0	0	24	5.0	857 ¹	0.028	100	16.7	LOS A	0.3	2.2	100 Turn Ba	y 0.0	0.0
Lane 2	0	383	0	383	5.0	398	0.963	100	75.4	LOS E	28.1	205.0	200 Turn Ba	y 0.0	7.2
Lane 3	0	383	0	383	5.0	398	0.963	100	75.4	LOS E	28.1	205.0	500 –	0.0	0.0
Lane 4	0	383	0	383	5.0	398	0.963	100	75.4	LOS E	28.1	205.0	500 –	0.0	0.0
Lane 5	0	0	59	59	5.0	91	0.657	100	75.6	LOS B	3.7	27.0	100 Turn Ba	y 0.0	0.0
Lane 6	0	0	59	59	5.0	91	0.657	100	75.6	LOS B	3.7	27.0	80 Turn Ba	y 0.0	0.0
Approach	24	1148	119	1292	5.0		0.963		74.3	LOS E	28.1	205.0			
North: White	eside R	.d													
Lane 1	112	0	0	112	5.0	548 ¹	0.204	100	11.8	LOS A	1.1	8.2	70 Turn Ba	y 0.0	0.0
Lane 2	0	144	0	144	5.0	302	0.477	100	50.5	LOSA	7.6	55.1	210 –	0.0	0.0
Lane 3	0	0	266	266	5.0	287	0.927	100	76.6	LOS D	18.1	132.1	150 Turn Ba	y 0.0	0.0
Lane 4	0	0	266	266	5.0	287	0.927	100	76.6	LOS D	18.1	132.1	90 Turn Ba	y 0.0	40.1
Approach	112	144	532	787	5.0		0.927		62.7	LOS D	18.1	132.1			
West: Prince	es Hwy	- West													
Lane 1	116	0	0	116	5.0	1404 ¹	0.082	100	10.2	LOS A	0.3	1.9	100 Turn Ba	y 0.0	0.0
Lane 2	0	450	0	450	5.0	827	0.544	68 ⁶	23.0	LOS A	16.1	117.2	500 –	0.0	0.0
Lane 3	0	665	0	665	5.0	827	0.804	100	28.1	LOS C	31.1	227.3	500 –	0.0	0.0
Lane 4	0	628	35 ⁰	663	5.0	824	0.804	100	28.2	LOS C	31.1	226.8	500 –	0.0	0.0
Lane 5	0	0	341	341	5.0	498	0.684	68 ⁵	52.6	LOS B	17.0	124.0	215 Turn Ba	y 0.0	0.0
Lane 6	0	0	498	498	5.0	498	1.000 ³	100	100.5 ⁸	LOS F	<mark>41.4</mark> 8	301.9 ⁸	185 Turn Ba	y 0.0	50.0
Approach	116	1742	875	2733	5.0		1.000		42.8	LOS F	41.4	301.9			
Intersection				5984	5.0		1.000		50.2	LOS F	41.4	301.9			

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

- 0 Excess flow from back of an adjacent short lane
- 1 Reduced capacity due to a short lane effect
- 3 x = 1.00 due to short lane.
- 5 Lane underutilisation determined by program
- 6 Lane underutilisation due to downstream effects
- 8 Delay, queue length and stops for the short lane have been cut down to fit in the queuing space. You may wish to change the short lane to a full lane to investigate the effect on the adjacent lane performance.

Processed: Friday, 29 July 2011 9:07:55 AM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 27July)-Interim2021-AM&PM\Revised SIDRA_110727 (FinalInterim)\598.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 598 - AM Peak - 27/07/11

Intersection 598 - PM Peak - 27/07/11 Princes Hwy

Whiteside Rd / Brunt Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use a	and P	erform	ance												
			d Flows		HV	Сар.			Average		95% Back		Lane SL		Prob.
,	L veh/h	T veh/h	R veh/h	Total veh/h		veh/h	Satn v/c	Util. %	Delay sec	Service	Vehicles veh	Distance	Length Type m	Adj. %	Block.
South: Brunt		VCII/II	VCII/II	VCII/II	/0	VCII/II	V/C	/0	300		٧٥١١	- '''		70	/0
Lane 1	433	0	0	433	5.0	573 ¹	0.756	100	42.9	LOS C	19.3	141.2	125 Turn Ba	y 0.0	16.0
Lane 2	473	0	0	473	5.0	626 ¹	0.756	100	43.5	LOS C	21.9	160.2	145 Turn Ba	y 0.0	14.0
Lane 3	0	165	0	165	5.0	302	0.547	100	53.9	LOSA	8.8	64.3	160 –	0.0	0.0
Lane 4	0	0	14	14	5.0	249 ¹	0.057	100	56.7	LOS A	0.7	4.9	60 Turn Ba	y 0.0	0.0
Lane 5	0	0	10	10	5.0	175 ¹	0.057	100	56.4	LOS A	0.5	3.4	40 Turn Ba	y 0.0	0.0
Approach	906	165	24	1096	5.0		0.756		45.1	LOS C	21.9	160.2			
East: Princes	s Hwy	- East													
Lane 1	47	0	0	47	5.0		0.042	100	12.1	LOSA	0.2	1.6	100 Turn Ba	y 0.0	0.0
Lane 2	0	620	0	620	5.0	620	1.000 ³	80 ⁵	<mark>65.8</mark> 8	LOS E	<mark>44.7</mark> 8	326.4 ⁸	200 Turn Ba	y 0.0	50.0
Lane 3	0	776	0	776	5.0	620	1.252	100	286.8	LOS F	116.9	853.6	500 –	0.0	54.2
Lane 4	0	776	0	776	5.0	620	1.252	100	286.8	LOS F	116.9	853.6	500 –	0.0	54.2
Lane 5	0	0	118	118	5.0	136	0.872	100	78.2	LOS C	7.7	56.0	100 Turn Ba	y 0.0	0.0
Lane 6	0	0	118	118	5.0	136	0.872	100	78.2	LOS C	7.7	56.0	80 Turn Ba	y 0.0	0.0
Approach	47	2173	237	2457	5.0		1.252		205.6	LOS F	116.9	853.6			
North: White	side R	ld													
Lane 1	244	0	0	244	5.0	556 ¹	0.439	100	17.1	LOS A	4.6	33.9	70 Turn Ba	y 0.0	0.0
Lane 2	0	132	0	132	5.0	302	0.436	100	50.1	LOS A	6.8	49.8	210 –	0.0	0.0
Lane 3	0	0	118	118	5.0	287	0.411	100	57.6	LOS A	6.1	44.4	150 Turn Ba	y 0.0	0.0
Lane 4	0	0	118	118	5.0	287	0.411	100	57.6	LOSA	6.1	44.4	90 Turn Ba	y 0.0	0.0
Approach	244	132	236	612	5.0		0.439		39.8	LOS A	6.8	49.8			
West: Prince	s Hwy	- West													
Lane 1	652	0	0	652	5.0	1310 ¹	0.497	100	10.7	LOS A	2.7	19.8	100 Turn Ba	y 0.0	0.0
Lane 2	0	496	0	496	5.0	779	0.637	68 ⁶	26.9	LOS B	20.1	146.9	500 –	0.0	0.0
Lane 3	0	734	0	734	5.0	779	0.942	100	51.2	LOS D	49.7	362.8	500 –	0.0	0.0
Lane 4	0	348	366 ⁰	715	5.0	758	0.942	100	51.7	LOS D	48.6	354.7	500 –	0.0	0.0
Lane 5	0	0	348	348	5.0	287	1.212	100	269.9 ⁸	LOS F ⁸	48.1 ⁸	350.9 ⁸	215 Turn Ba	y 0.0	50.0
Lane 6	0	0	332	332	5.0	287	1.159	96 ⁵	224.8	LOS F	41.3	301.8	185 Turn Ba	y 0.0	50.0
Approach	652	1579	1046	3277	5.0		1.212		80.4	LOS F	49.7	362.8			
Intersection				7441	5.0		1.252		113.2	LOS F	116.9	853.6			

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

- 0 Excess flow from back of an adjacent short lane
- 1 Reduced capacity due to a short lane effect
- 3 x = 1.00 due to short lane.
- 5 Lane underutilisation determined by program
- 6 Lane underutilisation due to downstream effects
- 8 Delay, queue length and stops for the short lane have been cut down to fit in the queuing space. You may wish to change the short lane to a full lane to investigate the effect on the adjacent lane performance.

Processed: Friday, 29 July 2011 9:07:56 AM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

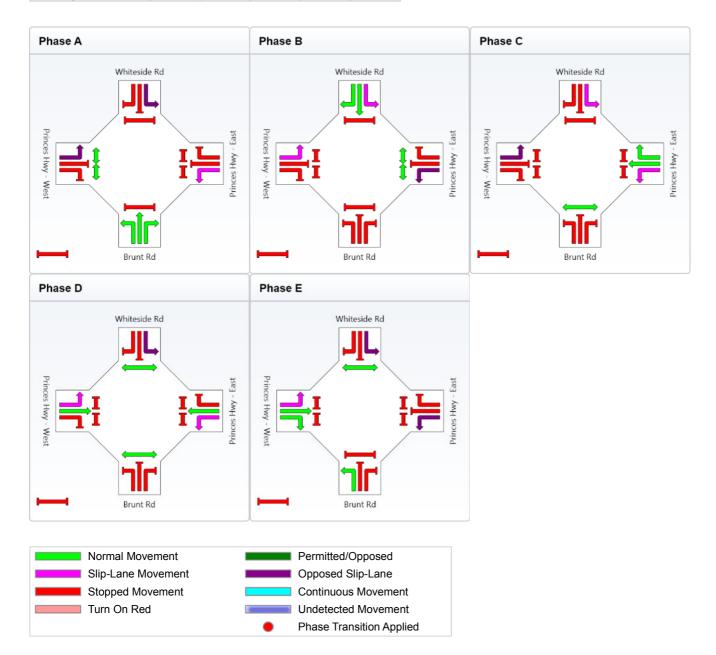
Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 27July)-Interim2021-AM&PM\Revised SIDRA_110727 (FinalInterim)\598.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

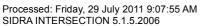
Site: 598 - PM Peak - 27/07/11

Intersection 598 - AM Peak - 27/07/11

Princes Hwy

Whiteside Rd / Brunt Rd


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Split phase Input Sequence: A, B, C, D, E Output Sequence: A, B, C, D, E

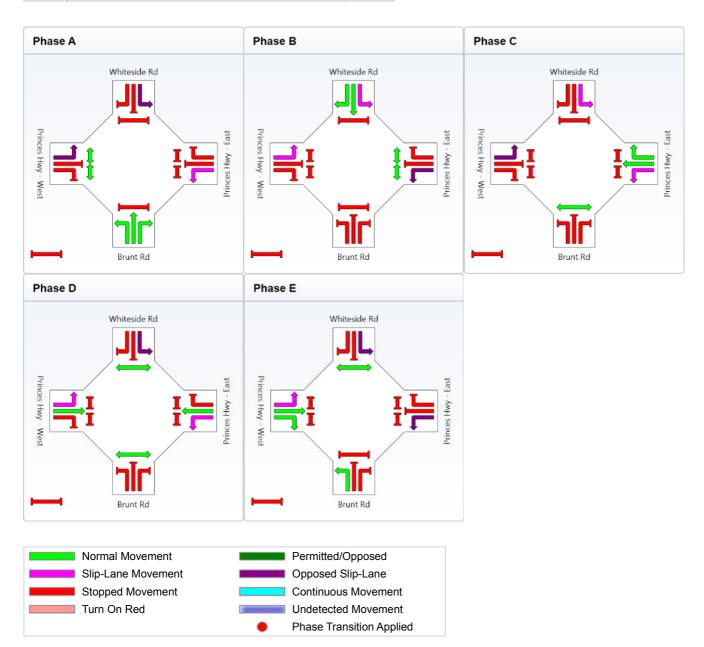
Phase Timing Results

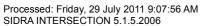
Phase	Α	В	С	D	E
Green Time (sec)	19	19	6	13	33
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	25	25	12	19	39
Phase Split	21 %	21 %	10 %	16 %	33 %

Intersection 598 - PM Peak - 27/07/11

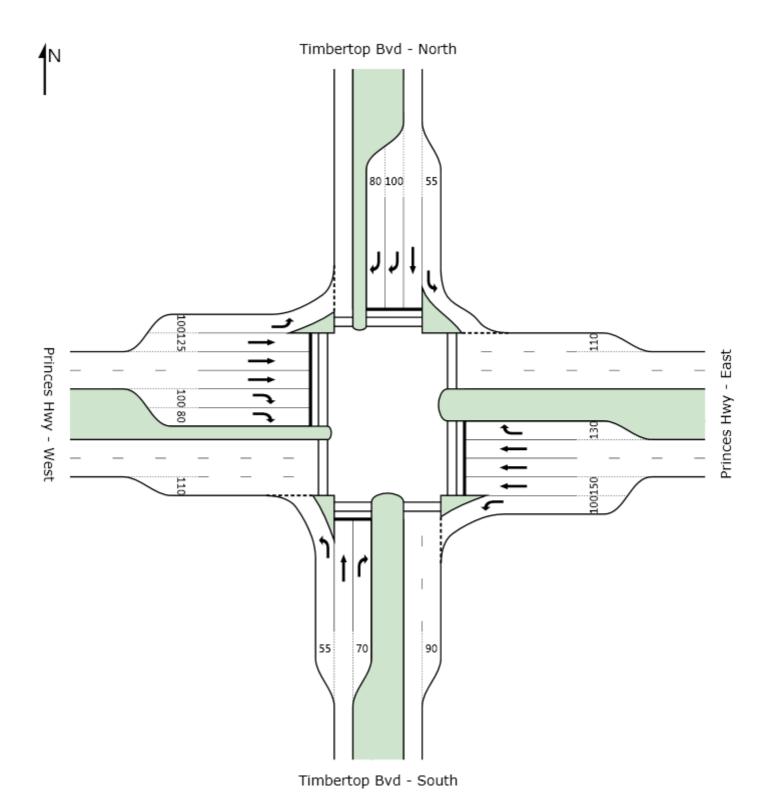
Princes Hwy

Whiteside Rd / Brunt Rd


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Split phase Input Sequence: A, B, C, D, E Output Sequence: A, B, C, D, E


Phase Timing Results

Phase	Α	В	С	D	Е
Green Time (sec)	19	19	9	24	19
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	25	25	15	30	25
Phase Split	21 %	21 %	13 %	25 %	21 %

Intersection 604 - AM Peak - 27/07/11 Princes Hwy Timbertop Bvd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use a	and P	erform	ance													
	Į.	Demano	d Flows				Deg.	Lane	Average	Level of	95% Back		Lane	SL		Prob.
	L	T	R	Total	HV	Cap.	Satn	Util.	Delay	Service		Distance	Length	Type		Block.
South: Timb		veh/h		veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
Lane 1	622	0 - Sva	0	622	5.0	061	0.647	100	8.9	LOS B	3.3	24.1	55 7	Turn Bay	0.0	0.0
Lane 2	022	24	0	24	5.0		0.080	100	46.6	LOS B	3.3 1.1	8.3	305	ин Бау	0.0	0.0
Lane 3	0	0	29	29	5.0	287	0.000	100	54.5	LOSA	1.1	0.3 10.2		– Turn Bav	0.0	0.0
	622	24	29	676	5.0	201	0.103	100	12.2	LOS A	3.3	24.1	701	ин Бау	0.0	0.0
Approach	022	24	29	676	5.0		0.047		12.2	LOS B	3.3	24.1				
East: Prince	s Hwy	- East														
Lane 1	17	0	0	17	5.0		0.012	100	10.1	LOSA	0.0	0.2	100 T	Turn Bay	0.0	0.0
Lane 2	0	105	0	105	5.0	831 ¹	0.126	66 ⁶	16.2	LOS A	2.5	18.5	150 T	Turn Bay	0.0	0.0
Lane 3	0	168	0	168	5.0	875	0.192	100	16.9	LOSA	4.3	31.1	500	_	0.0	0.0
Lane 4	0	168	0	168	5.0	875	0.192	100	16.9	LOSA	4.3	31.1	500	_	0.0	0.0
Lane 5	0	0	62	62	5.0	91	0.686	100	75.9	LOS B	3.9	28.4	130 T	Turn Bay	0.0	0.0
Approach	17	441	62	520	5.0		0.686		23.6	LOS B	4.3	31.1				
North: Timbe	ertop B	vd - No	rth													
Lane 1	68	0	0	68	5.0	546 ¹	0.125	100	9.6	LOS A	0.4	2.8	55 T	Turn Bay	0.0	0.0
Lane 2	0	25	0	25	5.0	254	0.099	100	49.7	LOS A	1.3	9.1	230	-	0.0	0.0
Lane 3	0	0	124	124	5.0	242	0.512	100	61.3	LOSA	6.7	49.2	100 T	urn Bay	0.0	0.0
Lane 4	0	0	124	124	5.0	242	0.512	100	61.3	LOSA	6.7	49.2	80 T	Turn Bay	0.0	0.0
Approach	68	25	247	341	5.0		0.512		50.0	LOS A	6.7	49.2				
West: Prince	es Hwy	- West														
Lane 1	209	0	0	209	5.0		0.141	100	10.1	LOSA	0.4	3.2	100 T	Turn Bay	0.0	0.0
Lane 2	0	337	0	337	5.0	719 ¹	0.469	66 ⁶	18.8	LOSA	9.9	72.4	125 T	Turn Bay	0.0	0.0
Lane 3	0	623	0	623	5.0	875	0.712	100	23.0	LOS C	24.9	181.7	500	-	0.0	0.0
Lane 4	0	623	0	623	5.0	875	0.712	100	23.0	LOS C	24.9	181.7	500	-	0.0	0.0
Lane 5	0	0	24	24	5.0	91	0.265	57 ⁶	73.0	LOSA	1.4	10.4	100 T	Turn Bay	0.0	0.0
Lane 6	0	0	42	42	5.0	91	0.467	100	74.1	LOSA	2.6	18.7	80 T	Turn Bay	0.0	0.0
Approach	209	1583	66	1859	5.0		0.712		22.6	LOS C	24.9	181.7				
Intersection				3396	5.0		0.712		23.4	LOS C	24.9	181.7				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 6 Lane underutilisation due to downstream effects

Processed: Friday, 29 July 2011 9:17:55 AM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 27July)-Interim2021-AM&PM\Revised SIDRA_110727 (FinalInterim)\604.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 604 - AM peak - 27/07/11

Intersection 604 - PM Peak - 27/07/11 Princes Hwy Timbertop Bvd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erform	nance													
		Deman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Сар.	Prob.
	L	Т	R	Total	HV	Сар.	Satn	Util.	Delay	Service	Vehicles	Distance	Length	Type		Block.
0 " 7"		veh/h		veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: Timb	•					4001		400			4.0	44.0				
Lane 1	79	0	0	79	5.0	462 ¹	0.171	100	20.0	LOSA	1.6	11.8		Turn Bay	0.0	0.0
Lane 2	0	25	0	25	5.0	302	0.084	100	46.6	LOSA	1.2	8.7	305		0.0	0.0
Lane 3	0	0	17	17	5.0	287	0.059	100	54.0	LOS A	8.0	5.8	70 I	Turn Bay	0.0	0.0
Approach	79	25	17	121	5.0		0.171		30.3	LOS A	1.6	11.8				
East: Prince	es Hwy	- East														
Lane 1	29	0	0	29	5.0		0.026	100	10.3	LOS A	0.1	0.5	100 T	Turn Bay	0.0	0.0
Lane 2	0	482	0	482	5.0	675 ¹	0.714	66 ⁶	29.8	LOS C	20.7	151.0	150 T	Turn Bay	0.0	5.6
Lane 3	0	793	0	793	5.0	731	1.085	100	138.9	LOS F	84.3	615.4	500	_	0.0	23.9
Lane 4	0	793	0	793	5.0	731	1.085	100	138.9	LOS F	84.3	615.4	500	-	0.0	23.9
Lane 5	0	0	68	68	5.0	226	0.302	100	62.6	LOS A	3.6	26.3	130 T	Turn Bay	0.0	0.0
Approach	29	2068	68	2166	5.0		1.085		110.5	LOS F	84.3	615.4				
North: Timb	ertop B	svd - No	orth													
Lane 1	62	0	0	62	5.0	758 ¹	0.082	100	8.4	LOSA	0.2	1.1	55 T	Turn Bay	0.0	0.0
Lane 2	0	24	0	24	5.0	254	0.095	100	49.7	LOSA	1.2	8.8	230	_ `	0.0	0.0
Lane 3	0	0	134	134	5.0	242	0.553	100	61.6	LOSA	7.4	53.7	100 T	urn Bay	0.0	0.0
Lane 4	0	0	134	134	5.0	242	0.553	100	61.6	LOSA	7.4	53.7	80 T	urn Bay	0.0	0.0
Approach	62	24	267	354	5.0		0.553		51.4	LOS A	7.4	53.7				
West: Princ	es Hwy	· - West	t													
Lane 1	304	0	0	304	5.0	1440 ¹	0.211	100	10.2	LOS A	0.7	5.0	100 T	urn Bay	0.0	0.0
Lane 2	0	244	0	244	5.0			66 ⁶	25.4	LOS A	8.3	60.9		Turn Bay	0.0	0.0
Lane 3	0	431	0	431	5.0	731	0.590	100	28.8	LOSA	17.6	128.3	500	_	0.0	0.0
Lane 4	0	242	180 ⁰	422	5.0	715	0.590	100	28.8	LOSA	17.2	125.5	500	_	0.0	0.0
Lane 5	0	0	239	239	5.0	226	1.054	100	139.3 ⁸	LOS F				Turn Bay	0.0	50.0
Lane 6	0	0	226	226	5.0	226	1.000 ³	95 ⁵	103.0 ⁸	LOS F		_		Turn Bay	0.0	50.0
Approach	304	917	645	1866	5.0		1.054		48.4	LOS F	22.4	163.2				
Intersection	ו			4507	5.0		1.085		78.0	LOS F	84.3	615.4				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

- 0 Excess flow from back of an adjacent short lane
- 1 Reduced capacity due to a short lane effect
- 3 x = 1.00 due to short lane.
- 5 Lane underutilisation determined by program
- 6 Lane underutilisation due to downstream effects
- 8 Delay, queue length and stops for the short lane have been cut down to fit in the queuing space. You may wish to change the short lane to a full lane to investigate the effect on the adjacent lane performance.

Processed: Friday, 29 July 2011 9:17:56 AM SIDRA INTERSECTION 5.1.5.2006

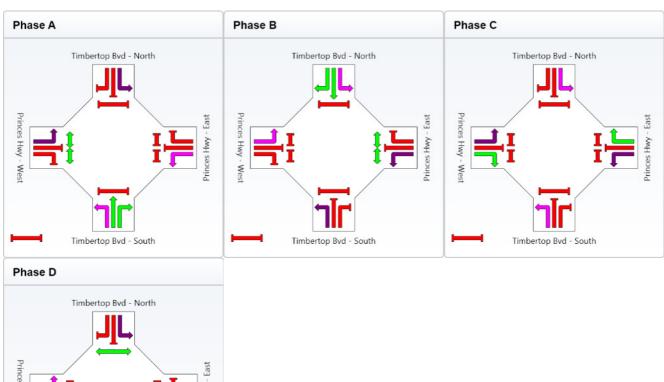
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

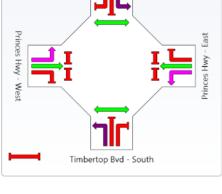
Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 27July)-Interim2021-AM&PM\Revised SIDRA_110727 (FinalInterim)\604.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 604 - PM peak - 27/07/11

Intersection 604 - AM Peak - 27/07/11

Princes Hwy Timbertop Bvd


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Split phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

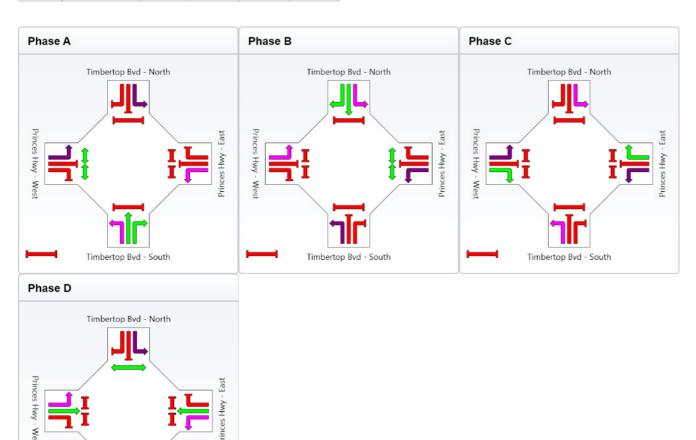
Phase Timing Results

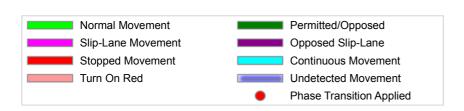
Phase	Α	В	С	D
Green Time (sec)	19	16	6	55
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	25	22	12	61
Phase Split	21 %	18 %	10 %	51 %

Processed: Friday, 29 July 2011 9:17:55 AM SIDRA INTERSECTION 5.1.5.2006

Intersection 604 - PM Peak - 27/07/11

Princes Hwy Timbertop Bvd

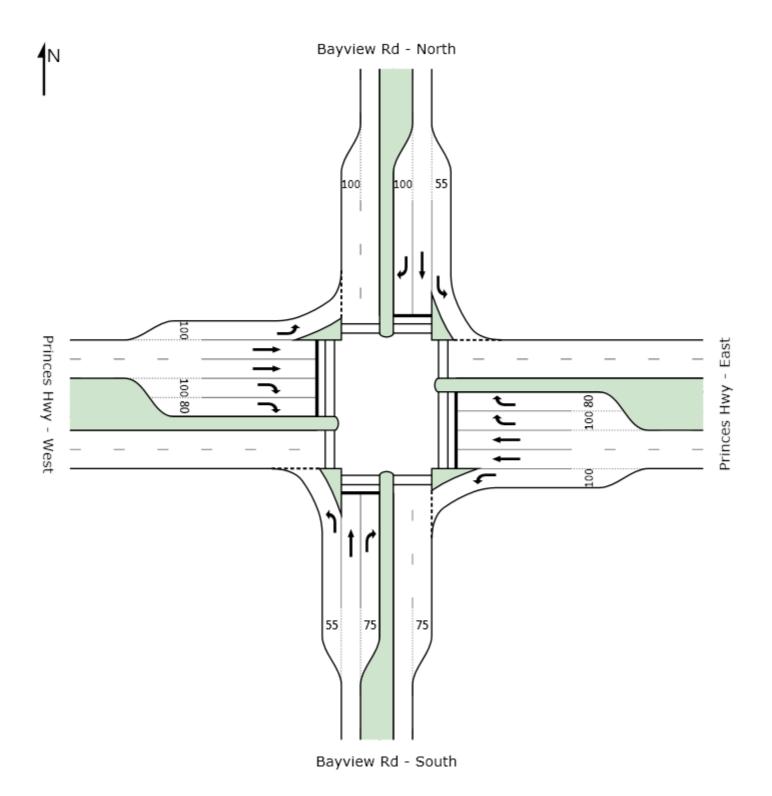

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Split phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	19	16	15	46
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	25	22	21	52
Phase Split	21 %	18 %	18 %	43 %



Processed: Friday, 29 July 2011 9:17:56 AM SIDRA INTERSECTION 5.1.5.2006

Timbertop Bvd - South

Intersection 1358 - AM Peak - 27/07/11

Princes Hwy Bayview Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erforn	nance													
		Deman	nd Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Сар.	Prob.
	L	T	R	Total	HV	Сар.	Satn	Util.	Delay	Service		Distance	Length T	ype		Block.
Ozvetky Dave			veh/h	veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: Bay				400	- 0	0001	0.405	400	0.0	1004	0.4	0.0	ee T	_	0.0	0.0
Lane 1	162	0	0	162	5.0	983 ¹	0.165	100	8.0	LOSA	0.4	2.6	55 Tur	п вау	0.0	0.0
Lane 2	0	34	0	34	5.0	254		100	50.1	LOSA	1.7	12.3	305	_	0.0	0.0
Lane 3	0	0	32	32	5.0	91	0.349	100	71.3	LOSA	1.9	13.8	75 Tur	n Bay	0.0	0.0
Approach	162	34	32	227	5.0		0.349		23.0	LOS A	1.9	13.8				
East: Princ	es Hwy	- East														
Lane 1	43	0	0	43	5.0	1233 ¹	0.035	100	10.1	LOS A	0.1	0.6	100 Tur	n Bay	0.0	0.0
Lane 2	0	165	0	165	5.0	986	0.167	100	12.0	LOSA	3.3	24.3	340	-	0.0	0.0
Lane 3	0	165	0	165	5.0	986	0.167	100	12.0	LOSA	3.3	24.3	340	-	0.0	0.0
Lane 4	0	0	79	79	5.0	181	0.437	59 ⁶	67.0	LOS A	4.4	32.4	100 Tur	n Bay	0.0	0.0
Lane 5	0	0	134	134	5.0	181	0.742	100	70.7	LOS C	8.1	59.0	80 Tur	n Bay	0.0	0.0
Approach	43	329	214	586	5.0		0.742		32.7	LOS C	8.1	59.0				
North: Bay	view Rd	- Nort	h													
Lane 1	200	0	0	200	5.0	377 ¹	0.531	100	12.6	LOS A	2.6	18.7	55 Tur	n Bay	0.0	0.0
Lane 2	0	11	0	11	5.0	254	0.041	100	49.0	LOS A	0.5	3.7	115	-	0.0	0.0
Lane 3	0	0	38	38	5.0	91	0.418	100	71.7	LOS A	2.3	16.7	100 Tur	n Bay	0.0	0.0
Approach	200	11	38	248	5.0		0.531		23.1	LOS A	2.6	18.7				
West: Princ	ces Hwy	/ - Wes	it													
Lane 1	47	0	0	47	5.0	1233 ¹	0.038	100	10.2	LOS A	0.1	8.0	100 Tur	n Bay	0.0	0.0
Lane 2	0	754	0	754	5.0	986	0.765	100	18.3	LOS C	28.7	209.6	500	-	0.0	0.0
Lane 3	0	754	0	754	5.0	986	0.765	100	18.3	LOS C	28.7	209.6	500	-	0.0	0.0
Lane 4	0	0	40	40	5.0	181	0.220	47 ⁶	65.3	LOS A	2.2	15.7	100 Tur	n Bay	0.0	0.0
Lane 5	0	0	85	85	5.0	181	0.471	100	67.2	LOS A	4.8	35.1	80 Tur	n Bay	0.0	0.0
Approach	47	1508	125	1681	5.0		0.765		21.6	LOS C	28.7	209.6				
Intersection	n			2743	5.0		0.765		24.3	LOS C	28.7	209.6				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 6 Lane underutilisation due to downstream effects

Processed: Friday, 29 July 2011 9:25:06 AM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 27July)-Interim2021-AM&PM\Revised SIDRA_110727 (FinalInterim)\1358.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 1358 - AM peak - 27/07/11

Intersection 1358 - PM Peak - 27/07/11

Princes Hwy Bayview Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erforn	nance													
		Deman	nd Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane S	SL (Сар.	Prob.
	L	T	R	Total	HV	Сар.	Satn	Util.	Delay	Service	Vehicles	Distance	Length Ty	ре		Block.
0 11 0			veh/h	veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: Bay				400		00.41		400				40.0		_		
Lane 1	186	0	0	186	5.0	331 ¹		100	26.7	LOS A	5.6	40.9	55 Turn	Bay	0.0	0.0
Lane 2	0	11	0	11	5.0	254		100	49.0	LOS A	0.5	3.7	305 -	-	0.0	0.0
Lane 3	0	0	43	43	5.0	106	0.408	100	70.2	LOS A	2.6	18.7	75 Turn	Bay	0.0	0.0
Approach	186	11	43	240	5.0		0.563		35.5	LOS A	5.6	40.9				
East: Princ	es Hwy	- East														
Lane 1	32	0	0	32	5.0	1298 ¹	0.024	100	10.2	LOS A	0.1	0.5	100 Turn	Bay	0.0	0.0
Lane 2	0	945	0	945	5.0	1002	0.943	100	38.8	LOS D	60.6	442.2	340 -	_	0.0	28.9
Lane 3	0	945	0	945	5.0	1002	0.943	100	38.8	LOS D	60.6	442.2	340 -	-	0.0	28.9
Lane 4	0	0	77	77	5.0	317	0.241	59 ⁶	56.6	LOS A	3.7	26.9	100 Turn	Bay	0.0	0.0
Lane 5	0	0	130	130	5.0	317	0.409	100	58.2	LOSA	6.6	47.8	80 Turn	Bay	0.0	0.0
Approach	32	1889	206	2127	5.0		0.943		40.2	LOS D	60.6	442.2				
North: Bay	view Rd	- Nort	h													
Lane 1	227	0	0	227	5.0	673 ¹	0.338	100	8.4	LOS A	0.7	5.4	55 Turn	Bay	0.0	0.0
Lane 2	0	36	0	36	5.0	254	0.141	100	50.2	LOS A	1.8	13.1	115 -	_	0.0	0.0
Lane 3	0	0	89	89	5.0	106	0.847	100	76.3	LOS C	5.8	42.2	100 Turn	Bay	0.0	0.0
Approach	227	36	89	353	5.0		0.847		29.9	LOS C	5.8	42.2				
West: Prince	ces Hwy	- Wes	st													
Lane 1	84	0	0	84	5.0	1261 ¹	0.067	100	10.2	LOS A	0.2	1.3	100 Turn	Bay	0.0	0.0
Lane 2	0	355	0	355	5.0	827	0.430	100	21.6	LOSA	11.6	84.4	500 -	_	0.0	0.0
Lane 3	0	355	0	355	5.0	827	0.430	100	21.6	LOSA	11.6	84.4	500 -	_	0.0	0.0
Lane 4	0	0	67	67	5.0	151	0.445	47 ⁶	69.2	LOSA	3.9	28.1	100 Turn	Bay	0.0	0.0
Lane 5	0	0	143	143	5.0	151	0.950	100	87.9	LOS D	10.1	73.8	80 Turn	•	0.0	0.0
Approach	84	711	211	1005	5.0		0.950		33.3	LOS D	11.6	84.4				
Intersection	า			3725	5.0		0.950		37.0	LOS D	60.6	442.2				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 6 Lane underutilisation due to downstream effects

Processed: Friday, 29 July 2011 9:25:07 AM SIDRA INTERSECTION 5.1.5.2006

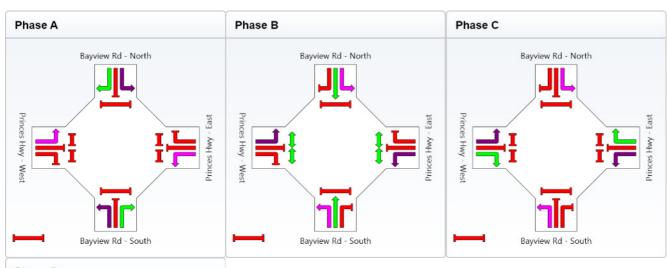
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

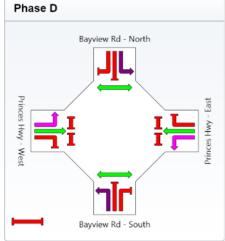
Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 27July)-Interim2021-AM&PM\Revised SIDRA_110727 (FinalInterim)\1358.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 1358 - PM peak - 27/07/11

