# Beveridge North West PSP

METROPOLITAN PLANNING AUTHORITY

**Groundwater Quality Assessment** 

VW07335\_P2\_A\_FINAL | V2

VW07335

June 2014









### Beveridge North West PSP

Project no: VW07335

Document title: Groundwater Quality Assessment – Beveridge NW PSP

Document no: VW07335\_P2\_A\_FINAL

Revision: Final V2
Date: June 2014

Client name: Metropolitan Planning Authority

Client no: VW07335

Project manager: Corey Bannister

Author: William Rodger / Corey Bannister

File name: I:\VWE\Admin\Administration\GeoEnvironmental\Environmental\_Management\B-

ProjectsProposals\Projects\Beveridge NW Site Suitability Assessment\Deliverables\GW

Sampling Program\VW07335\_P2\_A\_FINAL.docx

Jacobs Group (Australia) Pty Limited ABN 37 001 024 095 Floor 11, 452 Flinders Street Melbourne VIC 3000 PO Box 312, Flinders Lane T +61 3 8668 3000 F +61 3 8668 3001 www.jacobs.com

COPYRIGHT: The concepts and information contained in this document are the property of Jacobs Group (Australia) Pty Limited. Use or copying of this document in whole or in part without the written permission of Jacobs constitutes an infringement of copyright.

### Document history and status

| Revision | Date     | Description              | Ву       | Review      | Approved    |
|----------|----------|--------------------------|----------|-------------|-------------|
| V1       | 11/04/14 | Review + edits to e-copy | W Rodger | C Bannister | C Bannister |
| V2       | 13/06/14 | MPA comments             | W Rodger | C Bannister | C Bannister |
|          |          |                          |          |             |             |
|          |          |                          |          |             |             |
|          |          |                          |          |             |             |
|          |          |                          |          |             |             |



## Contents

| 1.    | Introduction                                                                                     | 5  |
|-------|--------------------------------------------------------------------------------------------------|----|
| 1.1   | Background                                                                                       | 5  |
| 1.2   | Scope of works                                                                                   | 5  |
| 1.3   | Abbreviations and acronyms                                                                       | 5  |
| 2.    | Site use and previous investigation                                                              | 7  |
| 2.1   | Site use                                                                                         | 7  |
| 2.2   | Previous investigations                                                                          | 7  |
| 2.2.1 | SKM, 2002 – Wallan Reclaimed Water Re-Use Site: Hydrogeological Assessment                       | 7  |
| 2.2.2 | YVW, 2008 – Camerons Lane Lots 8 & 9: Preliminary Assessment of Groundwater Monitoring Results   | 8  |
| 3.    | Investigation methodology                                                                        | 9  |
| 3.1   | Selection of sampling locations                                                                  | 9  |
| 3.2   | Sampling methodology                                                                             | 9  |
| 3.3   | Laboratory analysis                                                                              | 12 |
| 3.3.1 | Primary samples                                                                                  | 12 |
| 3.3.2 | Quality control samples                                                                          | 12 |
| 3.4   | Analytical data validation                                                                       | 13 |
| 4.    | Regulatory framework                                                                             | 14 |
| 4.1   | Legislation and policy                                                                           | 14 |
| 4.1.1 | Environment Protection Act 1970                                                                  | 14 |
| 4.1.2 | The Planning and Environment Act 1987                                                            | 14 |
| 4.1.3 | Groundwater State Environment Protection Policy 1997                                             | 14 |
| 4.2   | Guidelines and standards                                                                         | 15 |
| 4.2.1 | National Environment Protection (Assessment of Site Contamination) Amendment Measure (NEPM) 2013 | 15 |
| 4.2.2 | EPA Victoria guidance documents                                                                  | 15 |
| 4.2.3 | Australian Standard 5667                                                                         | 15 |
| 5.    | Summary of groundwater results                                                                   | 16 |
| 5.1   | General observations and well integrity                                                          | 16 |
| 5.2   | Groundwater levels / flow direction                                                              | 17 |
| 5.3   | Physical and chemical water quality parameters                                                   | 17 |
| 5.3.1 | Field measurements                                                                               | 17 |
| 5.3.2 | Laboratory total dissolved solids                                                                | 18 |
| 5.4   | Laboratory analytical results                                                                    | 18 |
| 5.4.1 | Comparison of laboratory results against human health criteria                                   | 18 |
| 5.4.2 | Comparison of laboratory results against ecological criteria                                     | 21 |
| 5.4.3 | Comparison of laboratory results against primary use criteria                                    | 21 |
| 5.4.4 | Comparison of laboratory results against industrial use and buildings and structures criteria    | 23 |
| 5.5   | Comparison with 2002 analytical data                                                             | 23 |
| 5.6   | Discussion of impact on beneficial uses of groundwater                                           | 23 |
| 5.7   | Analytical data quality                                                                          | 24 |
| 6.    | Conclusions and recommendations                                                                  | 25 |
|       |                                                                                                  |    |

## Groundwater Quality Assessment - Beveridge NW PSP



| 6.1   | Conclusions                                 | 25 |
|-------|---------------------------------------------|----|
| 6.2   | Recommendations                             | 25 |
| 7.    | References                                  | 26 |
|       |                                             |    |
|       |                                             |    |
| Figur | res                                         |    |
| Table | es                                          |    |
| Appe  | endix A. Quality assurance/ quality control |    |
| A.1   | Scope                                       |    |
| A.2   | Field QA/QC                                 |    |
| A.2.1 | Sample frequency                            |    |
| A.2.2 | Duplicate results                           |    |
| A.2.3 | Rinsate results                             |    |

Conclusions and statement of analytical reliability Appendix B. Groundwater sampling sheets

Suitability of method detection limits

Sample holding times

Laboratory internal QA/QC

A.3

A.4

A.5

A.6

Appendix C. Lithology of registered bores

Appendix D. Chain of custody documentation

Appendix E. Laboratory certificates of analysis



## Important note about your report

The sole purpose of this report and the associated services performed by Jacobs is assess the water quality within previously installed wells at the Beveridge North West PSP in accordance with the scope of services set out in the contract between Jacobs and the Client. That scope of services, as described in this report, was developed with the Client.

In preparing this report, Jacobs has relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, Jacobs has not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

Jacobs derived the data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination of the project and subsequent data analysis, and reevaluation of the data, findings, observations and conclusions expressed in this report. Jacobs has prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

This report should be read in full and no excerpts are to be taken as representative of the findings. No responsibility is accepted by Jacobs for use of any part of this report in any other context.

This report has been prepared on behalf of, and for the exclusive use of, Jacobs's Client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the Client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this report by any third party



## 1. Introduction

## 1.1 Background

Sinclair Knight Merz Pty Ltd (Jacobs SKM) was commissioned by the Metropolitan Planning Authority (MPA) to undertake additional groundwater assessment at Lot 8 and 9 Camerons Lane, Beveridge within the Beveridge North West 1059 Precinct Structure Plan (PSP) area. This additional investigation is in accordance with recommendations made in the earlier desktop environmental, hydrological and geotechnical assessment prepared by SKM in October 2013 (SKM, 2013). These properties are owned by Yarra Valley Water and are hereafter collectively referred to as 'the Site'. A site location plan is presented in Figure 1 while the layout (with sampling locations) is presented in Figure 2.

The Beveridge North West PSP Area has been identified as potential future land supply primarily for residential land use, although also with a view to various commercial and community land uses. The aim of the earlier assessment completed in 2013 was to identify opportunities and constraints to the proposed land development which may potentially be caused by existing or past land uses, and site and sub-surface conditions. The YVW site that is the subject of this assessment was observed to be a potentially source of groundwater contamination, since it is currently used for irrigation using recycled water from the nearby Wallan Sewage Treatment Plant (STP). This report documents the additional sampling and analysis program that was undertaken in order to identify the nature, extent and significance of contamination (if any) resulting from this source that may preclude the beneficial uses of groundwater relevant under the proposed future site development.

## 1.2 Scope of works

The following scope of works was undertaken as part of this assessment:

- Collection of 13 primary groundwater and effluent samples from the site and the immediate perimeter as well as relevant quality control samples
- Laboratory analysis of water samples for contaminants of primary concern
- Comparison of laboratory results against relevant assessment criteria endorsed by EPA Victoria for the protection of human health and the environment
- Comparison of laboratory results against historical results obtained at the site by YVW to assess longer term contaminant concentration trends
- Preparation of a summary report documenting the tasks completed as part of the assessment as well as conclusions and recommendations in relation to the current condition of the site

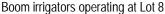
### 1.3 Abbreviations and acronyms

- ALS Australian Laboratory Services
- AS Australian Standard
- COC Chain of custody
- DQO Data quality objectives
- EIL Ecological investigation level
- EPA Environment Protection Authority (Victoria)
- ESA Environmental site assessment
- GAA Growth Areas Authority (now Metropolitan Planning Authority)
- GVW Goulburn Valley Water
- HIL Health investigation level



- HSEC Health, safety environment and community
- MDL Method detection limit
- MPA Metropolitan Planning Authority
- NATA National Association of Testing Authorities
- NEPC National Environment Protection Council
- NEPM National Environment Protection (Assessment of Site Contamination) Amendment Measure
- PQL Practicable quantitation limit
- PSP Precinct Structure Plan
- QA/QC Quality assurance / quality control
- RPD Relative percentage difference
- SEPP State Environmental Protection Policy
- SKM Sinclair Knight Merz
- STP Sewage treatment plant
- USEPA United States Environment al Protection Agency
- YVW Yarra Valley Water




## 2. Site use and previous investigation

### 2.1 Site use

The water re-use scheme that currently operates at the site was established by Goulburn Valley Water (GVW) before ownership was transferred to YVW in January 2006 - at this time, irrigation commenced at the site. The water re-use scheme was established by GVW to make use of treated effluent from the nearby Wallan STP. Prior to 2006 historical aerial imagery indicates the site (and much of the surrounding area) was used for agricultural purposes.

Irrigation of the site is ongoing at four main locations. Two boom irrigators operate to the south of the winter storage facility, one in each of the paddocks either side of the access road between Camerons Lane and winter storage reservoir. Each of these irrigators operates over an area of approximately 50 hectares (ha). Two further centre-pivot irrigators operate to the north of the winter storage area, one occupying an area of 10 ha and the other 40 ha. The existing winter storage reservoir currently occupies an area of 5 ha. Figure 2 illustrates the location of the irrigators at the site while Plate 2.1 below provides a selection of photographs if the equipment.







Boom irrigators at Lot 8, illustrating the spraying mechanism

Plate 2.1: Boom irrigators in operation at the site

## 2.2 Previous investigations

This section summarises the previous investigation reports reviewed by SKM as part of this assessment that relate to groundwater.

### 2.2.1 SKM, 2002 – Wallan Reclaimed Water Re-Use Site: Hydrogeological Assessment

In 2002, GVW commissioned SKM to undertake a hydrogeological assessment to determine background groundwater conditions at Lot 8 and 9 (17 wells). The assessment was undertaken pre-irrigation and provides some relevant "baseline" data.

Groundwater flow direction was determined to be towards the south which is consistent with the latest 2014 assessment (see Figure 4). Groundwater salinity ranged from 920 to 8,500  $\mu$ S/cm, which is consistent with the latest 2014 assessment (see Section 5.5 for further information). Concentrations of nitrate (as N mg/L) varied between 0.11 – 3.2 mg/L, nitrite from <0.01 – 0.82 mg/L and ammonia <0.01 to 0.5 mg/L across the 17 sampled wells.

A comparison between the current 2014 data vs SKM's 2002 (pre irrigation) data is provided in Section 5.5.



# 2.2.2 YVW, 2008 – Camerons Lane Lots 8 & 9: Preliminary Assessment of Groundwater Monitoring Results

In 2008 Yarra Valley Water prepared an assessment report documenting the results of periodic groundwater monitoring events undertaken across a network of 18 groundwater monitoring bores and windmills at the site. The purpose of the assessment was to confirm that the irrigation of the site using recycled water was not having a detrimental impact upon groundwater quality and the relevant beneficial use segments as defined in the State Environmental Protection Policy (SEPP). Laboratory results were compared against background results obtained by SKM prior to commencement of irrigation, in order to assess groundwater quality trends. These results were also compared against the ANZECC & ARMCANZ (2000) assessment criteria for the relevant protected beneficial uses which included stock watering, irrigation water, industrial use of groundwater, ecosystem protection and buildings and structures.

Yarra Valley Water concluded that the majority of parameters generally reported stable concentrations trends between pre and post irrigation monitoring. Where exceedances of the relevant criteria were observed, these were either:

- For analytes that also reported exceedances prior to irrigation commencing and were therefore deemed unlikely to have resulted from the irrigation itself (i.e. TDS)
- For analytes that were not tested for during pre-irrigation monitoring and therefore results could not be attributed to irrigation (i.e. sodium, chloride and pH)

The report also provides a summary of the water quality parameters for the recycled irrigation water, which was derived from the Wallan Sewage Treatment Plant. The discharged water is rated as Class C recycled water, which can be used for the following uses (as described by YVW):

'Class C may be used for a number of uses including for cooked or processed human food crops including wine grapes and olives. It can also be used for livestock grazing and fodder and for human food crops grown over a meter above the ground and eaten raw such as apples, pears, table grapes and cherries. It can be used by councils for specific purposes but there are restrictions around human contact'

While nutrient concentrations (nitrate, nitrite and ammonia) as well as E.coli are generally raised, concentrations of metals, selected solvents, volatile organics and monocyclic aromatic hydrocarbons (MAHs) were generally reported below laboratory limits of detection.



## 3. Investigation methodology

## 3.1 Selection of sampling locations

Samples were obtained from 13 targeted locations at the site between 11 and 13 March 2014. Twelve of these locations were groundwater sampling locations while a further treated effluent / recycled water sample was collected from the winter storage facility (sample EFF). The treated effluent contained in the winter storage facility is used to irrigate the site. Sampling locations are presented in Figure 2.

Groundwater samples were predominantly collected from locations around the immediate perimeter of Lots 8 and 9, as well as a single location near the existing winter storage reservoir towards the centre of the site. While bores were previously located within a number of the irrigated paddocks, these appear to have been removed since the previous groundwater monitoring report was prepared in 2008. Jacobs SKM assumes these have been removed due to their obstruction of the boom irrigators or other farm machinery. Despite the lack of monitoring wells towards to interior of the site, the perimeter wells selected will provide an indication of potential off-site migration of contaminants of concern at the site (if any) that supplement the results obtained for WSBH, located in the vicinity of the winter storage reservoir.

Treated effluent sampling location EFF has been selected, as it provides a valuable reference against which groundwater quality results for the site can be compared. In order to restrict access to the winter storage reservoir itself, YVW has installed a dedicated sampling point on the external wall of one of the administration buildings nearby. It is from this location that a treated effluent sample was collected (refer Plate 3.1).

## 3.2 Sampling methodology

Fieldwork undertaken as part of the additional investigations was completed in accordance with Jacobs SKM's standard work procedures for the investigation of contaminated sites. A site-specific Health, Safety, Environment and Community (HSEC) plan was also prepared and implemented by the field team throughout the investigations.

Groundwater samples were collected using a range of methods, depending upon the nature of the groundwater bores installed, the above-ground infrastructure present as well as borehole yields. Sampling methods adopted for the investigation included:

- Low flow (micropurge) sampling
- Disposable bailer
- Foot valve
- Direct sampling from taps or other above-ground sampling points

Low flow sampling was preferentially adopted for the investigation with the general sampling procedure described below.

The depth to water and total depth measurements of each groundwater monitoring well was recorded using a multi-phase interface probe that detects water levels and the presence of non-aqueous phase liquids. To ensure representative groundwater samples were collected from each monitoring well, wells were purged using low flow sampling techniques with a bladder pump and dedicated tubing. Physical and chemical water quality parameters were recorded at regular intervals and once these parameters had stabilised, groundwater samples were collected. During purging, the pumping rate as well as the SWL was recorded to ensure that drawdown of groundwater was minimised and suitable representative samples were collected for laboratory analysis. Where necessary the pumping rate (cycles per minute) was reduced.



Physical and chemical water quality indicator data was recorded using a TPS 90FL multi parameter meter. Parameters recoded included conductivity, reduction/oxidation (redox) potential, pH, dissolved oxygen (mg/L and percentage saturation) and temperature. Stabilisation of parameters was considered to have been reached when three consecutive field measurements were reported within the following ranges:

- Dissolved oxygen (DO) +/- 10%
- Electrical conductivity (EC) +/-3%
- pH +/-0.05; and
- Redox potential +/-10mV

Where stabilisation of all of the above field measurements could not be achieved, sampling was undertaken when the majority of parameters had stabilised. The stabilisation criteria adopted are derived from EPA Victoria *Groundwater Sampling Guidelines*.

Samples were collected in appropriately preserved sampling containers specific to the required analysis. These containers were provided by the primary laboratory (Eurofins-MGT). To assess dissolved metal concentrations, each sample was also field filtered using a disposable 0.45 µM Stericup filter prior to chemical preservation. Samples were immediately placed in a chilled esky before being transferred to the primary laboratory under appropriate chain of custody (CoC) documentation (presented in Appendix D).

Fresh tubing, bladders and Stericup filters dedicated to each location were used when sampling. All non-dedicated sampling equipment was decontaminated between sampling locations to prevent cross contamination. Fresh disposable nitrile gloves were also used at each sampling location.

Low flow sampling methods were preferentially adopted for the investigation. However, in some cases this methodology could not be applied. Alternative sampling approaches were used in the following circumstances:

- Insufficient groundwater. At location BH12 the volume of groundwater in the well was insufficient to allow the low flow sampling equipment to operate effectively (i.e. a water column of less than 1m). As such, a disposable bailer was used for sampling. The well was purged dry and allowed to recharge before a sample was collected for laboratory analysis.
- Poor well recharge. BH11 reported a poor recharge rate using the low flow sampling kit with groundwater drawdown in the well equivalent to the volume of water removed during purging. This was the case even at the lowest possible rate of extraction. As such, groundwater samples collected were not considered representative of the wider aquifer. Therefore, a disposable bailer was used to sample the well instead. Purging using a bailer induced in increased rate of groundwater recharge in the well. As such, the bore could not be purged dry before sampling. Instead, water quality parameters were recorded at regular intervals and a sample for laboratory analysis was collected once these parameters stabilised.
- Partial obstruction of the well. A number of bores were installed with windmills for stock watering purposes.
  A typical example is presented in Plate 3.1. The existing pumping infrastructure in these wells prevented
  the use of the low flow sampling pump. As such, sampling was undertaken using a disposable foot valve
  and LDPE tubing. Where the mill was operational and therefore being continually purged (i.e. BH18) a
  sample was collected immediately. Where the mill was not operational (i.e. BH15 and BH17) groundwater
  was purged until water quality parameters stabilised.
- Complete obstruction of the well or sampling points. Where the well or sampling location was obstructed completely samples were instead collected from taps or other connected sampling points. These locations include:
  - BH5 where a sample was collected from a garden tap fed by the target bore (refer Plate 3.1)
  - The bore adjacent to the winter storage facility (named WSBH) where a sample was collected from a tap inside the main building
  - The winter storage facility where an effluent sample (EFF) was collected from a dedicated sampling point outside the compound (refer Plate 3.1)



- BH14 where mill infrastructure necessitated the sample being collected from the mill discharge pipe to an adjacent storage tank



Windmill sampling location BH18. Restricted access to the well



Windmill sampling location BH17 with restricted access to the we



Effluent sampling location (EFF). Pump used to obtain sample



BH5 sampled directly from a tap connected to the bore

Plate 3.1 : Examples of sampling locations

Sampling methods adopted during the investigation are summarised in Table 3.1.

Table 3.1: Summary of sampling methods adopted

| Location | ı                          |                    | Comments                                |  |  |
|----------|----------------------------|--------------------|-----------------------------------------|--|--|
| ID       | Description                | Sampling method    |                                         |  |  |
| BH2      | South west corner of Lot 8 | Micropurge         |                                         |  |  |
| BH5      | South west corner of Lot 8 | Тар                | No direct access to bore                |  |  |
| ВН7      | Eastern perimeter of Lot 8 | Micropurge         |                                         |  |  |
| BH10     | North east corner or Lot 9 | Micropurge         |                                         |  |  |
| BH11     | North west corner of Lot 9 | Bailer             | Poor recharge rate                      |  |  |
| BH12     | Eastern perimeter of Lot 8 | Bailer             | Insufficient groundwater for micropurge |  |  |
| BH14     | Eastern perimeter of Lot 9 | Windmill discharge |                                         |  |  |
| BH15     | Western perimeter of Lot 8 | Foot valve         | Windmill. Restricted access to bore     |  |  |
| BH16     | Western perimeter of Lot 8 | Micropurge         |                                         |  |  |



| Location |                                      |                 |                                       |  |  |
|----------|--------------------------------------|-----------------|---------------------------------------|--|--|
| ID       | Description                          | Sampling method | Comments                              |  |  |
| BH17     | Eastern perimeter of Lot 9           | Foot valve      | Windmill. Restricted access to bore   |  |  |
| BH18     | Eastern perimeter of Lot 8           | Foot valve      | Windmill. Restricted access to bore   |  |  |
| WSBH     | Bore adjacent to winter storage      | Тар             | No direct access to bore              |  |  |
| EFF      | Treated effluent from winter storage | Тар             | No access to winter storage reservoir |  |  |

## 3.3 Laboratory analysis

In total, thirteen primary samples and four quality control samples were submitted for laboratory analysis for contaminants of concern. Eurofins-MGT was selected as the primary laboratory to conduct analysis while Australian Laboratory Services (ALS) was used as the secondary quality control laboratory. Both laboratories are accredited by the National Association of Testing Authorities (NATA) for the analyses undertaken. A summary of the samples submitted for analysis is presented in Section 3.3.1 and 3.3.2 below.

#### 3.3.1 Primary samples

Primary groundwater and effluent samples were submitted for analysis as presented in Table 3.2.

Table 3.2 : Summary of analysis of primary water samples

| Analysis Suite           | Total Samples                                        |    |
|--------------------------|------------------------------------------------------|----|
| Groundwater suite        | Dissolved metals (16), nutrients, inorganics and TDS | 12 |
| Surface water / effluent | Total metals (16), nutrients, inorganics and TDS     | 1  |

#### NOTES:

- Metals (16) As, Be, B, Cd, Ca, Cr, Co, Cu, Mg, Mn, Ni, Pb, K, Na, Hg, Zn
- Nutrients ammonia, nitrate, nitrite, total Kjeldahl nitrogen, total nitrogen
- Inorganics sulphate, fluoride, total cyanide

#### 3.3.2 Quality control samples

Four quality control samples were submitted for analysis as presented in Table 3.3.

Table 3.3: Summary of quality control samples

| Quality Control Samples              | Total Samples                                    |   |
|--------------------------------------|--------------------------------------------------|---|
| Blind duplicate (intralab duplicate) | Total metals (16), nutrients, inorganics and TDS | 1 |
| Split duplicate (interlab duplicate) | Total metals (16), nutrients, inorganics and TDS | 1 |
| Rinsate blanks                       | Total metals (16), nutrients, inorganics         | 2 |

#### NOTES:

- Metals (16) As, Be, B, Cd, Ca, Cr, Co, Cu, Mg, Mn, Ni, Pb, K, Na, Hg, Zn
- Nutrients ammonia, nitrate, nitrite, total Kjeldahl nitrogen, total nitrogen
- Inorganics sulphate, fluoride, total cyanide

Analysis was undertaken in order to satisfy quality criteria outlined in AS 5667.1:1998 'Guidance on the design of sampling programs, sampling techniques and the preservation and handling of samples' (Standards Australia, 1998) as well as EPA Victoria Groundwater Sampling Guidelines (2000). A discussion of Quality Assurance/Quality Control procedures and results is provided in Appendix A.



## 3.4 Analytical data validation

Analytical data validation is the process of assessing whether data are in compliance with method requirements and project specifications. The primary objectives of this process are to ensure that data of known quality are reported, and to identify if the data can be used to fulfil the overall project objectives.

The data validation guidelines adopted are based upon data validation guidance documents published by the United States Environmental Protection Agency (USEPA). The process involves the checking of analytical procedure compliance and an assessment of the accuracy and precision of the analytical data from a range of quality control measurements, generated from both the sampling and analytical programs.

Specific elements that have been checked and assessed for this investigation were:

- Preservation and storage of samples upon collection and during transport to the laboratory
- Sample holding times
- Use of appropriate analytical procedures
- Required limits of reporting
- Frequency of conducting quality control measurements
- Laboratory blank results
- Field duplicate results
- Surrogate spike results
- The occurrence of apparently unusual or anomalous results, e.g. laboratory results that appear to be inconsistent with field observations and measurements



## 4. Regulatory framework

## 4.1 Legislation and policy

### 4.1.1 Environment Protection Act 1970

The *Environment Protection Act 1970* established the Victorian Environment Protection Authority (EPA) and made provisions with respect to the powers, duties, and functions of the EPA and the protection of the environment. The Act provides for environmental audits, which are used to provide an authoritative opinion on the suitability of potentially contaminated land for future use, and form an integral part of the land use planning and approval process. The Act also provides the basis for the various environmental health and waste policies / regulations, which provide the framework for the assessment and management of the environmental quality of land, surface waters and groundwater in Victoria.