Intersection 1358 - AM Peak - 27/07/11

Princes Hwy Bayview Rd


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Leading Right Turn Input Sequence: A, B, C, D Output Sequence: A, B, C, D

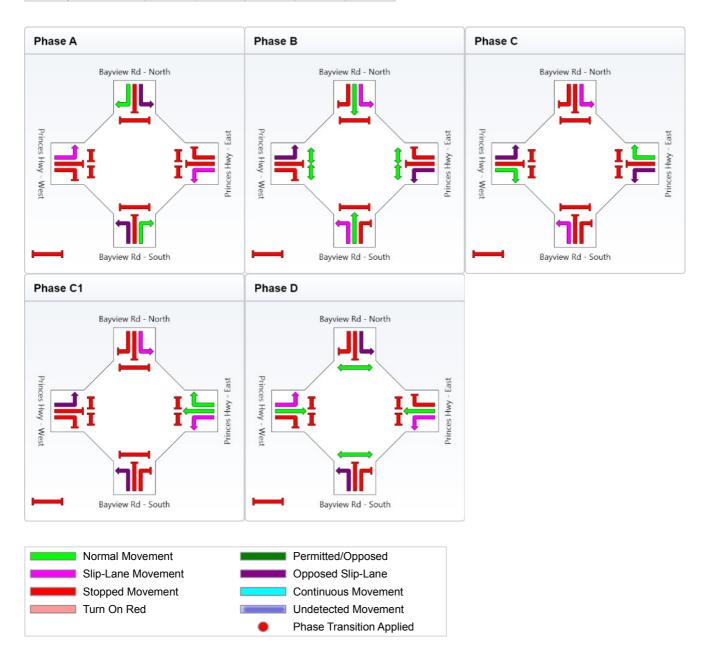
Phase Timing Results

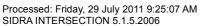
accgcca.cc				
Phase	Α	В	С	D
Green Time (sec)	6	16	12	62
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	12	22	18	68
Phase Split	10 %	18 %	15 %	57 %

Processed: Friday, 29 July 2011 9:25:06 AM SIDRA INTERSECTION 5.1.5.2006

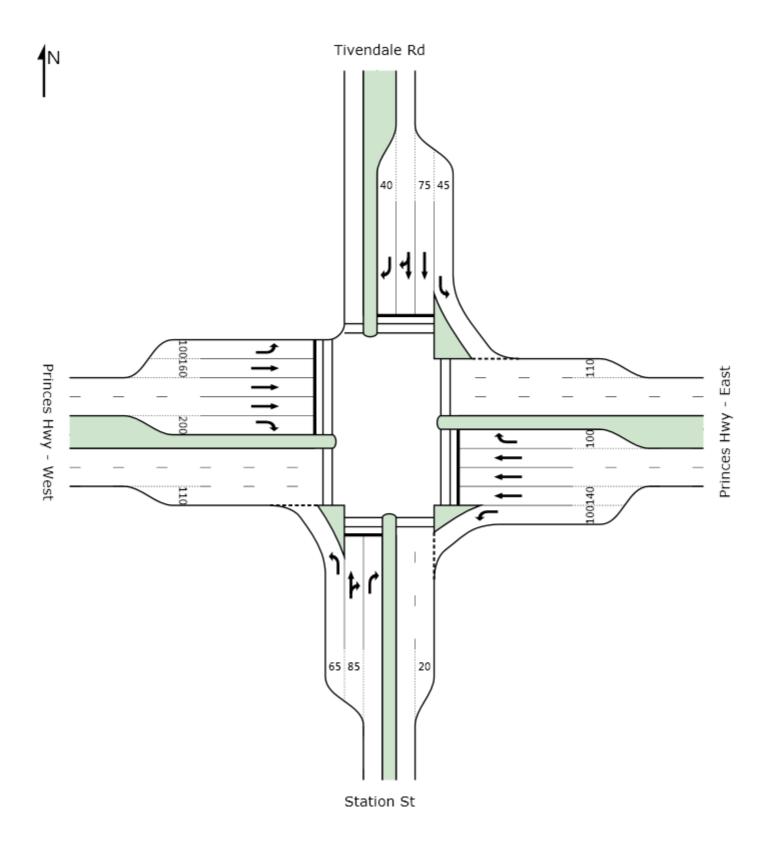
Intersection 1358 - PM Peak - 27/07/11

Princes Hwy Bayview Rd


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Leading Right Turn Input Sequence: A, B, C, C1, D Output Sequence: A, B, C, C1, D


Phase Timing Results

Phase	Α	В	С	C1	D
Green Time (sec)	7	16	10	5	52
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	13	22	16	11	58
Phase Split	11 %	18 %	13 %	9 %	48 %

Intersection 612 - AM Peak - 27/07/11 Princes Hwy

Officer Sth Rd / Tivendale Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erform	ance													
		Deman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Сар.	Prob.
	L	Т	R	Total	HV	Cap.	Satn	Util.	Delay	Service		Distance	Length	Type		Block.
O a vitta v Otal		veh/h	veh/h	veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: Stat			_	400		40001	0.400	400	44 =	1001	•		0=-			
Lane 1	193	0	0	193	5.0		0.186	100	11.7	LOSA	0.4	3.2		Turn Bay	0.0	0.0
Lane 2	0	87	0	87	5.0	302	0.289	100	53.3	LOSA	4.4	31.9		Turn Bay	0.0	0.0
Lane 3	0	0	79	79	5.0	287	0.275	95 ⁵		LOS A	3.9	28.7	280		0.0	0.0
Approach	193	87	79	359	5.0		0.289		32.4	LOS A	4.4	31.9				
East: Princ	es Hwy	- East														
Lane 1	418	0	0	418	5.0		0.343	100	12.3	LOS A	1.5	10.7	100	Turn Bay	0.0	0.0
Lane 2	0	86	0	86	5.0	685 ¹	0.126	64 ⁶	23.9	LOS A	2.7	19.4	140	Turn Bay	0.0	0.0
Lane 3	0	141	0	141	5.0	716	0.197	100	24.8	LOSA	4.5	33.0	480	_	0.0	0.0
Lane 4	0	141	0	141	5.0	716	0.197	100	24.8	LOSA	4.5	33.0	480	_	0.0	0.0
Lane 5	0	0	221	221	5.0	287	0.771	100	65.5	LOS C	12.9	94.2	100	Turn Bay	0.0	0.0
Approach	418	368	221	1007	5.0		0.771		28.5	LOS C	12.9	94.2				
North: Tive	ndale R	d														
Lane 1	128	0	0	128	5.0	654 ¹	0.196	100	11.2	LOS A	1.1	8.3	45	Turn Bay	0.0	0.0
Lane 2	0	53	0	53	5.0	254	0.206	28 ⁶	50.8	LOS A	2.7	19.5	75	Turn Bay	0.0	0.0
Lane 3	0	191	0	191	5.0	254	0.749	100	57.1	LOS C	11.2	81.4	120	_	0.0	0.0
Lane 4	0	0	33	33	5.0	165 ¹	0.198	26 ⁵	58.0	LOS A	1.6	11.9	40	Turn Bay	0.0	0.0
Approach	128	243	33	404	5.0		0.749		41.8	LOS C	11.2	81.4		•		
West: Prince	ces Hwy	/ - West	t													
Lane 1	157	0	0	157	5.0	242	0.649	100	65.4	LOS B	8.9	64.6	100	Turn Bay	0.0	0.0
Lane 2	0	339	0	339	5.0	668	0.508	64 ⁶	31.2	LOSA	13.8	101.0		Turn Bay	0.0	0.0
Lane 3	0	530	0	530	5.0	668	0.794	100	37.1	LOS C	27.0	197.1	340	_	0.0	0.0
Lane 4	0	530	0	530	5.0	668	0.794	100	37.1	LOS C	27.0	197.1	340	_	0.0	0.0
Lane 5	0	0	184	184	5.0		0.763	100	69.1	LOS C	10.9	79.5		Turn Bay	0.0	0.0
Approach	157	1400	184	1741	5.0		0.794		41.9	LOS C	27.0	197.1			0.0	
Intersection	า			3512	5.0		0.794		37.1	LOS C	27.0	197.1				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 5 Lane underutilisation determined by program
- 6 Lane underutilisation due to downstream effects

Processed: Friday, 29 July 2011 1:54:35 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 27July)-Interim2021-AM&PM\Revised SIDRA_110727 (FinalInterim)\612.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 612 - AM peak - 27/07/11

Intersection 612 - PM Peak - 27/07/11 Princes Hwy Officer Sth Rd / Tivendale Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and Po	erform	ance													
		Deman	d Flows				Deg.		Average	Level of	95% Back		Lane	SL	Сар.	Prob.
	L	T	R	Total	HV	Сар.	Satn	Util.	Delay	Service	Vehicles	Distance	Length	Type		Block.
		veh/h	veh/h	veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: Station		•	•	444	- 0	-o-1	0.707	400	04.4	1.00.0	0.0	00.4	05.7		0.0	0.0
Lane 1	414	0	0	414	5.0		0.787	100	24.4	LOS C	9.3	68.1		urn Bay	0.0	9.2
Lane 2	0	266	63	329	5.0	329 ¹	1.000 ³	88 ⁵	57.9 ⁸	LOS E	19.0 ⁸	139.0 ⁸		urn Bay	0.0	50.2
Lane 3	0	0	395	395	5.0	347	1.138	100	206.7	LOS F	47.0	343.4	280	_	0.0	23.5
Approach	414	266	458	1138	5.0		1.138		97.4	LOS F	47.0	343.4				
East: Prince	s Hwy	- East														
Lane 1	119	0	0	119	5.0	1175 ¹	0.101	100	12.7	LOS A	0.5	3.6	100 T	urn Bay	0.0	0.0
Lane 2	0	377	0	377	5.0	525	0.719	64 ⁶	42.7	LOS C	19.2	139.9	140 T	urn Bay	0.0	4.9
Lane 3	0	590	0	590	5.0	525	1.124	100	179.7	LOS F	68.5	500.0	480	_	0.0	8.7
Lane 4	0	590	0	590	5.0	525	1.124	100	179.7	LOS F	68.5	500.0	480	_	0.0	8.7
Lane 5	0	0	142	142	5.0	121	1.177	100	242.9	LOS F	18.2	133.2	100 T	urn Bay	0.0	31.1
Approach	119	1557	142	1818	5.0		1.177		145.3	LOS F	68.5	500.0				
North: Tiven	dale R	d														
Lane 1	235	0	0	235	5.0	608 ¹	0.386	100	11.0	LOS A	2.2	15.9	45 T	urn Bay	0.0	0.0
Lane 2	0	40	0	40	5.0	254	0.159	28 ⁶	50.3	LOS A	2.0	14.9	75 T	urn Bav	0.0	0.0
Lane 3	0	70	73	143	5.0	248	0.577	100	58.1	LOSA	7.9	57.6	120		0.0	0.0
Lane 4	0	0	93	93	5.0	162 ¹	0.577	100	60.4	LOS A	5.0	36.2	40 T	urn Bay	0.0	0.0
Approach	235	111	166	512	5.0		0.577		36.3	LOS A	7.9	57.6				
West: Prince	es Hwy	- West	ł													
Lane 1	42	0	. 0	42	5.0	362	0.116	100	52.8	LOS A	1.9	13.7	100 T	urn Bay	0.0	0.0
Lane 2	0	134	0	134	5.0		0.172	64 ⁶	21.2	LOSA	3.9	28.4		urn Bay	0.0	0.0
Lane 3	0	210	0	210	5.0		0.269	100	22.2	LOSA	6.5	47.3	340	_	0.0	0.0
Lane 4	0	189	20 ⁰	209	5.0	775	0.269	100	22.2	LOSA	6.4	47.0	340	_	0.0	0.0
Lane 5	0	0	402	402	5.0		1.109	100	182.7	LOS F	44.7	326.4		urn Bay	0.0	50.0
Approach	42	533	422	997	5.0	302	1.109	100	88.1	LOS F	44.7	326.4	2001	ani bay	0.0	50.0
Intersection				4464	5.0		1.177		107.8	LOS F	68.5	500.0				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

- 0 Excess flow from back of an adjacent short lane
- 1 Reduced capacity due to a short lane effect
- 3 x = 1.00 due to short lane.
- 5 Lane underutilisation determined by program
- 6 Lane underutilisation due to downstream effects
- 8 Delay, queue length and stops for the short lane have been cut down to fit in the queuing space. You may wish to change the short lane to a full lane to investigate the effect on the adjacent lane performance.

Processed: Friday, 29 July 2011 1:54:35 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

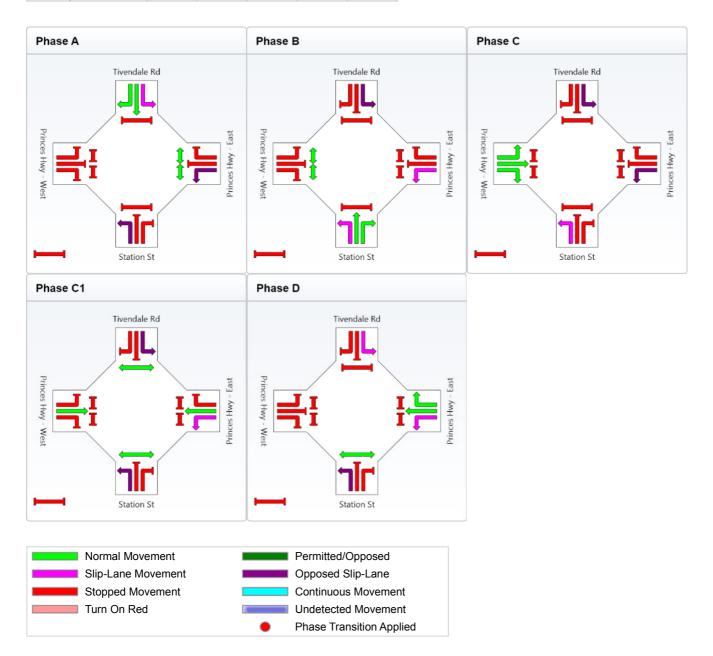
Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 27July)-Interim2021-AM&PM\Revised SIDRA_110727 (FinalInterim)\612.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

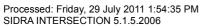
Site: 612 - PM peak - 27/07/11

Intersection 612 - AM Peak - 27/07/11

Princes Hwy

Officer Sth Rd / Tivendale Rd


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Split phase Input Sequence: A, B, C, C1, D Output Sequence: A, B, C, C1, D

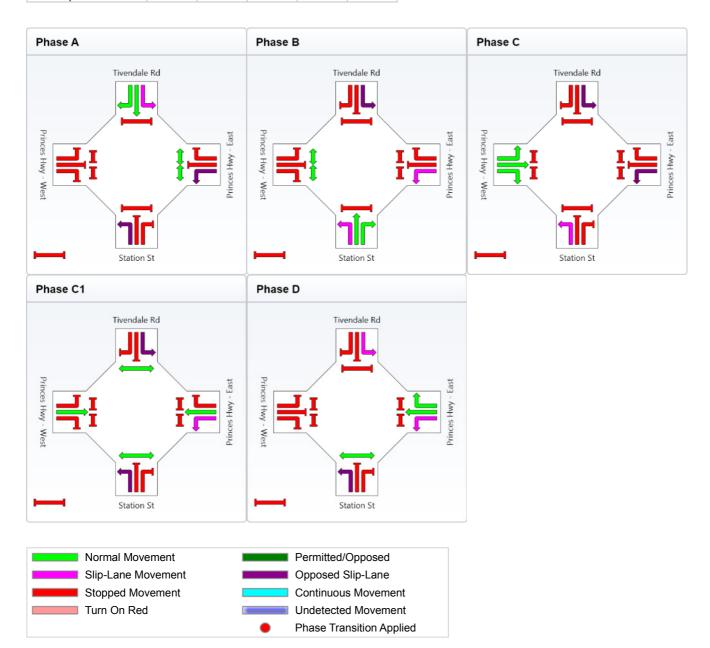
Phase Timing Results

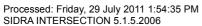
Phase	Α	В	С	C1	D
Green Time (sec)	16	19	16	20	19
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	22	25	22	26	25
Phase Split	18 %	21 %	18 %	22 %	21 %

Intersection 612 - PM Peak - 27/07/11

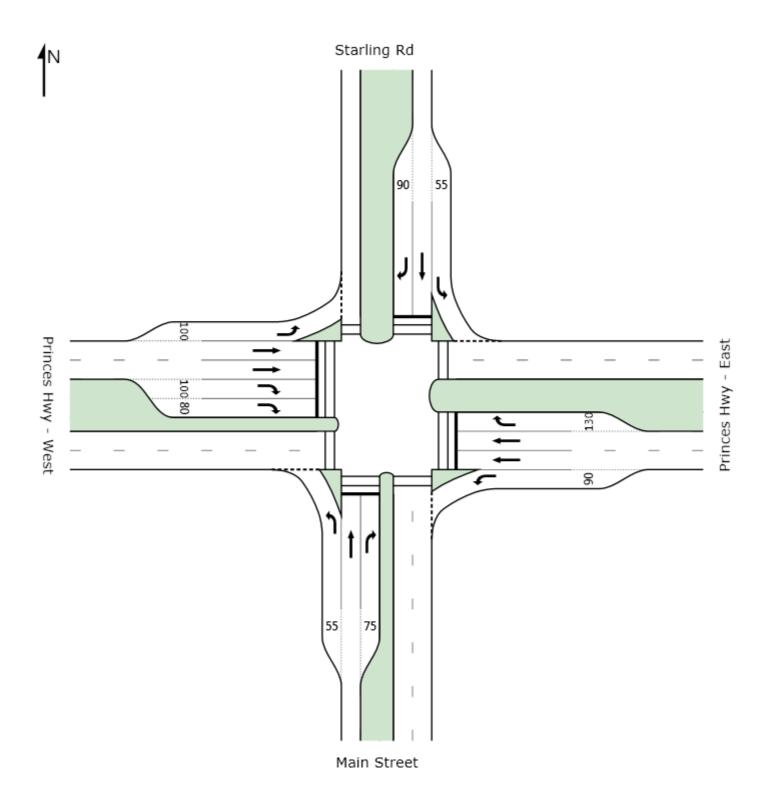
Princes Hwy

Officer Sth Rd / Tivendale Rd


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Split phase Input Sequence: A, B, C, C1, D Output Sequence: A, B, C, C1, D


Phase Timing Results

Phase	Α	В	С	C1	D
Green Time (sec)	16	23	24	19	8
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	22	29	30	25	14
Phase Split	18 %	24 %	25 %	21 %	12 %

Intersection 617 - AM Peak - 27/07/11 Princes Hwy Starling Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erform	nance													
		Deman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Cap. I	Prob.
	L	Т	R	Total	HV	Cap.	Satn	Util.	Delay	Service	Vehicles	Distance	Length	Type	Adj. I	Block.
	veh/h		veh/h	veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: Mai						1										
Lane 1	42	0	0	42	5.0	409 ¹	0.103	100	8.5	LOS A	0.1	0.8	55 T	urn Bay	0.0	0.0
Lane 2	0	126	0	126	5.0	254	0.497	100	53.3	LOSA	6.8	50.0	85	-	0.0	0.0
Lane 3	0	0	89	89	5.0	136	0.659	100	69.8	LOS B	5.4	39.3	75 T	urn Bay	0.0	0.0
Approach	42	126	89	258	5.0		0.659		51.7	LOS B	6.8	50.0				
East: Princ	es Hwy	- East														
Lane 1	114	0	0	114	5.0	1305 ¹	0.087	100	10.2	LOS A	0.2	1.8	90 T	urn Bay	0.0	0.0
Lane 2	0	581	0	581	5.0	1034	0.562	100	13.4	LOSA	15.7	114.5	390	_	0.0	0.0
Lane 3	0	581	0	581	5.0	1034	0.562	100	13.4	LOSA	15.7	114.5	390	_	0.0	0.0
Lane 4	0	0	38	38	5.0	91	0.418	100	74.0	LOS A	2.3	16.7	130 T	urn Bay	0.0	0.0
Approach	114	1162	38	1314	5.0		0.562		14.9	LOS A	15.7	114.5				
North: Star	ling Rd															
Lane 1	59	0	0	59	5.0	315 ¹	0.187	100	10.8	LOS A	0.5	3.5	55 T	urn Bay	0.0	0.0
Lane 2	0	83	0	83	5.0	254	0.327	100	51.9	LOS A	4.3	31.7	120	_	0.0	0.0
Lane 3	0	0	77	77	5.0	136	0.566	100	68.8	LOS A	4.5	33.1	90 T	urn Bay	0.0	0.0
Approach	59	83	77	219	5.0		0.566		46.8	LOS A	4.5	33.1				
West: Prince	ces Hwy	- Wes	t													
Lane 1	69	0	0	69	5.0	1450 ¹	0.048	100	10.3	LOS A	0.2	1.1	100 T	urn Bay	0.0	0.0
Lane 2	0	726	0	726	5.0	1034	0.702	100	15.1	LOS C	23.6	172.6	480	_	0.0	0.0
Lane 3	0	726	0	726	5.0	1034	0.702	100	15.1	LOS C	23.6	172.6	480	_	0.0	0.0
Lane 4	0	0	33	33	5.0	91	0.360	100	73.7	LOS A	2.0	14.3	100 T	urn Bay	0.0	0.0
Lane 5	0	0	33	33	5.0	91	0.360	100	73.7	LOS A	2.0	14.3	80 T	urn Bay	0.0	0.0
Approach	69	1452	65	1586	5.0		0.702		17.3	LOS C	23.6	172.6				
Intersection	n			3377	5.0		0.702		20.9	LOS C	23.6	172.6				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

1 Reduced capacity due to a short lane effect

Processed: Friday, 29 July 2011 9:44:02 AM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 27July)-Interim2021-AM&PM\Revised SIDRA_110727 (FinalInterim)\617.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 617 - AM peak - 27/07/11

Intersection 617 - PM Peak - 27/07/11 Princes Hwy Starling Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erform	nance													
		Deman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Сар.	Prob.
	L	Т	R	Total	HV	Сар.	Satn	Util.	Delay	Service	Vehicles	Distance	Length	Туре		Block.
0 " 14		veh/h	veh/h	veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: Mai			_			1								_		
Lane 1	222	0	0	222	5.0	401 ¹	0.554	100	15.9	LOS A	4.1	29.7		urn Bay	0.0	0.0
Lane 2	0	93	0	93	5.0	254	0.364	100	52.2	LOS A	4.9	35.6	85	-	0.0	0.0
Lane 3	0	0	158	158	5.0	196	0.805	100	69.4	LOS C	9.7	70.7	75 T	urn Bay	0.0	0.0
Approach	222	93	158	473	5.0		0.805		40.9	LOS C	9.7	70.7				
East: Princ	es Hwy	- East														
Lane 1	104	0	0	104	5.0	1200 ¹	0.087	100	10.4	LOS A	0.3	1.9	90 T	urn Bay	0.0	0.0
Lane 2	0	757	0	757	5.0	922	0.821	100	23.7	LOS C	34.1	248.6	390	_	0.0	0.0
Lane 3	0	757	0	757	5.0	922	0.821	100	23.7	LOS C	34.1	248.6	390	_	0.0	0.0
Lane 4	0	0	65	65	5.0	136	0.480	100	70.5	LOS A	3.8	27.8	130 T	urn Bay	0.0	0.0
Approach	104	1515	65	1684	5.0		0.821		24.7	LOS C	34.1	248.6				
North: Star	ling Rd															
Lane 1	44	0	0	44	5.0	327 ¹	0.135	100	11.7	LOS A	0.4	3.1	55 T	urn Bay	0.0	0.0
Lane 2	0	144	0	144	5.0	254	0.567	100	53.9	LOSA	7.9	57.9	120	_	0.0	0.0
Lane 3	0	0	79	79	5.0	196	0.402	100	63.4	LOS A	4.3	31.7	90 T	urn Bay	0.0	0.0
Approach	44	144	79	267	5.0		0.567		49.7	LOS A	7.9	57.9				
West: Prince	ces Hwy	- Wes	t													
Lane 1	85	0	0	85	5.0	1333 ¹	0.064	100	10.3	LOSA	0.2	1.4	100 T	urn Bay	0.0	0.0
Lane 2	0	606	0	606	5.0	922	0.657	100	19.8	LOS B	21.6	157.9	480	_	0.0	0.0
Lane 3	0	606	0	606	5.0	922	0.657	100	19.8	LOS B	21.6	157.9	480	_	0.0	0.0
Lane 4	0	0	99	99	5.0	136	0.732	100	73.4	LOS C	6.1	44.5		urn Bay	0.0	0.0
Lane 5	0	0	99	99	5.0		0.732	100	73.4	LOS C	6.1	44.5		urn Bay	0.0	0.0
Approach	85	1212	199	1496	5.0		0.732		26.4	LOS C	21.6	157.9				
Intersection	า			3920	5.0		0.821		29.0	LOS C	34.1	248.6				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

1 Reduced capacity due to a short lane effect

Processed: Friday, 29 July 2011 9:44:03 AM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 27July)-Interim2021-AM&PM\Revised SIDRA_110727 (FinalInterim)\617.sip

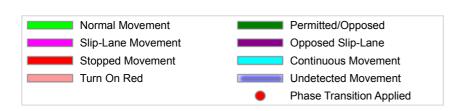
8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 617 - PM peak - 27/07/11

Intersection 617 - AM Peak - 27/07/11

Princes Hwy Starling Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Leading Right Turn Input Sequence: A, B, C, D Output Sequence: A, B, C, D

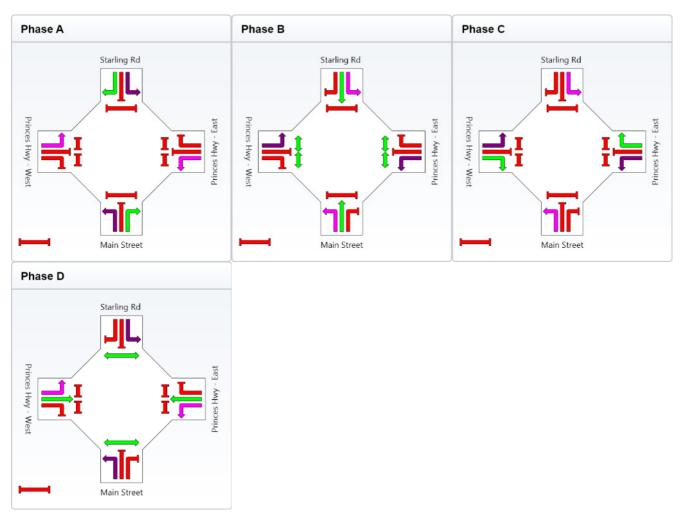
Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	9	16	6	65
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	15	22	12	71
Phase Split	13 %	18 %	10 %	59 %

Processed: Friday, 29 July 2011 9:44:02 AM SIDRA INTERSECTION 5.1.5.2006

Intersection 617 - PM Peak - 27/07/11

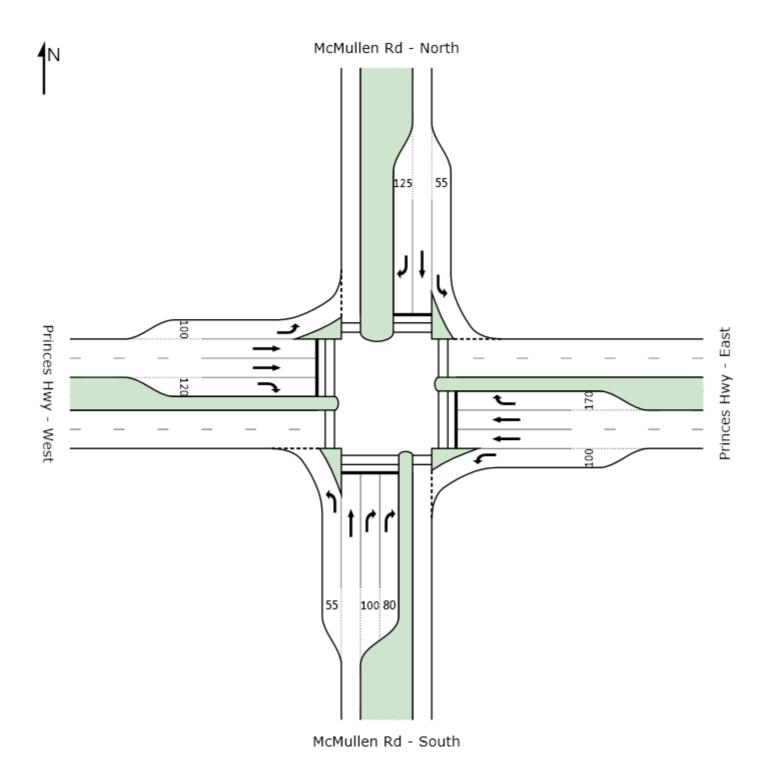
Princes Hwy Starling Rd


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Leading Right Turn Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results


Phase	Α	В	С	D
Green Time (sec)	13	16	9	58
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	19	22	15	64
Phase Split	16 %	18 %	13 %	53 %

Processed: Friday, 29 July 2011 9:44:03 AM SIDRA INTERSECTION 5.1.5.2006

Intersection 622 - AM Peak - 27/07/11 Princes Hwy McMullen Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erform	nance													
		Deman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Cap. F	Prob.
	L	T	R	Total	HV	Сар.	Satn	Util.	Delay	Service		Distance	Length	Type	Adj. E	
Occides Mak		veh/h		veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: McN				00	- 0	0071	0.400	400	0.4	1004	0.4	4.0			0.0	0.0
Lane 1	33	0	0	33	5.0	327 ¹	0.100	100	9.1	LOSA	0.1	1.0		urn Bay	0.0	0.0
Lane 2	0	58	0	58	5.0	207	0.280	100	54.5	LOSA	3.1	22.7	220		0.0	0.0
Lane 3	0	0	72	72	5.0	106	0.677	100	72.5	LOS B	4.4	32.2		urn Bay	0.0	0.0
Lane 4	0	0	72	72	5.0	106	0.677	100	72.5	LOS B	4.4	32.2	80 T	urn Bay	0.0	0.0
Approach	33	58	143	234	5.0		0.677		59.2	LOS B	4.4	32.2				
East: Prince	es Hwy	- East														
Lane 1	259	0	0	259	5.0	1333 ¹	0.194	100	10.2	LOS A	0.6	4.2	100 T	urn Bay	0.0	0.0
Lane 2	0	655	0	655	5.0	1018	0.644	100	15.1	LOS B	20.2	147.3	500	_	0.0	0.0
Lane 3	0	655	0	655	5.0	1018	0.644	100	15.1	LOS B	20.2	147.3	500	_	0.0	0.0
Lane 4	0	0	115	115	5.0	181	0.633	100	68.6	LOS B	6.7	48.7	170 T	urn Bay	0.0	0.0
Approach	259	1311	115	1684	5.0		0.644		17.9	LOS B	20.2	147.3				
North: McM	Iullen R	d - Nor	th													
Lane 1	148	0	0	148	5.0	327 ¹	0.454	100	10.7	LOSA	1.3	9.3	55 T	urn Bay	0.0	0.0
Lane 2	0	57	0	57	5.0	207	0.275	100	54.4	LOS A	3.1	22.3	500	_	0.0	0.0
Lane 3	0	0	65	65	5.0	106	0.618	100	71.8	LOS B	4.0	29.1	125 T	urn Bay	0.0	0.0
Approach	148	57	65	271	5.0		0.618		34.6	LOS B	4.0	29.1				
West: Princ	ces Hwy	- Wes	t													
Lane 1	186	0	0	186	5.0	1333 ¹	0.140	100	10.3	LOSA	0.5	3.4	100 T	urn Bay	0.0	0.0
Lane 2	0	694	0	694	5.0		0.682	100	15.5	LOS B	22.5	164.3	390	_	0.0	0.0
Lane 3	0	694	0	694	5.0	1018	0.682	100	15.5	LOS B	22.5	164.3	390	_	0.0	0.0
Lane 4	0	0	26	26	5.0			100	64.6	LOSA	1.4	10.2		urn Bay	0.0	0.0
Approach	186	1388	26	1601	5.0		0.682		15.7	LOS B	22.5	164.3		· · · =		
				0700					00 =		00 -	404.5				
Intersection	1			3789	5.0		0.682		20.7	LOS B	22.5	164.3				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

1 Reduced capacity due to a short lane effect

Processed: Friday, 29 July 2011 2:04:47 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 27July)-Interim2021-AM&PM\Revised SIDRA_110727 (FinalInterim)\622.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 622 - AM peak - 27/07/11

Intersection 622 - PM Peak - 27/07/11 Princes Hwy McMullen Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erform	ance													
	ı	Deman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Cap. I	Prob.
	L	T	R	Total	HV	Сар.	Satn	Util.	Delay	Service		Distance	Length	Type	Adj. E	
Cauthy Mal		veh/h		veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: McN			-	40	- 0	0071	0.440	400	40.0	1004	0.0	2.0		- D	0.0	0.0
Lane 1	46	0	0	46	5.0	327 ¹	0.142	100	19.6	LOSA	0.9	6.9		Turn Bay	0.0	0.0
Lane 2	0	73	0	73	5.0	207	0.351	100	55.0	LOSA	4.0	28.9	220		0.0	0.0
Lane 3	0	0	183	183	5.0	226	0.807	100	68.1	LOS C	11.1	81.1		urn Bay	0.0	0.0
Lane 4	0	0	183	183	5.0	226	0.807	100	68.1	LOS C	11.1	81.1	80 1	urn Bay	0.0	6.2
Approach	46	73	365	484	5.0		0.807		61.5	LOS C	11.1	81.1				
East: Prince	es Hwy	- East														
Lane 1	201	0	0	201	5.0	1333 ¹	0.151	100	10.2	LOS A	0.5	3.5	100 T	Turn Bay	0.0	0.0
Lane 2	0	748	0	748	5.0	890	0.841	100	27.1	LOS C	36.2	264.2	500	_	0.0	0.0
Lane 3	0	748	0	748	5.0	890	0.841	100	27.1	LOS C	36.2	264.2	500	_	0.0	0.0
Lane 4	0	0	148	148	5.0	181	0.819	100	73.1	LOS C	9.2	67.3	170 1	urn Bay	0.0	0.0
Approach	201	1497	148	1846	5.0		0.841		29.0	LOS C	36.2	264.2				
North: McN	Iullen R	d - Nor	th													
Lane 1	115	0	0	115	5.0	327 ¹	0.351	100	17.3	LOS A	2.2	15.9	55 7	Turn Bay	0.0	0.0
Lane 2	0	74	0	74	5.0	207	0.356	100	55.1	LOS A	4.0	29.3	500		0.0	0.0
Lane 3	0	0	191	191	5.0	226	0.841	100	69.8	LOS C	11.9	86.5	125 7	urn Bay	0.0	0.0
Approach	115	74	191	379	5.0		0.841		51.0	LOS C	11.9	86.5				
West: Princ	es Hwy	- West	t													
Lane 1	65	0	0	65	5.0	1333 ¹	0.049	100	10.4	LOS A	0.2	1.1	100 7	Turn Bay	0.0	0.0
Lane 2	0	695	0	695	5.0	890	0.781	100	23.3	LOS C	29.6	216.4	390	_ ,	0.0	0.0
Lane 3	0	695	0	695	5.0	890	0.781	100	23.3	LOS C	29.6	216.4	390	_	0.0	0.0
Lane 4	0	0	53	53	5.0		0.291	100	65.8	LOSA	2.9	21.0		Turn Bay	0.0	0.0
Approach	65	1391	53	1508	5.0		0.781		24.3	LOS C	29.6	216.4				
Intersection	1			4218	5.0		0.841		33.0	LOS C	36.2	264.2				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

1 Reduced capacity due to a short lane effect

Processed: Friday, 29 July 2011 2:04:48 PM SIDRA INTERSECTION 5.1.5.2006

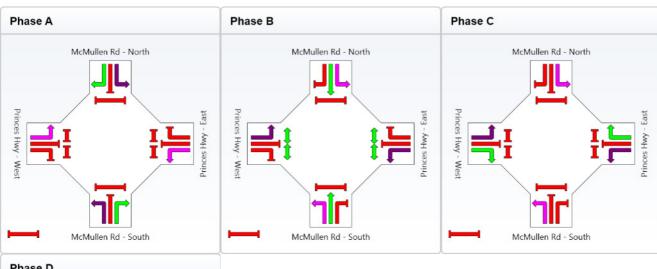
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

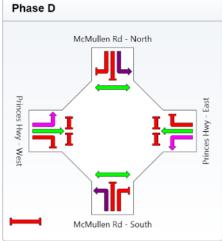
Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 27July)-Interim2021-AM&PM\Revised SIDRA_110727 (FinalInterim)\622.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 622 - PM peak - 27/07/11

Intersection 622 - AM Peak - 27/07/11

Princes Hwy McMullen Rd


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Leading Right Turn Input Sequence: A, B, C, D Output Sequence: A, B, C, D

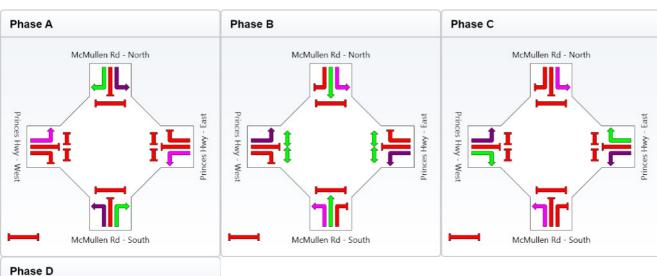
Phase Timing Results

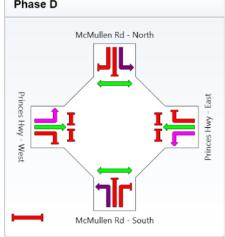
Phase	Α	В	С	D
Green Time (sec)	7	13	12	64
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	13	19	18	70
Phase Split	11 %	16 %	15 %	58 %

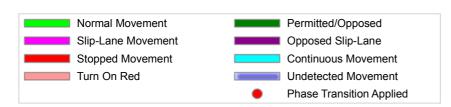
Processed: Friday, 29 July 2011 2:04:47 PM SIDRA INTERSECTION 5.1.5.2006

Intersection 622 - PM Peak - 27/07/11

Princes Hwy McMullen Rd

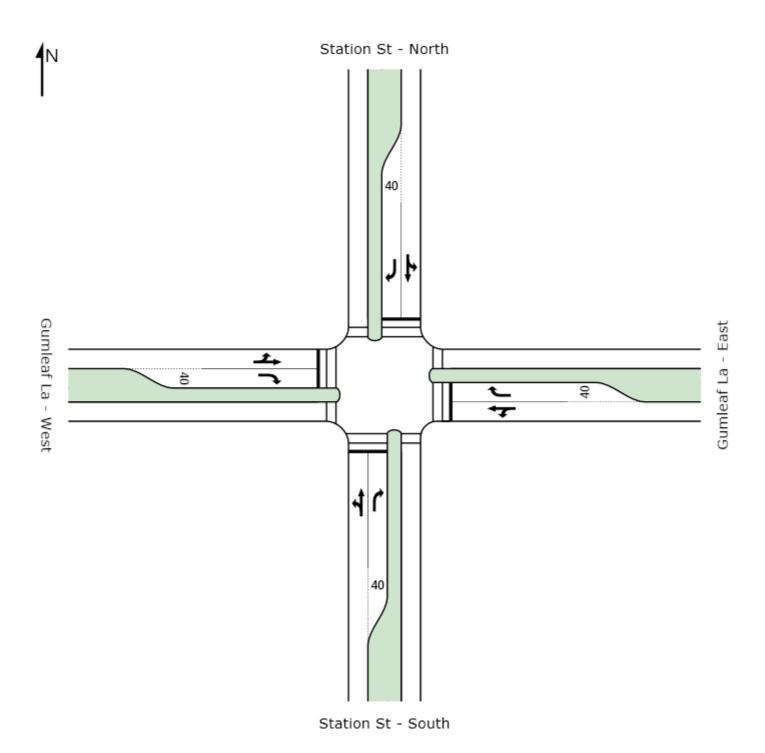

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Leading Right Turn Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	15	13	12	56
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	21	19	18	62
Phase Split	18 %	16 %	15 %	52 %



Processed: Friday, 29 July 2011 2:04:48 PM SIDRA INTERSECTION 5.1.5.2006

Intersection 43 - AM Peak - 27/07/11 Station St Gumleaf La

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erforn	nance													
		Deman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Сар.	Prob.
	L	Т	R	Total	HV	Сар.	Satn	Util.	Delay	Service	Vehicles	Distance	Length	Type		Block.
			veh/h	veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: Stati	on St -	South														
Lane 1	158	258	0	416	5.0	545	0.762	100	45.5	LOS C	21.6	158.0	260	_	0.0	0.0
Lane 2	0	0	82	82	5.0	155 ¹	0.529	100	63.2	LOS A	4.5	33.1	40 7	Turn Bay	0.0	0.0
Approach	158	258	82	498	5.0		0.762		48.4	LOS C	21.6	158.0				
East: Gumle	eaf La -	East														
Lane 1	54	707	0	761	5.0	665	1.144	100	191.4	LOS F	93.4	681.7	250	-	0.0	99.9
Lane 2	0	0	42	42	5.0	91	0.465	100	71.5	LOS A	2.6	18.7	40 7	Turn Bay	0.0	0.0
Approach	54	707	42	803	5.0		1.144		185.1	LOS F	93.4	681.7				
North: Station	on St -	North														
Lane 1	19	461	<mark>156</mark> ⁰	636	5.0	548	1.160	100	209.9	LOS F	80.5	587.9	190	_	0.0	100.0
Lane 2	0	0	152	152	5.0	152 ¹	1.000 ³	100	65.9 ⁸	LOS E	8.9 ⁸	65.3 ⁸	40 7	Turn Bay	0.0	50.0
Approach	19	461	308	788	5.0		1.160		182.1	LOS F	80.5	587.9				
West: Guml	eaf La	- West														
Lane 1	67	307	0	375	5.0	661	0.567	100	33.3	LOSA	15.9	115.7	470	_	0.0	0.0
Lane 2	0	0	68	68	5.0	91	0.755	100	74.4	LOS C	4.3	31.7	40 7	Turn Bay	0.0	0.0
Approach	67	307	68	443	5.0		0.755		39.7	LOS C	15.9	115.7		•		
Intersection				2533	5.0		1.160		131.8	LOS F	93.4	681.7				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

- 0 Excess flow from back of an adjacent short lane
- 1 Reduced capacity due to a short lane effect
- 3 x = 1.00 due to short lane.
- 8 Delay, queue length and stops for the short lane have been cut down to fit in the queuing space. You may wish to change the short lane to a full lane to investigate the effect on the adjacent lane performance.

Processed: Friday, 29 July 2011 2:25:27 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 27July)-Interim2021-AM&PM\Revised SIDRA_110727 (FinalInterim)\43.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

SIDRA INTERSECTION Intersection 43 - PM Peak - 27/07/11 Station St Gumleaf La

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erform	nance													
		Deman	d Flows		1.15.7		Deg.	Lane	Average	Level of	95% Back		Lane	SL		Prob.
	L	Τ	R	Total	HV	Cap.	Satn	Util.	Delay	Service		Distance	Length	Туре		Block.
Courth: Ctati		veh/h	ven/h	veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: Stati			•	500	- 0	4.40	4 407	400	0.45.0	1005	74.0	504.5	000		0.0	70.0
Lane 1	68	461	0	529	5.0	442	1.197	100	245.6	LOS F	71.9	524.5	260	_	0.0	70.2
Lane 2	0	0	54	54	5.0	91	0.593	100	72.6	LOS A	3.3	24.2	40 1	urn Bay	0.0	0.0
Approach	68	461	54	583	5.0		1.197		229.6	LOS F	71.9	524.5				
East: Gumle	eaf La -	- East														
Lane 1	82	307	0	389	5.0	881	0.442	100	20.2	LOSA	11.7	85.7	250	_	0.0	0.0
Lane 2	0	0	19	19	5.0	91	0.209	100	70.0	LOS A	1.1	8.2	40 T	urn Bay	0.0	0.0
Approach	82	307	19	408	5.0		0.442		22.5	LOSA	11.7	85.7				
North: Stati	on St -	North														
Lane 1	42	258	0	300	5.0	442	0.679	100	46.6	LOS B	15.5	113.1	190	_	0.0	0.0
Lane 2	0	0	67	67	5.0	91	0.744	100	74.4	LOS C	4.3	31.1	40 T	urn Bay	0.0	0.0
Approach	42	258	67	367	5.0		0.744		51.7	LOS C	15.5	113.1				
West: Gum	eaf La	- West														
Lane 1	308	707	<mark>62</mark> 0	1078	5.0	874	1.233	100	260.9	LOS F	159.1	1161.4	470	_	0.0	90.0
Lane 2	0	0	96	96	5.0	91	1.056	100	139.5	LOS F	8.9	64.7	40 T	urn Bay	0.0	49.2
Approach	308	707	158	1174	5.0		1.233		251.0	LOS F	159.1	1161.4				
Intersection				2533	5.0		1.233		180.3	LOS F	159.1	1161.4				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

0 Excess flow from back of an adjacent short lane

Processed: Friday, 29 July 2011 2:22:27 PM SIDRA INTERSECTION 5.1.5.2006

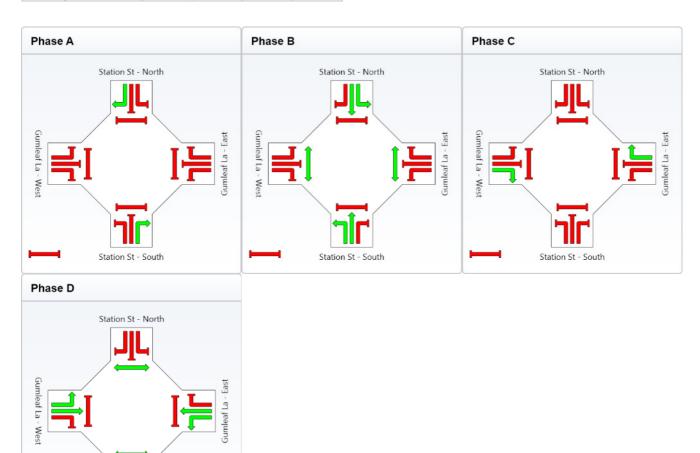
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 27July)-Interim2021-AM&PM\Revised SIDRA_110727 (FinalInterim)\43.sip

8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Intersection 43 - AM Peak - 27/07/11

Station St Gumleaf La


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Leading Right Turn Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

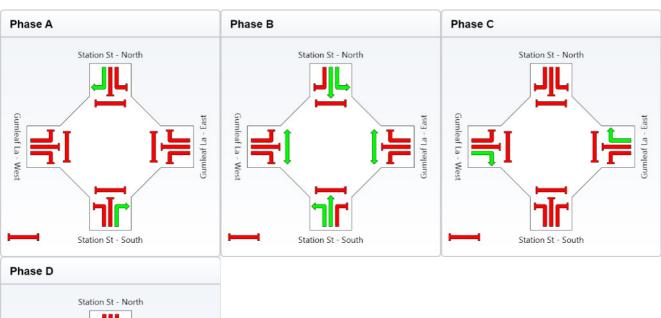
Phase	Α	В	С	D
Green Time (sec)	13	35	6	42
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	19	41	12	48
Phase Split	16 %	34 %	10 %	40 %

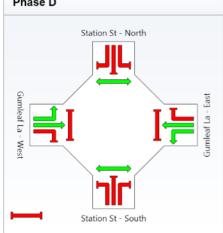
Processed: Friday, 29 July 2011 2:25:27 PM SIDRA INTERSECTION 5.1.5.2006

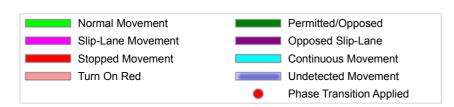
Station St - South

Intersection 43 - PM Peak - 27/07/11

Station St Gumleaf La

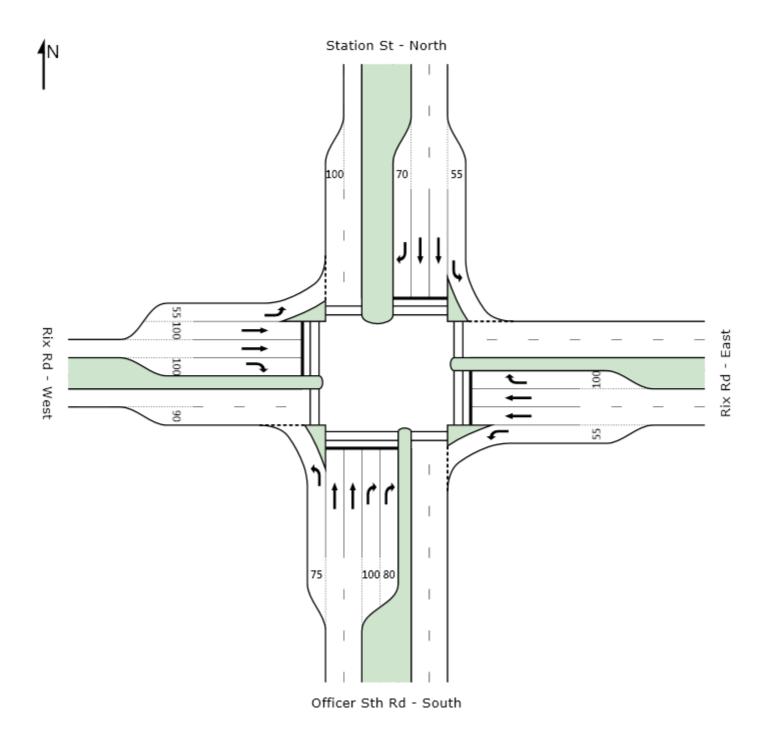

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Leading Right Turn Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	6	28	6	56
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	12	34	12	62
Phase Split	10 %	28 %	10 %	52 %



Processed: Friday, 29 July 2011 2:22:27 PM SIDRA INTERSECTION 5.1.5.2006

Intersection 1035 - AM Peak - 27/07/11 Officer Sth Rd

Rix Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erform	ance													
		Deman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Сар.	Prob.
	L	Т	R	Total	HV	Сар.	Satn	Util.	Delay	Service		Distance	Length	Type		Block.
South: Office		veh/h		veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
	er Suri 37		0	37	5.0	40E7 ¹	0.035	100	10.4	LOS A	0.1	0.6	75-	France Descri	0.0	0.0
Lane 1		0	-					61 ⁶						Turn Bay		
Lane 2	0	116	0	116	5.0		0.197		32.0	LOSA	4.3	31.5	275	_	0.0	0.0
Lane 3	0	191	0	191	5.0		0.324	100	33.5	LOSA	7.6	55.1	275	-	0.0	0.0
Lane 4	0	0	117	117	5.0		0.432	100	61.1	LOSA	6.2	44.9		Turn Bay	0.0	0.0
Lane 5	0	0	117	117	5.0	2/2	0.432	100	61.1	LOSA	6.2	44.9	80	Turn Bay	0.0	0.0
Approach	37	306	235	578	5.0		0.432		42.9	LOS A	7.6	55.1				
East: Rix R	d - East	t														
Lane 1	374	0	0	374	5.0	838 ¹	0.446	100	10.1	LOS A	1.4	10.3	55	Turn Bay	0.0	0.0
Lane 2	0	111	0	111	5.0	445	0.248	57 ⁶	40.4	LOS A	4.8	35.4	310	_	0.0	0.0
Lane 3	0	193	0	193	5.0	445	0.432	100	42.5	LOSA	9.0	65.9	310	_	0.0	0.0
Lane 4	0	0	12	12	5.0	196	0.059	100	61.8	LOS A	0.6	4.3	100	Turn Bay	0.0	0.0
Approach	374	303	12	688	5.0		0.446		24.9	LOS A	9.0	65.9				
North: Stati	on St -	North														
Lane 1	21	0	0	21	5.0	986 ¹	0.021	100	10.4	LOS A	0.0	0.3	55	Turn Bay	0.0	0.0
Lane 2	0	257	0	257	5.0	588	0.437	100	34.9	LOSA	10.8	78.6	500	_	0.0	0.0
Lane 3	0	257	0	257	5.0	588	0.437	100	34.9	LOSA	10.8	78.6	500	_	0.0	0.0
Lane 4	0	0	67	67	5.0	272	0.248	100	59.4	LOS A	3.4	24.7	70	Turn Bay	0.0	0.0
Approach	21	514	67	602	5.0		0.437		36.8	LOSA	10.8	78.6				
West: Rix F	Rd - We	st														
Lane 1	89	0	0	89	5.0	1058 ¹	0.085	100	9.6	LOS A	0.2	1.4	55	Turn Bay	0.0	0.0
Lane 2	0	133	0	133	5.0	420 ¹	0.316	100	40.9	LOS A	5.9	43.3		Γurn Bay	0.0	0.0
Lane 3	0	141	0	141	5.0	445	0.316	100	41.1	LOSA	6.3	46.1	500	_ ,	0.0	0.0
Lane 4	0	0	86	86	5.0	196	0.440	100	65.1	LOS A	4.8	34.9	100	Turn Bay	0.0	0.0
Approach	89	274	86	449	5.0		0.440		39.4	LOS A	6.3	46.1				
Intersection	ľ			2318	5.0		0.446		35.3	LOSA	10.8	78.6				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 6 Lane underutilisation due to downstream effects

Processed: Wednesday, 27 July 2011 2:11:21 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 27July)-Interim2021-AM&PM\Revised SIDRA_110727 (FinalInterim)\1035.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 1035 - AM peak - 27/07/11

Intersection 1035 - PM Peak - 27/07/11 Officer Sth Rd

Rix Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and Pe	erform	ance	_												
		Deman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Сар.	Prob.
	L	Т	R	Total	HV	Сар.	Satn	Util.	Delay	Service		Distance	Length	Type		Block.
0 " 0"	veh/h			veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: Office						1										
Lane 1	86	0	0	86	5.0	1065 ¹		100	10.5	LOS A	0.2	1.5		urn Bay	0.0	0.0
Lane 2	0	268	0	268	5.0	747		61 ⁶	24.9	LOS A	9.2	66.8	275	-	0.0	0.0
Lane 3	0	442	0	442	5.0	747	0.592	100	27.9	LOSA	17.8	129.8	275	_	0.0	0.0
Lane 4	0	0	197	197	5.0	332	0.593	100	59.3	LOSA	10.4	75.8	100 T	urn Bay	0.0	0.0
Lane 5	0	0	187	187	5.0	315 ¹	0.593	100	59.0	LOS A	9.8	71.4	80 T	urn Bay	0.0	0.0
Approach	86	711	384	1181	5.0		0.593		36.1	LOS A	17.8	129.8				
East: Rix R	d - East															
Lane 1	245	0	0	245	5.0	832 ¹	0.295	100	9.8	LOSA	0.7	5.3	55 T	urn Bay	0.0	0.0
Lane 2	0	110	0	110	5.0	334	0.329	57 ⁶	47.2	LOS A	5.4	39.5	310	_	0.0	0.0
Lane 3	0	191	0	191	5.0	334	0.573	100	49.7	LOSA	10.1	73.6	310	_	0.0	0.0
Lane 4	0	0	36	36	5.0	91	0.395	100	73.1	LOS A	2.2	15.7	100 T	urn Bay	0.0	0.0
Approach	245	301	36	582	5.0		0.573		33.9	LOS A	10.1	73.6				
North: Stati	on St - I	North														
Lane 1	26	0	0	26	5.0	903 ¹	0.029	100	10.7	LOS A	0.1	0.5	55 T	urn Bay	0.0	0.0
Lane 2	0	252	0	252	5.0	747	0.337	100	24.6	LOSA	8.5	61.7	500	_	0.0	0.0
Lane 3	0	252	0	252	5.0	747	0.337	100	24.6	LOSA	8.5	61.7	500	_	0.0	0.0
Lane 4	0	0	89	89	5.0	289 ¹	0.310	100	55.9	LOS A	4.3	31.3	70 T	urn Bay	0.0	0.0
Approach	26	503	89	619	5.0		0.337		28.5	LOS A	8.5	61.7				
West: Rix F	Rd - Wes	st														
Lane 1	67	0	0	67	5.0	679 ¹	0.099	100	10.0	LOSA	0.2	1.3	55 T	urn Bay	0.0	0.0
Lane 2	0	165	0	165	5.0	334	0.495	100	48.9	LOSA	8.5	62.2	100 T	urn Bay	0.0	0.0
Lane 3	0	165	0	165	5.0	334	0.495	100	48.9	LOSA	8.5	62.2	500	_	0.0	0.0
Lane 4	0	0	37	37	5.0	91	0.407	100	73.2	LOS A	2.2	16.2	100 T	urn Bay	0.0	0.0
Approach	67	331	37	435	5.0		0.495		44.9	LOSA	8.5	62.2		<u>y</u>		
Intersection	1			2817	5.0		0.593		35.3	LOSA	17.8	129.8				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 6 Lane underutilisation due to downstream effects

Processed: Wednesday, 27 July 2011 2:12:30 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

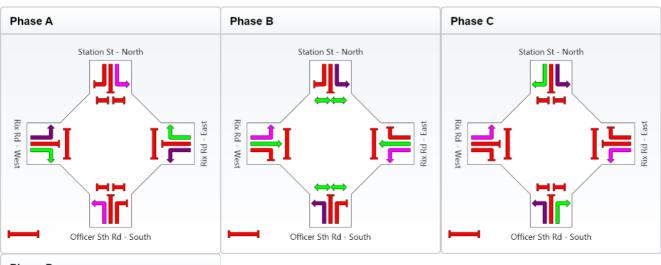
Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 27July)-Interim2021-AM&PM\Revised SIDRA_110727 (FinalInterim)\1035.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

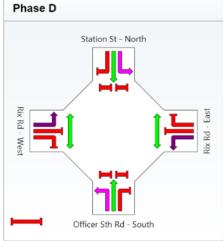
Site: 1035 - PM peak - 27/07/11

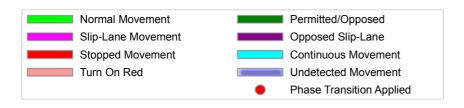
Intersection 1035 - AM Peak - 27/07/11

Officer Sth Rd

Rix Rd


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Leading Right Turn Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	13	28	18	37
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	19	34	24	43
Phase Split	16 %	28 %	20 %	36 %

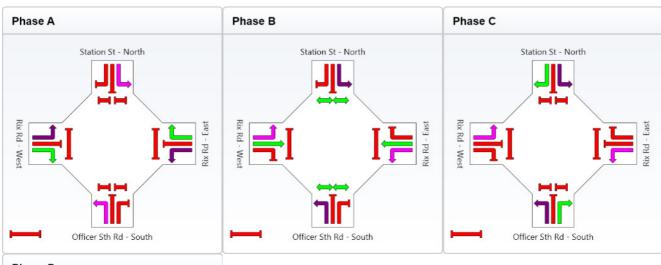
Processed: Wednesday, 27 July 2011 2:11:21 PM SIDRA INTERSECTION 5.1.5.2006

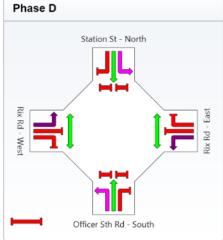
PHASING SUMMARY

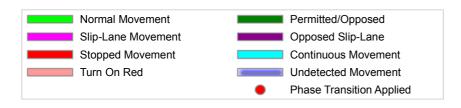
Intersection 1035 - PM Peak - 27/07/11

Officer Sth Rd

Rix Rd

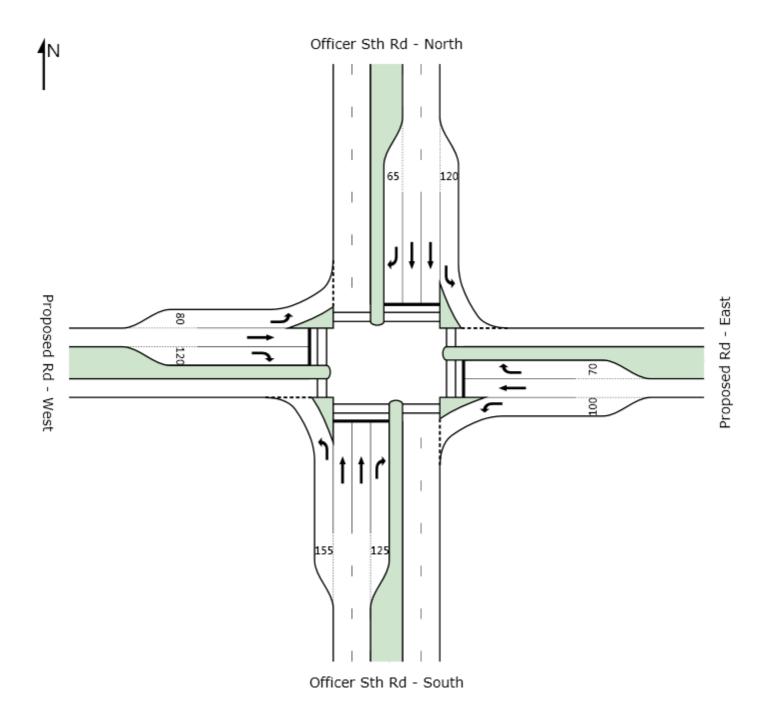

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Leading Right Turn Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	6	21	22	47
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	12	27	28	53
Phase Split	10 %	23 %	23 %	44 %



Processed: Wednesday, 27 July 2011 2:12:30 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Site: 1035 - PM peak - 27/07/11

Intersection 647 - AM Peak - 27/07/11 Officer Sth Rd Proposed Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and Po	erform	ance													
		Demand			1.0.7		Deg.	Lane	Average	Level of	95% Back		Lane	SL	Cap. I	
	L	T	R	Total	HV	Cap.	Satn	Util.	Delay	Service		Distance	Length	Туре	Adj. I	
South: Office		veh/h Rd - So		veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
Lane 1	209	0	0	209	5.0	1519	0.138	100	10.2	LOSA	0.5	3.3	155 T	urn Bay	0.0	0.0
Lane 2	0	240	0	240	5.0	493	0.487	100	40.8	LOSA	11.1	81.1	260		0.0	0.0
Lane 3	0	240	0	240	5.0	493	0.487	100	40.8	LOSA	11.1	81.1	260	_	0.0	0.0
Lane 4	0	0	194	194	5.0		0.855	100	73.6	LOS C	12.2	88.9		urn Bay	0.0	0.0
Approach	209	480	194	883	5.0		0.855		40.7	LOS C	12.2	88.9		<u>_</u>		
East: Propo	sed Rd	l - East														
Lane 1	465	0	0	465	5.0	616 ¹	0.755	100	26.4	LOS C	15.6	113.8	100 T	urn Bay	0.0	16.7
Lane 2	0	31	0	31	5.0	207	0.148	100	53.4	LOS A	1.6	11.7	290	_	0.0	0.0
Lane 3	0	0	15	15	5.0	196	0.075	100	58.8	LOS A	0.8	5.6	70 T	urn Bay	0.0	0.0
Approach	465	31	15	511	5.0		0.755		29.0	LOS C	15.6	113.8				
North: Offic	er Sth F	Rd - No	rth													
Lane 1	45	0	0	45	5.0	1322 ¹	0.034	100	10.9	LOS A	0.1	0.7	120 T	urn Bay	0.0	0.0
Lane 2	0	429	0	429	5.0	493	0.870	100	53.0	LOS C	26.0	189.6	275	_	0.0	0.0
Lane 3	0	429	0	429	5.0	493	0.870	100	53.0	LOS C	26.0	189.6	275	-	0.0	0.0
Lane 4	0	0	60	60	5.0	226	0.265	100	62.5	LOS A	3.1	22.9	65 T	urn Bay	0.0	0.0
Approach	45	858	60	963	5.0		0.870		51.6	LOS C	26.0	189.6				
West: Prope	osed Ro	d - Wes	t													
Lane 1	87	0	0	87	5.0	1194 ¹	0.073	100	8.1	LOS A	0.2	1.5	80 T	urn Bay	0.0	0.0
Lane 2	0	40	0	40	5.0	588	0.068	100	31.8	LOS A	1.4	10.2	140	-	0.0	0.0
Lane 3	0	0	446	446	5.0	500 ¹	0.893	100	59.0	LOS C	26.6	194.0	120 T	urn Bay	0.0	49.1
Approach	87	40	446	574	5.0		0.893		49.3	LOS C	26.6	194.0				
Intersection				2931	5.0		0.893		44.0	LOS C	26.6	194.0				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

1 Reduced capacity due to a short lane effect

Processed: Wednesday, 27 July 2011 2:25:26 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 27July)-Interim2021-AM&PM\Revised SIDRA_110727 (FinalInterim)\647.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 647 - AM peak - 27/07/11

Intersection 647 - PM Peak - 27/07/11 Officer Sth Rd Proposed Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erform	ance													
		Deman			107		Deg.	Lane	Average	Level of	95% Back		Lane	SL	Cap. I	
	L	T	R	Total	HV	Cap.	Satn	Util.	Delay	Service		Distance		Туре	Adj. I	
South: Office		veh/h		veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
Lane 1	446	0	0	446	5.0	1499	0.298	100	10.3	LOSA	1.3	9.6	155 Tı	ırn Bay	0.0	0.0
Lane 2	0	533	0	533	5.0	906	0.588	100	19.6	LOSA	18.0	131.5	260		0.0	0.0
Lane 3	0	533	0	533	5.0	906	0.588	100	19.6	LOSA	18.0	131.5	260	_	0.0	0.0
Lane 4	0	0	476	476	5.0	549 ¹		100	53.3	LOS C	25.7	187.8		ırn Bay	0.0	42.2
Approach	446	1065	476	1987	5.0	040	0.866	100	25.6	LOS C	25.7	187.8	12010	ин Бау	0.0	72.2
				1507	0.0		0.000		20.0	2000	20.1	107.0				
East: Propo		l - East				1										
Lane 1	204	0	0	204	5.0	930		100	10.2	LOS A	2.2	15.9		ırn Bay	0.0	0.0
Lane 2	0	45	0	45	5.0	207	0.219	100	54.0	LOS A	2.4	17.5	290	_	0.0	0.0
Lane 3	0	0	45	45	5.0	196	0.231	100	60.3	LOSA	2.4	17.6	70 Tı	ırn Bay	0.0	0.0
Approach	204	45	45	295	5.0		0.231		24.6	LOS A	2.4	17.6				
North: Offic	er Sth I	Rd - No	rth													
Lane 1	15	0	0	15	5.0	1016 ¹	0.015	100	12.0	LOS A	0.1	0.5	120 Tu	ırn Bay	0.0	0.0
Lane 2	0	344	0	344	5.0	398	0.865	100	56.5	LOS C	21.1	153.8	275	_	0.0	0.0
Lane 3	0	344	0	344	5.0	398	0.865	100	56.5	LOS C	21.1	153.8	275	_	0.0	0.0
Lane 4	0	0	87	87	5.0	151	0.579	100	70.1	LOS A	5.1	37.4	65 Tu	ırn Bay	0.0	0.0
Approach	15	687	87	789	5.0		0.865		57.2	LOS C	21.1	153.8				
West: Propo	sed R	d - Wes	st													
Lane 1	60	0	0	60	5.0	780 ¹	0.077	100	8.5	LOS A	0.2	1.1	80 Tu	ırn Bay	0.0	0.0
Lane 2	0	36	0	36	5.0	254	0.141	100	51.5	LOS A	1.8	13.1	140	_	0.0	0.0
Lane 3	0	0	209	209	5.0	242	0.867	100	71.0	LOS C	13.3	96.8	120 Tu	ırn Bay	0.0	0.0
Approach	60	36	209	305	5.0		0.867		56.4	LOS C	13.3	96.8				
Intersection				3377	5.0		0.867		35.7	LOS C	25.7	187.8				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

1 Reduced capacity due to a short lane effect

Processed: Wednesday, 27 July 2011 2:28:01 PM SIDRA INTERSECTION 5.1.5.2006

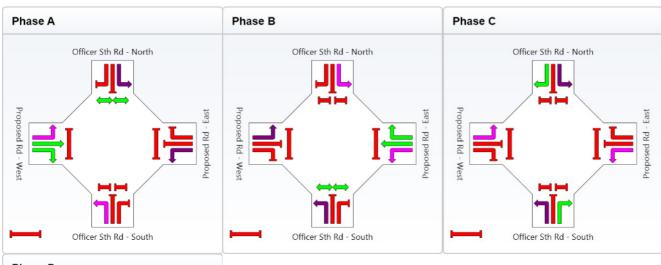
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

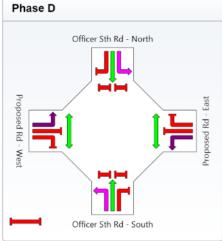
Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 27July)-Interim2021-AM&PM\Revised SIDRA_110727 (FinalInterim)\647.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 647 - PM peak - 27/07/11

Intersection 647 - AM Peak - 27/07/11

Officer Sth Rd Proposed Rd


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Split phase Input Sequence: A, B, C, D Output Sequence: A, B, C, D

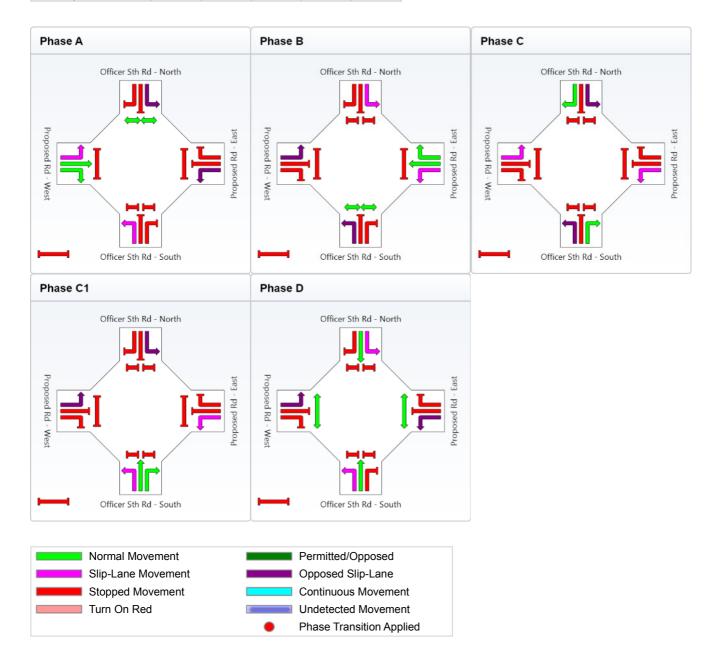
Phase Timing Results

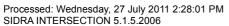
Phase	Α	В	С	D
Green Time (sec)	37	13	15	31
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	43	19	21	37
Phase Split	36 %	16 %	18 %	31 %