#### 4.1.2 The Planning and Environment Act 1987

The *Planning and Environment Act 1987* is administered by the Department of Transport, Planning and Local Infrastructure (DTPLI) and sets out the requirements of planning authorities when preparing planning schemes or amendments to planning schemes. The Act requires planning authorities to "take into account any significant effects which it considers the scheme or amendment might have on the environment or which it considers the environment might have on any use or development envisaged in the scheme or amendment".

Under Section 12 (2) (a) of the Planning and Environment Act 1987, 'Ministerial Direction No. 1 – Potentially Contaminated Land' requires planning authorities to satisfy themselves that the environmental conditions of land proposed to be used for a sensitive use, agriculture or public open space are, or will be, suitable for that use. This is generally done through the completion of an environmental site assessment and audit process.

## 4.1.3 Groundwater State Environment Protection Policy 1997

The State Environment Protection Policy (Groundwaters of Victoria) (Groundwater SEPP) defines a range of protected beneficial uses for defined segments of the groundwater environment, which are based on groundwater salinity (total dissolved solids or TDS). The EPA considers that groundwater is *polluted* where current and/or future protected beneficial uses for the relevant segment are precluded. Beneficial uses of groundwater are considered to be precluded when relevant groundwater quality objectives set out in the groundwater SEPP for those beneficial uses have been exceeded, or where non-aqueous phase liquid is present.

Where groundwater has been polluted, groundwater must be cleaned up such that the protection of beneficial uses is restored, or to cleaned up the extent practicable.

The SEPP identifies the following beneficial uses of groundwater that are to be protected:

- Maintenance of marine ecosystems
- Maintenance of freshwater ecosystems
- Potable water supply (desirable)
- Potable mineral water supply
- · Agriculture, parks and gardens
- Stock watering
- Industrial water use
- Primary contact recreation (e.g. bathing, swimming)
- Buildings and structures.



Not all of the above beneficial uses are relevant to the PSP area under the proposed future use scenario for the site. Those that are relevant are discussed further in Section 5.3.2 in the context of the reported groundwater salinity (TDS).

#### 4.2 Guidelines and standards

# 4.2.1 National Environment Protection (Assessment of Site Contamination) Amendment Measure (NEPM) 2013

The NEPM is the national guideline for assessing contaminated sites and was prepared by the National Environment Protection Council (NEPC). The NEPM is implemented in each Australian jurisdiction under the *National Environment Protection Measures (Implementation) Act 1998 (Commonwealth)*. The NEPM document ensures there is a nationally consistent approach to the assessment of contamination. The NEPM provides guidance on the methods of site contamination assessment, environmental and health based investigation levels for soil and groundwater contaminants, human and environmental health risk assessment and reporting requirements. The original NEPM published in 1999 has been recently superseded by a version published in April 2013.

In accordance with the Groundwater SEPP, groundwater quality objectives for protected beneficial uses are primarily sourced from the National Environment Protection (Assessment of Site Contamination) Amendment Measure (NEPC, 2013) ('the NEPM'), specifically those provided in Schedule B(1) of the NEPM, 'Guideline on the Investigation Levels for Soil and Groundwater.'

Groundwater investigation levels (GILs) are defined as 'the concentration of a contaminant in groundwater above which further investigation (point of extraction) or a response (point of use) is required'.

#### 4.2.2 EPA Victoria guidance documents

EPA Victoria has published a number of guideline documents relating to the assessment of groundwater quality in Victoria. These are discussed below.

Groundwater Sampling Guidelines (2000) were published by the EPA under the *Environment Protection Act* 1970. The guidelines have been developed to assist those involved in groundwater sampling to reduce the potential for error, allowing subsequent groundwater management decisions to be based on representative groundwater quality data.

Hydrogeological Assessment (Groundwater Quality) Guidelines published by the EPA in 2006 provide a detailed overview of the requirements for hydrogeological assessments in order to aid owners, developers, potential purchasers and regulators to identify the risk to health and the environment from potential contamination.

The Industrial Waste Resource Guidelines (Sampling and Analysis of Waters, Wastewaters, Soils and Wastes) was published by the EPA in 2009 and provides general direction on appropriate sampling, preservation, storage, analytical and quality assurance procedures.

### 4.2.3 Australian Standard 5667

Australian Standard 5667.1:1998 'Water Quality Sampling - Part 1: Guidance on the design of sampling programs, sampling techniques and the preservation and handling of samples' as well as Australian Standard 5667.1:1998 'Water Quality Sampling - Part 11: Guidance on sampling of groundwaters' provide general principles to be applied to the physical, chemical and microbiological analysis of waters and waste waters. These standards include the principles to be applied to the design of sampling programs, general guidance on sampling techniques, procedures for the preservation and transport of samples.



## 5. Summary of groundwater results

## 5.1 General observations and well integrity

A search of the *Visualising Victoria's Groundwater* website indicates that seven of the 12 boreholes selected by Jacobs SKM for sampling are registered by DEPI. While detailed borelogs were not available, a general driller's description of the lithology is provided for five of these. This information is summarised in Table 5.1 and Appendix C.

Table 5.1: Summary of registered bores

| Well Name | Registered ID | Total Depth (mbgl) <sup>1</sup> | Description of Lithology            | Bore Condition for Sampling |
|-----------|---------------|---------------------------------|-------------------------------------|-----------------------------|
| BH2       | S9020401/1    | 15                              | Basalt overlain by clay and topsoil | Moderate                    |
| BH5       | 79155         | 14.63                           | Weathered basalt                    | Unknown                     |
| ВН7       | 145710        | 13.7                            | No information                      | Good                        |
| BH10      | 145714        | 20.6                            | Basalt overlain by clay and topsoil | Good                        |
| BH11      | 145715        | 18.2                            | Basalt overlain by clay and topsoil | Good                        |
| BH12      | 145711        | 15.8                            | Basalt overlain by clay and topsoil | Good                        |
| BH14      | N/A           | N/A <sup>2</sup>                | N/A                                 | Good                        |
| BH15      | N/A           | N/A <sup>2</sup>                | N/A                                 | Moderate                    |
| BH16      | N/A           | 41.6 <sup>3</sup>               | N/A                                 | Poor                        |
| BH17      | N/A           | N/A <sup>2</sup>                | N/A                                 | Moderate                    |
| BH18      | N/A           | N/A <sup>2</sup>                | N/A                                 | Moderate                    |
| WSBH      | S9020401/2    | 25                              | No information                      | Good                        |

#### NOTES:

- 1. Registered depth (DEPI)
- 2. Bore depth could not be established in the field due to well obstruction.
- 3. Bore depth recorded in the field

During the sampling event, boreholes were observed in varying conditions as described above. Windmill bores (BH14, BH15, BH17 and BH18) were generally in moderate to good condition. Due to the installation of pumping equipment, the top of the wells were not fully sealed at the surface and it is possible that foreign materials and exposure to the environment, more generally, may impact on reported results.

Groundwater wells installed with monument gatics were generally in good condition. These include BH7, BH10, BH11, BH12 and WSBH. BH2 was the only exception where the protective cover had been removed.

BH16 was observed to be in poor condition. It appeared that this bore was formerly a windmill although this structure has now been removed. As such, the top of the well was not sealed to prevent foreign materials entering the well.

Examples of groundwater bore installations are presented in Plate 5.1 while the implications of the condition of the bores are discussed in greater detail in Section 5.4.







Windmill bore BH17. Surface water can readily enter the well

BH16. Former windmill bore no longer sealed

Plate 5.1: Examples of groundwater bore installations

### 5.2 Groundwater levels / flow direction

Groundwater was encountered between 5 mbgl and 10 mbgl. However, towards the western perimeter of Lot 8 (BH12) groundwater was encountered at approximately 16 mbgl. These observations correspond well with spatial data obtained from the Victorian Department of Environment and Primary Industry (DEPI) presented in Figure 3.

Groundwater height data indicates the groundwater flow direction is towards the south, towards the creek at the southern end of the site, which is consistent with the previous 2002 SKM assessment (SKM, 2002). A groundwater contour plan is provided as Figure 4.

## 5.3 Physical and chemical water quality parameters

#### 5.3.1 Field measurements

Physical and chemical groundwater quality parameters were recorded as part of the groundwater sampling program. The parameters reported at stabilisation are presented in Table 5.2. Groundwater sampling forms are provided in Appendix B.

Table 5.2: Summary of physical and chemical water quality parameters

|                      |             | Dissolved          |      | EC      |      | Redox | Temp |                            |
|----------------------|-------------|--------------------|------|---------|------|-------|------|----------------------------|
| Well ID <sup>1</sup> | Sample Date | % Sat <sup>1</sup> | mg/L | (mS/cm) | pН   | (mV)  | (°C) | Comments                   |
| BH2                  | 11/03/14    | 56.4               | 5.18 | 2.68    | 7.29 | 145   | 17.6 | Clear sample               |
| BH5                  | 11/03/14    | 43.9               | 3.61 | 2.83    | 7.11 | 144   | 23.3 | Clear sample               |
| ВН7                  | 12/03/14    | 74.2               | 6.89 | 2.12    | 7.12 | 90    | 17.0 | Clear sample               |
| BH10                 | 11/03/14    | 45.0               | 4.07 | 2.66    | 7.15 | 66    | 18.3 | Clear sample               |
| BH11                 | 12/03/14    | 38.9               | 3.72 | 6.09    | 7.18 | 22    | 15.6 | Slightly cloudy            |
| BH12                 | 12/03/14    | 91.8               | 8.60 | 3.88    | 8.01 | 141   | 16.6 | High sediment, brown       |
| BH14                 | 12/03/14    | 22.9               | 2.11 | 2.07    | 6.87 | 105   | 17.3 | Clear with some flocculent |
| BH15                 | 13/03/14    | 61.0               | 5.81 | 2.88    | 7.45 | 175   | 15.8 | High sediment, brown       |
| BH16                 | 12/03/14    | 14.3               | 1.34 | 3.41    | 6.41 | 9     | 16.5 | Slight sediment            |
| BH17                 | 13/03/14    | 51.9               | 4.80 | 1.28    | 7.41 | 99    | 17.2 | Slight sediment            |



| . w. u up1           | Sample Date | Dissolved Oxygen   |      | EC      |      | Redox | Temp | 2                           |
|----------------------|-------------|--------------------|------|---------|------|-------|------|-----------------------------|
| Well ID <sup>1</sup> |             | % Sat <sup>1</sup> | mg/L | (mS/cm) | рН   | (mV)  | (°C) | Comments                    |
| BH18                 | 13/03/14    | 24.3               | 2.24 | 1.29    | 7.63 | 139   | 17.4 | Slight sediment, pale brown |
| WSBH                 | 13/03/14    | 23.8               | 2.21 | 2.59    | 6.35 | 143   | 17.1 | Clear                       |
| EFF                  | 13/03/14    | 28.5               | 2.56 | 0.972   | 7.62 | 87    | 18.7 | Cloudy                      |

#### NOTES:

1. Percentage saturation is an estimated value that has been calculated based on concentration in mg/L, water temperature and site altitude (300 mADH).

Reported water quality parameters indicate that the groundwater across the site is characterised by a fairly neural pH with a relatively low salinity, ranging from 1.28 mS/cm (BH17) to 6.09 mS/cm (BH7). The results for reduction/oxidation (redox) potential are positive which is indicative of oxidising conditions. Dissolved oxygen concentrations vary across the site, although concentrations are all below saturation. Samples collected using either a foot valve or a disposable bailer generally report higher dissolved oxygen concentration. These sampling methods agitate the sample to a greater degree than low flow techniques and can result in increased aeration and consequently dissolved oxygen concentrations.

### 5.3.2 Laboratory total dissolved solids

Laboratory TDS concentrations for groundwater (which are an indicator of salinity) ranged from 700 mg/L to 3,500 mg/L during the most recent round of groundwater monitoring. The average TDS concentration is 1,656 mg/L. In accordance with the Groundwater SEPP, the sampled aquifer is classified as Segment A2 (501 - 1,000 mg/L) based on the lowest reported TDS concentration. As such, the beneficial uses of groundwater to be protected include:

- Maintenance of ecosystems
- Potable water supply (acceptable)
- Potable mineral water supply
- · Agriculture, parks and gardens
- Stock watering
- Industrial use
- Primary contact recreation
- Buildings and structures

Of these, use of groundwater for mineral water supply is not considered relevant. Regional groundwater is not considered typical of mineral waters which are naturally effervescent and high in bicarbonate concentrations.

The following sections present the results obtained as part of the most recent sampling event in comparison with the relevant assessment criteria for each of the beneficial uses identified above.

## 5.4 Laboratory analytical results

Comparison of laboratory results against criteria for individual beneficial uses is detailed in Sections 5.4.1 to 5.4.4 below.

## 5.4.1 Comparison of laboratory results against human health criteria

Laboratory analytical results were compared against the following criteria for the protection of human health:

- Australian drinking water guidelines (ADWG) (NHMRC & NRMMC, 2011)
- Guidelines for managing risks in recreational waters (GMRRW) (NHMRC, 2008)



These criteria consider the suitability of groundwater at the site for the potable water supply and primary contact recreation protected beneficial uses of groundwater.

Analytes reporting exceedances of the assessment criteria are summarised in Table 5.3 below with tabulated results presented in Data Table A at the end of the report.



Table 5.3 : Summary of exceedances of the assessment criteria for the protection of human health

| Contaminant of Concern |                | 0         | Concentration Range <sup>1</sup> |    | No. Samples Exceeding Human Health Criteria |           |       |  |
|------------------------|----------------|-----------|----------------------------------|----|---------------------------------------------|-----------|-------|--|
|                        |                | Concentra |                                  |    | AD                                          |           |       |  |
| Group                  | Analyte        | Minimum   | Maximum                          |    | Health                                      | Aesthetic | GMRRW |  |
| Metals                 | Manganese      | <5        | 750                              | 15 | 2                                           | 4         | None  |  |
|                        | Nickel         | <1        | 26                               | 15 | 1                                           | N/A       | None  |  |
| Inorganics             | Nitrite (as N) | <2        | 3,800                            | 15 | 3 <sup>(3)</sup>                            | N/A       | None  |  |
|                        | Sodium         | 157 mg/L  | 720 mg/L                         | 15 | N/A                                         | 11        | N/A   |  |
|                        | TDS            | 620 mg/L  | 3,500 mg/L                       | 15 | N/A                                         | 15        | N/A   |  |

#### NOTES:

- 1. Units are μg/L unless stated otherwise
- 2. Includes primary and duplicate samples
- 3. These nitrite exceedances are from samples collected directly from the winter storage effluent holding pond (EFF)



#### 5.4.2 Comparison of laboratory results against ecological criteria

Laboratory results were compared against the following criteria for the protection of ecosystems:

Australian water quality guidelines for fresh water (AWQG) (ANZECC & ARMCANZ, 2000)

These criteria consider the suitability of groundwater at the site for the maintenance of ecosystems beneficial use. The maintenance of ecosystems beneficial use is considered to apply to groundwater at the point of discharge to the relevant surface water receptor, in this case, the heavily modified unnamed creek running along the southern portion of site (see Figure 5). Based on the groundwater contour plan, this creek is directly down gradient from site (see Figure 4).

The creek has been heavily modified, including the construction of several storage dams along its alignment storage dams have been constructed in the southern portion of site, immediately offsite to the south (on the quarry site) and further south, on the recently constructed golf course. As part of construction of the golf course, the actual alignment of the creek has also been re-shaped / moved (see Figure 5). Given the highly modified nature of the creek, an 80% level of ecosystem protection has been assigned for the creek (ANZECC 80% level of ecosystem protection guidelines have been used).

Analytes reporting exceedances of the assessment criteria are summarised in Table 5.4 below with tabulated results presented in Data Table B at the end of the report.

|                        | •             | •         | · ·                     |                          |                  |  |
|------------------------|---------------|-----------|-------------------------|--------------------------|------------------|--|
| Contaminant of Concern |               | Concentra | tion Range <sup>1</sup> | No. Results <sup>2</sup> | No. Samples      |  |
| Group                  | Analyte       | Minimum   | Maximum                 | No. Results              | Exceeding AWQG   |  |
| Metals                 | Copper        | <1        | 300                     | 15                       | 8                |  |
|                        | Nickel        | <1        | 26                      | 15                       | 1                |  |
|                        | Zinc          | <1        | 360                     | 15                       | 4                |  |
| Inorganics             | Total Cyanide | <5        | 23                      | 15                       | 1 <sup>(3)</sup> |  |

Table 5.4: Summary of exceedances of the assessment criteria for the protection of ecosystems

#### NOTES:

1. Units are µg/L unless stated otherwise

- 2. Includes primary and duplicate samples
- 3. Cyanide exceedance is from a sample collected directly from the winter storage effluent holding pond (EFF)

#### 5.4.3 Comparison of laboratory results against primary use criteria

Laboratory results were compared against the following criteria for the primary use of groundwater:

- Irrigation water short term trigger values (ANZECC, 2000) up to 20 years
- Recommended water quality trigger values for livestock drinking water (ANZECC & ARMCANZ, 2000)

The irrigation short term trigger value (up to 20 years) was deemed to be applicable for the assessment. These criteria consider the suitability of groundwater at the site for the agriculture, parks and gardens as well as stock watering beneficial uses.

Analytes reporting exceedances of the assessment criteria are summarised in Table 5.5 below with tabulated results presented in Data Table C at the end of the report.



Table 5.5 : Summary of exceedances of the assessment criteria for the primary use of groundwater

|                |           |            | . 5 1                  |                          | No. Samples Exceeding Primary Use Criteria |                |  |  |  |  |  |
|----------------|-----------|------------|------------------------|--------------------------|--------------------------------------------|----------------|--|--|--|--|--|
| Contaminant of | r Concern | Concentrat | ion Range <sup>¹</sup> | No. Results <sup>2</sup> | Irrigation Trigger Values (TV)             | a              |  |  |  |  |  |
| Group          | Analyte   | Minimum    | Minimum Maximum        |                          | Short Term TV                              | Stock Watering |  |  |  |  |  |
| Inorganics     | TDS       | 620 mg/L   | 3,500 mg/L             | 15                       | None                                       | 2              |  |  |  |  |  |

#### NOTES:

- 1. Units are μg/L unless stated otherwise
- 2. Includes primary and duplicate samples



### 5.4.4 Comparison of laboratory results against industrial use and buildings and structures criteria

Laboratory results were compared against the following criteria for the use of groundwater for industrial purposes and for the protection of buildings and structures:

- Criteria for the industrial use of groundwater (ANZECC, 1992)
- Exposure classification criteria for concrete piles in soil (AS 2159-2009) (Standards Australia, 2009)

Tabulated results presented in Data Table C at the end of the report.

Groundwater results for the site reported no exceedances of the relevant criteria for either beneficial use.

## 5.5 Comparison with 2002 analytical data

A comparison between SKM's available 2002 and recent data has been made, to help to assess changes in groundwater conditions over time. Analytical data was available for 6 wells across the site (nitrate, nitrite, ammonia and TDS data) and a comparison is presented in Table 5.6 below.

| Table 5.6 : Compariso | n – 2002 vs 2 | 2014 groundwater | analytical data |
|-----------------------|---------------|------------------|-----------------|
|                       |               |                  |                 |

| Analyte              | Nitrate  | (mg/L) | Nitrite | (mg/L) | Ammoni | a (mg/L) | TDS (mg/L) |      |  |
|----------------------|----------|--------|---------|--------|--------|----------|------------|------|--|
| Yr sampled / Well ID | 2002     | 2014   | 2002    | 2014   | 2002   | 2014     | 2002       | 2014 |  |
| BH10 / PS2           | 0.88     | 1.6    | <0.01   | <0.02  | 0.2    | <0.01    | 1500       | 1600 |  |
| BH11 / PS1           | 0.11     | <0.02  | <0.01   | <0.02  | 0.2    | 0.03     | 5000       | 3500 |  |
| BH15 / WM3           | 0.72     | 5      | <0.01   | <0.02  | <0.3   | <0.01    | 2700       | 1700 |  |
| BH17 / WM5           | 2.2      | 3.2    | <0.01   | <0.02  | <0.1   | <0.01    | 720        | 700  |  |
| BH18 / WM6           | 0.3 0.22 |        | <0.01   | <0.02  | 0.2    | <0.01    | 700        | 770  |  |
| BH7 / PS5            | 0.88     | 2.8    | 0.82    | <0.02  | <0.1   | <0.01    | 1400       | 1200 |  |

#### NOTES:

- 1. 2002 data is referred to as "Baseline" Data
- 2. 5 Concentration significantly increased since 2002 assessment
- 3. 5 concentration significantly decreased since 2002 assessment

Concentrations of nitrate, nitrite and ammonia were detected "pre-irrigation" (in 2002), showing these contaminant concentrations were reflective of background and likely regional conditions. The comparison in Table 5.6 shows that concentrations of the analytes have remained relatively consistent over the past 12 years (including TDS), with some increases in nitrate concentrations in two wells (BH15 and BH7).

Jacobs SKM note that all the above concentrations (excluding TDS) are still below applicable criteria used for this assessment (see Section 5.4. and Tables section).

## 5.6 Discussion of impact on beneficial uses of groundwater

Groundwater is considered to be polluted where groundwater quality is such that the groundwater is unsuitable for a beneficial use (that is, a beneficial use is precluded) and / or it affects beneficial uses of other segments of the environment, such as soil and air.

Groundwater beneath the site has been classified as Segment A2 in accordance with SEPP Groundwaters of Victoria. As discussed in Section 5.3.2, the protection of the following beneficial uses of the groundwater at the site have been assessed:

- Maintenance of ecosystems
- Potable water supply (acceptable)



- · Agriculture, parks and gardens
- Industrial water use
- Primary contact recreation (e.g. bathing, swimming)
- Buildings and structures

A discussion of contaminant concentration exceedances of the groundwater quality criteria for each of the beneficial uses is outlined below.

- Maintenance of ecosystems: Maintenance of ecosystem criteria were exceeded for copper, nickel and zinc.
  In several samples. Based on the known previous and current site use (no significant source of these
  analytes identified), these exceedances are likely reflective of background / regional conditions. Jacobs
  SKM note there was also an exceedance for cyanide, however, this was a surface water sample collected
  from the winter storage effluent pond (EFF) and was not collected from underlying groundwater
- Potable water supply (acceptable): Potable water supply criteria were exceeded for manganese, nickel, sodium and TDS in several samples. Based on the known previous and current site use (no significant source of these analytes identified), these exceedances are likely reflective of background / regional conditions. Jacobs SKM note there were also 3 nitrite exceedances reported, however, these were surface water samples collected from the winter storage effluent pond (EFF) and were not collected from underlying groundwater
- Agriculture, parks and gardens (irrigation): Stock irrigation TDS criteria was exceeded in two samples. Jacobs SKM note that TDS concentrations are likely reflective of background / regional conditions (see Table 5.6)
- Industrial water / Buildings and Structures: There were no reported exceedances for these beneficial uses
- Primary contact recreation (e.g. bathing, swimming): There were no reported exceedances for this beneficial use

Based on the groundwater sampling program undertaken, exceedances of groundwater quality objectives for heavy metals, sodium and TDS are likely reflective of background or regional conditions. Therefore, no beneficial uses of groundwater are considered to be precluded based on the detected concentrations of contaminants.

## 5.7 Analytical data quality

It is considered that the QA/QC program was in accordance with recommended good practice (e.g. AS4482.1-2005). Overall the program is adequate considering the scope and nature of the assessment program undertaken. The data are considered sufficiently reliable for the purpose for which they have been obtained and used.

Further discussion in relation to data validation, quality assurance and control is provided in Appendix A.



## 6. Conclusions and recommendations

#### 6.1 Conclusions

Based on the results of the groundwater sampling and laboratory analysis undertaken, heavy metals, sodium, nitrate and TDS were reported above adopted assessment guidelines. Concentrations of heavy metals and sodium are likely reflective of background / regional conditions, given no significant source of these contaminants were identified as part of the recent Jacobs SKM desktop assessment (Jacobs SKM, 2014). Concentrations of TDS and nitrate are likely mostly reflective of background / regional conditions, based on concentrations reported as part of SKM's 2002 "pre irrigation" groundwater sampling program (SKM, 2002). Jacobs SKM note that some increases in nitrate concentrations were reported as part of the 2014 groundwater sampling program, however, concentrations were still below applicable guidelines adopted for the assessment.

Elevated nitrite and cyanide were reported in the surface water sample collected from the winter storage facility, which holds the treated effluent used for irrigation. However, no contaminant concentrations of these contaminants were reported above adopted assessment guidelines as part of the actual groundwater sampling program.

Therefore, no beneficial uses of groundwater are considered to be precluded based on the detected concentrations of contaminants.

#### 6.2 Recommendations

The groundwater well network should be periodically monitored by YVW (or other) while irrigation is being undertaken to help ensure the underlying groundwater quality remains acceptable for the relevant protected beneficial uses. If groundwater quality deterioration is reported during this routine monitoring this should act as a trigger for further detailed assessment and / or management. Deterioration in this case could be:

- A notable increase in concentrations of contaminants of concern in groundwater above the concentrations that have historically been reported at the site
- Reported exceedances of relevant assessment criteria for protected beneficial uses of groundwater at the site.



## 7. References

ANZECC/NHMRC, 2000. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Environment and Conservation Council & National Health and Medical Research Council, October 2000.

EPAV, 2000. Groundwater Sampling Guidelines. Environment Protection Authority Victoria, Publication 669

EPAV, 2006. Hydrogeological Assessment (Groundwater Quality) Guidelines. Environment Protection Authority Victoria, Publication No. 668, September 2006

Jacobs SKM, 2014. Beveridge North West Precinct Structure Plan Area – Desktop Environmental, Hydrogeological and Geotechnical Assessments, Draft V2. Prepared for MPA, April, 2014

SKM 2002. Wallan WMF and Wallan proposed Re-use Farm Hydrogeological Assessments. Sinclair Night Merz, May 2002

SKM 2012. Victorian state wide watertable mapping. Prepared for the DSE, 2012

Victorian Government, 2003. State Environment Protection Policy (Waters of Victoria). Vic. Govt. Gazette No. S107, 4 June 2003

Victorian Government, 1997. State Environment Protection Policy (Groundwaters of Victoria). Vic. Govt. Gazette, 17 December 1997

YVW, 2008. Wallan Reclaimed Water Re-Use Scheme: Camerons Lane Lots 8 & 9 – Preliminary Assessment of Groundwater Monitoring Results. Yarra Valley Water, May 2008



## **Figures**

Figure 1 : Site location plan

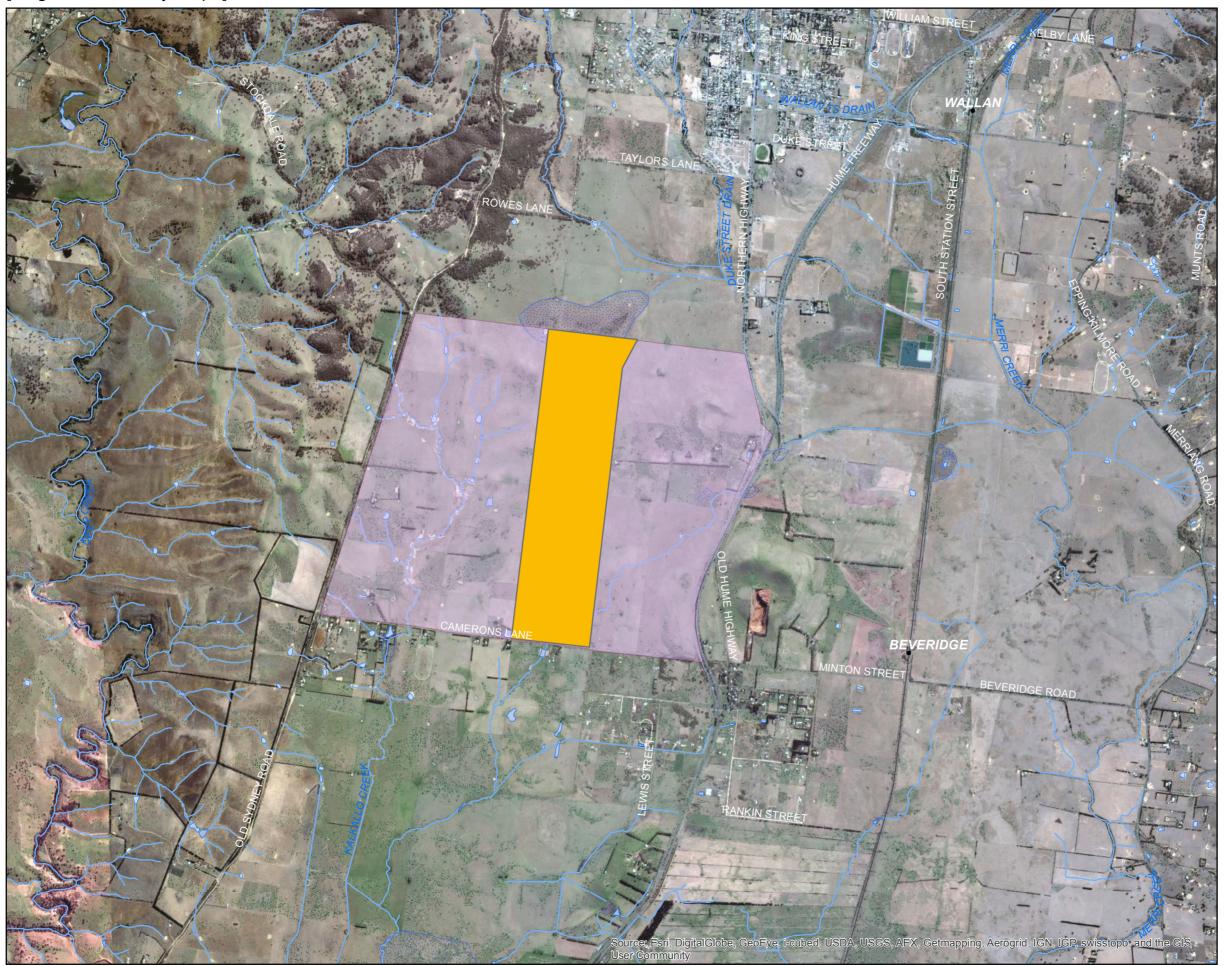

Figure 2 : Site layout

Figure 3 : Depth to groundwater

Figure 4 : Groundwater contour plan

Figure 5 : Heavily modified downstream surface water body

## [ Figure 1 - Locality Map ]



## LEGEND

Lot 8 & 9 Camerons Lane

PSP Boundary

— Rail

Lake

Flat

Wetland Swamp

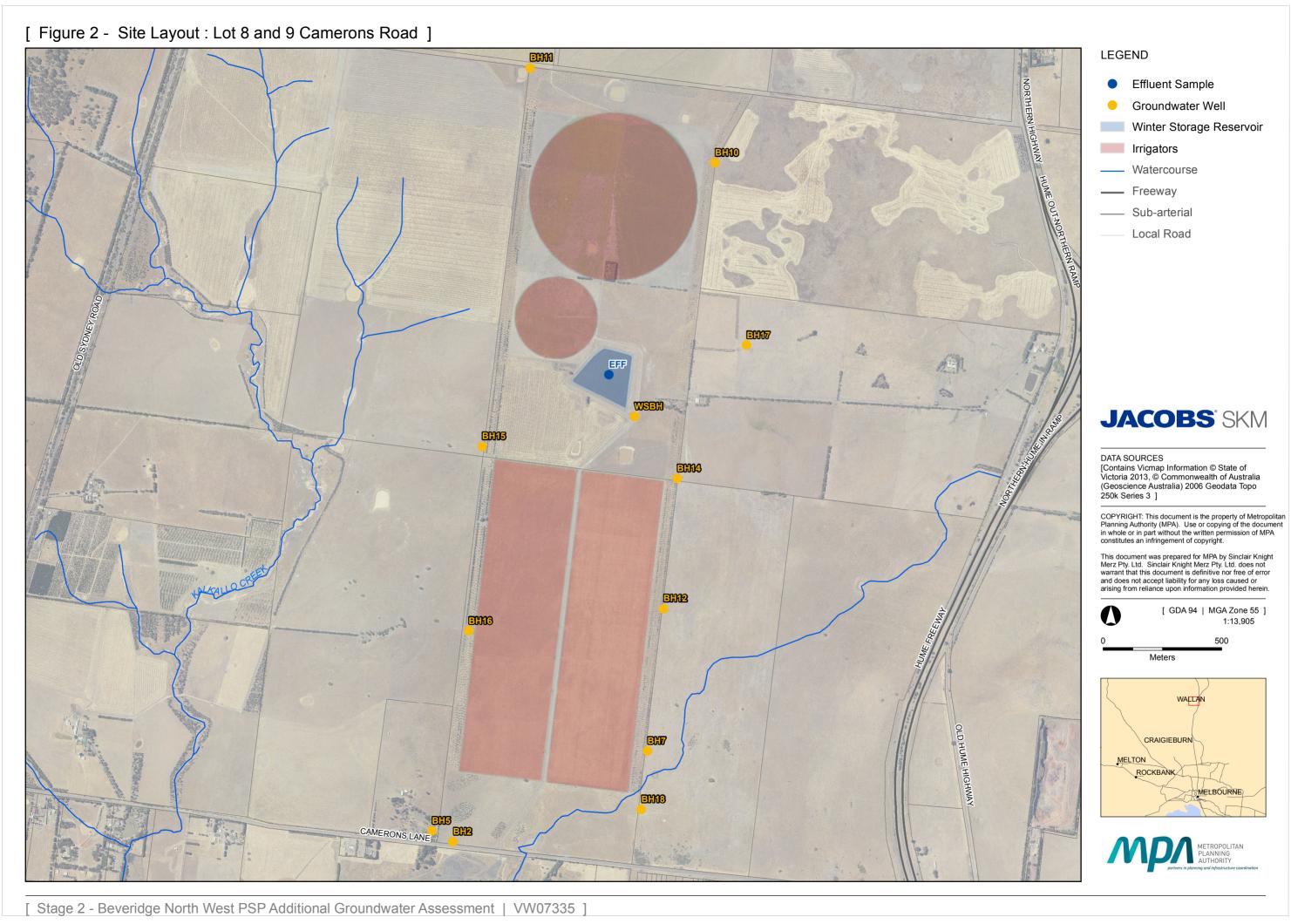
Watercourse

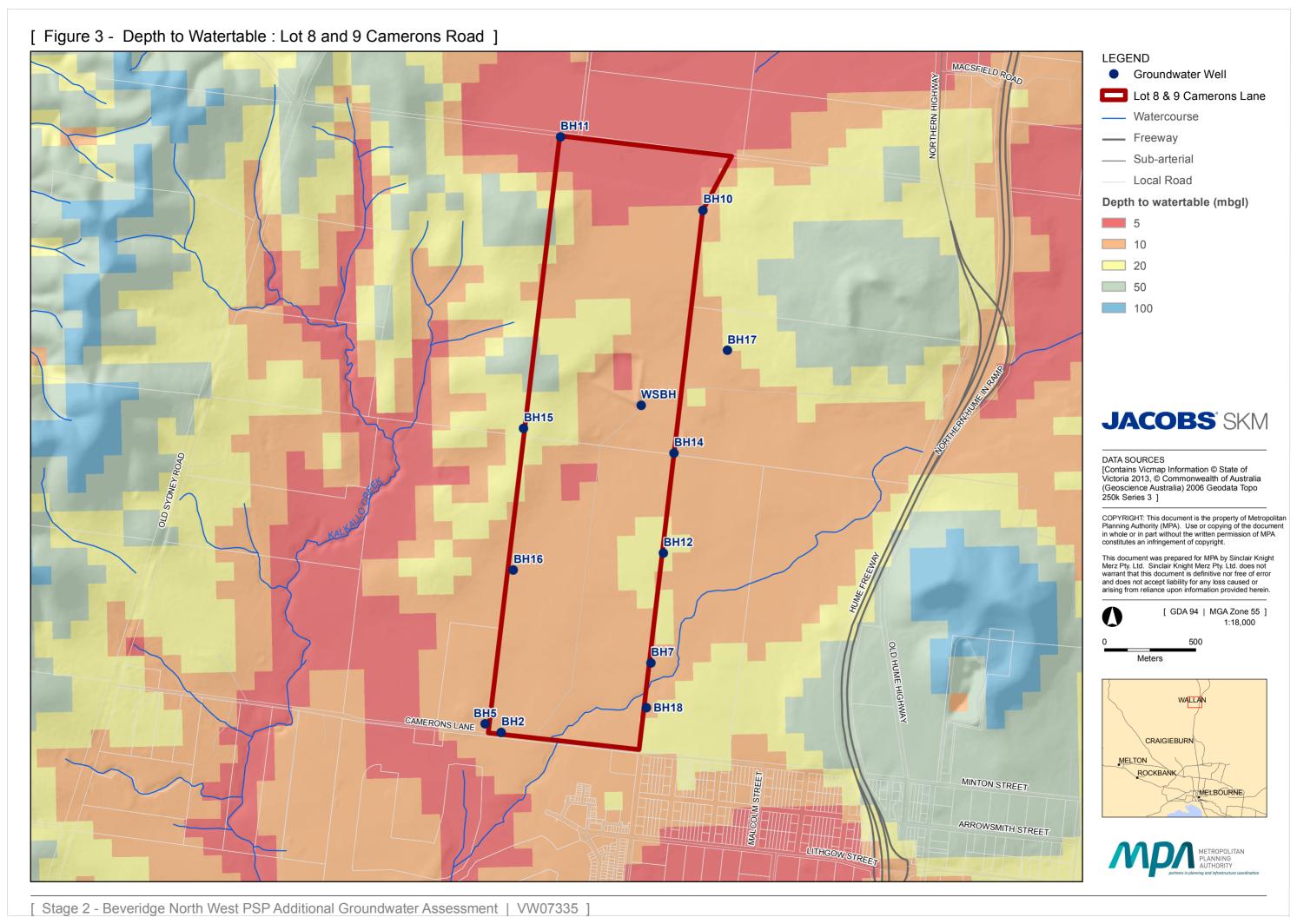
## **JACOBS** SKM

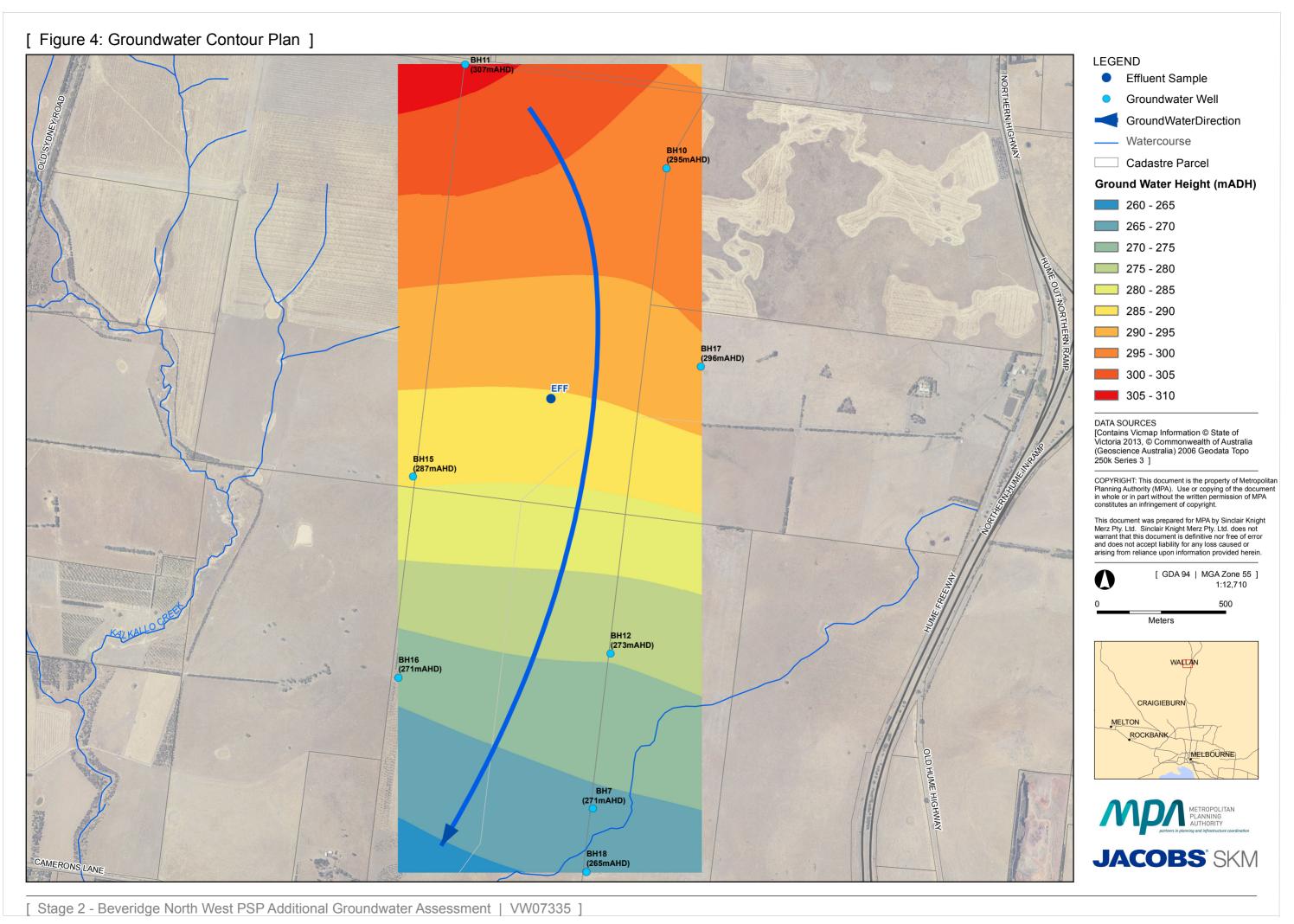
DATA SOURCES
[Contains Vicmap Information © State of Victoria 2013, © Commonwealth of Australia (Geoscience Australia) 2006 Geodata Topo 250k Series 3 ]

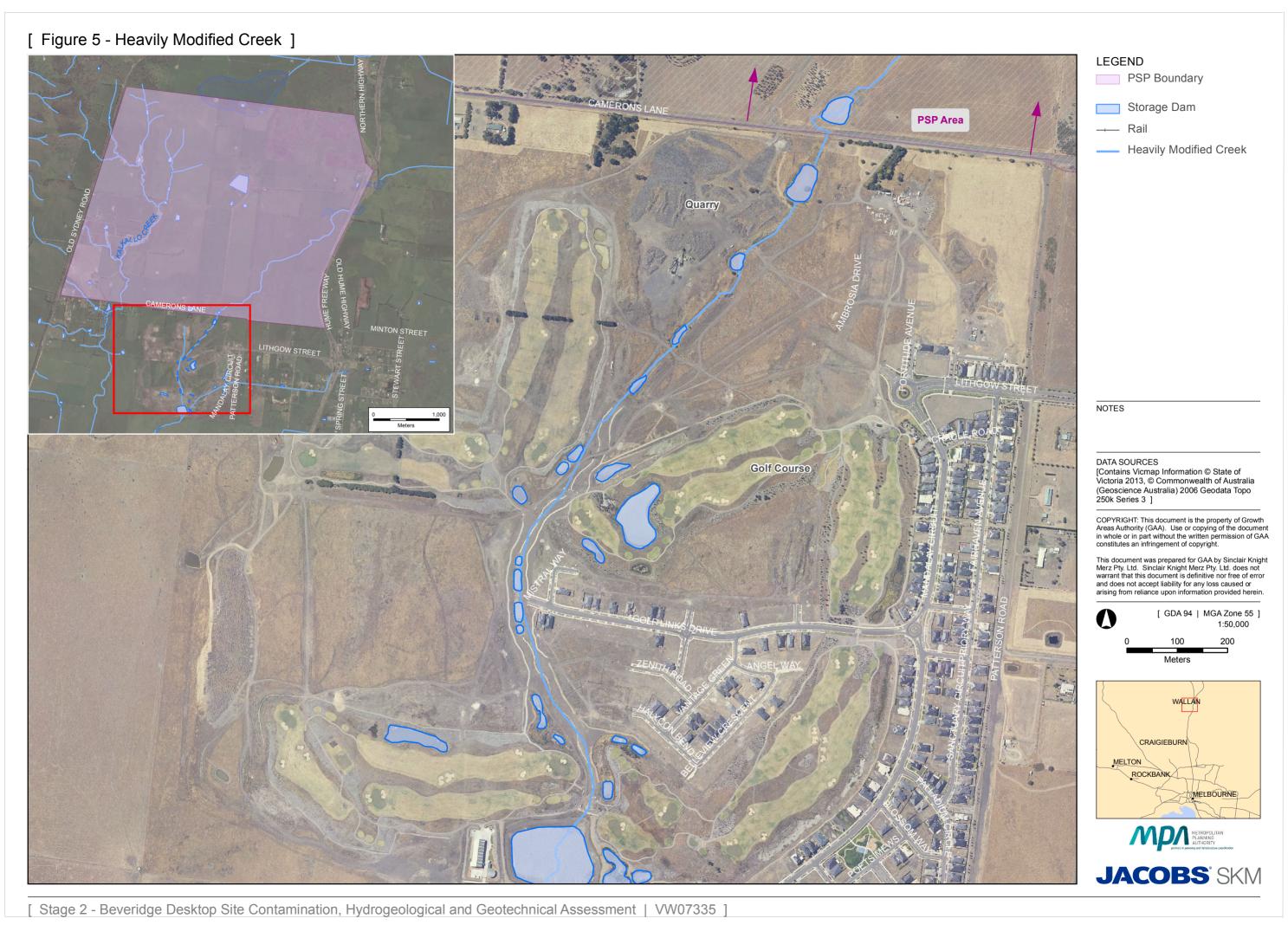
COPYRIGHT: This document is the property of Growth Areas Authority (GAA). Use or copying of the document in whole or in part without the written permission of GAA constitutes an infringement of copyright.

This document was prepared for GAA by Sinclair Knight Merz Pty. Ltd. Sinclair Knight Merz Pty. Ltd. does not warrant that this document is definitive nor free of error and does not accept liability for any loss caused or arising from reliance upon information provided herein.