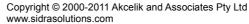
Processed: Wednesday, 27 July 2011 2:25:26 PM SIDRA INTERSECTION 5.1.5.2006

Intersection 647 - PM Peak - 27/07/11

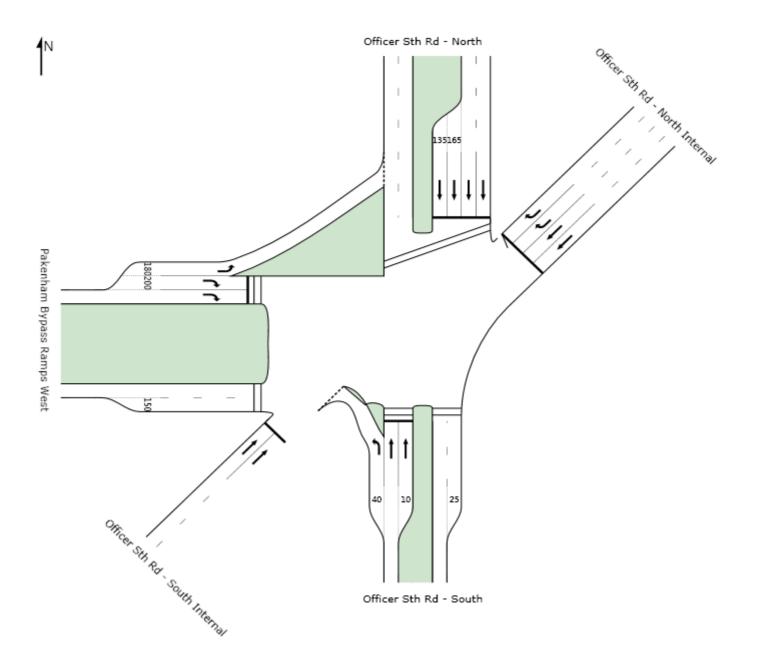
Officer Sth Rd Proposed Rd


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Split phase Input Sequence: A, B, C, C1, D Output Sequence: A, B, C, C1, D

Phase Timing Results


Phase	Α	В	С	C1	D
Green Time (sec)	16	13	10	26	25
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	22	19	16	32	31
Phase Split	18 %	16 %	13 %	27 %	26 %

Site 1171 & 1172 - AM Peak - 27/07/11 Princes Freeway / Officer South Road

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erform	ance													
		Deman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Сар.	Prob.
	L	T	R	Total	HV	Cap.	Satn	Util.	Delay	Service		Distance	Length	Type		Block.
O - valle v Office		veh/h		veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: Office				000	- 0	0501	0.846	400	00.0	1.00.0	7.0	57. 0	40.	F . D.	0.0	00.0
Lane 1	298	0	0	298	5.0			100	33.6	LOS C	7.9	57.6		Turn Bay	0.0	38.3
Lane 2	0	129	0	129	5.0	159	0.813	100	70.1	LOS C	8.1	58.8	500	_	0.0	0.0
Lane 3	0	33	0	33	5.0	40	0.813	100	69.3	LOS C	1.9	14.1	10	Turn Bay	0.0	36.3
Approach	298	162	0	460	5.0		0.846		46.4	LOS C	8.1	58.8				
North East:	Officer		I - North					6								
Lane 1	0	337	0	337	5.0	1049	0.321	35 ⁶	1.7	LOS A	1.4	10.2	70	_	0.0	0.0
Lane 2	0	962	0	962	5.0	1049	0.917	100	6.9	LOS D	24.7	180.4	70	_	0.0	94.2
Lane 3	0	0	596	596	5.0	755	0.789	97 ⁶	32.8	LOS C	28.0	204.3	70	_	0.0	100.0
Lane 4	0	0	615	615	5.0	755	0.814	100	34.5	LOS C	30.2	220.7	70	_	0.0	100.0
Approach	0	1299	1211	2509	5.0		0.917		19.1	LOS D	30.2	220.7				
North: Offic	er Sth F	Rd - No	rth													
Lane 1	0	141	0	141	5.0	1049	0.135	25 ⁶	15.3	LOS A	2.4	17.5	260	_	0.0	0.0
Lane 2	0	574	0	574	5.0	1049	0.547	100	18.4	LOSA	14.8	107.7	260	_	0.0	0.0
Lane 3	0	544	0	544	5.0	995 ¹	0.547	100	18.1	LOS A	13.5	98.7	165	Turn Bay	0.0	0.0
Lane 4	0	497	0	497	5.0	908 ¹	0.547	100	17.7	LOS A	11.7	85.4	135	Turn Bay	0.0	0.0
Approach	0	1757	0	1757	5.0		0.547		17.9	LOS A	14.8	107.7				
West: Pake	nham E	Bypass	Ramps	West												
Lane 1	731	0	0	731	5.0	1400 ¹	0.522	100	12.4	LOSA	6.4	46.5	180	Turn Bay	0.0	0.0
Lane 2	0	0	182	182	5.0	634	0.287	32 ⁶	39.8	LOS A	7.6	55.8	200	Γurn Bay	0.0	0.0
Lane 3	0	0	571	571	5.0	634	0.900	100	63.3	LOS C	37.6	274.5	250	_	0.0	13.5
Approach	731	0	753	1483	5.0		0.900		35.3	LOS C	37.6	274.5				
South West	: Office	r Sth R	d - Sou	th Inter	nal											
Lane 1	0	81	0	81	5.0	159	0.510	100	53.9	LOS A	4.5	33.0	70	_	0.0	0.0
Lane 2	0	81	0	81	5.0	159	0.510	100	53.9	LOS A	4.5	33.0	70	_	0.0	0.0
Approach	0	162	0	162	5.0		0.510		53.9	LOSA	4.5	33.0				
Intersection				6372	5.0		0.917		25.4	LOS D	37.6	274.5				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 6 Lane underutilisation due to downstream effects

Processed: Friday, 29 July 2011 1:29:00 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Site 1171 & 1172 - PM Peak - 27/07/11 Princes Freeway / Officer South Road

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and Pe	erform	ance													
	[Demano	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Сар.	Prob.
	L	Т	R	Total	HV	Сар.	Satn	Util.	Delay	Service	Vehicles	Distance	Length	Type		Block.
0 11 0	veh/h			veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: Office				=00		=001	4.0003	400	00.0 8	. 8	 8	o= o8	40.			=
Lane 1	598	0	0	598	5.0	598 ¹	1.000°	100	23.9 ⁸	LOS E	8.9 ⁸	65.3 ⁸		Turn Bay	0.0	50.0
Lane 2	155 ⁰	671	0	826	5.0	913	0.904	100	39.6	LOS D	47.2	344.4	500	_	0.0	0.0
Lane 3	0	92	0	92	5.0	102	0.904	100	41.6 ⁸			16.3 ⁸	10	Turn Bay	0.0	50.0
Approach	753	763	0	1516	5.0		1.000		33.5	LOS E	47.2	344.4				
North East:	Officer		- North	Interna	al			0								
Lane 1	0	175	0	175	5.0	1447	0.121	35 ⁶	8.0	LOS A	0.6	4.1	70	-	0.0	0.0
Lane 2	0	501	0	501	5.0	1447	0.346	100	1.0	LOSA	2.1	15.6	70	_	0.0	0.0
Lane 3	0	0	360	360	5.0	408	0.882	97 ⁶	60.8	LOS C	22.5	164.6	70	_	0.0	85.1
Lane 4	0	0	371	371	5.0	408	0.910	100	64.9	LOS D	24.4	177.9	70	-	0.0	92.8
Approach	0	677	731	1407	5.0		0.910		33.1	LOS D	24.4	177.9				
North: Office	er Sth F	Rd - No	rth													
Lane 1	0	84	0	84	5.0	1447	0.058	25 ⁶	6.7	LOS A	0.3	1.8	260	_	0.0	0.0
Lane 2	0	342	0	342	5.0	1447	0.236	100	6.9	LOSA	1.3	9.2	260	_	0.0	0.0
Lane 3	0	342	0	342	5.0	1447	0.236	100	6.9	LOS A	1.3	9.2	165	Turn Bay	0.0	0.0
Lane 4	0	342	0	342	5.0	1447	0.236	100	6.9	LOS A	1.3	9.2	135	Turn Bay	0.0	0.0
Approach	0	1109	0	1109	5.0		0.236		6.9	LOSA	1.3	9.2				
West: Pake	nham B	Sypass I	Ramps	West												
Lane 1	1211	0	0	1211	5.0	1348 ¹	0.898	100	17.4 ⁸	LOS C8	40.2 ⁸	293.8 ⁸	180	Turn Bay	0.0	50.0
Lane 2	0	0	72	72	5.0	257	0.281	32 ⁶	60.2	LOS A	3.9	28.1	200	Γurn Bay	0.0	0.0
Lane 3	0	0	226	226	5.0	257	0.880	100	75.5	LOS C	14.9	108.8	250		0.0	0.0
Approach	1211	0	298	1508	5.0		0.898		28.1	LOS C	40.2	293.8				
South West	: Office	r Sth Ro	d - Sou	th Inter	nal											
Lane 1	0	382	0	382	5.0	922	0.414	100	2.1	LOS A	1.8	13.2	70	_	0.0	0.0
Lane 2	0	382	0	382	5.0	922	0.414	100	2.1	LOS A	1.8	13.2	70	_	0.0	0.0
Approach	0	763	0	763	5.0		0.414		2.1	LOS A	1.8	13.2				
Intersection				6304	5.0		1.000		23.7	LOS E	47.2	344.4				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

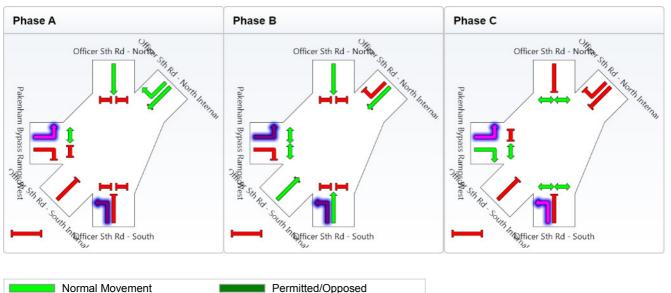
SIDRA Standard Delay Model used.

- 0 Excess flow from back of an adjacent short lane
- 1 Reduced capacity due to a short lane effect
- 3 x = 1.00 due to short lane.
- 6 Lane underutilisation due to downstream effects
- 8 Delay, queue length and stops for the short lane have been cut down to fit in the queuing space. You may wish to change the short lane to a full lane to investigate the effect on the adjacent lane performance.

Processed: Friday, 29 July 2011 1:29:01 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Site 1171 & 1172 - AM Peak - 27/07/11 Princes Freeway / Officer South Road


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Interchange Input Sequence: A, B, C Output Sequence: A, B, C

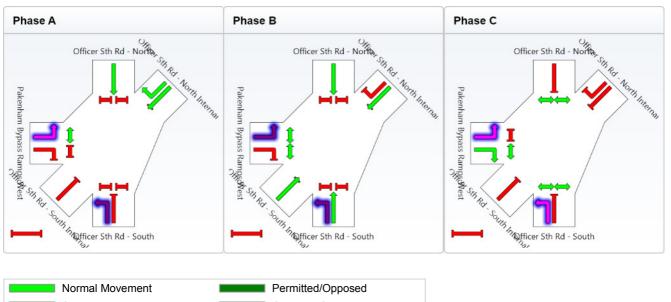
Phase Timing Results

Phase	Α	В	С
Green Time (sec)	50	10	42
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	56	16	48
Phase Split	47 %	13 %	40 %

Processed: Friday, 29 July 2011 1:29:00 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Site 1171 & 1172 - PM Peak - 27/07/11 Princes Freeway / Officer South Road

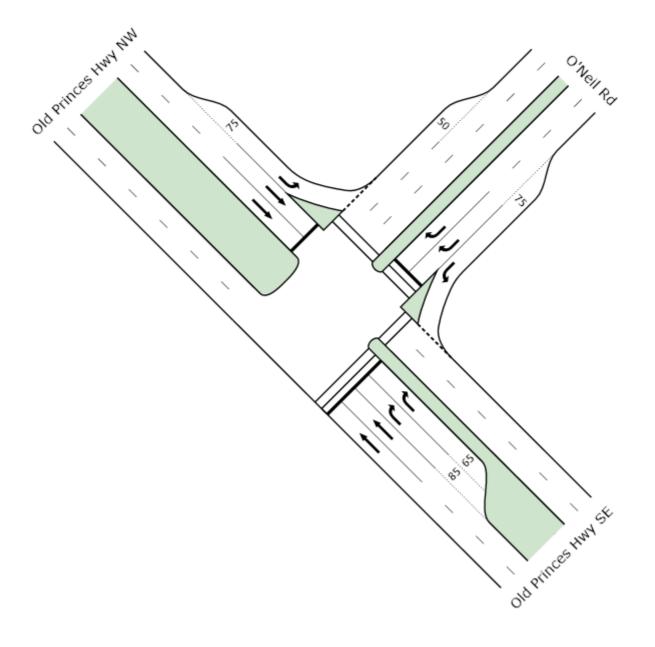

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Interchange Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	27	58	17
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	33	64	23
Phase Split	28 %	53 %	19 %



Processed: Friday, 29 July 2011 1:29:01 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

ULTIMATE

Intersection 591 - AM Peak - 25/05/11 O'Neil Rd Old Princes Hwy

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use and Performance																
	Г	Deman	d Flows					Lane	Average	Level of			Lane	SL	Сар.	
	L	Т	R	Total	HV	Сар.	Satn	Util.	Delay	Service	Vehicles	Distance	Length	Type		Block.
0 11 5 1	veh/h			veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South East:			•													
Lane 1	0	507	0	507	5.0	1113	0.456	100	9.2	LOSA	10.1	73.4	250	-	0.0	0.0
Lane 2	0	507	0	507	5.0	1113	0.456	100	9.2	LOSA	10.1	73.4	250	-	0.0	0.0
Lane 3	0	0	232	232	5.0	372 ¹	0.623	100	51.0	LOS B	10.8	78.8	85 T	urn Bay	0.0	0.0
Lane 4	0	0	188	188	5.0	302 ¹	0.623	100	49.9	LOS B	8.4	61.5	65 T	urn Bay	0.0	0.0
Approach	0	1015	420	1435	5.0		0.623		21.3	LOS B	10.8	78.8				
North East:	O'Neil I	Rd														
Lane 1	376	0	0	376	5.0	948 ¹	0.396	100	8.6	LOS A	1.6	11.6	75 T	urn Bay	0.0	0.0
Lane 2	0	0	357	357	5.0	574	0.622	100	44.1	LOS B	16.4	119.7	100	_	0.0	21.3
Lane 3	0	0	357	357	5.0	574	0.622	100	44.1	LOS B	16.4	119.7	100	_	0.0	21.3
Approach	376	0	714	1089	5.0		0.622		31.9	LOS B	16.4	119.7				
North West:	Old Pri	inces F	lwy NW	1												
Lane 1	325	0	0	325	5.0	1000 ¹	0.325	100	10.5	LOS A	1.1	7.9	75 T	urn Bay	0.0	0.0
Lane 2	0	326	0	326	5.0	525	0.621	100	41.1	LOS B	15.7	114.6	430	_	0.0	0.0
Lane 3	0	326	0	326	5.0	525	0.621	100	41.1	LOS B	15.7	114.6	430	_	0.0	0.0
Approach	325	652	0	977	5.0		0.621		30.9	LOS B	15.7	114.6				
Intersection				3501	5.0		0.623		27.3	LOS B	16.4	119.7				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

1 Reduced capacity due to a short lane effect

Processed: Wednesday, 25 May 2011 11:26:33 AM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\591.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 591 - AM peak - 25/05/11

Intersection 591 - PM Peak - 25/05/11 O'Neil Rd Old Princes Hwy

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use and Performance																
		Deman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Cap. F	rob.
	L	T	R	Total	HV	Сар.	Satn	Util.	Delay	Service	Vehicles	Distance	Length	Type	Adj. E	
		veh/h		veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South East:	Old Pr	inces F	Hwy SE													
Lane 1	0	402	0	402	5.0	1304	0.308	100	2.6	LOS A	2.9	20.8	250	_	0.0	0.0
Lane 2	0	402	0	402	5.0	1304	0.308	100	2.6	LOSA	2.9	20.8	250	_	0.0	0.0
Lane 3	0	0	206	206	5.0	317	0.649	100	60.7	LOS B	11.1	81.2	85 T	urn Bay	0.0	0.9
Lane 4	0	0	170	170	5.0	262 ¹	0.649	100	59.8	LOS B	8.9	65.3	65 T	urn Bay	0.0	5.4
Approach	0	804	376	1180	5.0		0.649		21.0	LOS B	11.1	81.2				
North East:	North East: O'Neil Rd															
Lane 1	420	0	0	420	5.0	606 ¹	0.693	100	10.7	LOS B	3.5	25.6	75 T	urn Bay	0.0	0.0
Lane 2	0	0	163	163	5.0	393	0.414	100	51.5	LOS A	7.8	56.7	100	_	0.0	0.0
Lane 3	0	0	163	163	5.0	393	0.414	100	51.5	LOSA	7.8	56.7	100	_	0.0	0.0
Approach	420	0	325	745	5.0		0.693		28.5	LOS B	7.8	56.7				
North West:	Old Pr	inces l	lwy NW	1												
Lane 1	714	0	0	714	5.0	1361 ¹	0.524	100	11.0	LOS A	3.0	21.6	75 T	urn Bay	0.0	0.0
Lane 2	0	591	0	591	5.0	875	0.676	100	22.5	LOS B	22.7	165.8	430	_	0.0	0.0
Lane 3	0	591	0	591	5.0	875	0.676	100	22.5	LOS B	22.7	165.8	430	_	0.0	0.0
Approach	714	1182	0	1896	5.0		0.676		18.2	LOS B	22.7	165.8				
Intersection				3821	5.0		0.693		21.0	LOS B	22.7	165.8				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

1 Reduced capacity due to a short lane effect

Processed: Wednesday, 25 May 2011 11:26:34 AM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

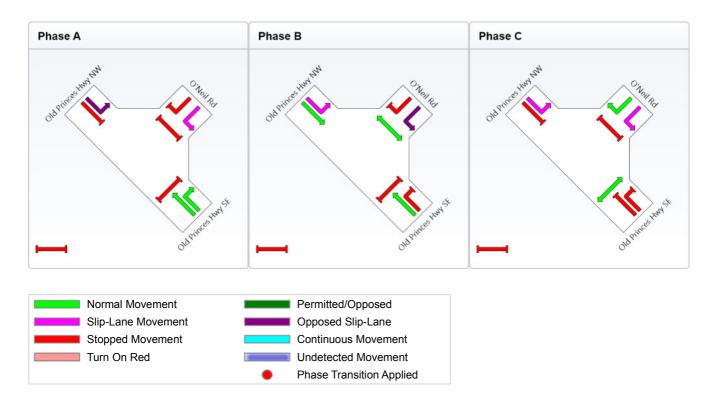
Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\591.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 591 - PM peak - 25/05/11

PHASING SUMMARY

Intersection 591 - AM Peak - 25/05/11 O'Neil Rd

Old Princes Hwy


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Leading Right Turn Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	31	33	38
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	37	39	44
Phase Split	31 %	33 %	37 %

Processed: Wednesday, 25 May 2011 11:26:33 AM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\591.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 591 - AM peak - 25/05/11

Intersection 591 - PM Peak - 25/05/11 O'Neil Rd

Old Princes Hwy

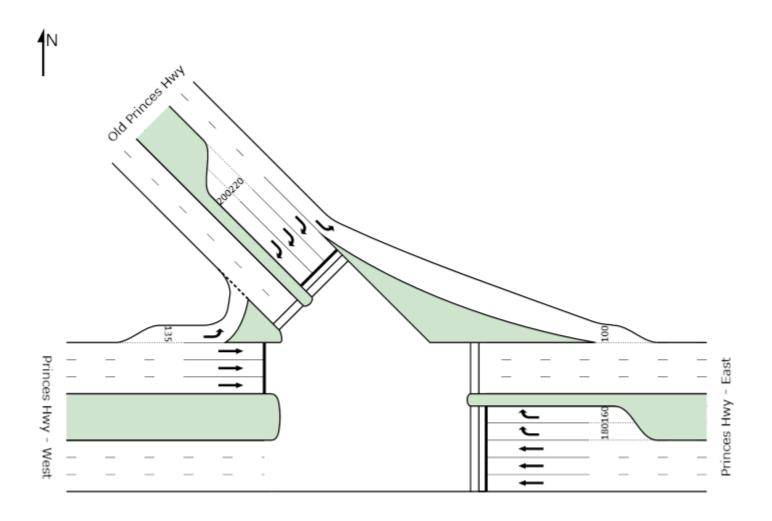
Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Leading Right Turn Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	21	55	26
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	27	61	32
Phase Split	23 %	51 %	27 %


Processed: Wednesday, 25 May 2011 11:26:34 AM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\591.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 591 - PM peak - 25/05/11

Site: 593 / 595 - AM Peak - 25/05/11 - Continuous

Intersection 593 / 595 - AM Peak - 25/05/11 Princes Hwy Old Princes Hwy Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use and Performance Level of 95% Back of Queue Cap. Prob. **Demand Flows** Lane Average Cap Satn Delay Service Length Type Block veh/h veh/h veh/h East: Princes Hwy - East Lane 1 0 754 0 754 5.0 1415 0.533 100 1.6 LOS A 4.4 32.0 500 0.0 0.0 Lane 2 0 754 0 754 5.0 1415 0.533 100 1.6 LOS A 4.4 32.0 500 0.0 0.0 Lane 3 0 754 0 754 5.0 1415 0.533 100 1.6 LOS A 4.4 32.0 500 0.0 0.0 438 n n 357 357 5.0 0.816 100 59.0 LOS C 20.5 149 7 180 Turn Bay 0.0 0.0 Lane 4 0 0 357 357 5.0 100 59.0 LOS C 20.5 160 Turn Bay 0.0 0.0 Lane 5 438 0.816 149.7 Approach 0 2263 715 2978 5.0 0.816 15.3 LOS C 20.5 149.7 North West: Old Princes Hwy Lane 1 337 0 0 337 5.0 1812 0.186 100 9.6 Х Χ Х 250 0.0 Х Lane 2 0 0 228 228 5.0 287 0.796 100 69.3 LOS C 13.5 98.9 250 0.0 0.0 0 228 LOS C Lane 3 0 228 5.0 287 0.796 100 69.3 13.5 98.9 220 Turn Bay 0.0 0.0 Lane 4 0 0 228 228 5.0 287 0.796 100 69.3 LOS C 13.5 98.9 200 Turn Bay 0.0 0.0

Approach	724	2135	0	2859	5.0	0.829	24.6	LOS C	34.2	250.0
Intersection				6859	5.0	0.829	24.3	LOS C	34.2	250.0

1293

859

859

859

0.796

0.560

0.829

0.829

0.829

100

100

100

100

X: Not applicable for Continuous lane.

337

0

0

0

West: Princes Hwy - West 724

0

O

712

712

712

685

n

0

0

0

Approach

Lane 1

Lane 2 Lane 3

Lane 4

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

1022 5.0

712 5.0

712 5.0

712 5.0

724

5.0

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

Processed: Monday, 6 June 2011 2:24:52 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

LOS C

LOS A

LOS C

LOS C

LOS C

13.5

3.3

34.2

34.2

34.2

98.9

23.8

250.0

250.0

250.0

135 Turn Bay

500

500

500

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

49.6

14.5

28.0

28.0

28.0

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised SIDRA 110525 (FinalUltimate) \593.595.sip

8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Intersection 593 / 595 - PM Peak - 25/05/11 Princes Hwy Old Princes Hwy

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erform	nance													
		Deman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Cap. F	
	L	T	R	Total	HV	Cap.	Satn	Util.	Delay	Service		Distance	Length	Type	Adj. E	
East: Prince	veh/h		veh/h	veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
Lane 1	es riwy	903	0	903	5.0	1415	0.638	100	1.8	LOS B	6.6	48.0	500		0.0	0.0
	-	903	-		5.0			100	1.8	LOS B	6.6	48.0	500	_		
Lane 2	0		0	903		1415	0.638							_	0.0	0.0
Lane 3	0	903	0	903	5.0	1415	0.638	100	1.8	LOS B	6.6	48.0	500		0.0	0.0
Lane 4	0	0	245	245	5.0	272	0.901	100	74.0	LOS D	16.0	117.0		urn Bay	0.0	0.0
Lane 5	0	0	245	245	5.0	272	0.901	100	74.0	LOS D	16.0	117.0	160 T	urn Bay	0.0	0.0
Approach	0	2709	489	3199	5.0		0.901		12.8	LOS D	16.0	117.0				
North West	: Old Pr	inces I	lwy													
Lane 1	882	0	0	882	5.0	1812	0.487	100	9.6	Χ	X	Χ	250	-	0.0	Χ
Lane 2	0	0	241	241	5.0	287	0.842	100	71.8	LOS C	14.8	108.1	250	-	0.0	0.0
Lane 3	0	0	241	241	5.0	287	0.842	100	71.8	LOS C	14.8	108.1	220 T	urn Bay	0.0	0.0
Lane 4	0	0	241	241	5.0	287	0.842	100	71.8	LOS C	14.8	108.1	200 T	urn Bay	0.0	0.0
Approach	882	0	724	1606	5.0		0.842		37.6	LOS D	14.8	108.1				
West: Princ	es Hwy	- Wes	t													
Lane 1	685	0	0	685	5.0	1433	0.478	100	13.8	LOSA	2.3	17.0	135 T	urn Bay	0.0	0.0
Lane 2	0	941	0	941	5.0	1034	0.911	100	28.3	LOS D	51.6	376.5	500	_	0.0	0.0
Lane 3	0	941	0	941	5.0	1034	0.911	100	28.3	LOS D	51.6	376.5	500	_	0.0	0.0
Lane 4	0	941	0	941	5.0	1034	0.911	100	28.3	LOS D	51.6	376.5	500	_	0.0	0.0
Approach	685	2823	0	3508	5.0		0.911		25.5	LOS D	51.6	376.5				
Intersection	1			8314	5.0		0.911		23.0	LOS D	51.6	376.5				

X: Not applicable for Continuous lane.

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

Processed: Monday, 6 June 2011 2:24:52 PM SIDRA INTERSECTION 5.1.5.2006

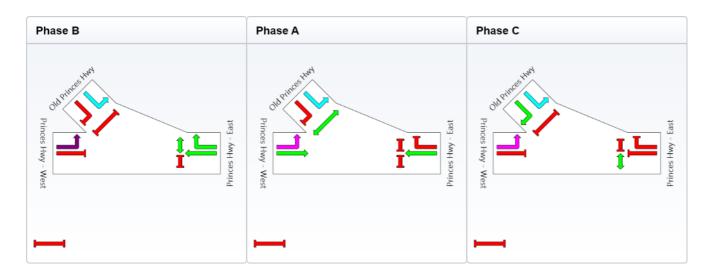
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised SIDRA_110525 (FinalUltimate)

\593,595.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 593 / 595 - AM Peak - 25/05/11 - Continuous

Intersection 593 / 595 - AM Peak - 25/05/11
Princes Hwy
Old Princes Hwy
Signals - Fixed Time - Cycle Time = 120 seconds


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Custom Input Sequence: B, A, C Output Sequence: B, A, C

Phase Timing Results

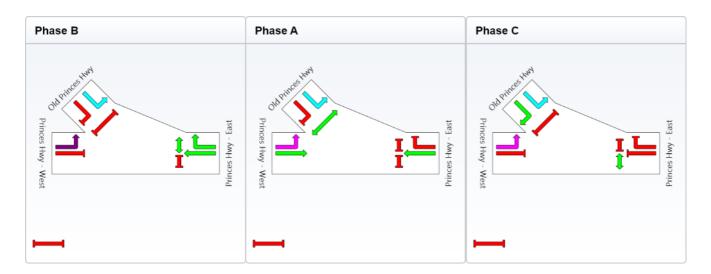
Phase	В	Α	С
Green Time (sec)	29	54	19
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	35	60	25
Phase Split	29 %	50 %	21 %

Processed: Monday, 6 June 2011 2:24:52 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised SIDRA_110525 (FinalUltimate)\593,595.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 593 / 595 - PM Peak - 25/05/11 - Continuous

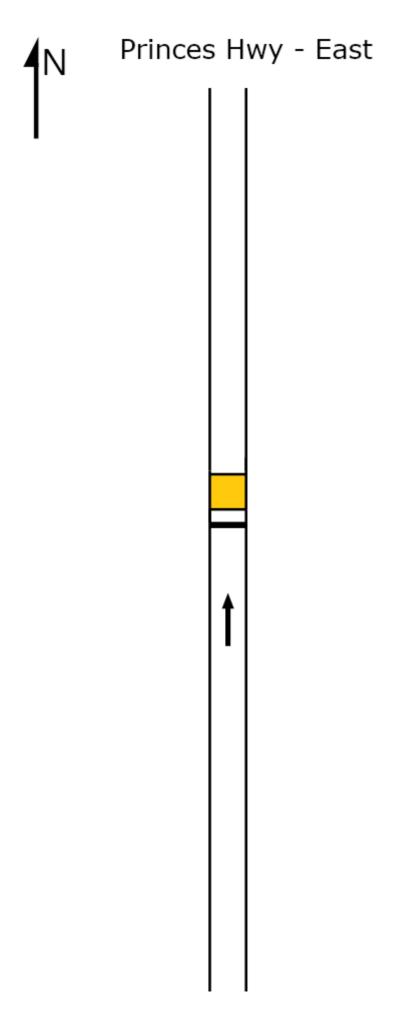

Intersection 593 / 595 - PM Peak - 25/05/11 Princes Hwy Old Princes Hwy Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Custom Input Sequence: B, A, C Output Sequence: B, A, C

Phase Timing Results

Phase	В	Α	С
Green Time (sec)	18	65	19
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	24	71	25
Phase Split	20 %	59 %	21 %



Processed: Monday, 6 June 2011 2:24:52 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Projects 1:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised SIDRA_110525 (FinalUltimate)\\00e1593,595.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Old Princes Hwy

Site: 593 / 595 - AM Peak - 25/05/11 - Ped signals

Signalised pedestrian crossing across one-way road
Pedestrian Crossing (Signals) - Actuated Cycle Time = 26 seconds

Lane Use	and P	erforn	nance													
		Deman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Cap. F	⊃rob.
	L	Т	R	Total	HV	Сар.	Satn	Util.	Delay	Service	Vehicles	Distance	Length	Type	Adj. E	Block.
	veh/h	veh/h	veh/h	veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: Old	Princes	Hwy														
Lane 1	0	337	0	337	5.0	881	0.382	100	5.4	LOSA	2.9	21.5	250	_	0.0	0.0
Approach	0	337	0	337	5.0		0.382		5.4	LOS A	2.9	21.5				
Intersection	า			337	5.0		0.382		5.4	LOS A	2.9	21.5				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

Processed: Monday, 6 June 2011 2:36:39 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised SIDRA_110525 (FinalUltimate) \593,595.sip

8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 593 / 595 - PM Peak - 25/05/11 - Ped signals

Signalised pedestrian crossing across one-way road
Pedestrian Crossing (Signals) - Actuated Cycle Time = 38 seconds

	D	eman	d Flows				Dea.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Cap. F	Prob.
	L	Т	R	Total	HV	Сар.	Satn	Util.	Delay	Service		Distance		Туре	Adj. E	
	veh/h	veh/h	veh/h	veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: Old	Princes	Hwy														
Lane 1	0	882	0	882	5.0	1155	0.764	100	6.4	LOS C	12.3	90.1	250	_	0.0	0.0
Approach	0	882	0	882	5.0		0.764		6.4	LOS C	12.3	90.1				
Intersection				882	5.0		0.764		6.4	LOS C	12.3	90.1				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

Processed: Monday, 6 June 2011 2:36:39 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised SIDRA_110525 (FinalUltimate) \593,595.sip

8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 593 / 595 - AM Peak - 25/05/11 - Ped signals


Signalised pedestrian crossing across one-way road
Pedestrian Crossing (Signals) - Actuated Cycle Time = 26 seconds


Phase times determined by the program

Sequence: Two-Phase Input Sequence: A, B Output Sequence: A, B

Phase Timing Results

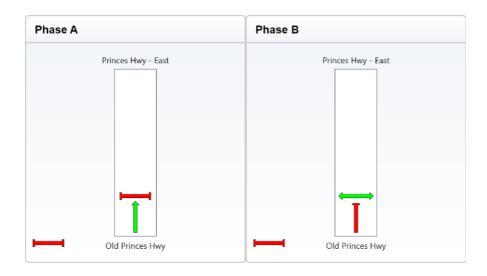
Phase	Α	В
Green Time (sec)	12	2
Yellow Time (sec)	4	4
All-Red Time (sec)	2	2
Phase Time (sec)	18	8
Phase Split	69 %	31 %

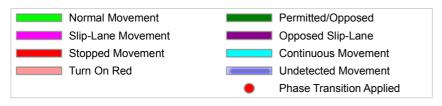
Processed: Monday, 6 June 2011 2:36:39 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised SIDRA_110525 (FinalUltimate)\593,595.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 593 / 595 - PM Peak - 25/05/11 - Ped signals

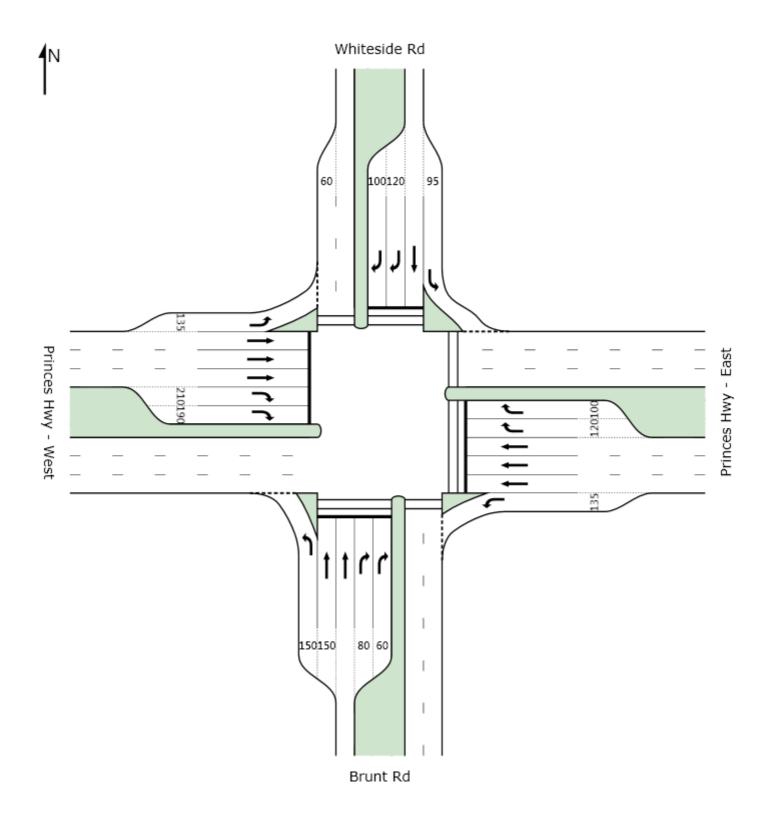

Signalised pedestrian crossing across one-way road
Pedestrian Crossing (Signals) - Actuated Cycle Time = 38 seconds