[ GDA 94 | MGA Zone 55 ] 1:40,000




[ Stage 2 - Beveridge North West PSP Additional Groundwater Assessment | VW07335 ]











## **Tables**

Data Table A: Comparison of groundwater results against criteria for the protection of human health

Data Table B: Comparison of groundwater results against criteria for the protection of ecosystems

Data Table C: Comparison of groundwater results against criteria for the primary use of groundwater

Data Table D: Comparison of groundwater results against criteria for industrial use, buildings and structures



### TABLE A:

Comparison of groundwater results against criteria for the protection of human health

| Well Code          | BH10       | BH11       | BH12       | BH14       | BH15       | BH16       | BH17       | BH18       | BH2        | BH5        | BH7        | EFF        | EFF        | EFF        | WSBH       |
|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Field ID           | BH10       | BH11       | BH12       | BH14       | BH15       | BH16       | BH17       | BH18       | BH2        | BH5        | BH7        | 1303-QA1   | 1303-QA2   | EFF        | WSBH       |
| Sample Type        | Primary    | Blind D    | Split D    | Primary    | Primary    |
| Sampled Date       | 11/03/2014 | 11/03/2014 | 12/03/2014 | 12/03/2014 | 13/03/2014 | 12/03/2014 | 13/03/2014 | 13/03/2014 | 11/03/2014 | 11/03/2014 | 12/03/2014 | 13/03/2014 | 13/03/2014 | 13/03/2014 | 13/03/2014 |
| Monitoring Round   | March '14  | March "14  | March '14  | March '14  |
| Lab Report Number  | 411557     | 411868     | 411868     | 411868     | 411868     | 411868     | 411868     | 411868     | 411557     | 411557     | 411868     | 411868     | EM1402371  | 411868     | 411868     |
| Sample Description | GW         | Effluent   | Effluent   | Effluent   | GW         |

| Chemical Name             | Units | EQL   | Australian Drinking Water<br>Guidelines (ADWG, 2011)<br>Human Health Criteria | Australian Drinking Water<br>Guidelines (ADWG, 2011)<br>Aesthetic Criteria | Recreational Water Quality<br>(GMRRW, 2008) |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|---------------------------|-------|-------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Metals                    |       |       |                                                                               |                                                                            |                                             |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Arsenic                   | μg/L  |       | 10                                                                            |                                                                            | 100                                         | <1     | 5      | 3      | <1     | <1     | <1     | <1     | <1     | <1     | <1     | <1     | 3      | 3      | 3      | <1     |
| Beryllium                 | μg/L  |       | 60                                                                            |                                                                            | 600                                         | <1     | <1     | <1     | <1     | <1     | <1     | <1     | <1     | <1     | <1     | <1     | <1     | <1     | <1     | <1     |
| Boron                     | μg/L  |       | 4000                                                                          |                                                                            | 40000                                       | <50    | <50    | <50    | <50    | <50    | <50    | <50    | 90     | 50     | <50    | <50    | 70     | 190    | 70     | <50    |
| Cadmium                   | μg/L  |       | 2                                                                             |                                                                            | 20                                          | <0.2   | <0.2   | <0.2   | <0.2   | <0.2   | 0.2    | <0.2   | <0.2   | <0.2   | <0.2   | <0.2   | <0.2   | <0.1   | <0.2   | <0.2   |
| Calcium                   | μg/L  | 500   |                                                                               |                                                                            |                                             | 57,000 | 33,000 | 16,000 | 19,000 | 40,000 | 78,000 | 28,000 | 19,000 | 36,000 | 40,000 | 32,000 | 21,000 | 16000  | 18,000 | 79,000 |
| Chromium (III+VI)         | μg/L  |       |                                                                               |                                                                            |                                             | 3      | <1     | <1     | <1     | <1     | <1     | 3      | <1     | <1     | <1     | <1     | <1     | 8      | <1     | <1     |
| Cobalt                    | μg/L  |       |                                                                               |                                                                            |                                             | <1     | 11     | <1     | <1     | <1     | 3      | <1     | <1     | <1     | <1     | <1     | 1      | 4      | 1      | 1 1    |
| Copper                    | μg/L  |       | 2000                                                                          | 1000                                                                       | 20000                                       | <1     | <1     | 3      | 47     | 300    | 24     | 2      | 7      | <1     | 13     | 1      | 2      | 9      | 2      | 12     |
| Lead                      | μg/L  |       | 10                                                                            |                                                                            | 10                                          | <1     | <1     | <1     | 1      | <1     | <1     | <1     | <1     | <1     | <1     | <1     | <1     | 2      | <1     | <1     |
| Magnesium                 | μg/L  | 500   |                                                                               |                                                                            |                                             | 170000 | 290000 | 230000 | 110000 | 140000 | 240000 | 82000  | 40000  | 160000 | 130000 | 130000 | 21000  | 17000  | 18000  | 170000 |
| Manganese                 | μg/L  |       | 500                                                                           | 100                                                                        | 5000                                        | <5     | 240    | 38     | <5     | 12     | 750    | <5     | 6      | <5     | 36     | 13     | 38     | 118    | 29     | 600    |
| Mercury                   | μg/L  |       | 11                                                                            |                                                                            | 10                                          | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   |
| Nickel                    | μg/L  |       | 20                                                                            |                                                                            | 200                                         | <1     | 26     | 2      | 1      | <1     | 1      | <1     | <1     | <1     | <1     | 1      | 5      | 8      | 5      | 3      |
| Potassium                 | µg/L  | 500   |                                                                               |                                                                            |                                             | 5300   | 10,000 | 16,000 | 3600   | 42,000 | 33,000 | 18,000 | 25,000 | 5000   | 10,000 | 22,000 | 39,000 | 21000  | 47,000 | 21,000 |
| Zinc                      | μg/L  | 1     |                                                                               | 3000                                                                       |                                             | 7      | 5      | 11     | 30     | 150    | 320    | 14     | 360    | 11     | 16     | 7      | 3      | 20     | <1     | 98     |
| Inorganics                |       |       |                                                                               |                                                                            |                                             |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Ammonia as N              | μg/L  | 10    |                                                                               |                                                                            |                                             | <10    | 30     | 270    | <10    | <10    | <10    | <10    | <10    | <10    | <10    | <10    | <10    | 200    | <10    | <10    |
| Cyanide Total             | mg/L  | 0.004 | 0.08                                                                          |                                                                            | 0.8                                         | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.004 | 0.023  | <0.005 |
| Fluoride                  | mg/L  | 0.1   | 1.5                                                                           |                                                                            | 15                                          | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | 0.6    | 0.8    | 0.7    | <0.5   |
| Kjeldahl Nitrogen Total   | mg/L  | 0.1   |                                                                               |                                                                            |                                             | <0.2   | <0.2   | 1.6    | <0.2   | 2.7    | <0.2   | <0.2   | <0.2   | <0.2   | <0.2   | <0.2   | <0.2   | 3.2    | 3.1    | <0.2   |
| Nitrate (as N)            | mg/L  | 0.01  | 11.287                                                                        |                                                                            | 113                                         | 1.6    | <0.02  | 7.3    | 1.9    | 5      | <0.02  | 3.2    | 0.22   | 2.4    | <0.02  | 2.8    | 5.5    | 6.82   | 5.8    | 0.08   |
| Nitrite (as N)            | mg/L  | 0.01  | 0.912                                                                         |                                                                            | 9.2                                         | <0.02  | <0.02  | 0.22   | <0.02  | <0.02  | <0.02  | <0.02  | <0.02  | <0.02  | <0.02  | <0.02  | 3.8    | 1.39   | 3.6    | <0.02  |
| Nitrogen (Total Oxidised) |       | 0.01  |                                                                               |                                                                            |                                             | 1.6    | <0.05  | 7.6    | 1.9    | 5      | <0.05  | 3.2    | 0.22   | 2.4    | <0.05  | 2.8    | 9.3    | 8.21   | 9.4    | 0.08   |
| Nitrogen (Total)          | μg/L  | 100   | <u> </u>                                                                      |                                                                            |                                             | 1600   | <200   | 9200   | 1900   | 7700   | <200   | 3200   | 220    | 2400   | <200   | 2800   | 9300   | 11,400 | 13,000 | <200   |
| Sodium                    | mg/L  | 0.5   |                                                                               | 180                                                                        |                                             | 270    | 720    | 580    | 330    | 400    | 460    | 180    | 250    | 290    | 360    | 280    | 180    | 157    | 180    | 340    |
| Sulphate as S             | mg/L  | 5     | <u> </u>                                                                      |                                                                            |                                             | <5     | 43     | 16     | 11     | 14     | 10     | <5     | <5     | 7.4    | 12     | 12     | 14     | 34     | 14     | 12     |
| TDS                       | mg/L  | 10    |                                                                               | 600                                                                        |                                             | 1600   | 3500   | 2200   | 1300   | 1700   | 2000   | 700    | 770    | 1600   | 1500   | 1200   | 700    | 1540   | 620    | 1800   |

Beveridge North West PSP

VW07335 Table A





TABLE B:

Comparison of groundwater results against criteria for the protection of ecosystems

| Well Code          | BH10       | BH11       | BH12       | BH14       | BH15       | BH16       | BH17       | BH18       | BH2        | BH5        | BH7        | EFF        | EFF        | EFF        | WSBH       |
|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Field ID           | BH10       | BH11       | BH12       | BH14       | BH15       | BH16       | BH17       | BH18       | BH2        | BH5        | BH7        | 1303-QA1   | 1303-QA2   | EFF        | WSBH       |
| Sample Type        | Primary    | Blind D    | Split D    | Primary    | Primary    |
| Sampled Date       | 11/03/2014 | 11/03/2014 | 12/03/2014 | 12/03/2014 | 13/03/2014 | 12/03/2014 | 13/03/2014 | 13/03/2014 | 11/03/2014 | 11/03/2014 | 12/03/2014 | 13/03/2014 | 13/03/2014 | 13/03/2014 | 13/03/2014 |
| Monitoring Round   | March '14  | March "14  | March '14  | March '14  |
| Lab Report Number  | 411557     | 411868     | 411868     | 411868     | 411868     | 411868     | 411868     | 411868     | 411557     | 411557     | 411868     | 411868     | EM1402371  | 411868     | 411868     |
| Sample Description | GW         | Effluent   | Effluent   | Effluent   | GW         |

| Chemical Name             | Units | EQL   | Freshwater ecosystems (80%) |         |        |        |        |        |        |        |        |         |        |        |         |         |        |        |
|---------------------------|-------|-------|-----------------------------|---------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|---------|---------|--------|--------|
|                           |       |       | (ANZECC, 2000)              |         |        |        |        |        |        |        |        |         |        |        |         |         |        |        |
| Metals                    |       |       |                             |         |        |        |        |        |        |        |        |         |        |        |         |         |        |        |
| Arsenic                   | μg/L  |       |                             | <1      | 5      | 3      | <1     | <1     | <1     | <1     | <1     | <1      | <1     | <1     | 3       | 3       | 3      | <1     |
| Beryllium                 | μg/L  |       |                             | <1      | <1     | <1     | <1     | <1     | <1     | <1     | <1     | <1      | <1     | <1     | <1      | <1      | <1     | <1     |
| Boron                     | μg/L  |       | 1300                        | <50     | <50    | <50    | <50    | <50    | <50    | <50    | 90     | 50      | <50    | <50    | 70      | 190     | 70     | <50    |
| Cadmium                   | μg/L  |       | 0.8                         | <0.2    | <0.2   | <0.2   | <0.2   | <0.2   | 0.2    | <0.2   | <0.2   | <0.2    | <0.2   | <0.2   | <0.2    | <0.1    | <0.2   | <0.2   |
| Calcium                   | µg/L  | 500   |                             | 57,000  | 33,000 | 16,000 | 19,000 | 40,000 | 78,000 | 28,000 | 19,000 | 36,000  | 40,000 | 32,000 | 21,000  | 16000   | 18,000 | 79,000 |
| Chromium (III+VI)         | μg/L  |       |                             | 3       | <1     | <1     | <1     | <1     | <1     | 3      | <1     | <1      | <1     | <1     | <1      | 8       | <1     | <1     |
| Cobalt                    | μg/L  |       |                             | <1      | 11     | <1     | <1     | <1     | 3      | <1     | <1     | <1      | <1     | <1     | 1       | 4       | 1      | 1      |
| Copper                    | μg/L  |       | 2.5                         | <1      | <1     | 3      | 47     | 300    | 24     | 2      | 7      | <1      | 13     | 1      | 2       | 9       | 2      | 12     |
| Lead                      | μg/L  |       | 9.4                         | <1      | <1     | <1     | <1     | <1     | <1     | <1     | <1     | <1      | <1     | <1     | <1      | 0.002   | <1     | <1     |
| Magnesium                 | μg/L  | 500   |                             | 170000  | 290000 | 230000 | 110000 | 140000 | 240000 | 82000  | 40000  | 160000  | 130000 | 130000 | 21000   | 17000   | 18000  | 170000 |
| Manganese                 | μg/L  |       | 3600                        | <5      | 240    | 38     | <5     | 12     | 750    | <5     | 60     | <5      | 36     | 13     | 38      | 118     | 29     | 600    |
| Mercury                   | μg/L  |       | 5.4                         | <0.1    | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1    | <0.1   | <0.1   | <0.1    | <0.1    | <0.1   | <0.1   |
| Nickel                    | μg/L  |       | 17                          | <1      | 26     | 2      | 1      | <1     | 1      | <1     | <1     | <1      | <1     | 1      | 5       | 8       | 5      | 3      |
| Potassium                 | μg/L  | 500   |                             | 5300    | 10,000 | 16,000 | 3600   | 42,000 | 33,000 | 18,000 | 25,000 | 5000    | 10,000 | 22,000 | 39,000  | 21000   | 47,000 | 21,000 |
| Zinc                      | μg/L  | 1     | 31                          | 7       | 5      | 11     | 30     | 150    | 320    | 14     | 360    | 11      | 16     | 7      | 3       | 20      | <1     | 98     |
| Inorganics                |       |       |                             |         |        |        |        |        |        |        |        |         |        |        |         |         |        |        |
| Ammonia as N              | μg/L  | 10    |                             | <10     | 30     | 270    | <10    | <10    | <10    | <10    | <10    | <10     | <10    | <10    | <10     | 200     | <10    | <10    |
| Cyanide Total             | mg/L  | 0.004 | 0.018                       | < 0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | < 0.005 | <0.005 | <0.005 | < 0.005 | < 0.004 | 0.023  | <0.005 |
| Fluoride                  | mg/L  | 0.1   |                             | <0.5    | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | <0.5    | <0.5   | <0.5   | 0.6     | 0.8     | 0.7    | <0.5   |
| Kjeldahl Nitrogen Total   | mg/L  | 0.1   |                             | <0.2    | <0.2   | 1.6    | <0.2   | 2.7    | <0.2   | <0.2   | <0.2   | <0.2    | <0.2   | <0.2   | <0.2    | 3.2     | 3.1    | <0.2   |
| Nitrate (as N)            | mg/L  | 0.01  | 17                          | 1.6     | <0.02  | 7.3    | 1.9    | 5      | <0.02  | 3.2    | 0.22   | 2.4     | <0.02  | 2.8    | 5.5     | 6.82    | 5.8    | 0.08   |
| Nitrite (as N)            | mg/L  | 0.01  |                             | <0.02   | <0.02  | 0.22   | <0.02  | <0.02  | <0.02  | <0.02  | <0.02  | <0.02   | <0.02  | <0.02  | 3.8     | 1.39    | 3.6    | <0.02  |
| Nitrogen (Total Oxidised) | mg/L  | 0.01  |                             | 1.6     | <0.05  | 7.6    | 1.9    | 5      | < 0.05 | 3.2    | 0.22   | 2.4     | < 0.05 | 2.8    | 9.3     | 8.21    | 9.4    | 0.08   |
| Nitrogen (Total)          | μg/L  | 100   |                             | 1600    | <200   | 9200   | 1900   | 7700   | <200   | 3200   | 220    | 2400    | <200   | 2800   | 9300    | 11,400  | 13,000 | <200   |
| Sodium                    | mg/L  | 0.5   |                             | 270     | 720    | 580    | 330    | 400    | 460    | 180    | 250    | 290     | 360    | 280    | 180     | 157     | 180    | 340    |
| Sulphate as S             | mg/L  | 5     |                             | <5      | 43     | 16     | 11     | 14     | 10     | <5     | <5     | 7.4     | 12     | 12     | 14      | 34      | 14     | 12     |
| TDS                       | mg/L  | 10    |                             | 1600    | 3500   | 2200   | 1300   | 1700   | 2000   | 700    | 770    | 1600    | 1500   | 1200   | 700     | 1540    | 620    | 1800   |



## TABLE C:

Comparison of groundwater results against criteria for the primary use of groundwater

| Well Code          | BH10       | BH11       | BH12       | BH14       | BH15       | BH16       | BH17       | BH18       | BH2        | BH5        | BH7        | EFF        | EFF        | EFF        | WSBH       |
|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Field ID           | BH10       | BH11       | BH12       | BH14       | BH15       | BH16       | BH17       | BH18       | BH2        | BH5        | BH7        | 1303-QA1   | 1303-QA2   | EFF        | WSBH       |
| Sample Type        | Primary    | Blind D    | Split D    | Primary    | Primary    |
| Sampled Date       | 11/03/2014 | 11/03/2014 | 12/03/2014 | 12/03/2014 | 13/03/2014 | 12/03/2014 | 13/03/2014 | 13/03/2014 | 11/03/2014 | 11/03/2014 | 12/03/2014 | 13/03/2014 | 13/03/2014 | 13/03/2014 | 13/03/2014 |
| Monitoring Round   | March '14  | March "14  | March '14  | March '14  |
| Lab Report Number  | 411557     | 411868     | 411868     | 411868     | 411868     | 411868     | 411868     | 411868     | 411557     | 411557     | 411868     | 411868     | EM1402371  | 411868     | 411868     |
| Sample Description | GW         | Effluent   | Effluent   | Effluent   | GW         |

| Chemical Name            | Units   | EQL   | Irrigation Water Short-Term<br>Trigger Values (ANZECC,<br>2000) - up to 20 years | Stock Watering (ANZECC, 2000) |         |         |         |         |         |         |        |        |        |        |         |         |        |        |         |
|--------------------------|---------|-------|----------------------------------------------------------------------------------|-------------------------------|---------|---------|---------|---------|---------|---------|--------|--------|--------|--------|---------|---------|--------|--------|---------|
| Metals                   |         |       |                                                                                  |                               |         |         |         |         |         |         |        |        |        |        |         |         |        |        |         |
| Arsenic                  | μg/L    |       | 2000                                                                             | 500                           | <1      | 5       | 3       | <1      | <1      | <1      | <1     | <1     | <1     | <1     | <1      | 3       | 3      | 3      | <1      |
| Beryllium                | μg/L    |       | 500                                                                              |                               | <1      | <1      | <1      | <1      | <1      | <1      | <1     | <1     | <1     | <1     | <1      | <1      | <1     | <1     | <1      |
| Boron                    | μg/L    |       |                                                                                  | 5000                          | <50     | <50     | <50     | <50     | <50     | <50     | <50    | 90     | 50     | <50    | <50     | 70      | 190    | 70     | <50     |
| Cadmium                  | μg/L    |       | 50                                                                               | 10                            | <0.2    | <0.2    | <0.2    | <0.2    | <0.2    | 0.2     | <0.2   | <0.2   | <0.2   | <0.2   | <0.2    | <0.2    | <0.1   | <0.2   | <0.2    |
| Calcium                  | μg/L    | 500   |                                                                                  |                               | 57,000  | 33,000  | 16,000  | 19,000  | 40,000  | 78,000  | 28,000 | 19,000 | 36,000 | 40,000 | 32,000  | 21,000  | 16000  | 18,000 | 79,000  |
| Chromium (III+VI)        | μg/L    |       | 1000                                                                             | 1000                          | 3       | <1      | <1      | <1      | <1      | <1      | 3      | <1     | <1     | <1     | <1      | <1      | 8      | <1     | <1      |
| Cobalt                   | μg/L    |       | 100                                                                              | 1000                          | <1      | 11      | <1      | <1      | <1      | 3       | <1     | <1     | <1     | <1     | <1      | 1       | 4      | 1      | 1       |
| Copper                   | μg/L    |       | 5000                                                                             | 400 <sup>#1</sup>             | <1      | <1      | 3       | 47      | 300     | 24      | 2      | 7      | <1     | 13     | 1       | 2       | 9      | 2      | 12      |
| Lead                     | μg/L    |       | 5000                                                                             | 100                           | <1      | <1      | <1      | 1       | <1      | <1      | <1     | <1     | <1     | <1     | <1      | <1      | 2      | <1     | <1      |
| Magnesium                | μg/L    | 500   |                                                                                  |                               | 170000  | 290000  | 230000  | 110000  | 140000  | 240000  | 82000  | 40000  | 160000 | 130000 | 130000  | 21000   | 17000  | 18000  | 170000  |
| Manganese                | μg/L    |       | 10,000                                                                           |                               | <5      | 240     | 38      | <5      | 12      | 750     | <5     | 60     | <5     | 36     | 13      | 38      | 118    | 29     | 0.6     |
| Mercury                  | μg/L    |       | 2                                                                                | 2                             | <0.1    | <0.1    | <0.1    | <0.1    | <0.1    | <0.1    | <0.1   | <0.1   | <0.1   | <0.1   | <0.1    | <0.1    | <0.1   | <0.1   | <0.1    |
| Nickel                   | μg/L    |       | 2000                                                                             | 1000                          | <1      | 26      | 2       | 1       | <1      | 1       | <1     | <1     | <1     | <1     | 1       | 5       | 8      | 5      | 3       |
| Potassium                | μg/L    | 500   |                                                                                  |                               | 5300    | 10,000  | 16,000  | 3600    | 42,000  | 33,000  | 18,000 | 25,000 | 5000   | 10,000 | 22,000  | 39,000  | 21000  | 47,000 | 21,000  |
| Zinc                     | μg/L    | 1     | 5000                                                                             | 20000                         | 7       | 5       | 11      | 30      | 150     | 320     | 14     | 360    | 11     | 16     | 7       | 3       | 20     | <1     | 98      |
| Inorganics               |         |       |                                                                                  |                               |         |         |         |         |         |         |        |        |        |        |         |         |        |        |         |
| Ammonia as N             | μg/L    | 10    |                                                                                  |                               | <10     | 30      | 270     | <10     | <10     | <10     | <10    | <10    | <10    | <10    | <10     | <10     | 200    | <10    | <10     |
| Cyanide Total            | mg/L    | 0.004 |                                                                                  |                               | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | <0.005 | <0.005 | <0.005 | <0.005 | < 0.005 | < 0.005 | <0.004 | 0.023  | < 0.005 |
| Fluoride                 | mg/L    | 0.1   | 2                                                                                | 2                             | <0.5    | <0.5    | <0.5    | <0.5    | < 0.5   | <0.5    | <0.5   | <0.5   | <0.5   | <0.5   | <0.5    | 0.6     | 0.8    | 0.7    | <0.5    |
| Kjeldahl Nitrogen Total  | mg/L    | 0.1   |                                                                                  |                               | <0.2    | <0.2    | 1.6     | <0.2    | 2.7     | <0.2    | <0.2   | <0.2   | <0.2   | <0.2   | <0.2    | <0.2    | 3.2    | 3.1    | <0.2    |
| Nitrate (as N)           | mg/L    | 0.01  |                                                                                  |                               | 1.6     | <0.02   | 7.3     | 1.9     | 5       | < 0.02  | 3.2    | 0.22   | 2.4    | <0.02  | 2.8     | 5.5     | 6.82   | 5.8    | 0.08    |
| Nitrite (as N)           | mg/L    | 0.01  |                                                                                  |                               | < 0.02  | < 0.02  | 0.22    | <0.02   | < 0.02  | < 0.02  | <0.02  | <0.02  | <0.02  | <0.02  | < 0.02  | 3.8     | 1.39   | 3.6    | <0.02   |
| Nitrogen (Total Oxidised | d) mg/L | 0.01  |                                                                                  |                               | 1.6     | <0.05   | 7.6     | 1.9     | 5       | < 0.05  | 3.2    | 0.22   | 2.4    | <0.05  | 2.8     | 9.3     | 8.21   | 9.4    | 0.08    |
| Nitrogen (Total)         | μg/L    | 100   | 25000                                                                            |                               | 1600    | <200    | 9200    | 1900    | 7700    | <200    | 3200   | 220    | 2400   | <200   | 2800    | 9300    | 11,400 | 13,000 | <200    |
| Sodium                   | mg/L    | 0.5   |                                                                                  |                               | 270     | 720     | 580     | 330     | 400     | 460     | 180    | 250    | 290    | 360    | 280     | 180     | 157    | 180    | 340     |
| Sulphate as S            | mg/L    | 5     |                                                                                  |                               | <5      | 43      | 16      | 11      | 14      | 10      | <5     | <5     | 7.4    | 12     | 12      | 14      | 34     | 14     | 12      |
| TDS                      | mg/L    | 10    |                                                                                  | 2000 <sup>#2</sup>            | 1600    | 3500    | 2200    | 1300    | 1700    | 2000    | 700    | 770    | 1600   | 1500   | 1200    | 700     | 1540   | 620    | 1800    |