Phase times determined by the program

Sequence: Two-Phase Input Sequence: A, B Output Sequence: A, B

Phase Timing Results

Phase	Α	В
Green Time (sec)	23	3
Yellow Time (sec)	4	4
All-Red Time (sec)	2	2
Phase Time (sec)	29	9
Phase Split	76 %	24 %



Processed: Monday, 6 June 2011 2:36:39 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised SIDRA_110525 (FinalUltimate)\593,595.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Intersection 598 - AM Peak - 25/05/11 Princes Hwy

Whiteside Rd / Brunt Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use a	and P	erform	ance													
		Deman	d Flows						Average		95% Back		Lane	SL		Prob.
	L	T	R	Total	HV	Сар.	Satn	Util.	Delay	Service		Distance		Туре		Block.
South: Brunt		veh/h	veh/h	veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
Lane 1	627	0	0	627	5.0	745	0.843	100	34.8	LOS C	29.4	214.3	150 Tı	ırn Bay	0.0	37.6
Lane 2	0_7	26	0	26	5.0	191	0.138	46 ⁶	57.1	LOSA	1.4	10.2		ırn Bay	0.0	0.0
Lane 3	0	57	0	57	5.0	191	0.298	100	58.5	LOSA	3.1	22.6	160		0.0	0.0
Lane 4	0	0	43	43	5.0	181	0.235	100	65.8	LOSA	2.3	16.8		ırn Bay	0.0	0.0
Lane 5	0	0	43	43	5.0	181	0.235	100	65.8	LOSA	2.3	16.8		ırn Bay	0.0	0.0
Approach	627	83	85	796	5.0		0.843		40.6	LOS C	29.4	214.3				
East: Princes	•			40.4		o=o1	0.40=	400					405.7	_		
Lane 1	134	0	0	134	5.0	979 ¹		100	11.7	LOSA	0.5	3.5		ırn Bay	0.0	0.0
Lane 2	0	612	0	612	5.0	731	0.837	100	36.2	LOS C	32.3	235.6	500	_	0.0	0.0
Lane 3	0	612	0	612	5.0	731	0.837	100	36.2	LOS C	32.3	235.6	500	_	0.0	0.0
Lane 4	0	612	0	612	5.0	731	0.837	100	36.2	LOS C	32.3	235.6	500		0.0	0.0
Lane 5	0	0	14	14	5.0	91	0.156	42 ⁶	72.2	LOSA	0.8	6.0		ırn Bay	0.0	0.0
Lane 6	0	0	33	33	5.0	91	0.367	100	73.6	LOSA	2.0	14.6	100 11	ırn Bay	0.0	0.0
Approach	134	1836	47	2017	5.0		0.837		35.5	LOS C	32.3	235.6				
North: White	side R	ld .														
Lane 1	123	0	0	123	5.0	586 ¹	0.210	100	9.6	LOS A	0.7	5.2	95 Tu	ırn Bay	0.0	0.0
Lane 2	0	202	0	202	5.0	350		100	48.9	LOSA	10.6	77.2	125	_	0.0	0.0
Lane 3	0	0	276	276	5.0	332	0.830	100	63.9	LOS C	16.6	120.9	120 Tu	ırn Bay	0.0	5.7
Lane 4	0	0	276	276	5.0	332	0.830	100	63.9	LOS C	16.6	120.9	100 Tı	ırn Bay	0.0	22.2
Approach	123	202	552	877	5.0		0.830		52.8	LOS C	16.6	120.9				
West: Prince	эс Нул	, Mest	ł													
Lane 1	106	0	0	106	5.0	1528 ¹	0.070	100	10.1	LOS A	0.2	1.6	135 Tı	ırn Bay	0.0	0.0
Lane 2	0	605	0	605	5.0	890	0.680	100	21.7	LOS B	23.0	167.7	500		0.0	0.0
Lane 3	0	605	0	605	5.0	890	0.680	100	21.7	LOS B	23.0	167.7	500	_	0.0	0.0
Lane 4	0	605	0	605	5.0	890	0.680	100	21.7	LOS B	23.0	167.7	500	_	0.0	0.0
Lane 5	0	003	204	204	5.0	242	0.843	100	71.8	LOS C	12.6	92.3		ırn Bay	0.0	0.0
Lane 6	0	0	204	204	5.0		0.843	100	71.8	LOS C	12.6	92.3		ırn Bay	0.0	0.0
Approach	106	1816	407	2329	5.0		0.843		29.9	LOS C	23.0	167.7	10010	Day	0.0	0.0
ppi oddii		.0.0		_0_0	0.0		3.0.0		20.0		20.0	101.1				
Intersection				6019	5.0		0.843		36.5	LOS C	32.3	235.6				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 6 Lane underutilisation due to downstream effects

Processed: Wednesday, 25 May 2011 11:37:21 AM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\598.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 598 - AM Peak - 25/05/11

Intersection 598 - PM Peak - 25/05/11 Princes Hwy

Whiteside Rd / Brunt Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use a	nd P	erform	ance													
		Demano	d Flows		111/	Can			Average		95% Back			SL		Prob.
	L (ab/b	T veh/h	R voh/h	Total veh/h	HV	Cap.	Satn v/c	Util. %	Delay	Service		Distance		Туре	Adj. %	Block.
South: Brunt		ven/m	ven/n	ven/m	70	ven/n	V/C	70	sec		veh	m	m	_	70	%
Lane 1	447	0	0	447	5.0	739 ¹	0.605	100	28.2	LOS B	14.2	103.9	150 Tu	rn Bay	0.0	0.0
Lane 2	0	72	0	72	5.0	159	0.455	46 ⁶	61.7	LOSA	4.1	30.2	150 Tu	rn Bay	0.0	0.0
Lane 3	0	156	0	156	5.0	159	0.982	100	89.9	LOS E	11.7	85.4	160	_	0.0	0.0
Lane 4	0	0	67	67	5.0	151	0.443	100	69.5	LOS A	3.8	28.0	80 Tu	rn Bay	0.0	0.0
Lane 5	0	0	67	67	5.0	151	0.443	100	69.5	LOS A	3.8	28.0	60 Tu	rn Bay	0.0	0.0
Approach	447	228	134	809	5.0		0.982		49.9	LOS E	14.2	103.9				
East: Princes	: Hwv	- Fast														
Lane 1	85	0	0	85	5.0	979 ¹	0.087	100	12.1	LOS A	0.4	2.9	135 Tu	rn Bay	0.0	0.0
Lane 2	0	785	0	785	5.0	731	1.073	100	129.5	LOS F	80.7	589.2	500	_	0.0	19.9
Lane 3	0	785	0	785	5.0	731	1.073	100	129.5	LOS F	80.7	589.2	500	_	0.0	19.9
Lane 4	0	785	0	785	5.0	731	1.073	100	129.5	LOS F	80.7	589.2	500	_	0.0	19.9
Lane 5	0	0	83	83	5.0	211	0.394	42 ⁶	64.4	LOS A	4.5	33.1	120 Tu	rn Bay	0.0	0.0
Lane 6	0	0	197	197	5.0	211	0.930	100	82.1	LOS D	13.5	98.3	100 Tu	rn Bay	0.0	3.4
Approach	85	2354	280	2719	5.0		1.073		120.4	LOS F	80.7	589.2				
North: Whites	side R	!d														
Lane 1	204	0	0	204	5.0	625 ¹	0.327	100	21.1	LOSA	4.9	35.6	95 Tu	rn Bay	0.0	0.0
Lane 2	0	109	0	109	5.0		0.362	100	49.4	LOSA	5.6	40.7	125	_	0.0	0.0
Lane 3	0	0	128	128	5.0	287	0.446	100	57.9	LOSA	6.7	48.6	120 Tu	rn Bay	0.0	0.0
Lane 4	0	0	128	128	5.0	287	0.446	100	57.9	LOSA	6.7	48.6	100 Tu	rn Bay	0.0	0.0
Approach	204	109	256	569	5.0		0.446		43.0	LOSA	6.7	48.6		•		
West: Prince	е Нул	, _ \/\ast														
Lane 1	701	0	. 0	701	5.0	1001	0.642	100	11.0	LOS B	3.3	24.0	135 Tu	rn Bay	0.0	0.0
Lane 2	0	791	0	791	5.0		0.939	100	46.6	LOS D	52.3	381.5	500	—	0.0	0.0
Lane 3	0	791	0	791	5.0		0.939	100	46.6	LOS D	52.3	381.5	500	_	0.0	0.0
Lane 4	0	791	0	791	5.0		0.939	100	46.6	LOS D	52.3	381.5	500	_	0.0	0.0
Lane 5	0	0	334	334	5.0		1.053	100	138.1	LOS F	31.6	230.6		rn Bay	0.0	13.5
Lane 6	0	0	334	334	5.0		1.053	100	138.1	LOS F	31.6	230.6		rn Bay	0.0	22.6
Approach	701	2374	667	3742			1.053		56.2	LOS F	52.3	381.5		j		
. ,																
Intersection				7840	5.0		1.073		76.8	LOS F	80.7	589.2				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 6 Lane underutilisation due to downstream effects

Processed: Wednesday, 25 May 2011 11:37:22 AM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

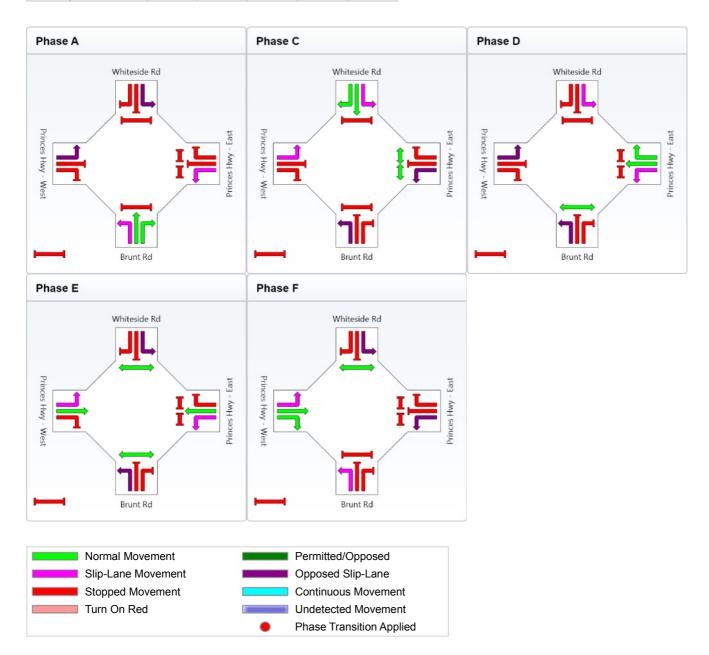
Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\598.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

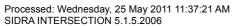
Site: 598 - PM Peak - 25/05/11

Intersection 598 - AM Peak - 25/05/11

Princes Hwy

Whiteside Rd / Brunt Rd


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Leading Right Turn Input Sequence: A, C, D, E, F Output Sequence: A, C, D, E, F

Phase Timing Results

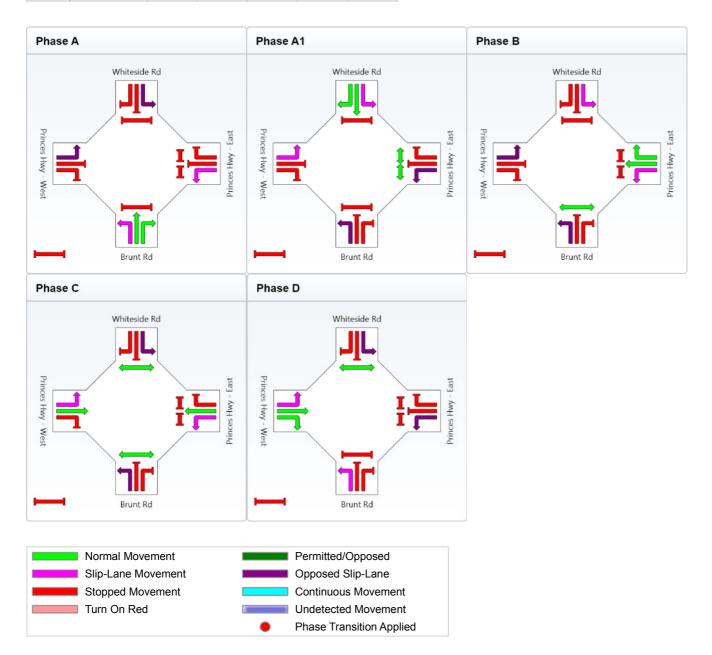
Phase	Α	С	D	E	F
Green Time (sec)	12	22	6	34	16
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	18	28	12	40	22
Phase Split	15 %	23 %	10 %	33 %	18 %

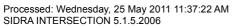
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

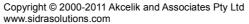
Intersection 598 - PM Peak - 25/05/11

Princes Hwy

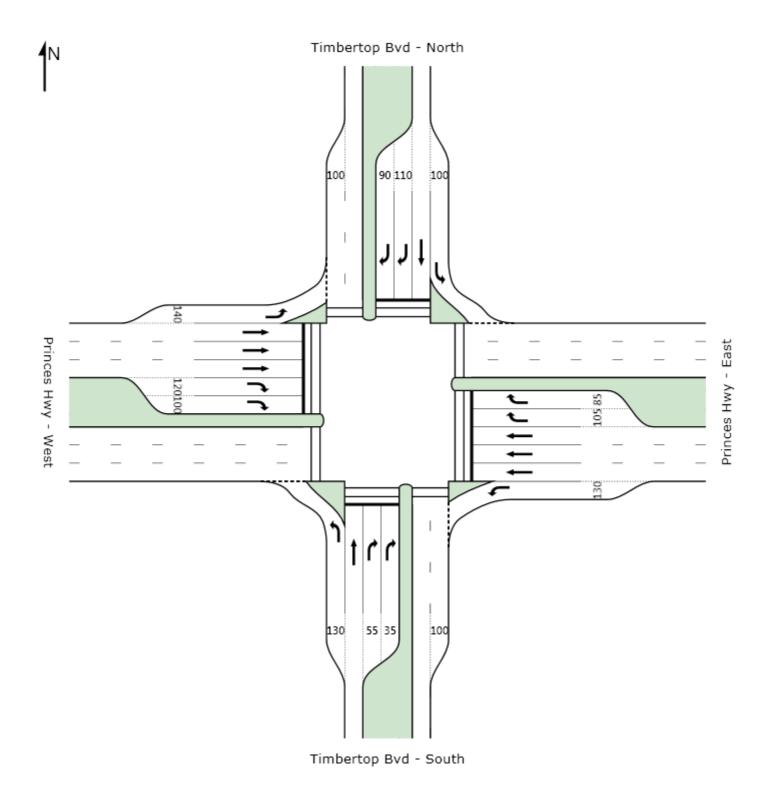
Whiteside Rd / Brunt Rd


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: New Sequence - 2 Input Sequence: A, A1, B, C, D Output Sequence: A, A1, B, C, D

Phase Timing Results


Phase	Α	A1	В	С	D
Green Time (sec)	10	19	14	26	21
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	16	25	20	32	27
Phase Split	13 %	21 %	17 %	27 %	23 %

Intersection 604 - AM Peak - 25/05/11 Princes Hwy

Timbertop Bvd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use a	and Po	erform	ance													
	. [Demano			HV	Сар.			Average		95% Back		Lane S		Cap. I	
	L veh/h	veh/h	R veh/h	Total veh/h		veh/h	Satn v/c	Util. %	Delay sec	Service	Vehicles	Distance m	Length Typ	be	Adj. E	Block. %
South: Timbe				VCII/II	/0	VCII/II	V/C	/0	366		VEII	- '''	'''		/0	/0
Lane 1	225	0	0	225	5.0	749	0.301	100	12.5	LOS A	2.9	21.2	130 Turn	Bay	0.0	0.0
Lane 2	0	65	0	65	5.0	302	0.216	100	48.0	LOS A	3.2	23.4	305 –		0.0	0.0
Lane 3	0	0	22	22	5.0	240 ¹	0.092	100	51.3	LOS A	1.0	7.2	55 Turn	Bay	0.0	0.0
Lane 4	0	0	15	15	5.0	161 ¹	0.092	100	51.0	LOS A	0.7	4.8	35 Turn	Bay	0.0	0.0
Approach	225	65	37	327	5.0		0.301		24.0	LOS A	3.2	23.4				
East: Prince	s Hwy	- East														
Lane 1	72	0	0	72	5.0	1544	0.046	100	10.1	LOSA	0.1	1.0	130 Turn	Bay	0.0	0.0
Lane 2	0	467	0	467	5.0	763	0.612	100	27.4	LOS B	18.8	137.3	500 –		0.0	0.0
Lane 3	0	467	0	467	5.0	763	0.612	100	27.4	LOS B	18.8	137.3	500 –		0.0	0.0
Lane 4	0	467	0	467	5.0	763	0.612	100	27.4	LOS B	18.8	137.3	500 –		0.0	0.0
Lane 5	0	0	38	38	5.0	106	0.361	62 ⁶	72.2	LOS A	2.3	16.5	105 Turn	Bay	0.0	0.0
Lane 6	0	0	62	62	5.0	106	0.585	100	73.6	LOS A	3.8	27.4	85 Turn	Bay	0.0	0.0
Approach	72	1401	100	1573	5.0		0.612		29.5	LOS B	18.8	137.3				
North: Timbe	ertop B	vd - No	rth													
Lane 1	143	0	0	143	5.0	676 ¹	0.212	100	8.7	LOS A	0.5	3.5	100 Turn	Bay	0.0	0.0
Lane 2	0	20	0	20	5.0	302	0.066	100	46.4	LOS A	0.9	6.9	230 –		0.0	0.0
Lane 3	0	0	212	212	5.0	332	0.637	100	57.3	LOS B	11.3	82.5	110 Turn	Bay	0.0	0.0
Lane 4	0	0	212	212	5.0	332	0.637	100	57.3	LOS B	11.3	82.5	90 Turn	Bay	0.0	0.0
Approach	143	20	423	586	5.0		0.637		45.1	LOS B	11.3	82.5				
West: Prince	es Hwy	- West														
Lane 1	280	0	0	280	5.0	1494	0.187	100	10.2	LOSA	0.7	5.0	140 Turn	Bay	0.0	0.0
Lane 2	0	502	0	502	5.0	763	0.658	100	28.0	LOS B	21.0	153.3	500 –		0.0	0.0
Lane 3	0	502	0	502	5.0	763	0.658	100	28.0	LOS B	21.0	153.3	500 -	-	0.0	0.0
Lane 4	0	502	0	502	5.0	763	0.658	100	28.0	LOS B	21.0	153.3	500 –		0.0	0.0
Lane 5	0	0	29	29	5.0	106	0.274	62 ⁶	71.6	LOS A	1.7	12.3	120 Turn	Bay	0.0	0.0
Lane 6	0	0	47	47	5.0	106	0.444	100	72.6	LOS A	2.8	20.4	100 Turn	Bay	0.0	0.0
Approach	280	1506	76	1862	5.0		0.658		27.2	LOS B	21.0	153.3				
Intersection				4348	5.0		0.658		30.2	LOS B	21.0	153.3				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 6 Lane underutilisation due to downstream effects

Processed: Wednesday, 25 May 2011 11:41:26 AM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\604.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 604 - AM peak - 25/05/11

Intersection 604 - PM Peak - 25/05/11 Princes Hwy

Timbertop Bvd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erform	ance													
			d Flows		ши	Con			Average		95% Back		Lane	SL		Prob.
	L vob/b	T veh/h	R	Total veh/h	HV	Cap.	Satn v/c	Util. %	Delay	Service	Vehicles veh		Length	Type	Adj. %	Block. %
South: Timb				ven/m	70	ven/m	V/C	70	sec		ven	m	m		70	70
Lane 1	92	0	0	92	5.0	734	0.125	100	19.5	LOS A	1.9	14.0	130 T	urn Bay	0.0	0.0
Lane 2	0	20	0	20	5.0		0.066	100	46.4	LOSA	0.9	6.9	305	_	0.0	0.0
Lane 3	0	0	42	42	5.0	196	0.213	100	61.7	LOS A	2.2	16.2		urn Bay	0.0	0.0
Lane 4	0	0	30	30	5.0		0.213	100	61.2	LOS A	1.6	11.4	35 T	urn Bay	0.0	0.0
Approach	92	20	72	183	5.0	-	0.213		38.9	LOS A	2.2	16.2		· · · ·		
East: Prince	s Hwv	- East														
Lane 1	37	0	0	37	5.0	1415	0.026	100	10.3	LOSA	0.1	0.6	130 T	urn Bay	0.0	0.0
Lane 2	0	704	0	704	5.0	811	0.868	100	34.7	LOS C	38.2	278.9	500	_ `	0.0	0.0
Lane 3	0	704	0	704	5.0	811	0.868	100	34.7	LOS C	38.2	278.9	500	_	0.0	0.0
Lane 4	0	704	0	704	5.0	811	0.868	100	34.7	LOS C	38.2	278.9	500	_	0.0	0.0
Lane 5	0	0	55	55	5.0	181	0.302	62 ⁶	65.8	LOS A	3.0	21.8	105 T	urn Bay	0.0	0.0
Lane 6	0	0	89	89	5.0	181	0.489	100	67.2	LOS A	5.0	36.5	85 T	urn Bay	0.0	0.0
Approach	37	2113	143	2293	5.0		0.868		36.3	LOS C	38.2	278.9				
North: Timb	ertop B	vd - No	orth													
Lane 1	100	0	0	100	5.0	649 ¹	0.154	100	12.6	LOS A	1.1	8.4	100 T	urn Bay	0.0	0.0
Lane 2	0	65	0	65	5.0	318	0.205	100	46.9	LOS A	3.1	23.0	230	_	0.0	0.0
Lane 3	0	0	176	176	5.0	211	0.834	100	69.9	LOS C	11.0	80.0	110 T	urn Bay	0.0	0.0
Lane 4	0	0	176	176	5.0	211	0.834	100	69.9	LOS C	11.0	80.0	90 T	urn Bay	0.0	0.0
Approach	100	65	353	518	5.0		0.834		55.9	LOS C	11.0	80.0				
West: Prince	es Hwy	- West	i i													
Lane 1	495	0	0	495	5.0	1495	0.331	100	10.3	LOSA	1.5	10.8	140 T	urn Bay	0.0	0.0
Lane 2	0	665	0	665	5.0	811	0.820	100	30.2	LOS C	32.5	237.3	500	_	0.0	0.0
Lane 3	0	665	0	665	5.0	811	0.820	100	30.2	LOS C	32.5	237.3	500	_	0.0	0.0
Lane 4	0	665	0	665	5.0	811	0.820	100	30.2	LOS C	32.5	237.3	500	_	0.0	0.0
Lane 5	0	0	97	97	5.0	181	0.534	62 ⁶	67.5	LOS A	5.5	40.2		urn Bay	0.0	0.0
Lane 6	0	0	157	157	5.0	181	0.866	100	75.6	LOS C	10.0	73.2	100 T	urn Bay	0.0	0.0
Approach	495	1996	254	2744	5.0		0.866		30.5	LOS C	32.5	237.3				
Intersection				5738	5.0		0.868		35.4	LOS C	38.2	278.9				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 6 Lane underutilisation due to downstream effects

Processed: Wednesday, 25 May 2011 11:41:27 AM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\604.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

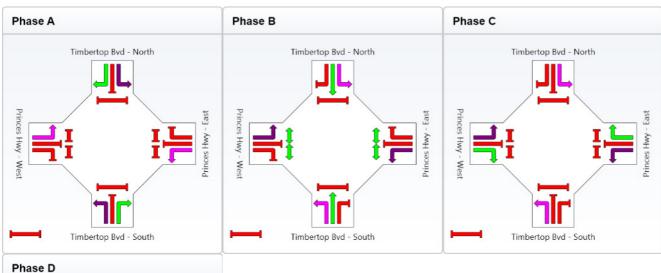
SIDRA INTERSECTION

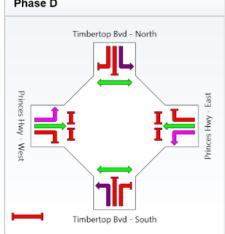
Site: 604 - PM peak - 25/05/11

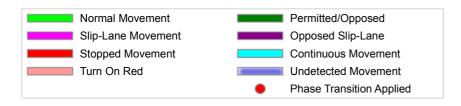
Intersection 604 - AM Peak - 25/05/11

Princes Hwy Timbertop Bvd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Leading Right Turn (phase reduction applied) Input Sequence: A, A1, B, C, D


Output Sequence: A, B, C, D

Phase Timing Results

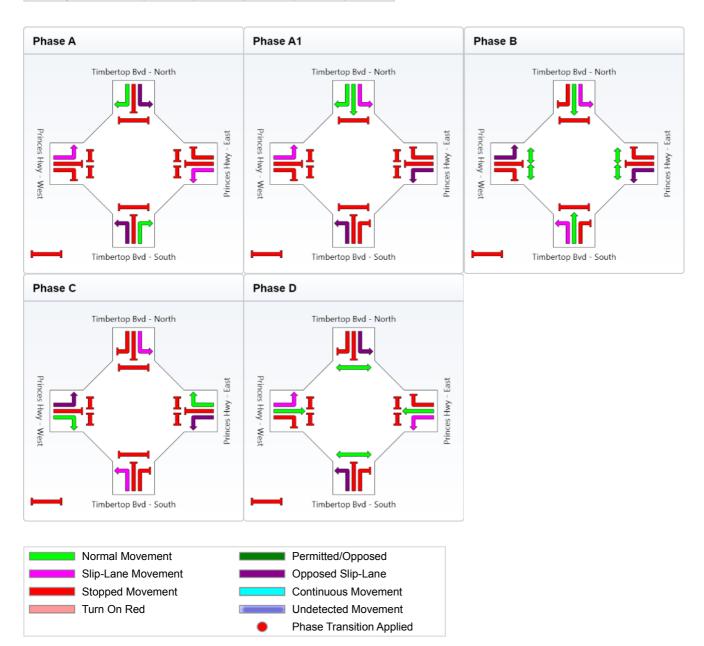
Phase	Α	В	С	D
Green Time (sec)	22	19	7	48
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	28	25	13	54
Phase Split	23 %	21 %	11 %	45 %

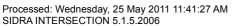
Processed: Wednesday, 25 May 2011 11:41:26 AM SIDRA INTERSECTION 5.1.5.2006

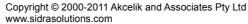
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Intersection 604 - PM Peak - 25/05/11

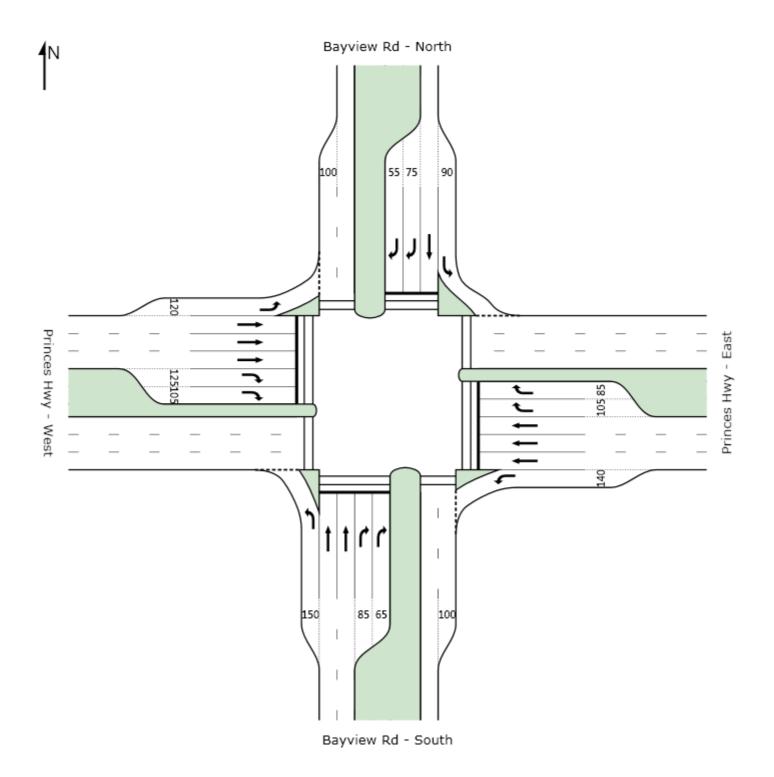
Princes Hwy Timbertop Bvd


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Leading Right Turn Input Sequence: A, A1, B, C, D Output Sequence: A, A1, B, C, D

Phase Timing Results


Phase	Α	A1	В	С	D
Green Time (sec)	13	0	19	12	51
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	19	1	25	18	57
Phase Split	16 %	1 %	21 %	15 %	48 %

Intersection 1358 - AM Peak - 25/05/11

Princes Hwy Bayview Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erform	ance													
		Demano	d Flows				Deg.		Average		95% Back		Lane	SL	Cap. F	
	L	T	R	Total	HV	Сар.	Satn	Util.	Delay	Service		Distance	Length	Туре	Adj. E	
South: Bay		veh/h		veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
Lane 1	22	0	0	22	5.0	972	0.023	100	9.3	LOS A	0.1	0.7	150 T	urn Bay	0.0	0.0
Lane 2	0	77	0	77	5.0	445	0.172	66 ⁶	39.5	LOSA	3.3	23.8	305		0.0	0.0
Lane 3	0	116	0	116	5.0		0.261	100	40.5	LOSA	5.1	37.2	305	_	0.0	0.0
Lane 4	0	0	91	91	5.0		0.666	100	69.8	LOS B	5.5	39.9		urn Bay	0.0	0.0
Lane 5	0	0	91	91	5.0		0.666	100	69.8	LOS B	5.5	39.9		urn Bay	0.0	0.0
Approach	22	193	181	396	5.0		0.666		52.0	LOS B	5.5	39.9		<i></i> ,		
				000	0.0		0.000		02.0	2002	0.0	00.0				
East: Prince	,															
Lane 1	171	0	0	171	5.0		0.145	100	11.6	LOSA	0.9	6.6		urn Bay	0.0	0.0
Lane 2	0	512	0	512	5.0		0.715	100	31.6	LOS C	23.2	169.6	340	-	0.0	0.0
Lane 3	0	512	0	512	5.0		0.715	100	31.6	LOS C	23.2	169.6	340	-	0.0	0.0
Lane 4	0	512	0	512	5.0		0.715	100	31.6	LOS C	23.2	169.6	340	_	0.0	0.0
Lane 5	0	0	23	23	5.0	211	0.108	62 ⁶	62.0	LOS A	1.2	8.6		urn Bay	0.0	0.0
Lane 6	0	0	37	37	5.0	211		100	62.6	LOS A	1.9	14.1	85 T	urn Bay	0.0	0.0
Approach	171	1536	60	1766	5.0		0.715		30.7	LOS C	23.2	169.6				
North: Bayv	iew Rd	- North	l													
Lane 1	120	0	0	120	5.0	672 ¹	0.178	100	9.6	LOS A	0.7	5.0	90 T	urn Bay	0.0	0.0
Lane 2	0	313	0	313	5.0	445	0.702	100	46.1	LOS C	16.4	119.4	115	_	0.0	8.4
Lane 3	0	0	19	19	5.0	136	0.143	100	65.7	LOS A	1.1	7.9	75 T	urn Bay	0.0	0.0
Lane 4	0	0	19	19	5.0	136	0.143	100	65.7	LOS A	1.1	7.9	55 T	urn Bay	0.0	0.0
Approach	120	313	39	472	5.0		0.702		38.4	LOS C	16.4	119.4				
West: Princ	00 Hun	\Most														
Lane 1	38	0	0	38	5.0	1215	0.031	100	10.2	LOS A	0.1	0.6	120 T	urn Bay	0.0	0.0
Lane 2	0	460	0	460	5.0		0.643	100	30.4	LOS A	19.8	144.2	500	uiii bay _	0.0	0.0
Lane 3	0	460	0	460	5.0		0.643	100	30.4	LOS B	19.8	144.2	500	_	0.0	0.0
Lane 4	0	460	0	460	5.0		0.643	100	30.4	LOS B	19.8	144.2	500	_	0.0	0.0
Lane 5	0	400	99	99	5.0	211	0.043	65 ⁶	64.8	LOS A	5.5	40.1		urn Bay	0.0	0.0
Lane 6	0	0	153	153	5.0			100	68.1	LOS C	9.0	65.9		urn Bay	0.0	0.0
Approach	38	1380	253	1671	5.0	4 11	0.725	100	35.5	LOS C	19.8	144.2	100 1	ин Бау	0.0	0.0
дрргоасп	30	1300	200	1011	5.0		0.723		30.5	LU3 C	19.0	144.2				
Intersection				4304	5.0		0.725		35.4	LOS C	23.2	169.6				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 6 Lane underutilisation due to downstream effects

Processed: Wednesday, 25 May 2011 2:12:39 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\1358.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 1358 - AM peak - 25/05/11

Intersection 1358 - PM Peak - 25/05/11

Princes Hwy Bayview Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erform	ance													
		Demano			111/	Con		Lane	Average		95% Back		Lane	SL	Сар.	Prob.
	L vob/b	T veh/h	R voh/h	Total	HV	Cap.	Satn v/c	Util. %	Delay	Service	Vehicles		Length	Туре	Adj. %	Block. %
South: Bay				veh/h	70	ven/m	V/C	70	sec		veh	m	m		70	70
Lane 1	539	0	0	539	5.0	985	0.547	100	10.0	LOSA	4.9	36.1	150 T	urn Bay	0.0	0.0
Lane 2	0	136	0	136	5.0	302	0.449	66 ⁶	50.2	LOS A	7.1	51.5	305	_	0.0	0.0
Lane 3	0	205	0	205	5.0	302	0.680	100	52.9	LOS B	11.4	83.3	305	_	0.0	0.0
Lane 4	0	0	111	111	5.0	151	0.732	100	69.8	LOS C	6.7	49.0	85 T	urn Bay	0.0	0.0
Lane 5	0	0	111	111	5.0	151	0.732	100	69.8	LOS C	6.7	49.0	65 T	urn Bay	0.0	0.0
Approach	539	341	221	1101	5.0		0.732		35.0	LOS C	11.4	83.3				
East: Prince	00 Hunt	Coot														
Lane 1	232	- ⊑ası 0	0	232	5.0	1240	0.187	100	10.9	LOSA	0.8	5.9	140 T	urn Bay	0.0	0.0
Lane 2	232	525	0	525	5.0	795	0.167	100	26.4	LOS A	21.4	156.5	340	uiii bay _	0.0	0.0
Lane 3	0	525	0	525	5.0	795	0.661	100	26.4	LOS B	21.4	156.5	340	_	0.0	0.0
Lane 4	0	525	0	525	5.0	795	0.661	100	26.4	LOS B	21.4	156.5	340	_	0.0	0.0
Lane 5	0	0	52	52	5.0	257	0.203	62 ⁶	59.8	LOSA	2.6	19.2		urn Bay	0.0	0.0
Lane 6	0	0	85	85	5.0	257	0.330	100	61.0	LOSA	4.4	32.0		urn Bay	0.0	0.0
Approach	232	1576	137	1944	5.0		0.661	100	26.9	LOS B	21.4	156.5	00 1	um bay	0.0	0.0
				1011	0.0		0.001		20.0	2002		100.0				
North: Bayv						1										
Lane 1	77	0	0		5.0		0.125	100	12.3	LOSA	0.8	6.1		urn Bay	0.0	0.0
Lane 2	0	221	0	221	5.0		0.732	100	54.1	LOS C	12.6	91.9	115	-	0.0	0.0
Lane 3	0	0	25	25	5.0	151	0.164	100	64.7	LOSA	1.4	9.9		urn Bay	0.0	0.0
Lane 4	0	0	25	25	5.0	151	0.164	100	64.7	LOSA	1.4	9.9	55 T	urn Bay	0.0	0.0
Approach	77	221	49	347	5.0		0.732		46.4	LOS C	12.6	91.9				
West: Princ	es Hwy	- West														
Lane 1	51	0	0	51	5.0	1233 ¹	0.041	100	10.4	LOSA	0.1	0.9	120 T	urn Bay	0.0	0.0
Lane 2	0	580	0	580	5.0	795	0.730	100	27.5	LOS C	25.2	184.2	500	_	0.0	0.0
Lane 3	0	580	0	580	5.0	795	0.730	100	27.5	LOS C	25.2	184.2	500	_	0.0	0.0
Lane 4	0	580	0	580	5.0	795	0.730	100	27.5	LOS C	25.2	184.2	500	-	0.0	0.0
Lane 5	0	0	121	121	5.0	257	0.473	65 ⁶	62.0	LOSA	6.5	47.4	125 T	urn Bay	0.0	0.0
Lane 6	0	0	187	187	5.0	257	0.729	100	65.6	LOS C	10.8	78.9	105 T	urn Bay	0.0	0.0
Approach	51	1741	308	2100	5.0		0.730		32.5	LOS C	25.2	184.2				
Intersection	ı			5493	5.0		0.732		31.9	LOS C	25.2	184.2				
microcolor				J -1 33	5.0		0.732		31.9	2000	20.2	107.2				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 6 Lane underutilisation due to downstream effects

Processed: Wednesday, 25 May 2011 2:12:40 PM SIDRA INTERSECTION 5.1.5.2006

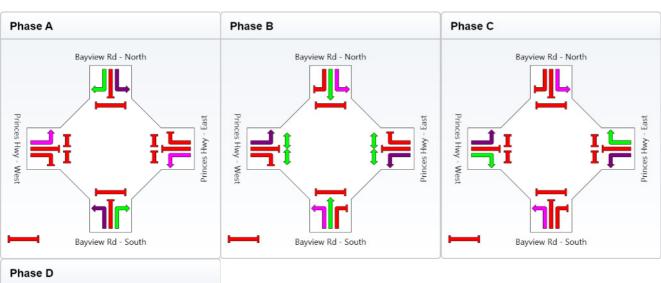
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

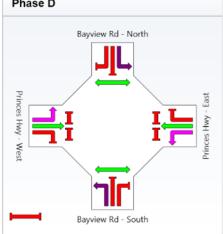
Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\1358.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

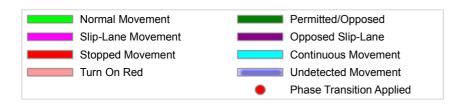
Site: 1358 - PM peak - 25/05/11

Intersection 1358 - AM Peak - 25/05/11

Princes Hwy Bayview Rd


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Leading Right Turn Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

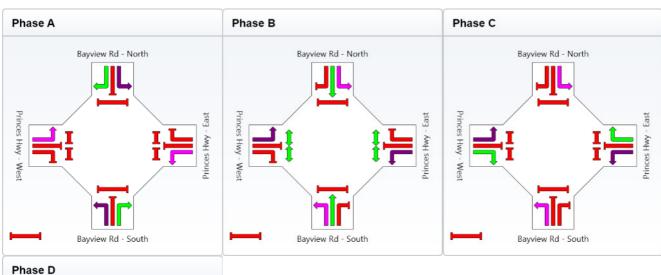
Phase	Α	В	С	D
Green Time (sec)	9	28	14	45
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	15	34	20	51
Phase Split	13 %	28 %	17 %	43 %

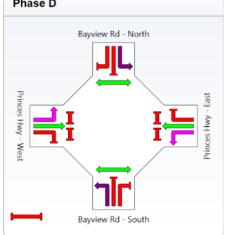
Processed: Wednesday, 25 May 2011 2:12:39 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Intersection 1358 - PM Peak - 25/05/11

Princes Hwy Bayview Rd

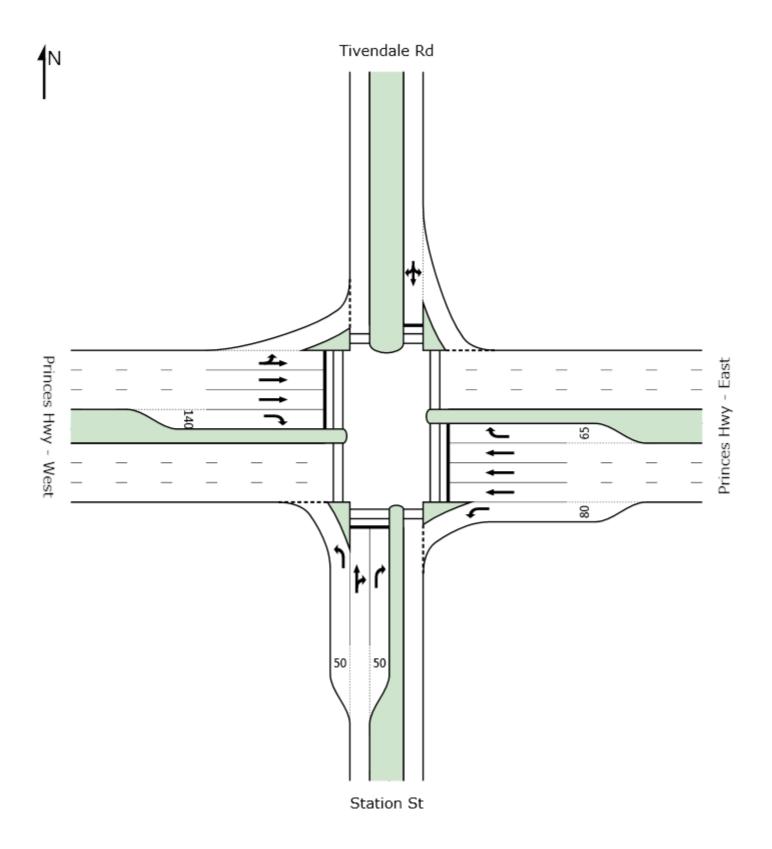

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Leading Right Turn Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

i made immig itodante				
Phase	Α	В	С	D
Green Time (sec)	10	19	17	50
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	16	25	23	56
Phase Split	13 %	21 %	19 %	47 %



Processed: Wednesday, 25 May 2011 2:12:40 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Site: 1358 - PM peak - 25/05/11

Intersection 612 - AM Peak - 25/05/11 Princes Hwy Officer Sth Rd / Tivendale Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use a	and Pe	erform	ance													
	[Deman	d Flows				Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Сар.	Prob.
	L	T	R	Total	HV	Сар.	Satn	Util.	Delay	Service		Distance	Length	Type		Block.
		veh/h	veh/h	veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: Statio		_	0	005	- 0	0401	0.400	400	40.5	1004	4.0	0.0	507	- D	0.0	0.0
Lane 1	295	0	0	295	5.0		0.482	100	12.5	LOS A	1.2	9.0		Turn Bay	0.0	0.0
Lane 2	0	54	0	54	5.0	254	0.211	100	55.4	LOS A	2.7	20.0	280	_	0.0	0.0
Lane 3	0	0	42	42	5.0	201	0.210	99 ⁵	62.0	LOS A	2.1	15.6	50 7	Turn Bay	0.0	0.0
Approach	295	54	42	391	5.0		0.482		23.7	LOSA	2.7	20.0				
East: Prince	s Hwy	- East														
Lane 1	84	0	0	84	5.0	1318 ¹	0.064	100	11.7	LOS A	0.2	1.3	807	Turn Bay	0.0	0.0
Lane 2	0	439	0	439	5.0	779	0.564	100	25.8	LOSA	16.8	122.5	480	_	0.0	0.0
Lane 3	0	439	0	439	5.0	779	0.564	100	25.8	LOSA	16.8	122.5	480	_	0.0	0.0
Lane 4	0	439	0	439	5.0	779	0.564	100	25.8	LOSA	16.8	122.5	480	_	0.0	0.0
Lane 5	0	0	82	82	5.0	151	0.544	100	69.8	LOS A	4.8	34.9	65 7	Γurn Bay	0.0	0.0
Approach	84	1318	82	1484	5.0		0.564		27.4	LOS A	16.8	122.5				
North: Tiven	dale R	d														
Lane 1	79	137	155	371	5.0	568	0.652	100	21.1	LOS B	8.9	65.3	120	_	0.0	0.0
Approach	79	137	155	371	5.0		0.652		21.1	LOS B	8.9	65.3				
West: Prince	es Hwy	- West	t													
Lane 1	215	353	0	567	5.0	875	0.648	100	23.0	LOS B	17.7	129.2	340	_	0.0	0.0
Lane 2	0	505	0	505	5.0	779	0.648	100	27.0	LOS B	20.7	151.0	340	_	0.0	0.0
Lane 3	0	505	0	505	5.0	779	0.648	100	27.0	LOS B	20.7	151.0	340	_	0.0	0.0
Lane 4	0	0	74	74	5.0	151	0.488	100	70.8	LOS A	4.3	31.1	140 7	Γurn Bay	0.0	0.0
Approach	215	1363	74	1652	5.0		0.648		27.6	LOS B	20.7	151.0				
Intersection				3897	5.0		0.652		26.5	LOS B	20.7	151.0				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 5 Lane underutilisation determined by program

Processed: Monday, 6 June 2011 11:24:32 AM

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA INTERSECTION 5.1.5.2006 www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised SIDRA_110525 (FinalUltimate)\612.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 612 - AM peak - 25/05/11

Intersection 612 - PM Peak - 25/05/11 Princes Hwy Officer Sth Rd / Tivendale Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erform	ance													
		Deman	d Flows		1.0.7		Deg.	Lane	Average	Level of	95% Back		Lane	SL	Cap.	
	L	T	R	Total	HV	Cap.	Satn	Util.	Delay	Service		Distance	Length	Type		Block.
South: Stat		veh/h	ven/n	veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
Lane 1	151	0	0	151	5.0	363 ¹	0.415	100	21.5	LOSA	3.0	21.6	50 T	Turn Bay	0.0	0.0
Lane 2	0	137	0	137	5.0		0.538	100	58.3	LOSA	7.5	54.6	280	uiii bay	0.0	0.0
Lane 3	0	0	84	84	5.0		0.336	79 ⁵	63.5	LOSA	4.4	32.4		- Turn Bay	0.0	0.0
			84		5.0	190		19				54.6	30 1	ин Бау	0.0	0.0
Approach	151	137	84	372	5.0		0.538		44.6	LOS A	7.5	54.6				
East: Prince	es Hwy	- East														
Lane 1	42	0	0	42	5.0	1210 ¹	0.035	100	12.1	LOS A	0.1	8.0	80 T	Turn Bay	0.0	0.0
Lane 2	0	613	0	613	5.0	620	0.989	100	78.8	LOS E	49.0	357.7	480	_	0.0	0.0
Lane 3	0	613	0	613	5.0	620	0.989	100	78.8	LOS E	49.0	357.7	480	_	0.0	0.0
Lane 4	0	613	0	613	5.0	620	0.989	100	78.8	LOS E	49.0	357.7	480	_	0.0	0.0
Lane 5	0	0	87	87	5.0	121	0.723	100	74.3	LOS C	5.4	39.3	65 T	Turn Bay	0.0	0.0
Approach	42	1840	87	1969	5.0		0.989		77.2	LOS E	49.0	357.7				
North: Tiver	ndale R	d														
Lane 1	99	56	267	422	5.0	425 ¹	0.993	100	76.9	LOS E	24.1	175.7	120	_	0.0	39.9
Approach	99	56	267	422	5.0		0.993		76.9	LOS E	24.1	175.7				
West: Princ	es Hwy	- West	t													
Lane 1	213	489	0	701	5.0	939	0.747	100	22.2	LOS C	24.5	178.7	340	_	0.0	0.0
Lane 2	0	653	0	653	5.0	875	0.747	100	23.6	LOS C	27.1	197.9	340	_	0.0	0.0
Lane 3	0	653	0	653	5.0	875	0.747	100	23.6	LOS C	27.1	197.9	340	_	0.0	0.0
Lane 4	0	0	355	355	5.0	362	0.979	100	94.3	LOS E	27.3	199.3	140 T	urn Bay	0.0	37.3
Approach	213	1795	355	2362	5.0		0.979		33.8	LOS E	27.3	199.3				
Intersection				5125	5.0		0.993		54.8	LOS E	49.0	357.7				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 5 Lane underutilisation determined by program

Processed: Monday, 6 June 2011 11:12:11 AM

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

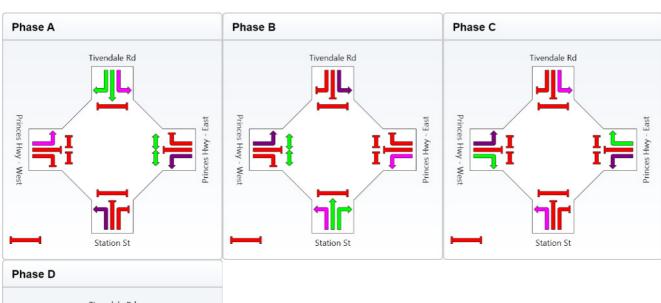
Processed: Monday, 6 June 2011 11:12:11 ANI
SIDRA INTERSECTION 5.1.5.2006
Www.sidrasolutions.com
Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA
Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised SIDRA_110525 (FinalUltimate)\612.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

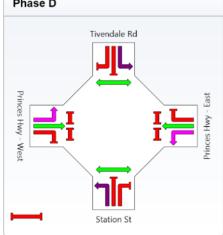
Site: 612 - PM peak - 25/05/11

Intersection 612 - AM Peak - 25/05/11

Princes Hwy

Officer Sth Rd / Tivendale Rd


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Modified Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	21	16	10	49
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	27	22	16	55
Phase Split	23 %	18 %	13 %	46 %

Processed: Monday, 6 June 2011 11:24:32 AM SIDRA INTERSECTION 5.1.5.2006

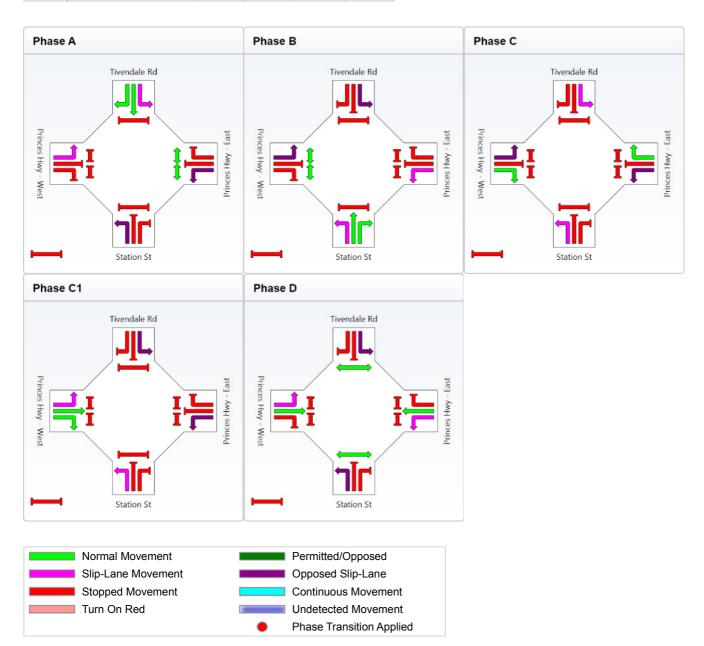
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

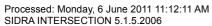
Intersection 612 - PM Peak - 25/05/11

Princes Hwy

Officer Sth Rd / Tivendale Rd

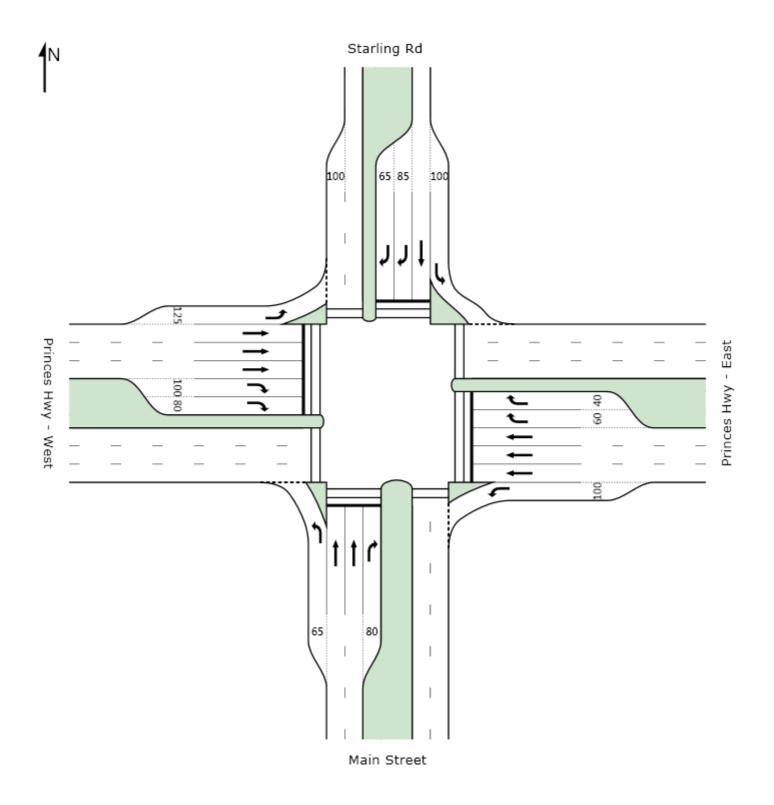
Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Modified 2

Input Sequence: A, B, C, C1, D Output Sequence: A, B, C, C1, D

Phase Timing Results


Phase	Α	В	С	C1	D
Green Time (sec)	17	16	8	10	39
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	23	22	14	16	45
Phase Split	19 %	18 %	12 %	13 %	38 %

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Intersection 617 - AM Peak - 25/05/11 Princes Hwy Starling Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Demand Flows	Lane Use	and P	erform	nance													
Cap Service Wehrh Wehr Wehrh Wehrh Wehrh Wehrh Wehrh Wehrh Wehrh Wehrh								Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Cap.	Prob.
South: Main Street Lane 1		L	T					Satn		Delay	Service	Vehicles	Distance	Length	Type	Adj.	Block.
Lane 1				veh/h	veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
Lane 2				_			1								_		
Lane 3			·	-											,		
Lane 4		•	• .	-											-		
Approach 29 212 114 355 5.0 0.502 50.0 LOS A 6.6 48.0 East: Princes Hwy - East Lane 1 176 0 0 0 176 5.0 1264 0.139 100 10.3 LOS A 0.4 3.2 100 Turn Bay 0.0 0.0 Lane 2 0 461 0 461 5.0 859 0.537 100 21.3 LOS A 15.7 115.0 390 - 0.0 0.0 Lane 3 0 461 0 461 5.0 859 0.537 100 21.3 LOS A 15.7 115.0 390 - 0.0 0.0 Lane 4 0 461 0 461 5.0 859 0.537 100 21.3 LOS A 15.7 115.0 390 - 0.0 0.0 Lane 5 0 0 23 23 5.0 121 0.193 62 69.7 LOS A 15.7 115.0 390 - 0.0 0.0 Lane 6 0 0 38 38 5.0 121 0.313 100 70.5 LOS A 15.7 115.0 Approach 176 1382 61 1619 5.0 0.537 22.0 LOS A 15.7 115.0 North: Starling Rd Lane 1 31 0 0 31 5.0 609 0.050 100 8.4 LOS A 0.1 0.6 100 Turn Bay 0.0 0.0 Lane 2 0 137 0 137 5.0 302 0.453 100 50.2 LOS A 7.1 52.0 120 - 0.0 0.0 Lane 4 0 0 87 87 5.0 226 0.383 100 61.1 LOS A 4.7 34.0 85 Turn Bay 0.0 0.0 Approach 31 137 174 341 5.0 0.453 52.0 LOS A 7.1 52.0 West: Princes Hwy - West Lane 1 63 0 0 63 5.0 1447 0.044 100 10.2 LOS A 7.1 52.0 West: Princes Hwy - West Lane 1 63 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 2 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 4 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 4 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 4 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 4 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 4 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 5 0 0 57 57 5.0 121 0.471 100 71.4 LOS A 3.4 24.5 80 Turn Bay 0.0 0.0 Lane 6 0 0 57 57 50 121 0.471 100 71.4 LOS A 3.4 24.5 80 Turn Bay 0.0 0.0 Lane 6 0 0 57 57 50 121 0.471 100 71.4 LOS A 3.4 24.5 80 Turn Bay 0.0 0.0		-		-	127												
East: Princes Hwy - East Lane 1	Lane 4						226		100					80 T	urn Bay	0.0	0.0
Lane 1	Approach	29	212	114	355	5.0		0.502		50.0	LOS A	6.6	48.0				
Lane 2	East: Prince	es Hwy	- East														
Lane 3	Lane 1	176	0	0	176	5.0	1264 ¹	0.139	100	10.3	LOSA	0.4	3.2	100 T	urn Bay	0.0	0.0
Lane 4	Lane 2	0	461	0	461	5.0	859	0.537	100	21.3	LOSA	15.7	115.0	390	-	0.0	0.0
Lane 5	Lane 3	0	461	0	461	5.0	859	0.537	100	21.3	LOSA	15.7	115.0	390	_	0.0	0.0
Lane 6 0 0 38 38 5.0 121 0.313 100 70.5 LOS A 2.2 16.0 40 Turn Bay 0.0 0.0 Approach 176 1382 61 1619 5.0 0.537 22.0 LOS A 15.7 115.0 North: Starling Rd Lane 1 31 0 0 31 5.0 609¹ 0.050 100 8.4 LOS A 0.1 0.6 100 Turn Bay 0.0 0.0 Lane 2 0 137 0 137 5.0 302 0.453 100 50.2 LOS A 7.1 52.0 120 — 0.0 0.0 Lane 3 0 0 87 87 5.0 226 0.383 100 61.1 LOS A 4.7 34.0 85 Turn Bay 0.0 0.0 Approach 31 137 174 341 5.0 0.453 52.0 LOS A 0.1	Lane 4	0	461	0	461	5.0	859	0.537		21.3	LOSA	15.7	115.0	390	_	0.0	0.0
Approach 176 1382 61 1619 5.0 0.537 22.0 LOS A 15.7 115.0 North: Starling Rd Lane 1 31 0 0 31 5.0 609¹ 0.050 100 8.4 LOS A 0.1 0.6 100 Turn Bay 0.0 0.0 Lane 2 0 137 0 137 5.0 302 0.453 100 50.2 LOS A 7.1 52.0 120 - 0.0 0.0 Lane 3 0 0 87 87 5.0 226 0.383 100 61.1 LOS A 4.7 34.0 85 Turn Bay 0.0 0.0 Lane 4 0 0 87 87 5.0 226 0.383 100 61.1 LOS A 4.7 34.0 65 Turn Bay 0.0 0.0 Approach 31 137 174 341 5.0 0.453 52.0 LOS A 7.1 52.0 West: Princes Hwy - West Lane 1 63 0 0 63 5.0 1447 0.044 100 10.2 LOS A 0.1 1.0 125 Turn Bay 0.0 0.0 Lane 2 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 3 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 4 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 4 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 5 0 0 57 57 5.0 121 0.471 100 71.4 LOS A 3.4 24.5 100 Turn Bay 0.0 0.0 Approach 63 1291 114 1467 5.0 0.501 24.3 LOS A 14.2 104.0	Lane 5	0	0	23	23	5.0	121	0.193	62 ⁶	69.7	LOS A	1.3	9.7	60 T	urn Bay	0.0	0.0
North: Starling Rd Lane 1	Lane 6	0	0	38	38	5.0	121	0.313	100	70.5	LOS A	2.2	16.0	40 T	urn Bay	0.0	0.0
Lane 1 31 0 0 31 5.0 609 0.050 100 8.4 LOS A 0.1 0.6 100 Turn Bay 0.0 0.0 Lane 2 0 137 0 137 5.0 302 0.453 100 50.2 LOS A 7.1 52.0 120 - 0.0 0.0 Lane 3 0 0 87 87 5.0 226 0.383 100 61.1 LOS A 4.7 34.0 85 Turn Bay 0.0 0.0 Lane 4 0 0 87 87 5.0 226 0.383 100 61.1 LOS A 4.7 34.0 65 Turn Bay 0.0 0.0 Approach 31 137 174 341 5.0 0.453 52.0 LOS A 7.1 52.0 West: Princes Hwy - West Lane 1 63 0 0 63 5.0 1447 0.044 100 10.2 LOS A 0.1 1.0 125 Turn Bay 0.0 0.0 Lane 2 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 3 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 4 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 4 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 5 0 0 57 57 5.0 121 0.471 100 71.4 LOS A 3.4 24.5 100 Turn Bay 0.0 0.0 Approach 63 1291 114 1467 5.0 0.501 24.3 LOS A 14.2 104.0	Approach	176	1382	61	1619	5.0		0.537		22.0	LOS A	15.7	115.0				
Lane 1 31 0 0 31 5.0 609 0.050 100 8.4 LOS A 0.1 0.6 100 Turn Bay 0.0 0.0 Lane 2 0 137 0 137 5.0 302 0.453 100 50.2 LOS A 7.1 52.0 120 - 0.0 0.0 Lane 3 0 0 87 87 5.0 226 0.383 100 61.1 LOS A 4.7 34.0 85 Turn Bay 0.0 0.0 Lane 4 0 0 87 87 5.0 226 0.383 100 61.1 LOS A 4.7 34.0 65 Turn Bay 0.0 0.0 Approach 31 137 174 341 5.0 0.453 52.0 LOS A 7.1 52.0 West: Princes Hwy - West Lane 1 63 0 0 63 5.0 1447 0.044 100 10.2 LOS A 0.1 1.0 125 Turn Bay 0.0 0.0 Lane 2 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 3 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 4 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 4 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 5 0 0 57 57 5.0 121 0.471 100 71.4 LOS A 3.4 24.5 100 Turn Bay 0.0 0.0 Approach 63 1291 114 1467 5.0 0.501 24.3 LOS A 14.2 104.0	North: Starl	ing Rd															
Lane 3		_	0	0	31	5.0	609 ¹	0.050	100	8.4	LOS A	0.1	0.6	100 T	urn Bay	0.0	0.0
Lane 4 0 0 87 87 5.0 226 0.383 100 61.1 LOS A 4.7 34.0 65 Turn Bay 0.0 0.0 Approach 31 137 174 341 5.0 0.453 52.0 LOS A 7.1 52.0 West: Princes Hwy - West Lane 1 63 0 0 63 5.0 1447 0.044 100 10.2 LOS A 0.1 1.0 125 Turn Bay 0.0 0.0 Lane 2 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 3 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 4 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 5 0 0 57 57 5.0 121 0.471 100 71.4 LOS A 3.4 24.5 100 Turn Bay 0.0 0.0 Approach 63 1291 114 1467 5.0 0.501 24.3 LOS A 14.2 104.0	Lane 2	0	137	0	137	5.0	302	0.453	100	50.2	LOSA	7.1	52.0	120	_	0.0	0.0
Approach 31 137 174 341 5.0 0.453 52.0 LOS A 7.1 52.0 West: Princes Hwy - West Lane 1 63 0 0 63 5.0 1447 0.044 100 10.2 LOS A 0.1 1.0 125 Turn Bay 0.0 0.0 Lane 2 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 — 0.0 0.0 Lane 3 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 — 0.0 0.0 Lane 4 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 — 0.0 0.0 Lane 5 0 0 57 57 5.0 121 0.471 100 71.4 LOS A 3.4 24.5 100 Turn Bay 0.0 0.0	Lane 3	0	0	87	87	5.0	226	0.383	100	61.1	LOS A	4.7	34.0	85 T	urn Bay	0.0	0.0
Approach 31 137 174 341 5.0 0.453 52.0 LOS A 7.1 52.0 West: Princes Hwy - West Lane 1 63 0 0 63 5.0 1447 0.044 100 10.2 LOS A 0.1 1.0 125 Turn Bay 0.0 0.0 Lane 2 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 — 0.0 0.0 Lane 3 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 — 0.0 0.0 Lane 4 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 — 0.0 0.0 Lane 5 0 0 57 57 5.0 121 0.471 100 71.4 LOS A 3.4 24.5 100 Turn Bay 0.0 0.0	Lane 4	0	0	87	87	5.0	226	0.383	100	61.1	LOS A	4.7	34.0	65 T	urn Bay	0.0	0.0
Lane 1 63 0 0 63 5.0 1447 0.044 100 10.2 LOS A 0.1 1.0 125 Turn Bay 0.0 0.0 Lane 2 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 3 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 4 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 5 0 0 57 57 5.0 121 0.471 100 71.4 LOS A 3.4 24.5 100 Turn Bay 0.0 0.0 Lane 6 0 0 57 57 5.0 121 0.471 100 71.4 LOS A 3.4 24.5 80 Turn Bay 0.0 0.0 Approach 63 1291 114 1467 5.0 0.501 24.3 LOS A 14.2 104.0	Approach	31	137	174	341	5.0				52.0		7.1					
Lane 1 63 0 0 63 5.0 1447 0.044 100 10.2 LOS A 0.1 1.0 125 Turn Bay 0.0 0.0 Lane 2 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 3 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 4 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 5 0 0 57 57 5.0 121 0.471 100 71.4 LOS A 3.4 24.5 100 Turn Bay 0.0 0.0 Lane 6 0 0 57 57 5.0 121 0.471 100 71.4 LOS A 3.4 24.5 80 Turn Bay 0.0 0.0 Approach 63 1291 114 1467 5.0 0.501 24.3 LOS A 14.2 104.0	West: Princ	es Hwy	· - Wes	t													
Lane 2 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 3 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 4 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 5 0 0 57 57 5.0 121 0.471 100 71.4 LOS A 3.4 24.5 100 Turn Bay 0.0 0.0 Lane 6 0 0 57 57 5.0 121 0.471 100 71.4 LOS A 3.4 24.5 80 Turn Bay 0.0 0.0 Approach 63 1291 114 1467 5.0 0.501 24.3 LOS A 14.2 104.0		•			63	5.0	1447	0.044	100	10.2	LOSA	0.1	1.0	125 T	urn Bav	0.0	0.0
Lane 3 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 4 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 - 0.0 0.0 Lane 5 0 0 57 57 5.0 121 0.471 100 71.4 LOS A 3.4 24.5 100 Turn Bay 0.0 0.0 Lane 6 0 0 57 57 5.0 121 0.471 100 71.4 LOS A 3.4 24.5 80 Turn Bay 0.0 0.0 Approach 63 1291 114 1467 5.0 0.501 24.3 LOS A 14.2 104.0		0	430	0	430	5.0	859	0.501	100			14.2			_		0.0
Lane 4 0 430 0 430 5.0 859 0.501 100 20.9 LOS A 14.2 104.0 480 — 0.0 0.0 Lane 5 0 0 57 57 5.0 121 0.471 100 71.4 LOS A 3.4 24.5 100 Turn Bay 0.0 0.0 Lane 6 0 0 57 57 5.0 121 0.471 100 71.4 LOS A 3.4 24.5 80 Turn Bay 0.0 0.0 Approach 63 1291 114 1467 5.0 0.501 24.3 LOS A 14.2 104.0		0		0											_		
Lane 5 0 0 57 57 5.0 121 0.471 100 71.4 LOS A 3.4 24.5 100 Turn Bay 0.0 0.0 Lane 6 0 0 57 57 5.0 121 0.471 100 71.4 LOS A 3.4 24.5 80 Turn Bay 0.0 0.0 Approach 63 1291 114 1467 5.0 0.501 24.3 LOS A 14.2 104.0		-		-													
Lane 6 0 0 57 57 5.0 121 0.471 100 71.4 LOS A 3.4 24.5 80 Turn Bay 0.0 0.0 Approach 63 1291 114 1467 5.0 0.501 24.3 LOS A 14.2 104.0				-													
Approach 63 1291 114 1467 5.0 0.501 24.3 LOS A 14.2 104.0			-												,		
Intersection 3782 5.0 0.537 28.2 LOS A 15.7 115.0														- 00 1	Day	3.0	
	Intersection	1			3782	5.0		0.537		28.2	LOSA	15.7	115.0				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 6 Lane underutilisation due to downstream effects

Processed: Wednesday, 25 May 2011 12:06:59 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\617.sip

8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 617 - AM peak - 25/05/11

Intersection 617 - PM Peak - 25/05/11 Princes Hwy Starling Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use and Performance																
			d Flows		LIV	Can	Deg.		Average		95% Back			_SL	Сар.	
	L voh/h	T veh/h	R	Total veh/h	HV o/	Cap.	Satn v/c	Util. %	Delay	Service		Distance		Туре	Adj. I %	Block. %
South: Mair			ven/m	ven/m	70	ven/m	V/C	70	sec		veh	m	m		70	7/0
Lane 1	309	0	0	309	5.0	725 ¹	0.427	100	9.2	LOS A	1.6	11.6	65 Tı	urn Bay	0.0	0.0
Lane 2	0	59	0	59	5.0	318	0.186	66 ⁶	46.7	LOS A	2.8	20.7	85	_	0.0	0.0
Lane 3	0	89	0	89	5.0	318	0.281	100	47.7	LOS A	4.4	32.1	85	_	0.0	0.0
Lane 4	0	0	232	232	5.0	316 ¹	0.732	100	58.1	LOS C	12.7	92.4	80 Tı	urn Bay	0.0	18.0
Approach	309	148	232	689	5.0		0.732		33.8	LOS C	12.7	92.4				
East: Prince	es Hwy	- East														
Lane 1	132	0	0	132	5.0	1147 ¹	0.115	100	10.6	LOS A	0.4	2.6	100 Tu	urn Bay	0.0	0.0
Lane 2	0	456	0	456	5.0		0.684	100	33.8	LOS B	20.9	152.4	390		0.0	0.0
Lane 3	0	456	0	456	5.0	668	0.684	100	33.8	LOS B	20.9	152.4	390	_	0.0	0.0
Lane 4	0	456	0	456	5.0	668	0.684	100	33.8	LOS B	20.9	152.4	390	_	0.0	0.0
Lane 5	0	0	16	16	5.0	166	0.094	62 ⁶	65.1	LOS A	0.8	6.1	60 Tı	urn Bay	0.0	0.0
Lane 6	0	0	23	23	5.0	154 ¹	0.152	100	65.6	LOS A	1.3	9.2	40 Tı	urn Bay	0.0	0.0
Approach	132	1369	39	1540	5.0		0.684		32.6	LOS B	20.9	152.4				
North: Starl	ing Rd															
Lane 1	69	0	0	69	5.0	640 ¹	0.108	100	13.3	LOS A	0.9	6.3	100 Tu	urn Bay	0.0	0.0
Lane 2	0	234	0	234	5.0	318	0.735	100	53.4	LOS C	13.2	96.6	120	_	0.0	0.0
Lane 3	0	0	41	41	5.0	347	0.119	100	51.0	LOS A	1.9	13.6	85 Tı	urn Bay	0.0	0.0
Lane 4	0	0	33	33	5.0	280 ¹	0.119	100	50.7	LOS A	1.5	10.9	65 Tı	urn Bay	0.0	0.0
Approach	69	234	75	378	5.0		0.735		45.5	LOS C	13.2	96.6				
West: Princ	es Hwy	- West														
Lane 1	184	0	0	184	5.0	1434 ¹	0.128	100	10.2	LOS A	0.4	3.0	125 Tı	urn Bay	0.0	0.0
Lane 2	0	481	0	481	5.0	668	0.721	100	34.4	LOS C	22.6	165.0	480	_	0.0	0.0
Lane 3	0	481	0	481	5.0	668	0.721	100	34.4	LOS C	22.6	165.0	480	_	0.0	0.0
Lane 4	0	481	0	481	5.0	668	0.721	100	34.4	LOS C	22.6	165.0	480	_	0.0	0.0
Lane 5	0	0	113	113	5.0	166	0.678	100	70.1	LOS B	6.7	48.8	100 Tu	urn Bay	0.0	0.0
Lane 6	0	0	113	113	5.0	166	0.678	100	70.1	LOS B	6.7	48.8	80 Tı	urn Bay	0.0	0.0
Approach	184	1444	225	1854	5.0		0.721		36.3	LOS C	22.6	165.0				
Intersection	1			4461	5.0		0.735		35.4	LOS C	22.6	165.0				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 6 Lane underutilisation due to downstream effects