Comments
#1 Trigget value for sheep adopted
#2 Poultry





## TABLE D:

Comparison of groundwater results against criteria for Industrial use, buildings and structures

| Well Code          | BH10       | BH11       | BH12       | BH14       | BH15       | BH16       | BH17       | BH18       | BH2        | BH5        | BH7        | EFF        | EFF        | EFF        | WSBH       |
|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Field ID           | BH10       | BH11       | BH12       | BH14       | BH15       | BH16       | BH17       | BH18       | BH2        | BH5        | BH7        | 1303-QA1   | 1303-QA2   | EFF        | WSBH       |
| Sample Type        | Primary    | Blind D    | Split D    | Primary    | Primary    |
| Sampled Date       | 11/03/2014 | 11/03/2014 | 12/03/2014 | 12/03/2014 | 13/03/2014 | 12/03/2014 | 13/03/2014 | 13/03/2014 | 11/03/2014 | 11/03/2014 | 12/03/2014 | 13/03/2014 | 13/03/2014 | 13/03/2014 | 13/03/2014 |
| Monitoring Round   | March '14  | March "14  | March '14  | March '14  |
| Lab Report Number  | 411557     | 411868     | 411868     | 411868     | 411868     | 411868     | 411868     | 411868     | 411557     | 411557     | 411868     | 411868     | EM1402371  | 411868     | 411868     |
| Sample Description | GW         | Effluent   | Effluent   | Effluent   | GW         |

| Chemical Name             | Units | EQL   | Industrial Use of Groundwater<br>(ANZECC 1992) | Piling Design<br>(AS2159-2009) |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|---------------------------|-------|-------|------------------------------------------------|--------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Metals                    |       |       |                                                |                                |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Arsenic                   | μg/L  |       |                                                |                                | <1     | 5      | 3      | <1     | <1     | <1     | <1     | <1     | <1     | <1     | <1     | 3      | 3      | 3      | <1     |
| Beryllium                 | μg/L  |       |                                                |                                | <1     | <1     | <1     | <1     | <1     | <1     | <1     | <1     | <1     | <1     | <1     | <1     | <1     | <1     | <1     |
| Boron                     | μg/L  |       |                                                |                                | <50    | <50    | <50    | <50    | <50    | <50    | <50    | 90     | 50     | <50    | <50    | 70     | 190    | 70     | <50    |
| Cadmium                   | μg/L  |       |                                                |                                | <0.2   | <0.2   | <0.2   | <0.2   | <0.2   | 0.2    | <0.2   | <0.2   | <0.2   | <0.2   | <0.2   | <0.2   | <0.1   | <0.2   | <0.2   |
| Calcium                   | μg/L  | 500   | 420000                                         |                                | 57,000 | 33,000 | 16,000 | 19,000 | 40,000 | 78,000 | 28,000 | 19,000 | 36,000 | 40,000 | 32,000 | 21,000 | 16000  | 18,000 | 79,000 |
| Chromium (III+VI)         | μg/L  | 1     |                                                |                                | 3      | <1     | <1     | <1     | <1     | <1     | 3      | <1     | <1     | <1     | <1     | <1     | 8      | <1     | <1     |
| Cobalt                    | μg/L  | 1     |                                                |                                | <1     | 11     | <1     | <1     | <1     | 3      | <1     | <1     | <1     | <1     | <1     | 1      | 4      | 1      | 1      |
| Copper                    | μg/L  | 1     |                                                |                                | <1     | <1     | 3      | 47     | 300    | 24     | 2      | 7      | <1     | 13     | 1      | 2      | 9      | 2      | 12     |
| Lead                      | μg/L  | 1     |                                                |                                | <1     | <1     | <1     | 1      | <1     | <1     | <1     | <1     | <1     | <1     | <1     | <1     | 2      | <1     | <1     |
| Magnesium                 | μg/L  | 500   |                                                |                                | 170000 | 290000 | 230000 | 110000 | 140000 | 240000 | 82000  | 40000  | 160000 | 130000 | 130000 | 21000  | 17000  | 18000  | 170000 |
| Manganese                 | μg/L  |       |                                                |                                | <5     | 240    | 38     | <5     | 12     | 750    | <5     | 60     | <5     | 36     | 13     | 38     | 118    | 29     | 600    |
| Mercury                   | μg/L  |       |                                                |                                | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   | <0.1   |
| Nickel                    | μg/L  |       |                                                |                                | <1     | 26     | 2      | 1      | <1     | 1      | <1     | <1     | <1     | <1     | 1      | 5      | 8      | 5      | 3      |
| Potassium                 | μg/L  | 500   |                                                |                                | 5300   | 10,000 | 16,000 | 3600   | 42,000 | 33,000 | 18,000 | 25,000 | 5000   | 10,000 | 22,000 | 39,000 | 21000  | 47,000 | 21,000 |
| Zinc                      | μg/L  | 1     |                                                |                                | 7      | 5      | 11     | 30     | 150    | 320    | 14     | 360    | 11     | 16     | 7      | 3      | 20     | <1     | 98     |
| Inorganics                |       |       |                                                |                                |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Ammonia as N              | μg/L  | 10    |                                                |                                | <10    | 30     | 270    | <10    | <10    | <10    | <10    | <10    | <10    | <10    | <10    | <10    | 200    | <10    | <10    |
| Cyanide Total             | mg/L  | 0.004 |                                                |                                | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.004 | 0.023  | <0.005 |
| Fluoride                  | mg/L  | 0.1   |                                                |                                | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | 0.6    | 0.8    | 0.7    | <0.5   |
| Kjeldahl Nitrogen Total   | mg/L  | 0.1   |                                                |                                | <0.2   | <0.2   | 1.6    | <0.2   | 2.7    | <0.2   | <0.2   | <0.2   | <0.2   | <0.2   | <0.2   | <0.2   | 3.2    | 3.1    | <0.2   |
| Nitrate (as N)            | mg/L  | 0.01  |                                                |                                | 1.6    | <0.02  | 7.3    | 1.9    | 5      | <0.02  | 3.2    | 0.22   | 2.4    | <0.02  | 2.8    | 5.5    | 6.82   | 5.8    | 0.08   |
| Nitrite (as N)            | mg/L  | 0.01  |                                                |                                | <0.02  | <0.02  | 0.22   | <0.02  | <0.02  | <0.02  | <0.02  | <0.02  | <0.02  | <0.02  | <0.02  | 3.8    | 1.39   | 3.6    | <0.02  |
| Nitrogen (Total Oxidised) | mg/L  | 0.01  |                                                |                                | 1.6    | <0.05  | 7.6    | 1.9    | 5      | <0.05  | 3.2    | 0.22   | 2.4    | <0.05  | 2.8    | 9.3    | 8.21   | 9.4    | 0.08   |
| Nitrogen (Total)          | μg/L  | 100   |                                                |                                | 1600   | <200   | 9200   | 1900   | 7700   | <200   | 3200   | 220    | 2400   | <200   | 2800   | 9300   | 11,400 | 13,000 | <200   |
| Sodium                    | mg/L  | 0.5   |                                                |                                | 270    | 720    | 580    | 330    | 400    | 460    | 180    | 250    | 290    | 360    | 280    | 180    | 157    | 180    | 340    |
| Sulphate as S             | mg/L  | 5     |                                                | 1000                           | <5     | 43     | 16     | 11     | 14     | 10     | <5     | <5     | 7.4    | 12     | 12     | 14     | 34     | 14     | 12     |
| TDS                       | mg/L  | 10    | 35000                                          |                                | 1600   | 3500   | 2200   | 1300   | 1700   | 2000   | 700    | 770    | 1600   | 1500   | 1200   | 700    | 1540   | 620    | 1800   |





TABLE E :

QA QC

### Field Duplicate and Split Samples

| Sample ID                 | EFF      | 1303-QA1 | Diff  | Average | RPD <sup>(1)</sup> |
|---------------------------|----------|----------|-------|---------|--------------------|
| Analyte / Laboratory      | Eurofins | Eurofins | DIII  | Average | KPD.               |
| Metals                    |          |          |       |         |                    |
| Arsenic                   | 3        | 3        | 0     | 3       | 0                  |
| Beryllium                 | <1       | <1       | NA    | NA      | NA                 |
| Boron                     | 70       | 70       | 0     | 70      | 0                  |
| Cadmium                   | <0.2     | <0.2     | NA    | NA      | NA                 |
| Calcium                   | 18,000   | 21,000   | 3000  | 19500   | 15                 |
| Chromium (III+VI)         | <1       | <1       | NA    | NA      | NA                 |
| Cobalt                    | 1        | 1        | 0     | 1       | 0                  |
| Copper                    | 2        | 2        | 0     | 2       | 0                  |
| Lead                      | <1       | <1       | NA    | NA      | NA                 |
| Magnesium                 | 18000    | 21000    | 3000  | 19500   | 15                 |
| Manganese                 | 29       | 38       | 9     | 33.5    | 27                 |
| Mercury                   | <0.1     | <0.1     | NA    | NA      | NA                 |
| Nickel                    | 5        | 5        | 0     | 5       | 0                  |
| Potassium                 | 47,000   | 39,000   | 8,000 | 43000   | 19                 |
| Zinc                      | <1       | 3        | NA    | NA      | NA                 |
| Inorganics                |          |          | NA    | NA      | NA                 |
| Ammonia as N              | <10      | <10      | NA    | NA      | NA                 |
| Cyanide Total             | 0.023    | < 0.005  | NA    | NA      | NA                 |
| Fluoride                  | 0.7      | 0.6      | 0.1   | 0.65    | 15                 |
| Kjeldahl Nitrogen Total   | 3.1      | <0.2     | NA    | NA      | NA                 |
| Nitrate (as N)            | 5.8      | 5.5      | 0.3   | 5.65    | 5                  |
| Nitrite (as N)            | 3.6      | 3.8      | 0.2   | 3.7     | 5                  |
| Nitrogen (Total Oxidised) | 9.4      | 9.3      | 0.1   | 9.35    | 1                  |
| Nitrogen (Total)          | 13,000   | 9300     | 3,700 | 11150   | 33                 |
| Sodium                    | 180      | 180      | 0     | 180     | 0                  |
| Sulphate as S             | 14       | 14       | 0     | 14      | 0                  |
| TDS                       | 620      | 700      | 80    | 660     | 12                 |

| EFF      | 1303-QA2 | Diff   | A       | RPD <sup>(1)</sup> |
|----------|----------|--------|---------|--------------------|
| Eurofins | ALS      | Dill   | Average | RPD"               |
|          |          |        |         |                    |
| 3        | 3        | 0      | 3       | 0                  |
| <1       | <1       | NA     | NA      | NA                 |
| 70       | 190      | 120    | 130     | 92                 |
| <0.2     | <0.1     | NA     | NA      | NA                 |
| 18,000   | 16000    | 2,000  | 17000   | 12                 |
| <1       | 8        | NA     | NA      | NA                 |
| 1        | 4        | 3      | 2.5     | 120                |
| 2        | 9        | 7      | 5.5     | 127                |
| <1       | 2        | NA     | NA      | NA                 |
| 18000    | 17000    | 1000   | 17500   | 6                  |
| 29       | 118      | 89     | 73.5    | 121                |
| <0.1     | <0.1     | NA     | NA      | NA                 |
| 5        | 8        | 3      | 6.5     | 46                 |
| 47,000   | 21000    | 26,000 | 34000   | 76                 |
| <1       | 20       | NA     | NA      | NA                 |
|          |          |        |         |                    |
| <10      | 200      | NA     | NA      | NA                 |
| 0.023    | <0.004   | NA     | NA      | NA                 |
| 0.7      | 0.8      | 0.1    | 0.75    | 13                 |
| 3.1      | 3.2      | 0.1    | 3.15    | 3                  |
| 5.8      | 6.82     | 1.02   | 6.31    | 16                 |
| 3.6      | 1.39     | 2.21   | 2.495   | 89                 |
| 9.4      | 8.21     | 1.19   | 8.805   | 14                 |
| 13,000   | 11,400   | 1,600  | 12200   | 13                 |
| 180      | 157      | 23     | 168.5   | 14                 |
| 14       | 34       | 20     | 24      | 83                 |
| 620      | 1540     | 920    | 1080    | 85                 |

### (1) RPD - Relative Percentage Difference

### Rinsate Blank Results

|                         |       |        | March 2014 Sar | mpling Program |
|-------------------------|-------|--------|----------------|----------------|
| Sample                  |       |        | R1-1203        | 1103-R1        |
| Medium                  | Units | EQL    | Water          | Water          |
| Date                    |       |        | 12/04/2014     | 11/03/2014     |
| Laboratory              |       |        | Eurofins       | Eurofins       |
| Metals                  |       |        |                |                |
| Arsenic                 | mg/L  | 0.001  | < 0.001        | < 0.001        |
| Beryllium               | mg/L  | 0.001  | < 0.001        | < 0.001        |
| Boron                   | mg/L  | 0.05   | < 0.05         | < 0.05         |
| Cadmium                 | mg/L  | 0.0002 | < 0.0002       | < 0.0002       |
| Calcium                 | mg/L  | 0.5    | < 0.5          | < 0.5          |
| Chromium (III+VI)       | mg/L  | 0.001  | < 0.001        | < 0.001        |
| Cobalt                  | mg/L  | 0.001  | < 0.001        | < 0.001        |
| Copper                  | mg/L  | 0.001  | < 0.001        | < 0.001        |
| Lead                    | mg/L  | 0.001  | < 0.001        | < 0.001        |
| Magnesium               | mg/L  | 0.5    | < 0.5          | < 0.5          |
| Manganese               | mg/L  | 0.005  | < 0.005        | < 0.005        |
| Mercury                 | mg/L  | 0.001  | < 0.001        | < 0.001        |
| Nickel                  | mg/L  | 0.001  | < 0.001        | < 0.001        |
| Potassium               | mg/L  | 0.5    | < 0.5          | < 0.5          |
| Zinc                    | mg/L  | 0.001  | < 0.001        | < 0.001        |
| Inorganics              | _     |        |                |                |
| Ammonia as N            | mg/L  | 0.01   | < 0.01         | < 0.01         |
| Cyanide Total           | mg/L  | 0.005  | < 0.005        | < 0.005        |
| Fluoride                | mg/L  | 0.5    | < 0.5          | < 0.5          |
| Kjeldahl Nitrogen Total | mg/L  | 0.2    | < 0.2          | < 0.2          |
| Nitrate (as N)          | mg/L  | 0.02   | < 0.02         | < 0.02         |
| Nitrite (as N)          | mg/L  | 0.02   | < 0.02         | < 0.02         |
| Nitrogen (Total)        | μg/L  | 0.2    | < 0.2          | < 0.2          |
| Sodium                  | mg/L  | 0.5    | < 0.5          | < 0.5          |
| Sulphate as S           | mg/L  | 5      | < 5            | < 5            |

Page 1 Table E - QA QC



# **Appendix A. Quality assurance/ quality control**



# A.1 Scope

This appendix describes the testing methods and quality assurance/quality control (QA/QC) procedures used for analysis of samples obtained during the field activities. This includes:

- Sampling procedures which followed good practice, including sample storage/transport and equipment decontamination procedures
- Well-established and approved analytical methods used by NATA-accredited laboratories
- An adequate number (in compliance with EPA Victoria sampling guidelines) of field blind duplicate samples analysed at the primary laboratory (Eurofins-MGT) for the primary contaminants of potential concern
- An adequate number (in compliance with EPA Victoria sampling guidelines) of field split duplicate samples analysed at the secondary laboratory (ALS) for the principal contaminants of potential concern
- An adequate number (in compliance with EPA Victoria sampling guidelines) of rinsate samples for the principal contaminants of potential concern
- Intra-laboratory QC protocols, including analysis of matrix spike/matrix spike duplicates, laboratory duplicate analysis and method (reagent) blanks
- Other QA/QC protocols in accordance with SKM procedures, based on accepted good practice and relevant guidelines or Australian Standards

The results of the QA/QC Program are detailed in the following sections.

## A.2 Field QA/QC

Quality control sampling and analysis is regularly conducted as part of SKM's QA/QC program to validate the integrity of field procedures and assess the reliability of laboratory analyses. The following table outlines the quality control samples collected during the project field activities and the analyses conducted on these samples.

Table A.1: Quality control samples

| Sample type     | Sample ID | Analysis conducted                               | Comments                                     |
|-----------------|-----------|--------------------------------------------------|----------------------------------------------|
| Blind duplicate | 1303-QA1  | Total metals (16), nutrients, inorganics and TDS | 1303-QA1 is a duplicate of EFF               |
| Split duplicate | 1303-QA2  | Total metals (16), nutrients, inorganics and TDS | 1303-QA2 is a duplicate of EFF               |
| Rinsate blank   | 1103-R1   | Total metals (16), nutrients, inorganics         | Collected from rinsate off the sampling pump |
| Rinsate blank   | R1-1203   | Total metals (16), nutrients, inorganics         | Collected from rinsate off the sampling pump |

### NOTES:

- Metals (16) As, Be, B, Cd, Ca, Cr, Co, Cu, Mg, Mn, Ni, Pb, K, Na, Hg, Zn
- Nutrients ammonia, nitrate, nitrite, total Kjeldahl nitrogen, total nitrogen
- Inorganics sulphate, fluoride, total cyanide

## A.2.1 Sample frequency

A set of soil blind/split duplicate samples were obtained at a frequency of 1 set per 13 primary samples.

The rinsate blank sample was obtained at the rate of one sample per day of field activities per item of dedicated equipment. While sampling was undertaken over three days, on 13 March disposable foot valves were used for undertaking the sampling.

A trip blank was not submitted for analysis as part of the assessment. A trip blank is a blank sample preprepared by the laboratory and sent with the sample containers. The trip blank is meant to remains with the samples until they are returned to the laboratory. It is analysed to assess whether concentrations of volatile compounds (if any) can be attributed to cross-contamination during transport and storage of the samples rather



than from site sources. Volatile organic contaminants are not considered primary contaminants of concern at the site and therefore a trip blank was not considered necessary.

#### A.2.2 Duplicate results

The relative precision of duplicate results was assessed by the magnitude of the Relative Percentage Difference (RPD), calculated as follows:

RPD (%) = 
$$\frac{D_1 - D_2}{(D_1 + D_2) / 2} \times 100$$

Where:

D<sub>1</sub>=duplicate result 1

D<sub>2</sub>=duplicate result 2

An acceptable range for field RPDs is <30-50%. This variation can be expected to be higher for organic compounds than for inorganics, and for low concentrations of analytes. Discussions with laboratories indicate that if detected concentrations are less than five times the detection limit, higher RPDs (up to the theoretical maximum of 200%) are common and may be considered acceptable depending on specific circumstances.

The results of field duplicate analyses and RPD calculations are shown in Table E and can be summarised as follows.

#### Field blind duplicate (Eurofins-MGT / Eurofins-MGT)

The data quality objective of RPD<30-50% was not exceeded in any sample pairs

### Field split duplicate (Eurofins-MGT / ALS)

The data quality objective of RPD<30-50% was exceeded on eight occasions (76 - 127%), for several heavy metals and nitrite, sulphate and TDS

The above exceedances of the data quality objective can likely be attributed to the differences that may exist in the sample preparation and laboratory analysis performed by the two laboratories.

Given both laboratories are NATA accredited, and the field blind duplicates showed satisfactory agreement, the results from the Eurofins-MGT (primary laboratory) laboratory analysis program are deemed to be acceptable.

### A.2.3 Rinsate results

Following completion of groundwater sampling using the low flow technique on 11 and 13 March, a rinsate blank sample was taken from the sampling pump. The rinsate samples were collected to assess the potential for cross-contamination between groundwater sampling locations as a result of inadequate equipment decontamination procedures. The rinsate water used to collect the rinsate samples was laboratory provided deionised water. Rinsate results are presented in Table E.

Samples were noted collected on other sampling days, as dedicated / disposable well sampling equipment was used (foot valve or bailer).

Analysis of the rinsate blank sample indicated that no contaminant concentrations were reported above laboratory detection limits. Therefore, decontamination procedures adopted throughout the investigation are deemed adequate.



# A.3 Sample holding times

Table A.2 below summarises the approved sample holding times for groundwater samples for particular contaminants of concern, as referenced by Table 1, Schedule B(3) of the NEPM (NEPC, 2013).

Table A.2: Water analyte holding times

| Analyte                        | Maximum holding time |
|--------------------------------|----------------------|
| Metals                         | 6 months             |
| Chromium (Cr VI or Hexavalent) | 28 days              |
| Cyanide                        | 14 days              |
| Nitrate                        | 2 days               |
| Nitrite                        | 2 days               |
| TDS                            | 7 days               |
| Ammonia                        | 28 days              |

A review of the analytical reports indicates that all samples were extracted within the prescribed holding times.

# A.4 Laboratory internal QA/QC

All samples were collected in the field by SKM personnel, placed into laboratory prepared sample containers and transferred to the laboratory using appropriate sample preservation procedures and chain-of-custody (CoC) documentation (presented in Appendix D). Samples were submitted to Eurofins-MGT of Oakleigh, Victoria. Split duplicate samples were forwarded to ALS. The analytical data as presented by Eurofins-MGT and ALS is presented in Appendix E. Eurofins-MGT and ALS's analytical methods are certified by the National Association of Testing Authorities (NATA). These methods are also documented in the original laboratory reports.

All analytical laboratories used by SKM are required to adhere to NATA-endorsed testing methodologies and conduct regular quality control checks on their analyses. SKM requires these laboratories to regularly provide results of control/method blanks, repeat duplicates and recoveries.

- Spiked sample recovery tests were performed in the assessment and validation programs by the primary laboratory for key indicators, with acceptable recoveries in the range 70 130%. All spiked sample recoveries were reported within this range.
- Internal laboratory duplicate analyses were undertaken for key indicators during the assessment, with consistent agreement between duplicate data pairs – the 30% data quality objective was not exceeded
- Reagent (method) blank analyses by the laboratory did not detect any contaminants, indicating no contamination from laboratory sources

# A.5 Suitability of method detection limits

Eurofins-MGT and ALS's practical quantification limits/method detection limits were reviewed and compared with the adopted assessment criteria. All PQLs/MDLs were below the relevant criterion for all analytes.

# A.6 Conclusions and statement of analytical reliability

It is considered that the QA/QC program was in accordance with recommended good practice (e.g. AS5667.1-1998 and EPA Victoria *Groundwater Sampling Guidelines*), with some minor non-compliances with data quality objectives noted above. Overall the program is adequate considering the scope and nature of the assessment program undertaken. The data are considered sufficiently reliable for the purpose for which they have been obtained and used.



# **Appendix B. Groundwater sampling sheets**





| Project No:        | VW07335                   | Р                               | roject Name:     | Beveridge F       | PSP - GW S | ampling                                 |             | Date:  | /04/2014             |                                         |
|--------------------|---------------------------|---------------------------------|------------------|-------------------|------------|-----------------------------------------|-------------|--------|----------------------|-----------------------------------------|
| Development        |                           | Performed By:                   |                  |                   | Well Dian  | neter :                                 | 50mm        |        |                      |                                         |
|                    | pment Method              |                                 |                  |                   |            | -                                       |             | -      |                      |                                         |
| Develo             | Time Started              |                                 | SWI (start)      |                   | Volum      | e Removed                               |             | Bore   | Depth (start)        |                                         |
|                    | Time Stopped              |                                 | CVVL (Start)     |                   |            | charge Rate                             |             | -      | Depth (end)          |                                         |
|                    |                           |                                 | SVVL (end)       |                   | Disc       | marge reace_                            |             | -      | APL Present          |                                         |
|                    | Comments                  |                                 |                  |                   |            |                                         |             | -      |                      |                                         |
|                    |                           |                                 |                  |                   |            |                                         |             | (If ye | s, thickness)        | 0.000.000000000000000000000000000000000 |
| Purging            | Purge Method              | Performed By:<br>Micropurge Kit | C.Bannister /    | W Rodger          |            |                                         |             |        |                      |                                         |
|                    | Time Started              | 9:10                            | SWL (start)      | Q.318             | Volum      | e Removed                               | 71          | Bore   | Depth (start)        | 5.860                                   |
|                    |                           | 10:13                           | SWL (end)        |                   |            | charge Rate                             |             | Bore   | Depth (end)          |                                         |
|                    | O                         | 71.15                           | . 1              | 1 10 10           |            | · · · · · · ·                           | -           | - N    | APL Present          |                                         |
|                    | Comments                  | clearfra<br>but no              | r a co           | t. hill<br>sve an | ( nel      | Pla                                     |             | (If ye | es, thickness)       | Ne                                      |
| Sampling           |                           | Performed By:                   | C.Bannister /    | W Rodger          |            |                                         |             | ы.     | - · · · ·            |                                         |
| Sa                 | ampling Method            |                                 |                  |                   |            | Sam                                     | pling Depth | 19than | 3.5m bT              | OC.                                     |
|                    | Time Started              | RES 10:                         | 13               |                   |            | ;                                       | SWL (start) | 8.62   | (too of              | wiell                                   |
|                    | Time Stopped              |                                 | •                |                   |            |                                         | SWL (end)   | 8.65   | (top of              | ティーソ                                    |
|                    | Tubing Type               |                                 |                  |                   |            |                                         | . ,         |        |                      |                                         |
| •                  | Comments                  | Starked                         | of con           | 14,0              | educe      | 1 to 0                                  | PM3         |        |                      |                                         |
|                    | Dunlicate Sam             | ple Collected?                  | Y(N)             | Duplicate S       | Sample ID: | *************************************** |             |        |                      |                                         |
| Field Analyses     | _ '                       | ipio dell'occor.                |                  | zapilosto s       |            |                                         |             |        |                      |                                         |
| Time               | Volume                    | EC                              | pН               | Temp (C)          | Redox      | Dissolve                                | d Oxygen    | Comm   | nents (colour, turbi | dity,                                   |
|                    | Removed (L)               | (uS/cm)                         |                  |                   | (mV)       | (%)                                     | (mg/L)      |        | dours, sheen, etc)   |                                         |
| 1:45               | 0.5                       | 1.56 ms                         | 7.39             | 20.0              | 197        | 5.44 pps                                |             | 8.062  | 4cpm                 | Class                                   |
| :50                | 1.0                       | 2388 25                         | 7.19             | 18.2              | 183        | 5.(3                                    | <del></del> | 8869   | 3cm                  | cleo                                    |
|                    |                           |                                 |                  |                   | +          |                                         |             | 8.064  |                      | dea                                     |
| 1:54               | 3.0                       | 2.68ms                          | 7.15             | 19.9              | 174        | 4.81                                    |             |        |                      |                                         |
| 1:59               | 4.0                       | 2.68                            | 7.18             | 17.6              | 162        | 4.83                                    |             | 8.066  | **                   | clea                                    |
| 0:04               | 5.0                       | 2.68                            | 7.25             | 17.6              | 155        | 5.08                                    |             | 8.65   | **                   | "                                       |
| 0:09               | 6.0                       | 2.67                            | 7.28             | 17.5              | 150        | 5.11                                    |             | 8.66   | 15                   | 15                                      |
|                    | 7.0                       | 2.68                            | 7.29             | 176               | 145        | 5.18                                    |             | 8.65   | 1.                   | ٠,                                      |
| 0:13               | 1.6                       | C v C C                         | ,,,,,            |                   |            |                                         |             |        |                      |                                         |
|                    |                           |                                 |                  |                   |            |                                         |             |        |                      |                                         |
|                    |                           |                                 |                  |                   |            |                                         |             |        |                      |                                         |
|                    |                           |                                 |                  |                   |            |                                         |             |        |                      |                                         |
|                    |                           |                                 |                  |                   |            |                                         |             |        |                      |                                         |
|                    |                           |                                 |                  |                   |            |                                         |             |        |                      |                                         |
|                    |                           |                                 |                  |                   |            |                                         |             |        |                      |                                         |
|                    |                           |                                 |                  |                   |            |                                         |             |        |                      |                                         |
|                    | -                         |                                 |                  |                   |            |                                         |             |        |                      |                                         |
| Stabilisation Crit | eria                      | +/- 3%                          | +/- 0.05         | +/- 10%           | +/- 10%    | +/-                                     | 10%         | _      |                      |                                         |
| Well Volume        | Calculations              |                                 |                  |                   |            |                                         |             |        |                      |                                         |
| Casing Diamete     |                           | 25mm                            | 50mm             | 100mm             | 125mm      | 150mm                                   | 200mm       | 250mm  | 300mm                |                                         |
| Conversion Fa      |                           | 0.98                            | 1.96             | 7.85              | 31.4       | 49.1                                    | 70.7        | 125.7  | 196.3                |                                         |
| FOTAL WELL         | DEPTH ( - ) V<br>m ( - )_ | VATER LEVEL                     | (=) WATE!<br>(=) | R COLUMN          | 1          |                                         |             |        |                      |                                         |
|                    |                           | WATER COL                       |                  |                   |            |                                         |             |        | JME                  |                                         |
|                    |                           |                                 |                  |                   |            | (=)                                     |             |        |                      |                                         |