Processed: Wednesday, 25 May 2011 12:07:00 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\617.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

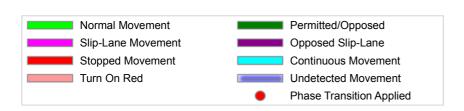
Site: 617 - PM peak - 25/05/11

Intersection 617 - AM Peak - 25/05/11

Princes Hwy Starling Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program


Sequence: Leading Right Turn (phase reduction applied) Input Sequence: A, A1, B, C, D

Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	15	19	8	54
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	21	25	14	60
Phase Split	18 %	21 %	12 %	50 %

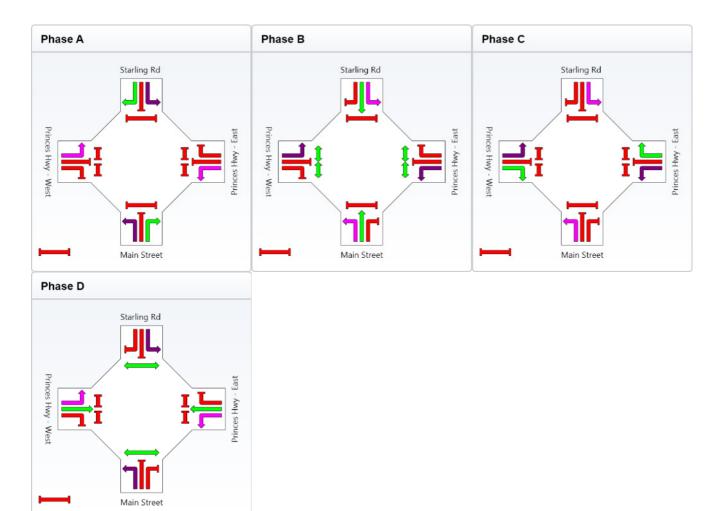
Processed: Wednesday, 25 May 2011 12:06:59 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Intersection 617 - PM Peak - 25/05/11

Princes Hwy Starling Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

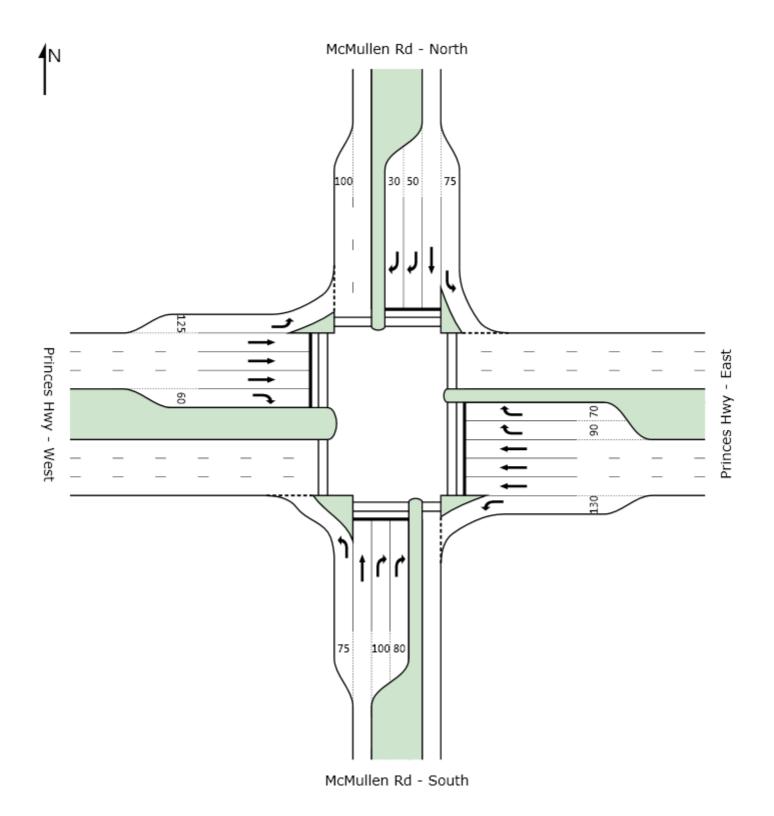

Phase times determined by the program

Sequence: Leading Right Turn (phase reduction applied) Input Sequence: A, A1, B, C, D

Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	23	20	11	42
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	29	26	17	48
Phase Split	24 %	22 %	14 %	40 %



Processed: Wednesday, 25 May 2011 12:07:00 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Intersection 622 - AM Peak - 25/05/11 Princes Hwy McMullen Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erform	ance								_					
		Demand			104		Deg.	Lane	Average		95% Back		Lane	SL		Prob.
	L	T	R	Total	HV	Cap.	Satn	Util.	Delay	Service		Distance	Length	Type		Block.
South: McM		veh/h		veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
Lane 1	120	u - 300 0	0	120	5.0	468 ¹	0.256	100	8.6	LOS A	0.4	2.8	75 7	Turn Day	0.0	0.0
			0	74	5.0		0.236	100		LOSA			220	Turn Bay		
Lane 2	0	74				302			48.2		3.6	26.6		_ 	0.0	0.0
Lane 3	0	0	106	106	5.0	196	0.539	100	64.3	LOSA	6.0	43.6		urn Bay	0.0	0.0
Lane 4	0	0	106	106	5.0	196	0.539	100	64.3	LOSA	6.0	43.6	80 1	Turn Bay	0.0	0.0
Approach	120	74	212	405	5.0		0.539		44.9	LOS A	6.0	43.6				
East: Prince	s Hwy	- East														
Lane 1	219	0	0	219	5.0	1535	0.143	100	10.1	LOSA	0.5	3.3	130 7	urn Bay	0.0	0.0
Lane 2	0	487	0	487	5.0	859	0.567	100	21.7	LOSA	17.1	124.8	500	_	0.0	0.0
Lane 3	0	487	0	487	5.0	859	0.567	100	21.7	LOSA	17.1	124.8	500	-	0.0	0.0
Lane 4	0	487	0	487	5.0	859	0.567	100	21.7	LOSA	17.1	124.8	500	_	0.0	0.0
Lane 5	0	0	52	52	5.0	151	0.346	62 ⁶	68.3	LOS A	3.0	21.6	90 7	Turn Bay	0.0	0.0
Lane 6	0	0	85	85	5.0	151	0.561	100	69.8	LOS A	4.9	36.1	70 7	Turn Bay	0.0	0.0
Approach	219	1460	137	1816	5.0		0.567		23.9	LOS A	17.1	124.8				
North: McMi	ullen R	d - Nort	:h													
Lane 1	233	0	0	233	5.0	468 ¹	0.497	100	8.8	LOS A	1.0	7.2	75 1	urn Bay	0.0	0.0
Lane 2	0	49	0	49	5.0	302	0.164	100	47.5	LOS A	2.4	17.5	500	_	0.0	0.0
Lane 3	0	0	78	78	5.0	196	0.396	100	63.2	LOS A	4.3	31.2	50 7	Turn Bay	0.0	0.0
Lane 4	0	0	48	48	5.0	120 ¹	0.396	100	61.9	LOS A	2.5	18.6	30 7	Turn Bay	0.0	0.0
Approach	233	49	125	407	5.0		0.497		30.1	LOS A	4.3	31.2				
West: Prince	es Hwy	- West														
Lane 1	151	0	0	151	5.0	1460	0.103	100	10.2	LOSA	0.4	2.6	125 1	urn Bay	0.0	0.0
Lane 2	0	421	0	421	5.0	859	0.490	100	20.7	LOSA	13.8	100.9	390	_	0.0	0.0
Lane 3	0	421	0	421	5.0	859	0.490	100	20.7	LOSA	13.8	100.9	390	_	0.0	0.0
Lane 4	0	421	0	421	5.0	859	0.490	100	20.7	LOSA	13.8	100.9	390	_	0.0	0.0
Lane 5	0	0	17	17	5.0	151	0.112	100	66.4	LOS A	0.9	6.7	60 7	Turn Bay	0.0	0.0
Approach	151	1263	17	1431	5.0		0.490		20.2	LOSA	13.8	100.9				
Intersection				4059	5.0		0.567		25.3	LOSA	17.1	124.8				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 6 Lane underutilisation due to downstream effects

Processed: Wednesday, 25 May 2011 12:10:12 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\622.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 622 - AM peak - 25/05/11

Intersection 622 - PM Peak - 25/05/11 Princes Hwy McMullen Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erform	ance													
		Deman	d Flows				Deg.	Lane	Average	Level of	95% Back		Lane	SL		Prob.
	L	Т	R	Total	HV	Сар.	Satn	Util.	Delay	Service		Distance	Length	Type		Block.
O a vetta v Man		veh/h		veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: McM			-	40	- 0	4071	0.007	400	0.4	1004	0.0	4.0	75.7		0.0	0.0
Lane 1	42	0	0	42	5.0	487 ¹	0.087	100	9.1	LOSA	0.2	1.3		urn Bay	0.0	0.0
Lane 2	0	69	0	69	5.0	286	0.243	100	49.2	LOSA	3.5	25.4	220		0.0	0.0
Lane 3	0	0	176	176	5.0	257	0.685	100	62.6	LOS B	10.0	72.8		urn Bay	0.0	0.0
Lane 4	0	0	176	176	5.0	257	0.685	100	62.6	LOS B	10.0	72.8	80 T	urn Bay	0.0	0.0
Approach	42	69	352	463	5.0		0.685		55.7	LOS B	10.0	72.8				
East: Prince	es Hwy	- East														
Lane 1	284	0	0	284	5.0	1388	0.205	100	10.5	LOSA	0.8	6.0	130 T	urn Bay	0.0	0.0
Lane 2	0	466	0	466	5.0	747	0.624	100	28.4	LOS B	19.2	140.4	500	_	0.0	0.0
Lane 3	0	466	0	466	5.0	747	0.624	100	28.4	LOS B	19.2	140.4	500	_	0.0	0.0
Lane 4	0	466	0	466	5.0	747	0.624	100	28.4	LOS B	19.2	140.4	500	_	0.0	0.0
Lane 5	0	0	89	89	5.0	211	0.420	62 ⁶	64.6	LOS A	4.8	35.4	90 T	urn Bay	0.0	0.0
Lane 6	0	0	144	144	5.0	211	0.681	100	67.4	LOS B	8.3	60.9	70 T	urn Bay	0.0	0.0
Approach	284	1399	233	1916	5.0		0.681		30.3	LOS B	19.2	140.4				
North: McM	lullen R	d - Nor	th													
Lane 1	137	0	0	137	5.0	487 ¹	0.281	100	12.7	LOS A	1.7	12.2	75 T	urn Bay	0.0	0.0
Lane 2	0	94	0	94	5.0	286	0.327	100	50.0	LOS A	4.8	34.9	500	_	0.0	0.0
Lane 3	0	0	95	95	5.0	201 ¹	0.475	100	59.0	LOS A	5.0	36.4	50 T	urn Bay	0.0	0.0
Lane 4	0	0	60	60	5.0	127 ¹	0.475	100	57.8	LOS A	3.1	22.4	30 T	urn Bay	0.0	0.0
Approach	137	94	156	386	5.0		0.475		40.2	LOS A	5.0	36.4				
West: Princ	es Hwy	· - West														
Lane 1	125	0	0	125	5.0	1401 ¹	0.089	100	10.4	LOS A	0.3	2.2	125 T	urn Bay	0.0	0.0
Lane 2	0	520	0	520	5.0	747	0.696	100	29.5	LOS B	22.7	165.9	390	_	0.0	0.0
Lane 3	0	520	0	520	5.0	747	0.696	100	29.5	LOS B	22.7	165.9	390	_	0.0	0.0
Lane 4	0	520	0	520	5.0	747	0.696	100	29.5	LOS B	22.7	165.9	390	_	0.0	0.0
Lane 5	0	0_0	145	145	5.0	211	0.687	100	67.5	LOS B	8.4	61.6		urn Bay	0.0	7.4
Approach	125	1560	145	1831	5.0		0.696		31.2	LOS B	22.7	165.9	- 33 1	a.ii bay	0.0	
, ,																
Intersection	1			4596	5.0		0.696		34.1	LOS B	22.7	165.9				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 6 Lane underutilisation due to downstream effects

Processed: Wednesday, 25 May 2011 12:10:12 PM SIDRA INTERSECTION 5.1.5.2006

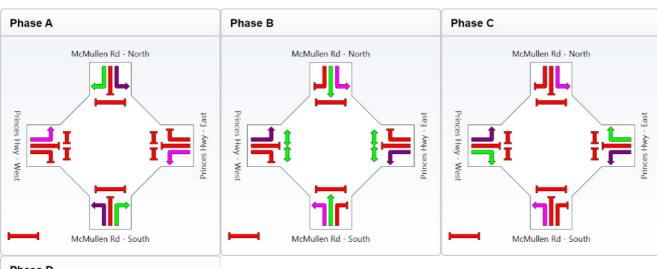
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

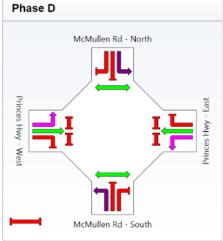
Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\622.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 622 - PM peak - 25/05/11

Intersection 622 - AM Peak - 25/05/11

Princes Hwy McMullen Rd


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Leading Right Turn Input Sequence: A, B, C, D Output Sequence: A, B, C, D

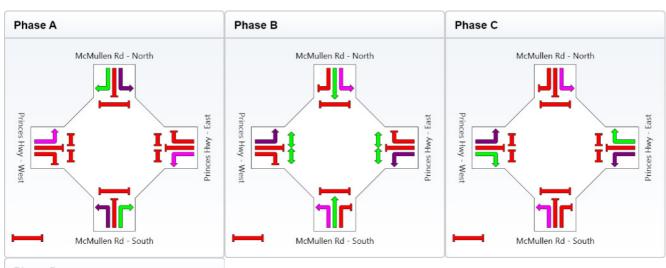
Phase Timing Results

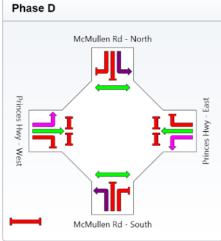
Phase	Α	В	С	D
Green Time (sec)	13	19	10	54
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	19	25	16	60
Phase Split	16 %	21 %	13 %	50 %

Processed: Wednesday, 25 May 2011 12:10:12 PM SIDRA INTERSECTION 5.1.5.2006

Intersection 622 - PM Peak - 25/05/11

Princes Hwy McMullen Rd

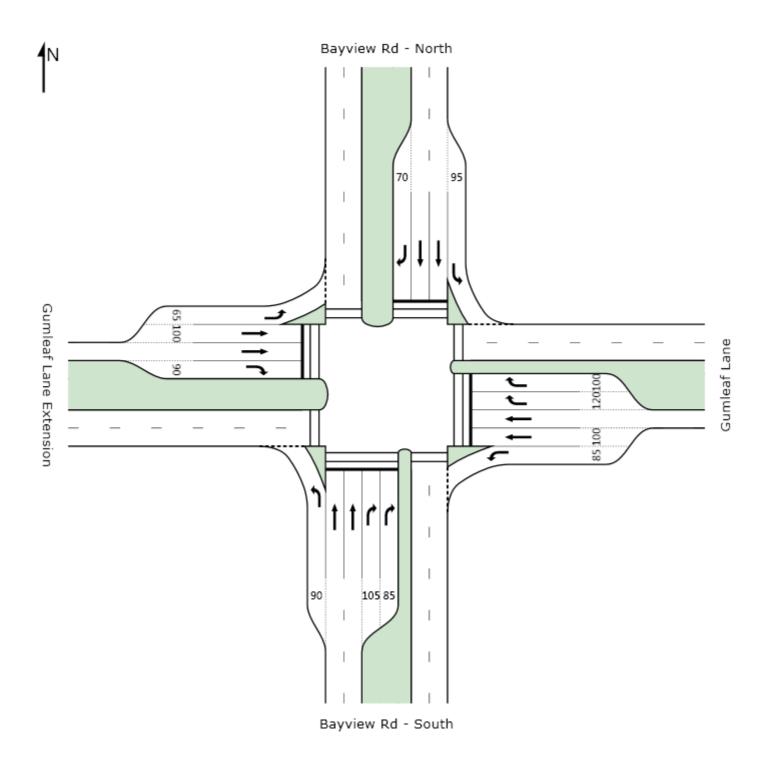

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Leading Right Turn Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	17	18	14	47
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	23	24	20	53
Phase Split	19 %	20 %	17 %	44 %



Processed: Wednesday, 25 May 2011 12:10:12 PM SIDRA INTERSECTION 5.1.5.2006

Intersection 1875 - AM Peak - 25/05/11 Bayview Rd

Gumleaf Lane

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and Pe	rform	ance													
		emano	d Flows		11114		Deg.	Lane	Average	Level of			Lane	SL	Сар.	
	L	T	R	Total	HV	Cap.	Satn	Util.	Delay	Service		Distance	Length	Type		Block.
Courth: Down	veh/h			veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: Bay	112	- Souli	0	112	5.0	1256	0.082	100	10.1	LOS A	0.2	1.5	00.7	urn Dov	0.0	0.0
Lane 1														urn Bay		
Lane 2	0	163	0	163	5.0		0.284	100	34.0	LOSA	6.4	46.9	500	_	0.0	0.0
Lane 3	0	163	0	163	5.0		0.284	100	34.0	LOSA	6.4	46.9	500	_ 	0.0	0.0
Lane 4	0	0	166	166	5.0	347	0.479	100	57.1	LOSA	8.4	61.2		urn Bay	0.0	0.0
Lane 5	0	0	166	166	5.0	347	0.479	100	57.1	LOSA	8.4	61.2	85 1	urn Bay	0.0	0.0
Approach	112	325	333	769	5.0		0.479		40.5	LOS A	8.4	61.2				
East: Gumle	eaf Lane	9														
Lane 1	500	0	0	500	5.0	853 ¹	0.586	100	8.8	LOS A	2.4	17.5	85 T	urn Bay	0.0	0.0
Lane 2	0	12	0	12	5.0	398	0.030	100	40.4	LOS A	0.5	3.7	100 T	urn Bay	0.0	0.0
Lane 3	0	12	0	12	5.0	398	0.030	100	40.4	LOS A	0.5	3.7	465	_	0.0	0.0
Lane 4	0	0	7	7	5.0	181	0.038	100	61.1	LOS A	0.4	2.6	120 T	urn Bay	0.0	0.0
Lane 5	0	0	7	7	5.0	181	0.038	100	61.1	LOS A	0.4	2.6	100 T	urn Bay	0.0	0.0
Approach	500	24	14	538	5.0		0.586		11.5	LOS A	2.4	17.5				
North: Bayv	iew Rd	- North														
Lane 1	143	0	0	143	5.0	1173 ¹	0.122	100	10.3	LOS A	0.3	2.5	95 T	urn Bay	0.0	0.0
Lane 2	0	271	0	271	5.0		0.474	100	36.3	LOSA	11.7	85.7	280	_ ,	0.0	0.0
Lane 3	0	271	0	271	5.0		0.474	100	36.3	LOSA	11.7	85.7	280	_	0.0	0.0
Lane 4	0	0	47	47	5.0	296 ¹	0.160	100	53.4	LOS A	2.2	15.7	70 T	urn Bay	0.0	0.0
Approach	143	542	47	733	5.0		0.474		32.3	LOS A	11.7	85.7				
West: Guml	eaf Lan	e Exter	nsion													
Lane 1	61	0	0	61	5.0	1071 ¹	0.057	100	8.0	LOS A	0.1	0.9	65 T	urn Bay	0.0	0.0
Lane 2	0	21	0	21	5.0	398	0.053	100	40.7	LOS A	0.9	6.6		urn Bay	0.0	0.0
Lane 3	0	21	0	21	5.0	398	0.053	100	40.7	LOS A	0.9	6.6	500	_	0.0	0.0
Lane 4	0	0	83	83	5.0	181	0.459	100	64.7	LOS A	4.7	34.1		urn Bay	0.0	0.0
Approach	61	42	83	186	5.0		0.459		40.7	LOS A	4.7	34.1				
Intersection				2226	5.0		0.586		30.8	LOSA	11.7	85.7				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

1 Reduced capacity due to a short lane effect

Processed: Wednesday, 25 May 2011 2:21:23 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\1875.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 1875 - AM Peak - 25/05/11

Intersection 1875 - PM Peak - 25/05/11 Bayview Rd

Gumleaf Lane

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and Pe	erform	ance													
		Demano	d Flows	;			Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL		Prob.
	L	Т	R	Total	HV	Сар.	Satn	Util.	Delay	Service	Vehicles	Distance	Length	Type		Block.
	veh/h			veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: Bay						1										
Lane 1	83	0	0	83	5.0		0.063	100	10.1	LOS A	0.1	1.1		urn Bay	0.0	0.0
Lane 2	0	289	0	289	5.0	398	0.728	100	49.2	LOS C	15.8	115.2	500	_	0.0	0.0
Lane 3	0	289	0	289	5.0	398	0.728	100	49.2	LOS C	15.8	115.2	500	_	0.0	0.0
Lane 4	0	0	364	364	5.0	463 ¹	0.785	100	50.4	LOS C	18.0	131.2	105 T	urn Bay	0.0	25.2
Lane 5	0	0	313	313	5.0	399 ¹	0.785	100	49.8	LOS C	14.9	108.9	85 T	urn Bay	0.0	27.6
Approach	83	579	677	1339	5.0		0.785		47.2	LOS C	18.0	131.2				
East: Guml	leaf Lane	Э														
Lane 1	509	0	0	509	5.0	911 ¹	0.559	100	8.6	LOS A	2.1	15.6	85 T	urn Bay	0.0	0.0
Lane 2	0	21	0	21	5.0	398	0.053	100	40.7	LOS A	0.9	6.6	100 T	urn Bay	0.0	0.0
Lane 3	0	21	0	21	5.0	398	0.053	100	40.7	LOS A	0.9	6.6	465	_	0.0	0.0
Lane 4	0	0	72	72	5.0	136	0.527	100	68.5	LOS A	4.2	30.7	120 T	urn Bay	0.0	0.0
Lane 5	0	0	72	72	5.0	136	0.527	100	68.5	LOS A	4.2	30.7	100 T	urn Bay	0.0	0.0
Approach	509	42	143	695	5.0		0.559		22.9	LOSA	4.2	30.7		•		
North: Bay	view Rd	- North														
Lane 1	14	0	0	14	5.0	976 ¹	0.014	100	10.5	LOS A	0.0	0.2	95 T	urn Bay	0.0	0.0
Lane 2	0	197	0	197	5.0	398	0.497	100	45.6	LOS A	9.8	71.4	280	_	0.0	0.0
Lane 3	0	197	0	197	5.0	398	0.497	100	45.6	LOS A	9.8	71.4	280	_	0.0	0.0
Lane 4	0	0	61	61	5.0	362 ¹	0.169	100	40.8	LOS A	2.2	15.9	70 T	urn Bay	0.0	0.0
Approach	14	395	61	469	5.0		0.497		44.0	LOS A	9.8	71.4				
West: Gum	ileaf Lan	e Exter	nsion													
Lane 1	47	0	0	47	5.0	697 ¹	0.068	100	8.4	LOS A	0.1	0.9	65 T	urn Bay	0.0	0.0
Lane 2	0	12	0	12	5.0	398	0.030	100	40.4	LOSA	0.5	3.7		urn Bay	0.0	0.0
Lane 3	0	12	0	12	5.0	398	0.030	100	40.4	LOSA	0.5	3.7	500	_	0.0	0.0
Lane 4	0	0	112	112			0.821	100	73.4	LOS C	7.0	51.4		urn Bay	0.0	0.0
Approach	47	24	112	183	5.0	100	0.821	100	52.2	LOS C	7.0	51.4	001	ani bay	0.0	0.0
Intersection	า			2686	5.0		0.821		40.7	LOS C	18.0	131.2				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

1 Reduced capacity due to a short lane effect

Processed: Wednesday, 25 May 2011 2:21:24 PM SIDRA INTERSECTION 5.1.5.2006

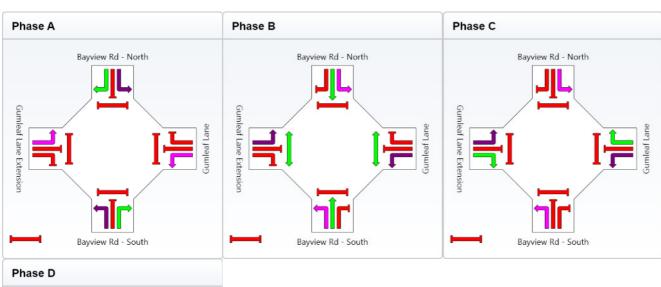
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

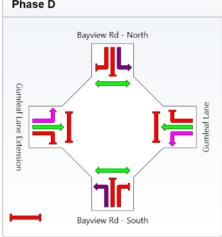
Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\1875.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

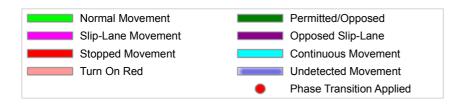
Site: 1875 - PM Peak - 25/05/11

Intersection 1875 - AM Peak - 25/05/11

Bayview Rd Gumleaf Lane


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Leading Right Turn Input Sequence: A, B, C, D Output Sequence: A, B, C, D

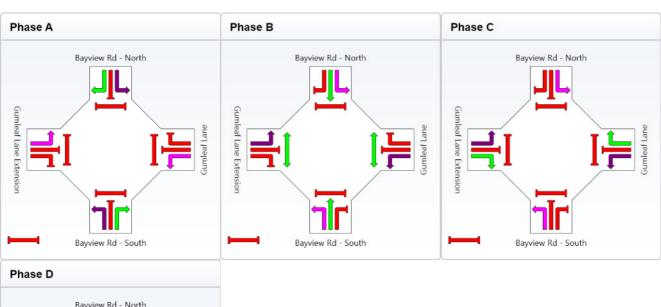
Phase Timing Results

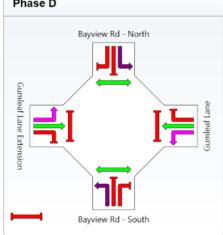
Phase	Α	В	С	D
Green Time (sec)	23	36	12	25
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	29	42	18	31
Phase Split	24 %	35 %	15 %	26 %

Processed: Wednesday, 25 May 2011 2:21:23 PM SIDRA INTERSECTION 5.1.5.2006

Intersection 1875 - PM Peak - 25/05/11

Bayview Rd Gumleaf Lane

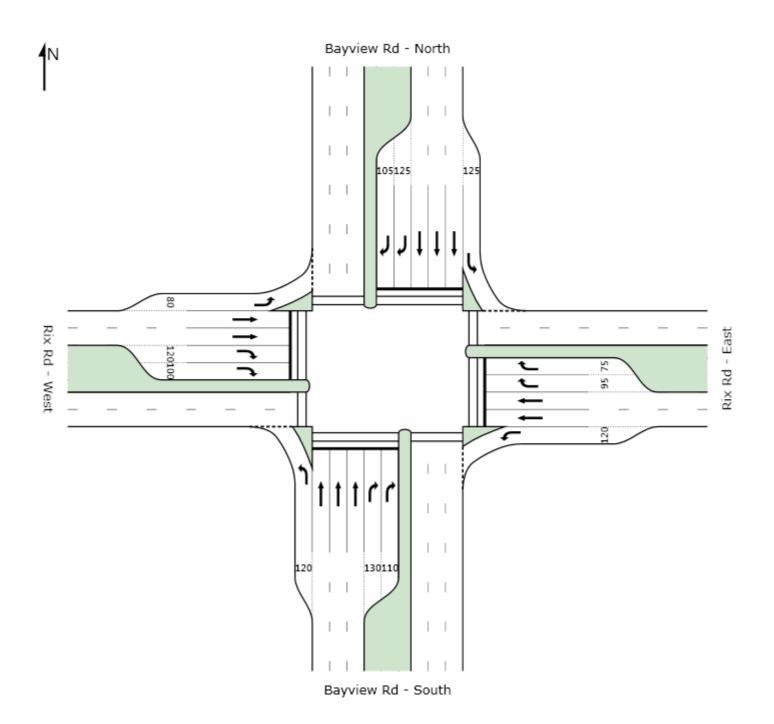

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Leading Right Turn Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

Phase	Α	В	С	D
Green Time (sec)	37	25	9	25
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	43	31	15	31
Phase Split	36 %	26 %	13 %	26 %



Processed: Wednesday, 25 May 2011 2:21:24 PM SIDRA INTERSECTION 5.1.5.2006

Intersection 1035 - AM Peak - 25/05/11 Bayview Rd

Rix Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and Pe	rform	ance													
		Demano	d Flows		11114	0	Deg.		Average	Level of			Lane	SL	Сар.	
	L	T	R	Total	HV	Cap.	Satn	Util.	Delay	Service		Distance	Length	Туре		Block.
South: Bayv	veh/h			veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
Lane 1	28	0	0	28	5.0	1117 ¹	0.025	100	10.3	LOS A	0.1	0.4	120 T	urn Bay	0.0	0.0
Lane 2	0	198	0	198	5.0		0.254	100	22.1	LOSA	6.1	44.2	275	_ _	0.0	0.0
Lane 3	0	198	0	198	5.0		0.254	100	22.1	LOSA	6.1	44.2	275	_	0.0	0.0
Lane 4	0	198	0	198	5.0	779	0.254	100	22.1	LOSA	6.1	44.2	275	_	0.0	0.0
Lane 5	0	0	396	396	5.0		0.647	100	38.5	LOS B	15.9	116.2		urn Bay	0.0	0.0
Lane 6	0	0	357	357	5.0	4	0.647	100	37.7	LOS B	13.8	100.6		urn Bay	0.0	0.0
Approach	28	595	753	1376	5.0		0.647		30.6	LOS B	15.9	116.2		u 2 u.j		0.0
East: Rix Ro	d - East															
Lane 1	561	0	0	561	5.0	1298	0.432	100	10.3	LOSA	2.8	20.3	120 T	urn Bay	0.0	0.0
Lane 2	0	82	0	82	5.0	302	0.270	100	48.5	LOS A	4.1	29.6	310	_	0.0	0.0
Lane 3	0	82	0	82	5.0	302	0.270	100	48.5	LOS A	4.1	29.6	310	_	0.0	0.0
Lane 4	0	0	39	39	5.0	91	0.436	100	73.2	LOS A	2.4	17.4	95 T	urn Bay	0.0	0.0
Lane 5	0	0	39	39	5.0	91	0.436	100	73.2	LOS A	2.4	17.4	75 T	urn Bay	0.0	0.0
Approach	561	163	79	803	5.0		0.436		24.2	LOS A	4.1	29.6				
North: Bayvi	iew Rd	- North	l													
Lane 1	193	0	0	193	5.0	801 ¹	0.241	100	11.0	LOS A	0.7	5.0	125 T	urn Bay	0.0	0.0
Lane 2	0	251	0	251	5.0	398	0.630	100	47.2	LOS B	13.0	94.9	500	_	0.0	0.0
Lane 3	0	251	0	251	5.0	398	0.630	100	47.2	LOS B	13.0	94.9	500	_	0.0	0.0
Lane 4	0	251	0	251	5.0	398	0.630	100	47.2	LOS B	13.0	94.9	500	_	0.0	0.0
Lane 5	0	0	83	83	5.0	332	0.249	100	55.6	LOS A	3.9	28.7	125 T	urn Bay	0.0	0.0
Lane 6	0	0	83	83	5.0	332	0.249	100	55.6	LOS A	3.9	28.7	105 T	urn Bay	0.0	0.0
Approach	193	752	165	1109	5.0		0.630		42.2	LOS B	13.0	94.9				
West: Rix R	d - Wes	st														
Lane 1	100	0	0	100	5.0	814 ¹	0.123	100	9.6	LOS A	0.2	1.7	80 T	urn Bay	0.0	0.0
Lane 2	0	100	0	100	5.0	302	0.331	100	49.1	LOSA	5.0	36.8	140	_	0.0	0.0
Lane 3	0	100	0	100	5.0	302	0.331	100	49.1	LOSA	5.0	36.8	140	_	0.0	0.0
Lane 4	0	0	38	38	5.0	91	0.418	100	73.1	LOS A	2.3	16.7	120 T	urn Bay	0.0	0.0
Lane 5	0	0	38	38	5.0	91	0.418	100	73.1	LOS A	2.3	16.7	100 T	urn Bay	0.0	0.0
Approach	100	200	76	376	5.0		0.418		43.4	LOSA	5.0	36.8				
Intersection				3664	5.0		0.647		34.0	LOS B	15.9	116.2				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

1 Reduced capacity due to a short lane effect

Processed: Wednesday, 25 May 2011 1:57:03 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\1035.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 1035 - AM peak - 25/05/11