WELL No:



|               |                                                                                                                                                                                                                  | r roject staine                                                                                                                                                                                                                                                                                                                          | : Beveridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PSP - GW 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /04/2014                                | +                                                        | _              |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------|----------------|
|               | Performed By:                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Well Dia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | meter :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50mm                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                          |                |
| pment Method  |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                          |                |
| ,             |                                                                                                                                                                                                                  | SWL (start                                                                                                                                                                                                                                                                                                                               | t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Volum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                          | _              |
|               |                                                                                                                                                                                                                  | SWL (end                                                                                                                                                                                                                                                                                                                                 | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | charge Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                          |                |
| Comments      | WARRIER, PROPERCIAL SCHOOL STATE                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                          |                |
|               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | _ (If y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | yes, thickness)                         |                                                          | _              |
|               | Performed By:                                                                                                                                                                                                    | C.Bannister                                                                                                                                                                                                                                                                                                                              | W Rodger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          |                |
| Purge Method  | Micropurge Kit                                                                                                                                                                                                   | Tap-                                                                                                                                                                                                                                                                                                                                     | ran taxp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | for 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | wind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cs.                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | _                                                        |                |
| Time Started  | 10:50                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Volum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ne Removed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _30L                                         | Bor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e Depth (start)                         |                                                          | _              |
|               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          |                |
|               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s. Ras                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          |                |
|               | tap to                                                                                                                                                                                                           | puge                                                                                                                                                                                                                                                                                                                                     | The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sampl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ra.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              | _ (If y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | yes, thickness)                         |                                                          | _              |
|               | Performed By:                                                                                                                                                                                                    | C.Bannister                                                                                                                                                                                                                                                                                                                              | W Rodger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          |                |
| npling Method | Micropurge Kit                                                                                                                                                                                                   | Tap.                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pling Depth                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                          |                |
| Time Started  |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          |                |
| Time Stopped  |                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          |                |
|               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                       | _                                                        |                |
| Comments      |                                                                                                                                                                                                                  | ALAPPAA II                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | -                                                        |                |
| Dunlingt- O   | ala Calle de do                                                                                                                                                                                                  | V/N                                                                                                                                                                                                                                                                                                                                      | Dunit t - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Name to 15:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          |                |
| Duplicate Sam | pie Collected?                                                                                                                                                                                                   | Y/N                                                                                                                                                                                                                                                                                                                                      | Duplicate S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sample ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | _                                                        |                |
|               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          |                |
| Volume        | EC                                                                                                                                                                                                               | рН                                                                                                                                                                                                                                                                                                                                       | Temp (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Redox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dissolve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d Oxygen                                     | Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ments (colour, tu                       | rbidity,                                                 | 7              |
| Removed (L)   | (uS/cm)                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (mg/L)                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | - R                                                      |                |
|               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.71pp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>.                                    </u> | clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Collect                                 | ed from                                                  | ta             |
|               | 2.81                                                                                                                                                                                                             | 7.11                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          | Tou            |
| 45L           | 2.83                                                                                                                                                                                                             | 7-11                                                                                                                                                                                                                                                                                                                                     | 23.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          | 100            |
|               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          | -              |
|               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·   |                                                          | -              |
|               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          | -              |
|               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          | -              |
|               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          | 1              |
|               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          | -              |
|               | I.                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          | 1              |
|               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                       |                                                          |                |
|               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          | 1              |
|               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          |                |
|               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          |                |
|               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          | -              |
|               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          | -              |
|               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          | -              |
|               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | <del></del>                                              | -              |
|               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          |                |
|               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *************************************** |                                                          | 1              |
| ia            | +/- 3%                                                                                                                                                                                                           | +/- 0.05                                                                                                                                                                                                                                                                                                                                 | +/- 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +/- 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +/-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10%                                          | ] .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                                          | _              |
| alculations   |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          |                |
|               | 25                                                                                                                                                                                                               | F0                                                                                                                                                                                                                                                                                                                                       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200                                          | 050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200                                     | 1                                                        |                |
| or            |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del>}</del>                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          |                |
| <u> </u>      | 0,00                                                                                                                                                                                                             | 1.00                                                                                                                                                                                                                                                                                                                                     | 1 7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 01.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 70.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.1                                         | 120.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 130.0                                   | ı                                                        |                |
| EPTH ( _ ) W  | ATER LEVEL                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                          | R COLUMN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          |                |
|               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          |                |
|               |                                                                                                                                                                                                                  | (=)                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                          |                |
|               | Time Started Time Stopped Comments  Purge Method Time Started Time Stopped Comments  mpling Method Time Started Time Stopped Tubing Type Comments  Duplicate Sam  Volume Removed (L) 35 L 45 L 45 L  alculations | pment Method Time Started Time Stopped Comments  Performed By: Purge Method Micropurge Kit Time Stopped Comments Bore con Performed By: mpling Method Micropurge Kit Time Started Time Stopped Tubing Type Comments  Duplicate Sample Collected?  Volume EC Removed (L) (us/cm) 3 o L 2.74 s 3 S L 2.81 4 S L 2.85  alculations  to 0.98 | pment Method Time Started SWL (start Time Stopped SWL (end Comments  Performed By: C.Bannister A Purge Method Micropurge Kit Tap - Time Started Comments SWL (end Comments Bare concerno tap to purge Performed By: C.Bannister A Time Stopped SWL (end Time Started Tubing Type Comments  Duplicate Sample Collected? Y/N  Volume EC pH Removed (L) (us/cm) 3 SL 2.81 7.11  4 SL 2.85 7.11  4 SL 2.85 7.11  4 SL 2.85 7.11  A START SOmm Tor 0.98 1.96 | prenent Method Time Started Time Stopped Comments  Performed By: C.Bannister / W Rodger Purge Method Micropurge Kit Tap - randap Time Started Comments  Performed By: C.Bannister / W Rodger Time Stopped Comments  Performed By: C.Bannister / W Rodger  Time Started Time Started Time Stopped Tubing Type Comments  Duplicate Sample Collected? Y/N Duplicate S  Volume EC pH Temp (C)  Removed (L) (uslam)  3 S L 2.8 1 7.11 23.2  4 S L 2.8 1 7.11 23.3  3 S L 2.8 1 7.11 23.3  3 S L 2.8 1 7.11 23.7  4 S L 2.8 3 7.11 23.7  4 S L 2.8 3 7.11 23.7  Adaptions  100 Dommetor Dome 100 Dommetor Dome 100 Do | pment Method Time Started SWL (start) Volume Performed By: C.Bannister / W Rodger Purge Method Mucopurge Kit Tap - ran tap for SWL (start) Time Started SWL (end) Dis Comments SWL (end) Dis Comments SWL (end) Dis Comments Rore Concert of the analytic sample Comments SWL (end) Dis Comments Rore Concert of the analytic sample Tap to purge The Sample Tap.  Performed By: C.Bannister / W Rodger  Performed By: C.Bannister / W Rodger  Performed By: C.Bannister / W Rodger  Time Started Time Started Time Stopped Tubing Type Comments  Duplicate Sample Collected? Y / N Duplicate Sample ID:  Volume EC pH Temp (c) Redox Removed (L) (usform) Ras L 2.74  To 8 23.3 Lb6 3S L 2.81 7.11 23.2 Lb2 4S L 2.83 7.11 23.3 I44  4S L 2.83 7.11 23.2 Lb2  4S L 2.83 7.11 23.3 I44  alculations  10 | Discharge Rate                               | pment Method Time Started Time Stopped Comments  Performed By: C.Bannister / W Rodger Purge Method https://www.miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com/miscommonth.com | Discharge Rate                          | Duplicate Sample Collected?   V/N   Duplicate Sample ID: | Discharge Rate |





| roject No:                                    | VW07335                           | P                               | roject Name:                          | Beveridge F                   | PSP - GW S               | ampling    |                          | Date:          | 12/04/2014         | •       |     |
|-----------------------------------------------|-----------------------------------|---------------------------------|---------------------------------------|-------------------------------|--------------------------|------------|--------------------------|----------------|--------------------|---------|-----|
| Development                                   |                                   | Performed By:                   |                                       |                               | Well Diam                | neter:     | 50mm                     |                |                    |         |     |
|                                               | pment Method                      |                                 |                                       |                               |                          |            | 2.                       |                |                    |         |     |
|                                               | Time Started                      |                                 | SWL (start)                           |                               | Volume                   | e Removed  |                          | Bor            | e Depth (start)    |         |     |
|                                               | Time Stopped                      |                                 | SWL (end)                             |                               | Disc                     | harge Rate |                          | Bo             | re Depth (end)     |         |     |
|                                               | Comments                          |                                 |                                       |                               |                          |            |                          |                | NAPL Present       |         |     |
|                                               |                                   |                                 |                                       |                               | 1                        |            |                          | (If y          | yes, thickness)    | -       |     |
| Purging                                       | Purge Method                      | Performed By:<br>Micropurge Kit | C.Bannister /                         |                               | ubtou                    | 1          |                          |                |                    |         |     |
|                                               |                                   | 16.29                           | SWL (start)                           | 9.730                         | Volum                    | e Removed  | 7 Libra                  | Bor            | e Depth (start)    | 15.00 n | TOI |
|                                               | Time Stopped                      | 16.44                           |                                       |                               |                          |            | 4CPM                     |                | re Depth (end)     |         |     |
|                                               | Comments                          |                                 |                                       |                               |                          |            |                          |                | NAPL Present       | 7       |     |
|                                               |                                   |                                 |                                       |                               |                          |            |                          | (If y          | yes, thickness)    | No.     |     |
| Sampling                                      | -                                 | Performed By:                   | C.Bannister /                         | W Rodger                      |                          |            | npling Depth             | 14. T          | out                |         |     |
| Sa                                            |                                   | Micropurge Kit                  |                                       |                               |                          | Sam        | ipling Depth             | 9 14           | -5 - 25            |         |     |
|                                               | Time Started                      |                                 |                                       |                               |                          |            | SWL (start)<br>SWL (end) | 9.240          | -                  |         |     |
|                                               | Time Stopped                      |                                 |                                       |                               |                          |            | SWL (end)                | 7.240          | . •                |         |     |
|                                               | Tubing Type                       | twin                            |                                       |                               |                          |            | f.                       |                |                    | -1      |     |
|                                               | Comments                          | Clear so                        | uple,                                 | Looge                         | echou                    | ge         |                          |                |                    | 2       |     |
|                                               |                                   |                                 |                                       |                               |                          |            |                          |                |                    | -       |     |
| ield Analyses                                 | Duplicate Sam                     | ple Collected?                  | EXCN)                                 | Duplicate S                   | Sample ID:               | -          |                          |                |                    | -       |     |
| ,                                             |                                   | F0                              |                                       | T (C)                         | Redox                    | Discolve   | ed Oxygen                | Con            | nments (colour, tu | rhidity |     |
| Time                                          | Volume                            | EC (C(a-rr)                     | рН                                    | Temp (C)                      |                          |            | 1                        | 3011           | odours, sheen, et  | 20.00   |     |
| 170                                           | Removed (L)                       | (uS/cm)                         | 7.27                                  | 19.4                          | (mV)                     | 7.5700     | (mg/L)                   | 9.240          |                    | 4cpn    |     |
| 5:29                                          | 0.5                               | 2104ms                          | 7.22                                  | 17.8                          | 110                      | 7-24       |                          |                | clear              | 4010    |     |
| 3:31                                          | 1-0                               | 2109                            |                                       | 17.1                          |                          | 6.98       |                          | 9.240          |                    |         |     |
| :35                                           | 3.0                               | 2116                            | 7.21                                  | 1                             | 101                      |            |                          | 9 24           | cla                |         |     |
| :37                                           | 4.0                               | 2117                            | 18.14                                 | 17.1                          | 97                       | 6.87       |                          | 9.240          | clear              |         |     |
| 0:39                                          | 5.0                               | 2113                            | 7.14                                  | 16.9                          |                          |            |                          | 64             | · ·                |         |     |
| 6:41                                          | 6.0                               | 2117                            | 7.09                                  | 16.9                          | 94                       | 6.82       |                          |                |                    |         |     |
| 6:44                                          | 7.0                               | 2118                            | 7.12                                  | 17.0                          | 90                       | 6.89       |                          | ( -            | ν.ε                |         |     |
|                                               |                                   |                                 |                                       |                               |                          |            |                          |                |                    |         |     |
|                                               | C                                 | / 1                             |                                       | 716                           |                          |            |                          |                |                    |         |     |
|                                               | S                                 | upled                           | 0                                     | 76                            | 25.                      |            |                          |                |                    | ă.      |     |
|                                               | S                                 | upled                           | @                                     | 76                            | 25.                      |            |                          |                |                    | V       |     |
|                                               | S                                 | upled                           | @                                     | 764                           | 15.                      |            |                          |                |                    |         |     |
|                                               | Sc                                | upled                           | 6                                     | 76                            | 25.                      |            |                          |                |                    |         |     |
|                                               | S                                 | upled                           | @                                     | 764                           | 25.                      |            |                          |                |                    |         |     |
|                                               | S                                 | upled                           | @                                     | 764                           | 25.                      |            |                          |                |                    |         |     |
|                                               | S                                 | upled                           | @                                     | 764                           | 25.                      |            |                          |                |                    |         |     |
|                                               | S                                 | upled                           | @                                     | 764                           | 25.                      |            |                          |                |                    |         |     |
| abilisation Crite                             | Seria                             | upled                           |                                       |                               |                          | +/-        | 10%                      |                |                    |         |     |
|                                               |                                   | +/- 3%                          | +/- 0.05                              | +/- 10%                       | +/- 10%                  | +/-        | 10%                      |                |                    |         |     |
|                                               |                                   | +/- 3%                          |                                       |                               |                          | +/-        | 10%                      |                |                    |         |     |
| tabilisation Crite Well Volume asing Diameter | Calculations                      | +/- 3%                          |                                       | +/- 10%                       |                          | +/-        | 200mm                    | 250mm          | 300mm              |         |     |
| Well Volume                                   | Calculations                      |                                 | +/- 0.05                              | +/- 10%                       | +/- 10%                  |            |                          | 250mm<br>125.7 | 300mm<br>196.3     |         |     |
| Well Volume asing Diameter onversion Fa       | Calculations  ctor  DEPTH ( - ) V | 25mm                            | +/- 0.05<br>50mm<br>1.96<br>(=) WATER | +/- 10%  100mm 7.85  R COLUMN | +/- 10%<br>125mm<br>31.4 | 150mm      | 200mm                    |                |                    |         |     |

Refer to Work Instructions WI113, WI114 and WI115





| Project No:       | VW07335         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project Name: | Beveridge F | PSP - GW S | ampling     |             | Date:             | / /04/2014                      |           |
|-------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|------------|-------------|-------------|-------------------|---------------------------------|-----------|
| Development       |                 | Performed By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | V           | Well Diar  | neter:      | 50mm        | _                 |                                 |           |
| Deve              | opment Method   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |            |             |             | _                 |                                 |           |
|                   | Time Started    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SWL (start)   |             | Volum      | e Removed   |             |                   | e Depth (start)                 |           |
|                   | Time Stopped    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SWL (end)     |             | Disc       | charge Rate |             | _                 | e Depth (end)                   |           |
|                   | Comments        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |            |             |             | _                 | NAPL Present                    |           |
|                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |            |             |             | _ (If y           | es, thickness)                  |           |
| Purging           | Down a Math a d | Performed By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C.Bannister / | W Rodger    | 9000       | f well      |             |                   |                                 |           |
|                   | Purge Method    | wiiciopuige Kii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |            |             | 1           | –<br>Dor          | a Danth (start)                 | 21.130 TO |
|                   | Time Started    | 15:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SVVL (Start)  | PIM         | (COVOIUII) | charge Ŕate | <u> </u>    | DOI!              | re Depth (start)                | 4130 10   |
|                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |            | charge Rate | 7-736       | <i>≱1</i> ∕∕( B0I | NADI Desesa                     |           |
|                   | Comments        | Reduce<br>after 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d cyc         | and to      | wel S      | stabili'    | 502         | (If y             | NAPL Present<br>res, thickness) | 40        |
| Sampling          |                 | Performed By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C.Bannister / | W Rodger    |            | ,           |             |                   |                                 |           |
| S                 | ampling Method  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |            |             | pling Depth |                   |                                 |           |
|                   | Time Started    | 15:31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |             |            |             | SWL (start) | 9.700             |                                 |           |
|                   | Time Stopped    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _             |             |            |             | SWL (end)   | 9760              |                                 |           |
|                   | Tubing Type     | twin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |             | No.        |             |             |                   |                                 |           |
|                   | Comments        | cea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Saple         |             |            |             |             | <u> </u>          |                                 |           |
|                   | _ Duplicate Sam | ple Collected?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | YA            | Duplicate S | Sample ID: |             | -           |                   |                                 |           |
| Field Analyses    | 3               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |            |             |             |                   |                                 |           |
| Time              | Volume          | EC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | рH            | Temp (C)    | Redox      | Dissolve    | d Oxygen    | Com               | ments (colour, tur              | bidity,   |
|                   | Removed (L)     | (uS/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |             | (mV)       | (%)         | (mg/L)      |                   | odours, sheen, et               | c)        |
| 15:15             | 0.5             | €.77ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.30          | 21.5        | 75         | 5.0300      | •           | 9.700             | 4cpn                            | Clear     |
| 15:18             | 1.0             | 2.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.22          | 19.1        | 69         | 5.03pp      |             | 9.670             | ٠ (,                            |           |
| 15:20             | 2.0             | 2:70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.19          | 18.3        | 67         | 4.20        |             | 9.750             | 3 CPN                           | ( "       |
| 15:23             | 3.0             | 2.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.15          | 18.3        | 67         | 3.94        |             | 9.730             | "                               | •         |
|                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1             |             |            |             |             |                   |                                 |           |
| 15:27             | 4-0             | 2.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.14          | 18.4        | 66         | 3.93        |             | 9.750             |                                 |           |
| 15:31             | 5.0             | 2.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.15          | 18.3        | 66         | 4.07        |             | 9.760             |                                 |           |
|                   | Saple           | d @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.0 L         | tes.        | ((;        | ov .        |             |                   |                                 |           |
|                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |            |             |             |                   |                                 |           |
|                   | NO. 12.07       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |            |             |             |                   |                                 |           |
|                   |                 | And the second s |               |             |            |             |             |                   |                                 |           |
|                   |                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |             |            |             |             |                   |                                 |           |
|                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |            |             |             |                   |                                 |           |
|                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |            |             |             |                   |                                 |           |
|                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |            |             |             |                   |                                 |           |
|                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |            |             |             |                   |                                 |           |
| Stabilisation Cri | teria           | +/- 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +/- 0.05      | +/- 10%     | +/- 10%    | +/-         | 10%         |                   |                                 |           |
|                   | Calculations    | 17-076<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 17- 0.00    | 1 .,        | 1 17 1070  | 1           | 1070        |                   |                                 |           |
|                   |                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |             | T          | 1           | ·           |                   | r                               | ı         |
| Casing Diamete    |                 | 25mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50mm          | 100mm       | 125mm      | 150mm       | 200mm       | 250mm             | 300mm                           |           |
| Conversion Fa     | actor           | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.96          | 7.85        | 31.4       | 49.1        | 70.7        | 125.7             | 196.3                           |           |
|                   |                 | VATER LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |             |            |             |             |                   |                                 | ·         |
|                   |                 | WATER COL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UMN(X)C       | ONVERSIO    |            |             |             |                   | UME                             |           |
|                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | ·····       |            |             |             |                   |                                 |           |





| Project No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VW07335                  | F                               | Project Name:    | Beveridge F | PSP - GW S | ampling      |             | Date:     | ( /04/201                    | 4         |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------|------------------|-------------|------------|--------------|-------------|-----------|------------------------------|-----------|------------|
| Development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | opment Method            | Performed By:                   |                  | p .         | Well Dian  | neter:       | 50mm        |           |                              |           |            |
| 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time Started             |                                 | SWL (start)      |             |            | e Removed    |             |           | Depth (start                 |           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time Stopped             |                                 | SWL (end)        | 5.          | Disc       | charge Rate  |             |           | e Depth (end<br>NAPL Presen  |           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Comments                 |                                 |                  |             |            |              |             |           | es, thickness                |           |            |
| - VIII. 1 AV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                 |                  |             |            | 0            | Msi         |           |                              |           |            |
| Purging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Purge Method             | Performed By:<br>Micropurge Kit | C.Bannister / \  |             | Tow        | top de       | 00          |           |                              |           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time Started             |                                 | SWL (start)      |             | 1 4        | e Removed    |             |           |                              | 18.856    | bTow       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time Stopped             |                                 | SWL (end)        |             | Disc       | charge Rate  |             |           | e Depth (end                 |           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Comments                 |                                 |                  |             |            |              |             |           | NAPL Presen<br>es, thickness |           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | D. C I D                        | O Di-t (1)       | M Dadaa     |            | 0            |             |           |                              |           |            |
| Sampling S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ampling Method           | Performed By:<br>Micropurge Kit | C.Bannister /    | vv Roager   | -          | Sam          | pling Depth | 17mb      | TOW                          |           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time Started             |                                 |                  |             |            |              |             |           | 3.760 1                      | o Tow     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time Stopped             |                                 |                  |             |            |              | SWL (end)   |           |                              |           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tubing Type              |                                 | mlky,            | .1          |            | 020          | eta )       | red CP    | ME                           |           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Comments                 | charged                         | to CAM           | clear.      | ~ qu       | cely.        | Sia         | rea ci    | , ,                          | _         |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | ple Collected?                  | YN               | Duplicate S | Sample ID: | _            |             |           |                              | _         |            |
| Field Analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                                 |                  |             |            |              |             |           |                              |           |            |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volume                   | EC                              | pН               | Temp (C)    | Redox      | Dissolve     | d Oxygen    | Com       | ments (colour, t             | urbidity, |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Removed (L)              | (uS/cm)                         | 72:              | 10 -        | (mV)       | (%)          | (mg/L)      | 4464-     | odours, sheen,               |           | Land and   |
| 13:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                      | 6.29ms                          | 7.21             | 19.5        | 6          | 1.92pps      | ۸           | 4.04      | J.760                        | chay s    | ightlynull |
| 14:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5                      | 6.35                            | 7.04             | 18.8        | -15        | 0.94         |             | 4.16      |                              | clean     | 1          |
| 14:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.0                      | 6.35                            | 7.05             | 19.9        | -30        | 0.70         |             | 4.39      | 11                           | "         |            |
| 14:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                      | 6.35                            | 7.08             | 20.8        | -36        | 0.64         |             | 4.48      | 11                           | 4 v       |            |
| Marie to the Contract of the C |                          |                                 | C: 1             |             |            | 1            |             | 1 1       |                              |           |            |
| No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | recha                    | g= - L                          | eft to           | bon         | wit        | disp         | was         | le b      | ales                         | to        | -          |
| puo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e dry                    |                                 |                  | 12          | 1311       | 4            |             |           |                              |           |            |
| Bout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ed:                      |                                 |                  | 16          | 1/1        |              |             |           |                              |           | - 1        |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .,                       |                                 | 1.0              | 0           | 1 - 1      |              |             |           |                              |           | ./         |
| 9:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 401                      | 5.87                            | 7.19             | 15.9        | 104        | 4.1000       | <u> </u>    |           |                              |           | -          |
| 9:47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45L                      | 6.35                            | 7.15             | 15.7        | 46         | 6.61pp       |             |           |                              |           | -          |
| 9.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50 L                     | 6.26                            | 7.16             | 15.6        | 33         | 8.76         |             |           |                              |           | 1          |
| 9:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 57.L                     | 6.35                            | 7.19             | 15.6        | 26         | 4.46         |             |           |                              |           |            |
| 9.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54L                      | 6.09                            | 7.18             | 15.6        | 22         | 3.72         |             |           |                              |           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sagl                     | ed usi                          | p ba             | 120         |            |              |             |           |                              |           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                      | 0,1                             |                  |             |            |              |             |           |                              |           |            |
| Stabilisation Crit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eria                     | +/- 3%                          | +/- 0.05         | +/- 10%     | +/- 10%    | +/-          | 10%         |           |                              |           | J          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | ,                               | 7 0.00           | 1 . 1070    |            |              |             | 1         |                              |           |            |
| Well Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Calculations             | I,                              |                  |             |            |              |             |           |                              |           |            |
| Casing Diamete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | 25mm                            | 50mm             | 100mm       | 125mm      | 150mm        | 200mm       | 250mm     | 300mm                        |           |            |
| Conversion Fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | octor                    | 0.98                            | 1.96             | 7.85        | 31.4       | 49.1         | 70.7        | 125.7     | 196.3                        | _         |            |
| TOTAL WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DEPTH ( - ) W<br>m ( - ) | VATER LEVEL                     | (=) WATER<br>(=) | COLUMN      |            |              |             |           |                              |           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | WATER COL                       |                  |             | N FACTO    | R ( = ) LITE | RES PER \   | WELL VOLU | JME                          |           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                 |                  |             |            |              |             |           |                              |           |            |