Intersection 1035 - PM Peak - 25/05/11 Bayview Rd

Rix Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and Pe	rform	ance													
	С	emano	d Flows		1.15.7		Deg.		Average	Level of			Lane	SL	Сар.	
	L	T	R	Total	HV	Cap.	Satn	Util.	Delay	Service		Distance	Length	Туре		Block.
South: Bayv	veh/h			veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
Lane 1	76	0	0	76	5.0	1432	0.053	100	10.4	LOSA	0.2	1.2	120 T	urn Bay	0.0	0.0
Lane 2	0	333	0	333	5.0		0.374	100	17.9	LOSA	9.5	69.0	275		0.0	0.0
Lane 3	0	333	0	333	5.0		0.374	100	17.9	LOSA	9.5	69.0	275	_	0.0	0.0
Lane 4	0	333	0	333	5.0		0.374	100	17.9	LOSA	9.5	69.0	275	_	0.0	0.0
Lane 5	0	0	303	303	5.0		0.553	100	46.3	LOSA	13.5	98.2		urn Bay	0.0	0.0
Lane 6	0	0	271	271	5.0	4	0.553	100	45.5	LOSA	11.7	85.1		urn Bay	0.0	0.0
Approach	76	998	574	1647	5.0	100	0.553	100	27.3	LOSA	13.5	98.2	1101	uni bay	0.0	0.0
East: Rix Ro	d - Fast															
Lane 1	765	0	0	765	5.0	1160 ¹	0.660	100	10.5	LOS B	5.2	38.2	120 T	urn Bay	0.0	0.0
Lane 2	0	117	0	117	5.0		0.367	100	48.5	LOSA	5.9	43.0	310	_	0.0	0.0
Lane 3	0	117	0	117	5.0		0.367	100	48.5	LOSA	5.9	43.0	310	_	0.0	0.0
Lane 4	0	0	105	105	5.0	166	0.634	100	68.8	LOS B	6.2	45.1	95 T	urn Bay	0.0	0.0
Lane 5	0	0	105	105	5.0	166	0.634	100	68.8	LOS B	6.2	45.1	75 T	urn Bay	0.0	0.0
Approach	765	234	211	1209	5.0		0.660		28.0	LOS B	6.2	45.1				
North: Bayvi	iew Rd	- North	1													
Lane 1	97	0	0	97	5.0	893 ¹	0.108	100	10.7	LOS A	0.3	1.9	125 T	urn Bay	0.0	0.0
Lane 2	0	280	0	280	5.0	445	0.630	100	44.9	LOS B	14.2	103.6	500	_	0.0	0.0
Lane 3	0	280	0	280	5.0	445	0.630	100	44.9	LOS B	14.2	103.6	500	_	0.0	0.0
Lane 4	0	280	0	280	5.0	445	0.630	100	44.9	LOS B	14.2	103.6	500	_	0.0	0.0
Lane 5	0	0	50	50	5.0	136	0.368	100	69.7	LOS A	2.9	21.0	125 T	urn Bay	0.0	0.0
Lane 6	0	0	50	50	5.0	136	0.368	100	69.7	LOS A	2.9	21.0	105 T	urn Bay	0.0	0.0
Approach	97	841	100	1038	5.0		0.630		44.1	LOS B	14.2	103.6				
West: Rix R	d - Wes	st														
Lane 1	165	0	0	165	5.0	546 ¹	0.303	100	10.0	LOS A	0.5	3.9	80 T	urn Bay	0.0	0.0
Lane 2	0	98	0	98	5.0	318	0.309	100	47.9	LOS A	4.9	35.6	140	_	0.0	0.0
Lane 3	0	98	0	98	5.0	318	0.309	100	47.9	LOS A	4.9	35.6	140	-	0.0	0.0
Lane 4	0	0	14	14	5.0	166	0.086	100	64.3	LOS A	0.8	5.5	120 T	urn Bay	0.0	0.0
Lane 5	0	0	14	14	5.0	166	0.086	100	64.3	LOS A	0.8	5.5	100 T	urn Bay	0.0	0.0
Approach	165	197	28	391	5.0		0.309		33.1	LOSA	4.9	35.6				
Intersection				4285	5.0		0.660		32.1	LOS B	14.2	103.6				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

1 Reduced capacity due to a short lane effect

Processed: Wednesday, 25 May 2011 1:57:04 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

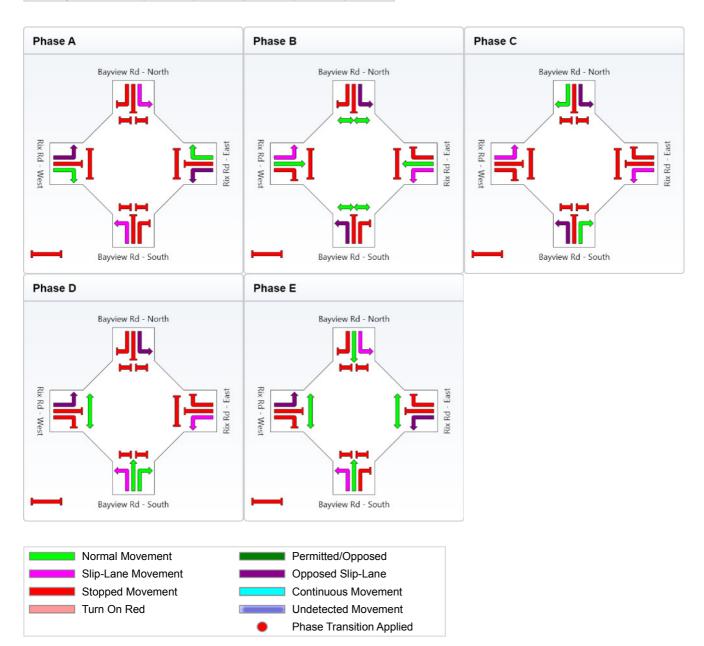
Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\1035.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

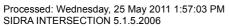
Site: 1035 - PM peak - 25/05/11

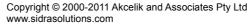
Intersection 1035 - AM Peak - 25/05/11

Bayview Rd

Rix Rd


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

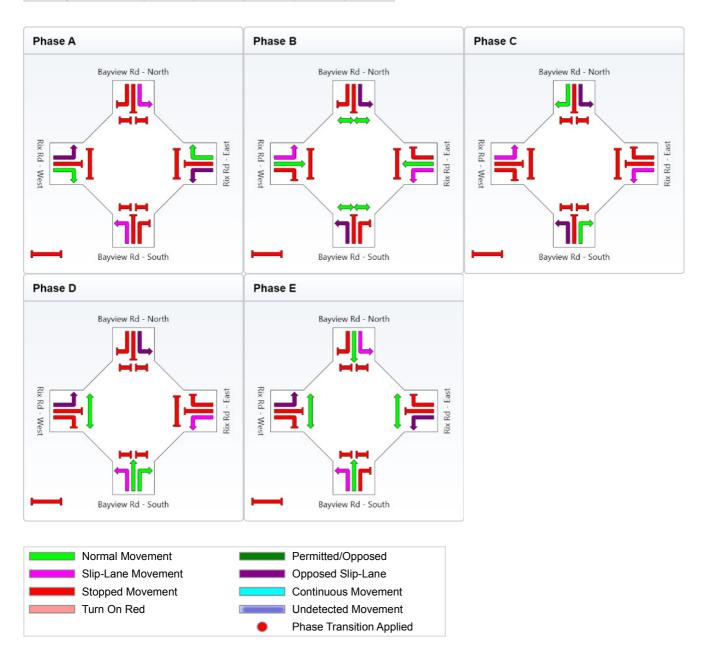

Sequence: Leading Right Turn Input Sequence: A, B, C, D, E Output Sequence: A, B, C, D, E

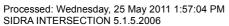
Phase Timing Results

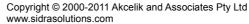
Phase	Α	В	С	D	E
Green Time (sec)	6	19	22	18	25
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	12	25	28	24	31
Phase Split	10 %	21 %	23 %	20 %	26 %

Intersection 1035 - PM Peak - 25/05/11

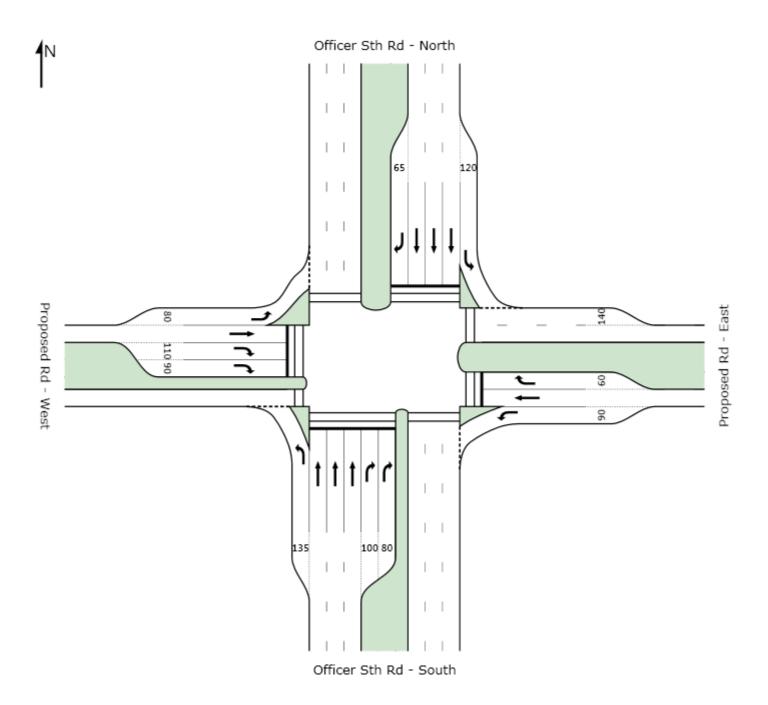
Bayview Rd Rix Rd


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program


Sequence: Leading Right Turn Input Sequence: A, B, C, D, E Output Sequence: A, B, C, D, E

Phase Timing Results


Phase	Α	В	С	D	E
Green Time (sec)	11	20	9	22	28
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	17	26	15	28	34
Phase Split	14 %	22 %	13 %	23 %	28 %

Intersection 647 - AM Peak - 25/05/11 Officer Sth Rd Proposed Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erform	ance								_					
		Demano			10.4		Deg.	Lane	Average		95% Back		Lane	SL		Prob.
	L	T	R	Total	HV	Cap.	Satn	Util.	Delay	Service		Distance	Length	Type		Block.
South: Offic		veh/h		veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
Lane 1	314	0 (Nu	0	314	5.0	1332 ¹	0.236	100	10.2	LOSA	0.7	5.4	1357	Turn Bay	0.0	0.0
Lane 2	0	421	0	421	5.0		0.756	100	42.2	LOS C	21.7	158.5	260	uni bay	0.0	0.0
Lane 3	0	421	0	421	5.0	557	0.756	100	42.2	LOS C	21.7	158.5	260	_	0.0	0.0
Lane 4	0	421	0	421	5.0	557	0.756	100	42.2	LOS C	21.7	158.5	260	_	0.0	0.0
Lane 5	0	0	161	161	5.0	287	0.561	81 ⁶	62.1	LOSA	8.6	62.9		Turn Bay	0.0	0.0
Lane 6	0	0	198	198	5.0		0.691	100	64.0	LOS B	11.1	81.0		urn Bay	0.0	6.2
Approach		1262	359	1935	5.0		0.756		40.9	LOS C	21.7	158.5		u 2 u.j	0.0	
East: Propo	sed Ro	l - East														
Lane 1	505	0	0	505	5.0	634 ¹	0.797	100	20.4	LOS C	13.3	96.8	90 7	Turn Bay	0.0	11.5
Lane 2	0	23	0	23	5.0	302	0.077	100	46.5	LOS A	1.1	8.0	290	_	0.0	0.0
Lane 3	0	0	34	34	5.0	247 ¹	0.136	100	53.0	LOS A	1.6	11.8	60 1	Turn Bay	0.0	0.0
Approach	505	23	34	562	5.0		0.797		23.5	LOS C	13.3	96.8				
North: Office	er Sth F	Rd - No	rth													
Lane 1	43	0	0	43	5.0	1348 ¹	0.032	100	10.9	LOS A	0.1	0.7	120 7	Turn Bay	0.0	0.0
Lane 2	0	426	0	426	5.0	557	0.765	100	42.6	LOS C	22.2	162.0	275	_	0.0	0.0
Lane 3	0	426	0	426	5.0	557	0.765	100	42.6	LOS C	22.2	162.0	275	_	0.0	0.0
Lane 4	0	426	0	426	5.0	557	0.765	100	42.6	LOS C	22.2	162.0	275	-	0.0	0.0
Lane 5	0	0	64	64	5.0	262 ¹	0.245	100	58.1	LOS A	3.2	23.1	65 7	Turn Bay	0.0	0.0
Approach	43	1278	64	1385	5.0		0.765		42.3	LOS C	22.2	162.0				
West: Propo	sed R	d - Wes	t													
Lane 1	99	0	0	99	5.0	1061 ¹	0.093	100	8.6	LOS A	0.3	2.1	80 7	Turn Bay	0.0	0.0
Lane 2	0	17	0	17	5.0	366	0.046	100	43.7	LOS A	0.7	5.4	140	_	0.0	0.0
Lane 3	0	0	272	272	5.0	347	0.784	100	60.7	LOS C	15.7	114.3	110 T	urn Bay	0.0	8.5
Lane 4	0	0	272	272	5.0	347	0.784	100	60.7	LOS C	15.7	114.3	90 7	urn Bay	0.0	26.8
Approach	99	17	544	660	5.0		0.784		52.5	LOS C	15.7	114.3				
Intersection				4542	5.0		0.797		40.9	LOS C	22.2	162.0				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 6 Lane underutilisation due to downstream effects

Processed: Wednesday, 25 May 2011 1:40:46 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\647.sip

Site: 647 - AM peak - 25/05/11

Intersection 647 - PM Peak - 25/05/11 Officer Sth Rd Proposed Rd

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Lane Use	and P	erform	ance								_					
		Deman			11114		Deg.	Lane	Average	Level of			Lane	SL	Сар.	
	L	Ť	R	Total	HV	Cap.	Satn	Util.	Delay	Service		Distance	Length	Туре		Block.
South: Office		veh/h		veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
Lane 1	544	0 - 30	0	544	5.0	1489	0.365	100	10.3	LOSA	1.8	12.8	1257	urn Bay	0.0	0.0
Lane 2	0	512	0	512	5.0	795	0.644	100	26.1	LOS A	20.6	150.4	260	ин Бау	0.0	0.0
Lane 3	0	512	0	512	5.0	795	0.644	100	26.1	LOS B	20.6	150.4	260	_	0.0	0.0
Lane 4	0	512	0	512	5.0	795	0.644	100	26.1	LOS B	20.6	150.4	260	_	0.0	0.0
Lane 5	0	0	249	249	5.0	362	0.687	81 ⁶	59.7	LOS B	13.4	97.7		urn Bay	0.0	2.9
Lane 6	0	0	269	269	5.0		0.846	100	66.0	LOS C	15.4	115.7		Turn Bay	0.0	38.8
Approach	544	1537	518	2599	5.0	310	0.846	100	30.2	LOS C	20.6	150.4	00 1	uiii bay	0.0	30.0
East: Propos	sed Ro	I - Fast														
Lane 1	372	0	0	372	5.0	683 ¹	0.544	100	14.0	LOS A	7.1	51.5	90 7	Turn Bay	0.0	0.0
Lane 2	0	23	0	23	5.0		0.077	100	46.5	LOSA	1.1	8.0	290	_ _	0.0	0.0
Lane 3	0	0	43	43	5.0		0.175	100	53.3	LOSA	2.1	15.2		Turn Bay	0.0	0.0
Approach	372	23	43	438	5.0		0.544		19.6	LOSA	7.1	51.5				
North: Office	er Sth F	Rd - No	rth													
Lane 1	34	0	0	34	5.0	1269 ¹	0.027	100	11.0	LOSA	0.1	0.6	120 7	Turn Bay	0.0	0.0
Lane 2	0	507	0	507	5.0		0.862	100	47.2	LOS C	29.5	215.7	275	_	0.0	0.0
Lane 3	0	507	0	507	5.0	588	0.862	100	47.2	LOS C	29.5	215.7	275	_	0.0	0.0
Lane 4	0	507	0	507	5.0	588	0.862	100	47.2	LOS C	29.5	215.7	275	_	0.0	0.0
Lane 5	0	0	99	99	5.0	166	0.596	100	69.1	LOS A	5.8	42.0	65 7	Turn Bay	0.0	0.0
Approach	34	1521	99	1654	5.0		0.862		47.8	LOS C	29.5	215.7				
West: Propo	sed R	d - Wes	it													
Lane 1	64	0	0	64	5.0	824 ¹	0.078	100	8.8	LOSA	0.2	1.6	80 7	Turn Bay	0.0	0.0
Lane 2	0	29	0	29	5.0	254	0.116	100	51.2	LOS A	1.5	10.7	140		0.0	0.0
Lane 3	0	0	157	157	5.0	242	0.649	100	62.8	LOS B	8.9	64.6	1107	urn Bay	0.0	0.0
Lane 4	0	0	157	157	5.0	242	0.649	100	62.8	LOS B	8.9	64.6	90 7	Turn Bay	0.0	0.0
Approach	64	29	314	407	5.0		0.649		53.4	LOS B	8.9	64.6				
Intersection				5098	5.0		0.862		36.8	LOS C	29.5	215.7				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 6 Lane underutilisation due to downstream effects

Processed: Wednesday, 25 May 2011 1:40:47 PM SIDRA INTERSECTION 5.1.5.2006

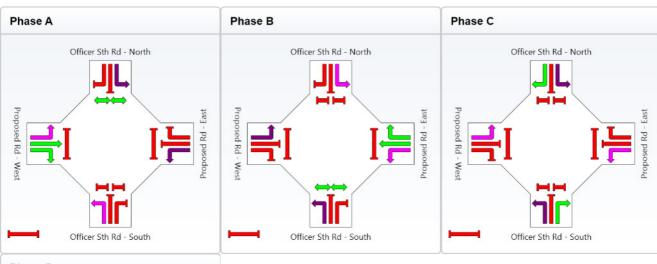
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

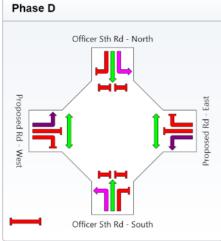
Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\647.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: 647 - PM peak - 25/05/11

Intersection 647 - AM Peak - 25/05/11

Officer Sth Rd Proposed Rd


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Modified Input Sequence: A, B, C, D Output Sequence: A, B, C, D

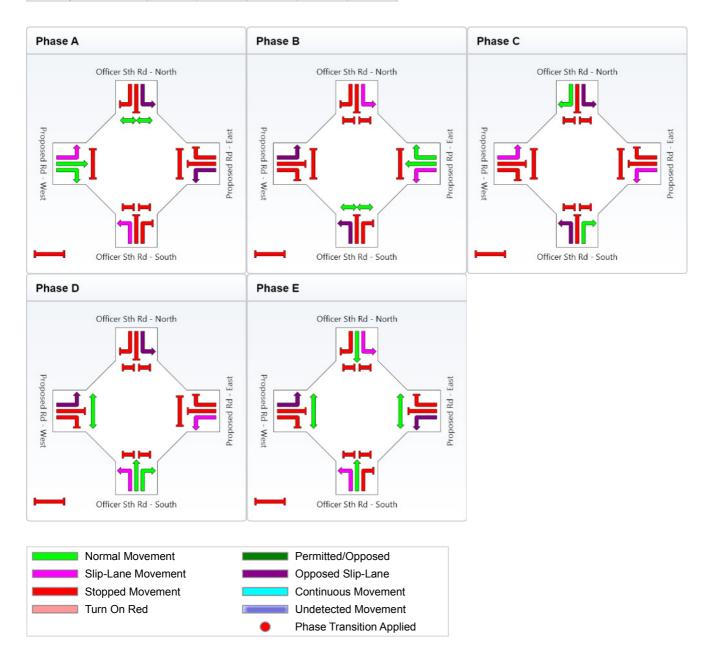
Phase Timing Results

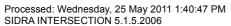
Thuse Thining Results									
Phase	Α	В	С	D					
Green Time (sec)	23	19	19	35					
Yellow Time (sec)	4	4	4	4					
All-Red Time (sec)	2	2	2	2					
Phase Time (sec)	29	25	25	41					
Phase Split	24 %	21 %	21 %	34 %					

Processed: Wednesday, 25 May 2011 1:40:46 PM SIDRA INTERSECTION 5.1.5.2006

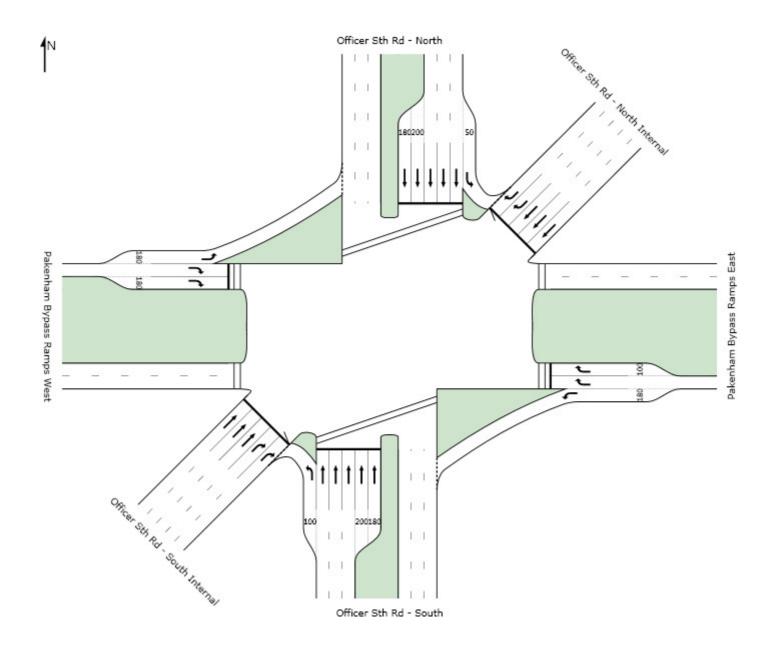
Intersection 647 - PM Peak - 25/05/11

Officer Sth Rd Proposed Rd


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Modified 2 Input Sequence: A, B, C, D, E Output Sequence: A, B, C, D, E


Phase Timing Results

Phase	Α	В	С	D	Е				
Green Time (sec)	16	19	11	7	37				
Yellow Time (sec)	4	4	4	4	4				
All-Red Time (sec)	2	2	2	2	2				
Phase Time (sec)	22	25	17	13	43				
Phase Split	18 %	21 %	14 %	11 %	36 %				

Site: 1171 / 1172 - AM Peak -25/05/11

Site 1171 & 1172 - AM Peak - 25/05/11 Princes Freeway / Officer South Road

Lane Use	and P	erform	nance													
		Deman	d Flows	S			Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	SL	Сар.	Prob.
	L	_ T	R	Total	HV	Cap.	Satn	Util.	Delay	Service	Vehicles		Length	Type		Block.
Courthy Office		veh/h		veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: Office				404	F 0	561 ¹	0.751	100	24.0	1.00.0	10.0	00.0	400 T	· · · · · · · · · · · · · · · · · · ·	0.0	4.4
Lane 1	421 0	0 130	0	421 130	5.0 5.0		0.751 0.204	100 27 ⁶	34.9 35.1	LOS C LOS A	13.6	99.3 33.5	500	urn Bay	0.0	4.4
Lane 2			0								4.6			_		0.0
Lane 3	0	477	0	477	5.0		0.750	100	42.8	LOS C	23.4	170.7	500	-	0.0	0.0
Lane 4	0	477	0	477	5.0		0.750	100	42.8	LOS C	23.4	170.7	500	_ 	0.0	0.0
Lane 5	0	477	0	477	5.0	636		100	42.8	LOS C	23.4	170.7		urn Bay	0.0	0.0
Lane 6	0	477	0	477	5.0	030	0.750	100	42.8	LOS C	23.4	170.7	180 1	urn Bay	0.0	0.2
Approach	421	2037	0	2458	5.0		0.751		41.0	LOS C	23.4	170.7				
East: Paker	nham B	ypass I	Ramps	East												
Lane 1	986	0	0	986	5.0	986 ¹	1.000 ³	100	<mark>24.8</mark> 8	LOS E ⁸	<mark>40.3</mark> 8	<mark>294.4</mark> 8	180 T	urn Bay	0.0	50.2
Lane 2	<mark>155</mark> ⁰	0	5	160	5.0	393	0.406	100	53.2	LOS A	8.1	59.1	200	_	0.0	0.0
Lane 3	0	0	160	160	5.0	393	0.406	100	53.2	LOSA	8.1	59.1	100 T	urn Bay	0.0	0.0
Approach	1141	0	164	1305	5.0		1.000		31.8	LOS E	40.3	294.4				
North East:	Officer	Sth Do	l - Nortl	h Intern	اد											
Lane 1	0	571	0	571	5.0	636	0.898	100	24.0	LOS C	29.4	214.4	70	_	0.0	100.0
Lane 2	0	571	0	571	5.0	636	0.898	100	24.0	LOS C	29.4	214.4	70	_		100.0
Lane 3	0	571	0	571	5.0	636	0.898	100	24.0	LOS C	29.4	214.4	70	_		100.0
Lane 4	0	0	501	501	5.0	543	0.090	100	60.5	LOS D	33.1	241.8	70	_		100.0
Lane 5	0	0	501	501	5.0	543		100	60.5	LOS D	33.1	241.8	70	_		100.0
Approach	0	1714	1001			J - J	0.921	100	37.5	LOS D	33.1	241.8	70		0.0	100.0
				2110	5.0		0.321		37.3	LOGD	33.1	241.0				
North: Offic						1										
Lane 1	317	0	0	317	5.0	506 ¹	0.626	100	18.0	LOS B	5.0	36.6		urn Bay	0.0	0.0
Lane 2	0	127	0	127	5.0		0.200	27 ⁶	35.0	LOS A	4.5	32.9	260	_	0.0	0.0
Lane 3	0	468	0	468	5.0		0.736	100	42.3	LOS C	22.6	165.2	260	-	0.0	0.0
Lane 4	0	468	0	468	5.0	636		100	42.3	LOS C	22.6	165.2	260	-	0.0	0.0
Lane 5	0	468	0	468	5.0		0.736	100	42.3	LOS C	22.6	165.2		urn Bay	0.0	0.0
Lane 6	0	468	0	468	5.0	636	0.736	100	42.3	LOS C	22.6	165.2	180 T	urn Bay	0.0	0.0
Approach	317	2001	0	2318	5.0		0.736		38.6	LOS C	22.6	165.2				
West: Pake	nham E	Bypass	Ramps	s West												
Lane 1	595	0	0	595	5.0	1019 ¹	0.584	100	15.9	LOS A	11.8	86.0	180 T	urn Bay	0.0	0.0
Lane 2	0	0	357	357	5.0	393	0.909	100	74.7	LOS D	24.5	178.7	200	_	0.0	0.0
Lane 3	0	0	357	357			0.909	100	74.7	LOS D	24.5	178.7		urn Bay	0.0	4.3
Approach	595	0	714	1308			0.909		48.0	LOS D	24.5	178.7				
South West	· Office	r Sth P														
Lane 1	0	455	.u - 300	455		636	0.716	100	18.8	LOS C	17.0	123.9	70	_	0.0	57.6
Lane 2	0	455	0	455			0.716	100	18.8	LOS C	17.0	123.9	70	_	0.0	57.6
Lane 3	0	455	0	455			0.716	100	18.8	LOS C	17.0	123.9	70	_	0.0	57.6
Lane 4	0	433	418	418			0.769	100	44.8	LOS C	21.8	159.1	70	_	0.0	81.8
Lane 5	0	0	418	418			0.769	100	44.8	LOS C	21.8	159.1	70		0.0	81.8
Approach		1365	836	2201		J 4 3	0.769	100	28.7	LOS C	21.8	159.1	70		0.0	01.0
Approacii	U	1303	030	2201	5.0		0.709		20.7	LU3 C	21.0	108.1				
Intersection	1			12305	5.0		1.000		37.3	LOS E	40.3	294.4				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

- 0 Excess flow from back of an adjacent short lane
- 1 Reduced capacity due to a short lane effect
- 3 x = 1.00 due to short lane.

6 Lane underutilisation due to downstream effects

8 Delay, queue length and stops for the short lane have been cut down to fit in the queuing space. You may wish to change the short lane to a full lane to investigate the effect on the adjacent lane performance.

Processed: Wednesday, 25 May 2011 2:48:11 PM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.5.2006 www.sidrasolutions.com
Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA
Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\1171,1172.sip
8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site 1171 & 1172 - PM Peak - 25/05/11 Princes Freeway / Officer South Road

Lane Use a	and R	erform	ance													
Lane Ose			d Flows	:			Deg.	Lane	Average	I evel of	95% Back	of Oueue	Lane	SL	Can	Prob.
	L'	Т	R	Total	HV	Сар.	Satn	Util.	Delay	Service		Distance	Length	Type		Block.
		veh/h		veh/h	%	veh/h	v/c	%	sec		veh	m	m		%	%
South: Office		Rd - Sc	outh			1			o		0					
Lane 1	593	0	0	593	5.0	593 ¹	1.000°	100	<mark>29.0</mark> °	LOS E		163.6 ⁸		urn Bay	0.0	50.2
Lane 2	<mark>121</mark> 0	34	0	155	5.0		0.231	27 ⁶	31.9	LOSA	5.2	37.9	500	_	0.0	0.0
Lane 3	0	595	0	595	5.0	700	0.850	100	45.2	LOS C	32.6	238.0	500	_	0.0	0.0
Lane 4	0	595	0	595	5.0	700		100	45.2	LOS C	32.6	238.0	500	_	0.0	0.0
Lane 5	0	595	0	595	5.0	700		100	45.2	LOS C	32.6	238.0		urn Bay	0.0	20.8
Lane 6	0	595	0	595	5.0	700	0.850	100	45.2	LOS C	32.6	238.0	180 T	urn Bay	0.0	30.4
Approach	714	2413	0	3126	5.0		1.000		41.4	LOS E	32.6	238.0				
East: Paken		, ,	•			1										
Lane 1	836	0	0	836	5.0	953 ¹		100	33.1	LOS C	36.6	267.4		urn Bay	0.0	41.2
Lane 2	0	0	158	158	5.0	242		100	64.7	LOS B	9.2	66.9	200	_	0.0	0.0
Lane 3	0	0	158	158	5.0	242	0.656	100	64.7	LOS B	9.2	66.9	100 T	urn Bay	0.0	0.0
Approach	836	0	317	1153	5.0		0.877		41.8	LOS C	36.6	267.4				
North East:	Officer	Sth Ro	l - Nortl	n Interna	al											
Lane 1	0	631	0	631	5.0	700	0.902	100	20.0	LOS D	30.9	225.6	70	-	0.0	100.0
Lane 2	0	631	0	631	5.0	700	0.902	100	20.0	LOS D	30.9	225.6	70	_	0.0	100.0
Lane 3	0	631	0	631	5.0	700	0.902	100	20.0	LOS D	30.9	225.6	70	-	0.0	100.0
Lane 4	0	0	297	297	5.0	634	0.469	100	33.5	LOSA	11.8	86.5	70	-	0.0	24.2
Lane 5	0	0	297	297	5.0	634	0.469	100	33.5	LOSA	11.8	86.5	70	_	0.0	24.2
Approach	0	1894	595	2488	5.0		0.902		23.2	LOS D	30.9	225.6				
North: Office	r Sth F	Rd - No	rth													
Lane 1	164	0	0	164	5.0	383 ¹	0.429	100	21.9	LOS A	2.8	20.4	50 T	urn Bay	0.0	0.0
Lane 2	0	132	0	132	5.0	700	0.188	27 ⁶	31.4	LOS A	4.3	31.3	260	_	0.0	0.0
Lane 3	0	484	0	484	5.0	700	0.692	100	37.9	LOS B	21.8	159.2	260	_	0.0	0.0
Lane 4	0	484	0	484	5.0	700	0.692	100	37.9	LOS B	21.8	159.2	260	_	0.0	0.0
Lane 5	0	484	0	484	5.0	700	0.692	100	37.9	LOS B	21.8	159.2	200 T	urn Bay	0.0	0.0
Lane 6	0	484	0	484	5.0	700	0.692	100	37.9	LOS B	21.8	159.2	180 T	urn Bay	0.0	0.0
Approach	164	2067	0	2232	5.0		0.692		36.4	LOS B	21.8	159.2				
West: Paker	nham E	Bypass	Ramps	West												
Lane 1	1001	0	0	1001	5.0	1066 ¹	0.939	100	28.8 ⁸	LOS D ⁸	40.2 ⁸	293.8 ⁸	180 T	urn Bay	0.0	50.0
Lane 2	0	0	211	211	5.0		0.872	100	74.9	LOS C	13.8	100.6	200		0.0	0.0
Lane 3	0	0	211	211	5.0	242	0.872	100	74.9	LOS C	13.8	100.6	180 T	urn Bay	0.0	0.0
Approach	1001	0	421	1422	5.0		0.939		42.4	LOS D	40.2	293.8				
South West:	Office	r Sth R	d - Sou	th Inter	nal											
Lane 1	0	529	0	529		700	0.757	100	15.1	LOS C	18.5	135.4	70	_	0.0	66.1
Lane 2	0	529	0	529			0.757	100	15.1	LOS C	18.5	135.4	70	_	0.0	66.1
Lane 3	0	529	0	529		700	0.757	100	15.1	LOS C	18.5	135.4	70	_	0.0	
Lane 4	0	0	571	571	5.0		0.900	100	51.0	LOS C	35.3	257.9	70	_		100.0
Lane 5	0	0	571	571			0.900	100	51.0	LOS C	35.3	257.9	70	_		100.0
Approach	0	1588	1141	2729			0.900		30.1	LOS C	35.3	257.9				
Intersection				13151	5.0		1.000		34.9	LOS E	40.2	293.8				
torocollon				10101	0.0		1.000		57.5	LOUL	70.2	200.0				

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

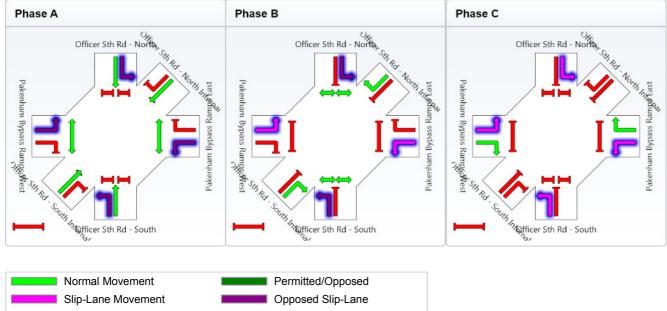
- 0 Excess flow from back of an adjacent short lane
- 1 Reduced capacity due to a short lane effect
- 3 x = 1.00 due to short lane.

6 Lane underutilisation due to downstream effects

8 Delay, queue length and stops for the short lane have been cut down to fit in the queuing space. You may wish to change the short lane to a full lane to investigate the effect on the adjacent lane performance.

Processed: Wednesday, 25 May 2011 2:48:12 PM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.5.2006 www.sidrasolutions.com
Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA
Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\1171,1172.sip
8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site 1171 & 1172 - AM Peak - 25/05/11 Princes Freeway / Officer South Road


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Interchange Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

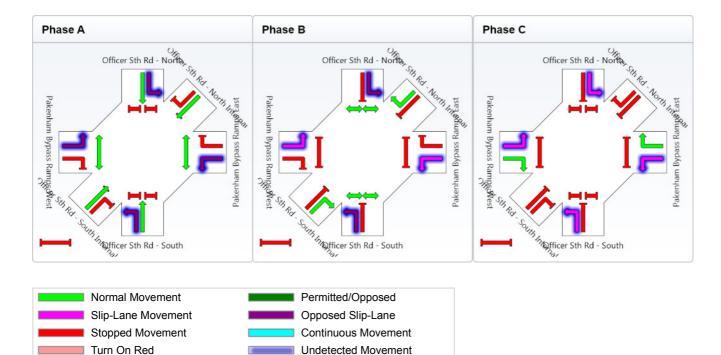
Phase	Α	В	С
Green Time (sec)	40	36	26
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	46	42	32
Phase Split	38 %	35 %	27 %

Processed: Wednesday, 25 May 2011 2:48:11 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\1171,1172.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site 1171 & 1172 - PM Peak - 25/05/11 Princes Freeway / Officer South Road


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Interchange Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	44	42	16
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	50	48	22
Phase Split	42 %	40 %	18 %

Phase Transition Applied

Processed: Wednesday, 25 May 2011 2:48:12 PM SIDRA INTERSECTION 5.1.5.2006

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004608 - Officer Precinct Structure Plan - Cardinia\Engineering\Transport & Traffic\SIDRA Assessment\VISSIM (Run 2011 25May)-Ultimate2031-AM&PM\Revised_110412 (FinalUltimate)\1171,1172.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