| Development Method Time Started Time Stopped SWL (end) Discharge Rate Bore Depth (start) NAPL Present (If yes, thickness)  Purging Performed By: C.Bannister / W Rodger Time Started Time Stopped Comments SwL (end) Discharge Rate Discharge Rate Time Started SwL (start) Discharge Rate Time Stopped Comments SwL (end) Discharge Rate Comments SwL (end) Discharge Rate Bore Depth (start) 17.3 o moderate Bo | Project No:           | VW07335                               | P                             | roject Name:          | Beveridge F | SP - GW S                               | ampling               |             | Date:    | 12/04/2014                    |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------|-------------------------------|-----------------------|-------------|-----------------------------------------|-----------------------|-------------|----------|-------------------------------|-------------|
| Time Stopped   SWL (end)   Discharge Rale   Bore Depth (end)   MAPL Present (If yes, hickness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Development<br>Develo |                                       | Performed By:                 |                       |             | , , , , , , , , , , , , , , , , , , , , |                       | 50mm        | Bore     | e Depth (start)               |             |
| Puge Method Micropurge Kit   Source   Swil (start)   1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | Time Stopped                          |                               |                       |             |                                         | -                     |             | Bor      | e Depth (end)                 |             |
| Sampling Method Micropurge Kit   Sampling Depth   SWL (start   SWL (   | Purging               | Time Started Time Stopped             | Micropurge Kit 15:47 Benley + | SWL (start) SWL (end) | 16.10 n     | Disc                                    | charge Rate           |             | Bor<br>! | e Depth (end)<br>NAPL Present | <u>m</u> 57 |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | Time Started Time Stopped Tubing Type | Micropurge Kit                | Basile                | <i>s</i>    | 3 2                                     |                       | SWL (start) |          |                               |             |
| Removed (L)   (usicm)   (mV)   (%)   (mgL)   odours, sheen, etc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Field Analyses        |                                       | ple Collected?                | Y/N                   | Duplicate S | ample ID:                               |                       |             |          |                               |             |
| 15:47   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Time                  | 35.000.000.000                        |                               | рН                    | Temp (C)    |                                         |                       |             |          |                               |             |
| S, 49   3   3   88   8   01   16   141   8   60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15:117                | Reliloved (L)                         |                               | 2.10                  | 172         |                                         | 2000                  | (5.=/       |          |                               |             |
| Purgea Dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | 21-                                   |                               |                       |             |                                         |                       |             | Secrit   | 3, 8,000                      |             |
| Well Volume Calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13:41                 | 30                                    | 2.00                          | 8.01                  | 10.0        | 141                                     | 8,00                  |             |          |                               |             |
| Well Volume Calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | Pura                                  | De                            |                       | 7           |                                         |                       |             |          |                               |             |
| Mell Volume Calculations   Mell Volume Calcula   |                       | 10190                                 | 10.9.                         |                       |             |                                         |                       |             |          |                               |             |
| Mell Volume Calculations   Mell Volume Calcula   |                       |                                       |                               |                       |             |                                         |                       |             |          |                               |             |
| Mell Volume Calculations   Mell Volume Calcula   | ×                     |                                       |                               | 1 6 2                 | *           |                                         |                       |             |          |                               |             |
| Mell Volume Calculations   Mell Volume Calcula   |                       |                                       |                               |                       |             |                                         |                       |             |          |                               | _           |
| Mell Volume Calculations   Mell Volume Calcula   |                       |                                       |                               |                       |             |                                         |                       |             |          |                               |             |
| Well Volume Calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                       |                               |                       | - 5         |                                         |                       |             |          |                               |             |
| Well Volume Calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                       |                               |                       |             |                                         |                       |             | -        |                               |             |
| Well Volume Calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | ,                                     |                               |                       |             |                                         |                       |             |          |                               |             |
| Well Volume Calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                       |                               |                       |             |                                         |                       |             |          |                               |             |
| Well Volume Calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                       | **                            |                       |             |                                         |                       |             |          |                               |             |
| Well Volume Calculations   100mm   125mm   150mm   200mm   250mm   300mm   200mversion Factor   0.98   1.96   7.85   31.4   49.1   70.7   125.7   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   196.3   19   |                       |                                       |                               |                       |             |                                         | 140                   |             |          |                               |             |
| Well Volume Calculations   25mm   50mm   100mm   125mm   150mm   200mm   250mm   300mm   250mversion Factor   0.98   1.96   7.85   31.4   49.1   70.7   125.7   196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.   |                       | ,                                     | (90)                          |                       |             |                                         |                       | 4           |          | i                             |             |
| Well Volume Calculations   25mm   50mm   100mm   125mm   150mm   200mm   250mm   300mm   250mversion Factor   0.98   1.96   7.85   31.4   49.1   70.7   125.7   196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.   |                       |                                       |                               |                       |             |                                         |                       |             | 1        |                               |             |
| Well Volume Calculations   25mm   50mm   100mm   125mm   150mm   200mm   250mm   300mm   250mversion Factor   0.98   1.96   7.85   31.4   49.1   70.7   125.7   196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.   |                       |                                       |                               |                       |             |                                         |                       |             |          |                               |             |
| Well Volume Calculations   25mm   50mm   100mm   125mm   150mm   200mm   250mm   300mm   250mversion Factor   0.98   1.96   7.85   31.4   49.1   70.7   125.7   196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.   |                       |                                       |                               |                       | ,           |                                         |                       |             |          |                               |             |
| Well Volume Calculations   25mm   50mm   100mm   125mm   150mm   200mm   250mm   300mm   250mversion Factor   0.98   1.96   7.85   31.4   49.1   70.7   125.7   196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.   |                       |                                       |                               |                       |             |                                         |                       |             | -        |                               |             |
| Well Volume Calculations   25mm   50mm   100mm   125mm   150mm   200mm   250mm   300mm   250mversion Factor   0.98   1.96   7.85   31.4   49.1   70.7   125.7   196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.   |                       |                                       |                               |                       |             |                                         |                       |             | -        |                               |             |
| Well Volume Calculations   25mm   50mm   100mm   125mm   150mm   200mm   250mm   300mm   250mversion Factor   0.98   1.96   7.85   31.4   49.1   70.7   125.7   196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.   |                       |                                       |                               |                       |             | -                                       |                       |             |          |                               |             |
| Well Volume Calculations   25mm   50mm   100mm   125mm   150mm   200mm   250mm   300mm   250mversion Factor   0.98   1.96   7.85   31.4   49.1   70.7   125.7   196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.3     196.   |                       |                                       |                               |                       |             |                                         |                       |             | 1        |                               |             |
| Casing Diameter         25mm         50mm         100mm         125mm         150mm         200mm         250mm         300mm           Conversion Factor         0.98         1.96         7.85         31.4         49.1         70.7         125.7         196.3    **TOTAL WELL DEPTH (-) WATER LEVEL (=) WATER COLUMN  **IT COLUMN (= ) WATER COLUMN (= ) LITRES PER WELL VOLUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stabilisation Crit    | eria                                  | +/- 3%                        | +/- 0.05              | +/- 10%     | +/- 10%                                 | +/-                   | 10%         |          |                               |             |
| Conversion Factor 0.98 1.96 7.85 31.4 49.1 70.7 125.7 196.3  COTAL WELL DEPTH (-) WATER LEVEL (=) WATER COLUMN  m (-) (=)  WATER COLUMN (X) CONVERSION FACTOR (=) LITRES PER WELL VOLUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Well Volume           | Calculations                          | I                             |                       |             |                                         | <del>j</del>          |             |          |                               |             |
| Conversion Factor 0.98 1.96 7.85 31.4 49.1 70.7 125.7 196.3  COTAL WELL DEPTH (-) WATER LEVEL (=) WATER COLUMN  m (-) (=)  WATER COLUMN (X) CONVERSION FACTOR (=) LITRES PER WELL VOLUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Casing Diameter       |                                       | 25mm                          | 50mm                  | 100mm       | 125mm                                   | 150mm                 | 200mm       | 250mm    | 300mm                         |             |
| TOTAL WELL DEPTH ( - ) WATER LEVEL ( = ) WATER COLUMN  m ( - ) ( = )  WATER COLUMN ( X ) CONVERSION FACTOR ( = ) LITRES PER WELL VOLUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                                       |                               |                       |             |                                         |                       | -           |          |                               |             |
| WATER COLUMN (X) CONVERSION FACTOR (=) LITRES PER WELL VOLUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | DEPTH ( - ) W                         | VATER LEVEL                   | (=) WATER             | R COLUMN    |                                         |                       |             |          |                               |             |
| WATER COLUMN (X) CONVERSION FACTOR (=) LITRES PER WELL VOLUME(X)(=)L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                       |                               |                       |             |                                         |                       |             |          |                               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                       | WATER COL                     | UMN(X)C<br>(X)_       | ONVERSIO    | N FACTO                                 | R ( = ) LITF<br>( = ) | RES PER     | WELL VOL | UME                           |             |





| roject No:                                                      | VW07335                             | i                               | Project Name: Beveridge PSP - GW Sampling |               |               |             |             | Date:          | 2 /04/2014                  | _            |
|-----------------------------------------------------------------|-------------------------------------|---------------------------------|-------------------------------------------|---------------|---------------|-------------|-------------|----------------|-----------------------------|--------------|
| Development                                                     |                                     | Performed By:                   |                                           |               | Well Diar     | meter :     | 50mm        | =              |                             |              |
| Deve                                                            | lopment Method                      | - TOWN                          |                                           |               |               |             |             |                |                             |              |
|                                                                 | Time Started                        |                                 | SWL (start                                |               |               | e Removed   | 2001000000  | -              | e Depth (start)             |              |
|                                                                 | Time Stopped                        |                                 | SWL (end)                                 | )             | Dis           | charge Rate |             | -              | e Depth (end)               | _            |
|                                                                 | Comments                            |                                 |                                           |               |               |             |             | -              | NAPL Present                |              |
|                                                                 |                                     |                                 |                                           |               |               |             |             | _ (If y        | es, thickness)              |              |
| Purging                                                         |                                     | Performed By:                   | C.Bannister /                             | W Rodger      |               |             |             |                |                             |              |
|                                                                 | -                                   | Micropurge Kit                  |                                           |               |               |             |             | B              | D 15 (-14)                  |              |
|                                                                 | Time Started                        |                                 |                                           | )             |               | ne Removed  |             | -              | Depth (start)               |              |
|                                                                 |                                     |                                 | -                                         | )             |               | charge Rate |             | -              | e Depth (end)               | _            |
|                                                                 | Comments                            |                                 |                                           |               |               |             |             | -              | NAPL Present es, thickness) | _            |
| <b>Sampling</b><br>S                                            | ampling Method<br>Time Started      | Performed By:<br>Micropurge Kit | C.Bannister/                              | W Rodger      | winda         | نـ(ا . Sam  | SWL (start) |                |                             |              |
|                                                                 | Time Stopped                        |                                 | =                                         |               |               |             | SWL (end)   |                |                             |              |
|                                                                 | Tubing Type                         |                                 |                                           |               |               |             |             |                |                             |              |
|                                                                 | Comments                            |                                 |                                           |               |               |             |             |                |                             |              |
|                                                                 |                                     |                                 |                                           |               |               |             |             |                |                             |              |
| ield Analyses                                                   |                                     | ple Collected?                  | Y/N                                       | Duplicate S   | ample ID:     |             |             |                |                             |              |
| Time                                                            | Volume                              | EC                              | рН                                        | Temp (C)      | Redox         | Dissolve    | d Oxygen    | Com            | ments (colour, turbidity,   | 1            |
|                                                                 | Removed (L)                         | (uS/cm)                         |                                           |               | (mV)          | (%)         | (mg/L)      |                | odours, sheen, etc)         |              |
| 1:30                                                            | /                                   | 2074 us                         | 6.87                                      | 17.3          | 105           | 2.)(        |             | read           | . musor floo                | Jan          |
|                                                                 |                                     |                                 |                                           |               |               |             |             |                | plip.                       |              |
|                                                                 |                                     |                                 |                                           |               |               |             |             |                | 1                           |              |
|                                                                 |                                     |                                 |                                           |               |               |             |             |                |                             |              |
|                                                                 | - , (                               | 0                               | <u> </u>                                  | 1-11          |               | 11          |             |                |                             | _            |
| <u>Se</u>                                                       | ipled.                              | from                            | world .                                   | m11,0         | et to         | o or E      | O(8         |                |                             | _            |
|                                                                 | <u> </u>                            |                                 |                                           |               | '             |             |             |                |                             | -            |
|                                                                 |                                     |                                 |                                           |               |               |             |             |                |                             | -            |
|                                                                 |                                     |                                 |                                           |               |               |             |             |                | 49-0-899                    | -            |
|                                                                 |                                     |                                 |                                           |               |               |             |             |                |                             |              |
|                                                                 |                                     |                                 |                                           |               |               |             |             |                |                             | -            |
|                                                                 | 1                                   |                                 |                                           |               |               |             |             |                |                             | -            |
| •                                                               |                                     |                                 |                                           |               |               |             |             |                |                             |              |
|                                                                 | -                                   |                                 |                                           |               |               |             |             | 1              |                             | -            |
|                                                                 |                                     |                                 |                                           |               |               |             |             |                |                             | -            |
|                                                                 |                                     |                                 |                                           |               |               |             |             |                |                             | -            |
|                                                                 | -                                   |                                 | 1                                         |               |               |             |             | -              | V-000                       | -            |
|                                                                 |                                     |                                 |                                           |               |               |             |             | 1              |                             | -            |
|                                                                 |                                     |                                 |                                           |               |               |             |             |                |                             |              |
|                                                                 |                                     |                                 |                                           |               |               |             |             |                |                             |              |
|                                                                 |                                     |                                 |                                           |               |               |             |             |                |                             |              |
|                                                                 |                                     |                                 |                                           |               |               |             |             |                |                             | and a second |
| abilisation Cri                                                 | leria                               | +/- 3%                          | +/- 0.05                                  | +/- 10%       | +/- 10%       | +/-         | 10%         |                |                             |              |
|                                                                 |                                     | · +/- 3%                        | +/- 0.05                                  | +/- 10%       | +/- 10%       | +/-         | 10%         |                |                             |              |
| Well Volume                                                     | Calculations                        |                                 |                                           |               | 1             |             | ···         |                |                             |              |
| Well Volume                                                     | Calculations                        | 25mm                            | 50mm                                      | 100mm         | 125mm         | 150mm       | 200mm       | 250mm          | 300mm                       |              |
| abilisation Cri<br>Well Volume<br>asing Diamete<br>onversion Fa | Calculations                        |                                 |                                           |               | 1             |             | ···         | 250mm<br>125.7 | 300mm<br>196.3              |              |
| Well Volume asing Diamete conversion Fa                         | Calculations or actor DEPTH ( - ) V | 25mm<br>0.98<br>VATER LEVEL     | 50mm<br>1.96                              | 100mm<br>7.85 | 125mm<br>31.4 | 150mm       | 200mm       |                |                             |              |
| Well Volume<br>sing Diamete<br>onversion Fa                     | Calculations or actor DEPTH ( - ) V | 25mm<br>0.98                    | 50mm<br>1.96                              | 100mm<br>7.85 | 125mm<br>31.4 | 150mm       | 200mm       |                |                             |              |





| oment Method Time Started Comments Comments Purge Method Time Started Time Stopped Comments | 9:24                                                                                                           | SWL (start) SWL (end)                                                                                      | V Rodger                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Removed _<br>narge Rate _                                                                                                                                            | 0mm                                                                                                                                                         | Bore<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Depth (start)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                                    |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------|
| Time Started Fime Stopped Comments  Purge Method Time Started Time Stopped                  | Micropurge Kit<br>9:10<br>9:24                                                                                 | C.Bannister / V                                                                                            | V Rodger                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                    |                                                                                                                                                             | Bore<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Depth (end)<br>APL Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |                                    |
| Comments  Purge Method Time Started Time Stopped                                            | Micropurge Kit<br>9:10<br>9:24                                                                                 | C.Bannister / V                                                                                            | V Rodger                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                    |                                                                                                                                                             | Bore<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Depth (end)<br>APL Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | *                                  |
| Comments Purge Method Time Started Time Stopped                                             | Micropurge Kit<br>9:10<br>9:24                                                                                 | C.Bannister / V                                                                                            | V Rodger                        | Disci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | large Kate_                                                                                                                                                          |                                                                                                                                                             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | APL Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21                              |                                    |
| Purge Method<br>Time Started<br>Time Stopped                                                | Micropurge Kit<br>9:10<br>9:24                                                                                 | SWL (start)                                                                                                | afric.                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
| Time Started Time Stopped                                                                   | Micropurge Kit<br>9:10<br>9:24                                                                                 | SWL (start)                                                                                                | afric.                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             | ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
| Time Started Time Stopped                                                                   | Micropurge Kit<br>9:10<br>9:24                                                                                 | SWL (start)                                                                                                | afric.                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
| Time Started Time Stopped                                                                   | 9:10                                                                                                           | SWL (start)                                                                                                | april.                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
| Time Stopped                                                                                | 9:24                                                                                                           |                                                                                                            | 7 17 6 2                        | Talkolume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Removed                                                                                                                                                              |                                                                                                                                                             | Bore I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Depth (start) (Note: Depth (end) APL Present sthickness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S/A (ci                         | sulded o                           |
|                                                                                             |                                                                                                                |                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | narge Rate                                                                                                                                                           |                                                                                                                                                             | Bore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Depth (end)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dipp.                           | , past f                           |
| Comments                                                                                    |                                                                                                                | SWE (end)                                                                                                  |                                 | <i>D</i> .00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      |                                                                                                                                                             | N/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | APL Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in be                           | 012).                              |
|                                                                                             |                                                                                                                | b                                                                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             | (If yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s, thickness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /                               |                                    |
|                                                                                             | Danfarrand Dur                                                                                                 | C Pannistar //                                                                                             | N Podger                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
|                                                                                             | Performed By:<br>Micropurge Kit                                                                                |                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Samr                                                                                                                                                                 | oling Depth                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
|                                                                                             |                                                                                                                | 1301                                                                                                       | 0.02                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      | SWL (start)                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
|                                                                                             | -                                                                                                              |                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
| Tubina Tubina                                                                               | 11 % 61                                                                                                        | ad. lin                                                                                                    | . 16                            | solva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ve)                                                                                                                                                                  | ()                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _ ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                                    |
| Tubing Type                                                                                 | 100 30                                                                                                         | 1                                                                                                          | and h                           | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sont                                                                                                                                                                 | Co r                                                                                                                                                        | DOCE NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - Cut h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                                    |
| Comments                                                                                    | that see                                                                                                       | neced !                                                                                                    | al. a                           | 00, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3000                                                                                                                                                                 |                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |                                    |
| - " . 0                                                                                     |                                                                                                                |                                                                                                            | Duplicate Sa                    | ample ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
| Duplicate Sam                                                                               | ple Collected?                                                                                                 | Y(N)                                                                                                       | Duplicate 3                     | ample ib.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
| Valuma                                                                                      | FC                                                                                                             | На                                                                                                         | Temp (C)                        | Redox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dissolved                                                                                                                                                            | l Oxygen                                                                                                                                                    | Comm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ents (colour, turbi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dity,                           |                                    |
|                                                                                             |                                                                                                                | F                                                                                                          | ,                               | (mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (%)                                                                                                                                                                  | (mg/L)                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
|                                                                                             |                                                                                                                | 7.39                                                                                                       | 16.0                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             | Footval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Je. Bro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | in his                          | Lsedin                             |
|                                                                                             |                                                                                                                |                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
|                                                                                             |                                                                                                                |                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
|                                                                                             |                                                                                                                | 1 /                                                                                                        |                                 | 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                             | 10:33~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | row.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                    |
|                                                                                             |                                                                                                                | 1.0                                                                                                        |                                 | 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
| 20                                                                                          | 6.00                                                                                                           | 1. (3                                                                                                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
| 2000                                                                                        | des                                                                                                            | 004                                                                                                        | 200 70                          | 5 . 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s to                                                                                                                                                                 | CRCV                                                                                                                                                        | erge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
| 1)20                                                                                        | 0.5                                                                                                            | 7                                                                                                          |                                 | 105.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                               |                                    |
|                                                                                             | <b>.</b>                                                                                                       |                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      | \                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
| of co                                                                                       |                                                                                                                | . 1                                                                                                        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
| -                                                                                           |                                                                                                                |                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
|                                                                                             |                                                                                                                |                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
|                                                                                             |                                                                                                                |                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U.                                                                                                                                                                   |                                                                                                                                                             | e e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
|                                                                                             |                                                                                                                |                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | i in                            |                                    |
|                                                                                             |                                                                                                                |                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
|                                                                                             |                                                                                                                |                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | u P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                                    |
|                                                                                             |                                                                                                                |                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
|                                                                                             |                                                                                                                |                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
|                                                                                             |                                                                                                                |                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
|                                                                                             |                                                                                                                |                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
|                                                                                             |                                                                                                                | 1                                                                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
|                                                                                             |                                                                                                                |                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
| eria                                                                                        | +/- 3%                                                                                                         | +/- 0.05                                                                                                   | +/- 10%                         | +/- 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +/-                                                                                                                                                                  | 10%                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
| Calculations                                                                                |                                                                                                                |                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
|                                                                                             | _                                                                                                              | E0****                                                                                                     | 100mm                           | 125mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 150mm                                                                                                                                                                | 200mm                                                                                                                                                       | 250mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 300mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                                    |
|                                                                                             |                                                                                                                |                                                                                                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                             | 125.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 196.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                                    |
| CIOF                                                                                        | 0.90                                                                                                           | 1.90                                                                                                       | 1.00                            | 1 01.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 .0.1                                                                                                                                                               | 1                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
|                                                                                             | Time Stopped Tubing Type Comments  Duplicate Sam  Volume Removed (L)  2  12  2  3  Ogle d  peria  Calculations | Duplicate Sample Collected?  Volume EC Removed (L) (us/cm)  2 2.86  2.86  2.86  2.87  3.0 2.88  Collected? | Time Stopped 9: 56  Tubing Type | Time Stopped F : So Tubing Type   Go Single line   Go Sin | Time Stopped 6 - So Tubing Type 1665 Single line (fost-value)  Comments High Scale line (fost-value)  Duplicate Sample Collected? Y (N) Duplicate Sample ID:  Volume | Time Stopped 1:50 Tubing Type 160 Single line (footnal ve) Comments High Scale and brown Samp Duplicate Sample Collected? Y(N) Duplicate Sample ID:  Volume | Time Stopped 1: 50  Tubing Type   60 Single   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60   1: 60 | Time Stopped 1: 50  Tubing Type   50   50   50   10   60   50   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   50   10   1 | Time Stopped 1 - 50 Tubing Type | Time Stopped 9 - 50  Tubing Type 1 |

WATER COLUMN (X) CONVERSION FACTOR (=) LITRES PER WELL VOLUME
\_\_\_\_\_(X) \_\_\_\_\_\_ (=) \_\_\_\_\_L





| Project No:   | VW07335                       | P              | roject Name:   | Beveridge PS | SP - GW Sa | ımpling                            |             | Date: 🔨  | / /04/2014        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|---------------|-------------------------------|----------------|----------------|--------------|------------|------------------------------------|-------------|----------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Developmen    | t                             | Performed By:  |                |              | Well Diam  | eter: 5                            | 0mm         |          |                   | op of v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jell.      |
| Dev           | elopment Method               |                |                |              |            |                                    |             |          | 5 11 - 1 - 1 1 \  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|               | Time Started                  |                | SWL (start)    |              |            | Removed_                           |             |          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|               | Time Stopped                  |                | SWL (end)      |              | Discl      | harge Rate _                       |             |          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|               | Comments                      |                |                |              |            |                                    |             |          | \PL Present       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|               | -                             |                |                |              |            | <del></del>                        |             | (if yes  | s, unckness)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Purging       |                               | Performed By:  |                |              | - )        |                                    |             |          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|               | Purge Method                  | Micropurge Kit | 16.            | B            | tow        | e Removed                          | Ø 1         | Pore     | Donth (start)     | 41.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RIDUAL     |
|               |                               | 13 B4          |                | 6.050        |            | e Removed _<br>harge Rate <i>(</i> |             |          | Depth (start)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81000      |
|               |                               |                |                |              |            | narge Rate                         | 11014       |          | APL Present       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|               | Comments                      |                |                |              | -          |                                    |             | (if ye   | s, thickness)     | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
|               |                               |                | O Demoistes () | A/ Dodgor    |            |                                    |             |          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Sampling      |                               | Performed By:  |                | W Rougei     |            | Samr                               | olina Depth | 25mb7    | lua               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|               | Sampling Method               |                | <u> </u>       |              |            | Camp                               | SWI (start) | 6-030    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|               | Time Started                  |                | -              |              |            |                                    |             | 6.030    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|               | Time Stopped                  |                |                |              |            |                                    | OVVE (Cita) | 0.030    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|               | Tubing Type                   | Slight         |                | 1 -          | 11         |                                    |             |          |                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|               | Comments                      | Slight         | Stolure        | 7 17         | wen.       |                                    |             |          |                   | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|               |                               | .1. 0 -11110   | Y/N            | Dunlicate S  | ample ID:  |                                    |             |          |                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| Field Analys  | ·                             | ple Collected? | 1 / IN         | Duplicate O  | ampic ib.  |                                    |             |          |                   | and the state of t |            |
| Time          | Volume                        | EC             | pH             | Temp (C)     | Redox      | Dissolved                          | l Oxygen    | Comm     | nents (colour, to | ırbidity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ]          |
| Tane          | Removed (L)                   | (uS/cm)        |                |              | (mV)       | (%)                                | (mg/L)      | o        | dours, sheen, e   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          |
| 13:32         | 0-5                           | 3.38 m S       | 6.46           | 18.1         | 14         | 1.87                               |             | 6.030    | Chec              | CPM4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Slipld sed |
| 13:16         | 1.0                           | 3.41           | 6.46           | 16-7         | 9          | 1.16                               |             | 6.030    | elea              | ",                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | '`         |
| 13:18         | 2.0                           | 3.41           | 6.38           | 16.6         | 6          | 0.85                               |             | 6.030    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ``         |
| 13:20         | 3.0                           | 3.40           | 6.37           | 16.7         | 6          | 0.91                               |             | 6.030    |                   | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11         |
| 13:22         | 4.0                           | 3.40           | 6.35           | 16.5         | 6          | 0.97                               |             | 6.030    |                   | Α.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| 13:24         | 5.0                           | 3.39           | 6.35           | 16.4         | 7          | 1.05                               |             | 6.030    | -                 | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
|               |                               | 3.38           | 6.40           | 16.5         | 8          | 1.14                               |             |          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1        |
| 13:26         | 6.0<br>7.0                    | 3.38           | 6.41           | 16.5         | 9          | 1.27                               |             |          |                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| 13:28         |                               | 341            | 6.41           | 16.5         | q          | 1.34                               |             |          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 13:30         | 8.0                           | 3.7(           | 9. (           | 16.5         |            |                                    |             |          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|               | C .                           |                |                |              |            |                                    |             |          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|               | Sarple                        | , 2 @          | 8.01           | ities        |            |                                    |             |          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|               |                               |                |                |              |            |                                    |             |          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|               |                               |                |                |              |            | -                                  |             |          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          |
|               |                               |                |                |              |            |                                    |             |          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|               |                               |                |                |              |            |                                    |             | -        |                   | ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|               |                               |                |                |              |            |                                    |             |          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Stabilisation | Criteria                      | +/- 3%         | +/- 0.05       | +/- 10%      | +/- 10%    | +/-                                | 10%         |          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          |
|               |                               | 1 1/- 5/0      | 1 17 0.00      |              | 1          | 1                                  |             | _        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Well Volu     | me Calculations               |                |                |              |            |                                    |             |          |                   | <del></del> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| Casing Diam   | eter                          | 25mm           | 50mm           | 100mm        | 125mm      | 150mm                              | 200mm       | 250mm    | 300mm             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| Conversion    |                               | 0.98           | 1.96           | 7.85         | 31.4       | 49.1                               | 70.7        | 125.7    | 196.3             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| TOTAL WE      | :LL DEPTH ( - ) \<br>m ( - )_ | WATER LEVE     | L ( = ) WATE   | R COLUMN     | I          |                                    |             |          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|               |                               |                | LUMN (X)C      | ONVERSIO     | ON FACTO   | OR (=)LIT                          | RES PER     | WELL VOL | JME               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|               |                               |                | (X)            |              |            | (=)                                |             | L        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |





| oject No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                                  |                 |             |            |             |              |           | )                           |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------|-----------------|-------------|------------|-------------|--------------|-----------|-----------------------------|--------|
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VW07335             | Pi                                               | oject Name:     | Beveridge P | SP - GW Sa | ampling     |              | Date:     | /04/2014                    |        |
| evelopment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | Performed By:                                    |                 |             | Well Diam  | eter:       | 50mm         |           |                             |        |
| Devel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | opment Method       |                                                  |                 |             |            |             |              |           |                             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Time Started        |                                                  | SWL (start)     |             |            | Removed     |              |           | epth (start)                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Time Stopped        |                                                  | SWL (end)       |             | DISC       | harge Rate_ |              |           | epth (end)<br>PL Present    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Comments            |                                                  |                 |             |            |             |              |           | thickness)                  |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                  |                 |             |            |             |              | ()1       |                             |        |
| Purging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | Performed By:                                    | C.Bannister / \ | W Rodger    |            |             |              |           |                             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | Micropurge Kit                                   |                 |             |            |             |              |           |                             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Time Started        |                                                  |                 | 6.70 MT     |            | e Removed_  |              |           | epth (start)                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Time Stopped        | <u>ič: 55                                   </u> | SWL (end)       |             |            | harge Rate_ |              |           | epth (end)                  |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Comments            | Mindrell                                         | . Not           | pung        | in p.      |             |              |           | PL Present<br>thickness) _\ | Λ      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                  |                 |             |            |             |              | (11 yes), | mickiness) 1(1              | *1     |
| Sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | Performed By:                                    |                 |             |            |             |              |           |                             |        |
| s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | Micropurge Kit-                                  | Foot vo         | Lup         |            |             | oling Depth  |           |                             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Time Started        |                                                  |                 |             |            |             |              |           |                             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Time Stopped        |                                                  |                 |             |            |             | SVVL (end)   |           |                             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tubing Type         |                                                  |                 |             |            |             |              |           |                             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Comments            | -                                                |                 |             |            |             |              |           |                             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Duplicate Sam       | ple Collected?                                   | Y(N)            | Duplicate S | ample ID:  | /           |              |           |                             |        |
| ld Analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                                                  |                 |             |            |             |              |           |                             |        |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Volume              | EC                                               | рH              | Temp (C)    | Redox      | Dissolved   | i Oxygen     | Commer    | nts (colour, turbidi        | ty,    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Removed (L)         | (uS/cm)                                          |                 |             | (mV)       | (%)         | (mg/L)       | -         | ours, sheen, etc)           |        |
| -:41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 L                 | 1252 jus                                         | 7.67            | 19.4        | 116        | 5.45        | 6            | clear / u | ey sligh                    | at so  |
| : 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56                  | 1273                                             | 7.50            | 17.8        | 113        | 4.84        |              | 7 60      | ***                         |        |
| :46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iou                 | 1301                                             | 7.48            | 17.6        | 105        | 4.74        |              | 6.89 om   |                             | 11 0   |
| :49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 154                 | 1275                                             | 7.44            | 17.5        | 105        | 5.02        |              |           | dear w                      | tt 70  |
| :52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 L                | 1365                                             | 7.41            | 17.7        | 163        | 4.45        |              | closus    | نمد چې                      | 1      |
| :54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1250                | 1284                                             | 1/71            | 11.7        | 11         | 7/80        |              | CCEGS, S  | Check Do                    | Cocrea |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1                 | at 25                                            | 1 - F           | nd-us       | 1.00       | [M]         | 100          |           |                             |        |
| 70.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ped                 |                                                  | <b>V</b> = (    | 90 00       |            | ,           |              |           |                             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | .1                                               |                 | ļ           |            |             |              |           | •                           |        |
| Pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | esping.             |                                                  |                 |             |            |             |              | 1         |                             |        |
| PL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | earp. op            |                                                  |                 |             |            |             |              |           | n                           |        |
| PL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | large mp            |                                                  |                 |             |            |             |              |           |                             |        |
| ρι                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sarping             |                                                  |                 |             |            |             |              |           |                             |        |
| Pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | warp in p           |                                                  |                 |             |            |             |              |           |                             |        |
| PL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | yarp. op            |                                                  |                 |             |            |             |              |           |                             |        |
| Pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) and a me          |                                                  |                 |             |            |             |              |           |                             |        |
| Pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) and a m           |                                                  |                 |             |            |             |              |           |                             |        |
| Pu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) and a m           |                                                  |                 |             |            |             |              |           |                             |        |
| P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lar of              |                                                  |                 |             |            |             |              |           |                             |        |
| Pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) and a me          |                                                  |                 |             |            |             |              |           |                             |        |
| Pilisation Cri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | teria               | +/- 3%                                           | +/- 0.05        | +/- 10%     | +/- 10%    | +/-         | 10%          |           |                             |        |
| Property of the second | teria               |                                                  | +/- 0.05        | +/- 10%     | +/- 10%    | +/-         | 10%          |           |                             |        |
| bilisation Cri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | teria  Calculations |                                                  | +/- 0.05        | +/- 10%     | +/- 10%    | +/-         | 10%          |           |                             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Calculations        |                                                  | +/- 0.05        | +/- 10%     | +/- 10%    | +/-         | 10%<br>200mm | 250mm     | 300mm                       |        |





| Project No:                     | VW07335             | F                               | roject Name:     | Beveridge F | PSP - GW S    | ampling        |             | Date: _        | (3 /04/2014       |                                         |
|---------------------------------|---------------------|---------------------------------|------------------|-------------|---------------|----------------|-------------|----------------|-------------------|-----------------------------------------|
| Development                     |                     | Performed By:                   |                  |             | Well Dian     | neter :        | 50mm        |                |                   |                                         |
|                                 | pment Method        | ·                               |                  |             |               |                |             |                |                   |                                         |
|                                 | Time Started        |                                 | SWL (start)      |             | Volum         | e Removed      |             | Bore           | Depth (start)     |                                         |
|                                 | Time Stopped        |                                 |                  |             | Disc          | harge Rate     |             | Bore           | e Depth (end)     |                                         |
|                                 | Comments            |                                 |                  |             |               |                |             | ١              | IAPL Present      |                                         |
|                                 |                     |                                 |                  |             |               |                |             | (If ye         | es, thickness)    |                                         |
| Purging                         | Purae Method        | Performed By:<br>Micropurge Kit |                  |             |               |                |             |                |                   |                                         |
|                                 |                     | 10.15                           |                  | 10.75       | ). Volum      | e Removed      |             | Bore           | Depth (start)     |                                         |
|                                 | Time Stopped        | 10:20                           | SWL (end)        |             | Disc          | harge Rate     |             | , Bore         | e Depth (end)     |                                         |
|                                 | Comments            | Brown C                         | olan (           | sale)       | L Hier        | one            | Sedn        | ent. 1         | IAPL Present      |                                         |
|                                 |                     | (),(),()                        | -1               |             |               |                |             | ` (If y        | es, thickness)    |                                         |
| Sampling                        | . /                 | Performed By:                   | C Bannieter /    | M Podger    |               |                |             |                |                   |                                         |
|                                 | l<br>Impling Method | Micropurge Kit                  |                  |             | •             | Sam            | pling Depth |                |                   |                                         |
|                                 | Time Started        |                                 | •                |             |               |                | SWL (start) |                |                   |                                         |
|                                 | Time Stopped        |                                 |                  | •           |               |                | SWL (end)   | /              |                   |                                         |
|                                 | Tubing Type         | Dirple 1                        | 1 160            | 5 (food     | value         | \              | , ,         |                |                   |                                         |
|                                 | Comments            | `                               | (~~ (~,~         | (,-0,       | <u> </u>      |                |             |                |                   |                                         |
|                                 | Developed Com       | -1- 0-111-40                    | V(ii)            | Dunlingto 6 | 'ample ID:    |                |             |                |                   |                                         |
| Field Analyses                  | Duplicate Sam       | ple Collected?                  | Y(N)             | Duplicate S | ample ib.     |                |             |                |                   |                                         |
| Time                            | Volume              | EC                              | рН               | Temp (C)    | Redox         | Dissolve       | d Oxygen    | Com            | ments (colour, tu | rbidity,                                |
|                                 | Removed (L)         | (uS/cm)                         | -7               |             | (mV)          | (%)            | (mg/L)      |                | odours, sheen, e  | 1 011                                   |
| 图10:28                          | 56                  | 1289 25                         | 7.63             | 17.4        | 139           | 2.24           |             |                | Sedy-             | 7                                       |
|                                 |                     |                                 |                  |             |               |                |             | promin         | color             | <u>~</u>                                |
| Well                            | opeati              | and -                           | no pu            | igi~e       | requi         | ed.            | Saupl       | od (           | med               | ately                                   |
|                                 |                     |                                 |                  |             |               |                |             |                |                   |                                         |
|                                 |                     |                                 |                  |             |               |                |             |                |                   |                                         |
|                                 |                     |                                 |                  |             |               |                |             |                |                   |                                         |
|                                 |                     |                                 |                  |             |               |                |             |                |                   |                                         |
|                                 |                     |                                 |                  |             |               |                |             |                |                   |                                         |
|                                 |                     |                                 |                  | 11.400/     | 1/ 400/       | .,             | 10%         |                |                   | AND |
| Stabilisation Crite Well Volume |                     | +/- 3%                          | +/- 0.05         | +/- 10%     | +/- 10%       | 1 +/-          | 10%         | 1              |                   |                                         |
|                                 |                     |                                 | T                | T           | 1 405         | 150            | T 000       | 050            | 200               | ]                                       |
| Casing Diameter                 |                     | 25mm                            | 50mm             | 7.85        | 125mm<br>31.4 | 150mm<br>49.1  | 70.7        | 250mm<br>125.7 | 300mm<br>196.3    | 1                                       |
| Conversion Fa                   | DEPTH(-)V           | 0.98<br>VATER LEVEL             | 1.96<br>(=) WATE | R COLUMN    |               | 49.1           | 10.7        | 123.7          | 190.3             | J                                       |
|                                 | m ( - )             | WATER COL                       | UMN(X)C          |             | ON FACTO      | R(=)LIT<br>(=) | RES PER \   | WELL VOL       | UME               |                                         |

(winks storge bosehole)

# WELL DEVELOPMENT, PURGING AND GROUNDWATER SAMPLING DATA SHEET

WELL No:



| Project No:     | VW07335         | Pr              | oject Name: | Beveridge F | PSP - GW S | ampling     |             | Date:     | ) /04/2014          |        |
|-----------------|-----------------|-----------------|-------------|-------------|------------|-------------|-------------|-----------|---------------------|--------|
| Development     |                 | Performed By:   |             |             | Well Dian  | neter:      | 50mm        |           |                     |        |
| Deve            | elopment Method |                 |             | T.          |            |             | - V         |           |                     |        |
|                 | Time Started    |                 | SWL (start) |             |            | e Removed   |             |           | Depth (start)       |        |
|                 | Time Stopped    |                 | SWL (end)   | )           | Disc       | charge Rate |             |           | e Depth (end) _     |        |
|                 | Comments        | ×               |             |             |            |             |             |           | NAPL Present        |        |
|                 |                 |                 | ).          |             |            |             |             | (If y     | es, thickness)_     |        |
|                 |                 |                 |             |             |            |             |             |           |                     |        |
| Purging         |                 | Performed By: 0 | 1           |             |            | , 1         | Λ.          |           |                     |        |
|                 | Purge Method    | Micropurge Kit  | Ken         | for to      | Selo       | nds!        | el ore      | sagh      | -                   |        |
|                 | Time Started    |                 | SWL (start) | )           | Volum      | e Removed   |             |           | e Depth (start)     | 5      |
|                 | Time Stopped    | -               | SWL (end)   | )           | Disc       | charge Rate |             | Bor       | e Depth (end) _     |        |
|                 | Comments        |                 |             |             |            |             |             |           | NAPL Present        | 6.3    |
|                 |                 |                 |             |             |            |             |             | (If y     | es, thickness)_     | No     |
|                 | _               |                 |             |             |            |             |             |           |                     |        |
| Sampling        |                 | Performed By: 0 |             |             |            |             |             |           |                     |        |
|                 | Sampling Method | Micropurge Kit  | Tap.        | 1           |            | Sam         | pling Depth |           |                     |        |
|                 | Time Started    | 11:10           |             |             |            |             | SWL (start) |           |                     |        |
|                 | Time Stopped    | 11:15           |             |             |            |             | SWL (end)   | /         |                     |        |
|                 | Tubing Type     | Tap             |             | ,           |            |             |             |           |                     |        |
|                 | Comments        | D               | et rear     | 01          | main       | bul         | dies!       | Tap 11    | rside               |        |
|                 |                 | bu low          | p useo      | 10          | Collec     | Say         | sel         | 1         |                     |        |
|                 | Duplicate Sam   | ple Collected?  | Y/N         | Duplicate S | ample ID:  |             | 1           |           |                     |        |
| ield Analyse    | es              |                 |             |             |            |             |             |           |                     |        |
|                 |                 | 14              |             |             |            |             |             |           |                     |        |
| Time            | Volume          | EC              | рН          | Temp (C)    | Redox      | Dissolve    | d Oxygen    | Com       | ments (colour, turk | idity, |
|                 | Removed (L)     | (uS/cm)         |             |             | (mV)       | (%)         | (mg/L)      |           | odours, sheen, etc  | )      |
| 1:10            | -               | 2586 us         | 6.35        | 17.1        | 143        | 2.21 pp.    | ~           | Clear.    |                     |        |
|                 |                 |                 |             |             |            | 11          |             |           |                     |        |
|                 |                 |                 |             |             |            |             |             |           |                     |        |
|                 |                 |                 |             |             |            |             |             |           |                     |        |
|                 |                 |                 |             |             |            |             |             |           |                     |        |
|                 |                 |                 |             |             |            |             |             |           | =                   |        |
|                 |                 |                 |             |             |            |             |             |           |                     |        |
|                 |                 |                 |             |             |            |             |             |           |                     |        |
|                 |                 |                 |             |             |            |             |             |           |                     |        |
|                 |                 |                 |             |             |            |             |             |           | <del>;</del>        |        |
|                 |                 |                 |             |             |            |             |             |           |                     |        |
|                 |                 |                 |             |             |            |             |             | K)        |                     |        |
| 5.              | -6              |                 |             |             |            |             |             |           |                     |        |
|                 |                 |                 | 11          |             |            |             |             |           |                     |        |
|                 |                 |                 |             |             |            |             |             |           |                     |        |
|                 |                 |                 |             |             |            |             |             |           |                     | *      |
|                 |                 |                 |             |             |            |             |             |           |                     |        |
|                 |                 |                 |             |             |            |             |             |           |                     |        |
|                 |                 |                 |             |             |            |             |             |           |                     |        |
|                 |                 |                 |             |             |            |             |             |           |                     |        |
|                 | 1.              |                 |             |             |            |             |             |           |                     |        |
|                 |                 |                 |             |             |            |             |             |           | 4)                  |        |
|                 |                 |                 |             |             |            |             |             |           |                     |        |
| abilisation Cr  | riteria         | +/- 3%          | +/- 0.05    | +/- 10%     | +/- 10%    | +/-         | 10%         |           |                     |        |
|                 |                 |                 |             | -           |            |             |             | •         |                     |        |
| Well Volum      | e Calculations  |                 |             |             |            |             |             |           |                     |        |
|                 |                 |                 |             | •           |            |             |             |           |                     |        |
| asing Diamet    | er              | 25mm            | 50mm        | 100mm       | 125mm      | 150mm       | 200mm       | 250mm     | 300mm               |        |
| onversion F     |                 | 0.98            | 1.96        | 7.85        | 31.4       | 49.1        | 70.7        | 125.7     | 196.3               |        |
| JIIV GI SIUIT F | 40101           | 0.80            | 1.00        | 1.00        | 1 01.4     | 10.1        | 1 7 3.1     | 120.7     | 100.0               |        |
| OTAL WELL       | L DEPTH (-) W   | /ATER LEVEL (   | = ) WATER   | R COLUMN    |            |             |             |           |                     |        |
|                 |                 | (               |             |             |            |             |             |           |                     |        |
|                 | ( - /           |                 | /           |             |            |             |             |           |                     |        |
|                 |                 | WATER COLU      | MN(X)C      | ONVERSIO    | N FACTO    | R (=) LITI  | RES PER V   | VELL VOLU | JME                 |        |
|                 |                 |                 | (X)         |             |            | (=)         |             | L         |                     |        |
|                 |                 |                 | ( / /       |             |            | _ \         |             |           |                     |        |





| Project No:        | VW07335                   | P                | roject Name:    | Beveridge F | PSP - GW S | ampling     |             | Date:    | / /04/2014                     |          |
|--------------------|---------------------------|------------------|-----------------|-------------|------------|-------------|-------------|----------|--------------------------------|----------|
| Development        |                           | Performed By:    |                 | 9           | Well Dian  | neter:      | 50mm        |          |                                |          |
| Devel              | opment Method             |                  |                 |             |            |             |             |          | D (1- (-11)                    |          |
|                    | Time Started              |                  | SWL (start)     |             |            | e Removed   |             |          | Depth (start)                  |          |
|                    | Time Stopped              |                  | SWL (end)       |             | Disc       | harge Rate  |             |          | e Depth (end)                  |          |
|                    | Comments                  |                  |                 |             |            |             |             |          | NAPL Present<br>es, thickness) |          |
|                    |                           |                  | 2               |             |            |             |             | (II y    | es, unckness)                  |          |
| Purging            | Dunna Mathad              | Performed By:    |                 | W Rodger    |            |             |             |          |                                |          |
|                    |                           | Micropurge Kit   |                 | /           | Volum      | e Removed   | ,           | Borr     | e Depth (start)                |          |
|                    | Time Started Time Stopped | _/               | SWL (start)     |             |            | charge Rate |             |          | e Depth (start)                | /        |
|                    |                           |                  | SWL (end)       |             | DISC       | marge Nate  |             |          | NAPL Present                   |          |
|                    | Comments                  |                  |                 |             |            |             |             |          | es, thickness)                 | No       |
|                    |                           |                  |                 |             |            |             |             | (11 y    | es, triotriess)                | 140      |
| Sampling           |                           | Performed By:    | C.Bannister / \ | W Rodger    |            |             |             |          |                                |          |
|                    | ampling Method            | Micropurge Kit   |                 |             |            | Sam         | pling Depth |          |                                |          |
|                    | Time Started              | 11:20            |                 |             |            |             | SWL (start) | /        |                                |          |
|                    | Time Stopped              | (1:25            |                 | ,           |            |             | SWL (end)   | -        |                                |          |
|                    | Tubing Type               |                  |                 |             |            |             |             | A        |                                |          |
|                    | Comments                  | Ephen:           | t say           | of po       | sint.      |             | and         | cycinal  | bille                          |          |
|                    |                           |                  | <u></u>         |             |            | 01 1        | 1           | 0        | 11 0                           | 1000     |
| Field Analyses     | Duplicate Sam             | ple Collected? ( | Y)N             | Duplicate S | ample ID:  | Blind       | 303/0       | AI S     | olit: 156                      | 3/QA2    |
| Time               | Volume                    | EC               | рН              | Temp (C)    | Redox      | Dissolve    | d Oxygen    | Com      | ments (colour, tu              | rbidity, |
|                    | Removed (L)               | (uS/cm)          |                 |             | (mV)       | (%)         | (mg/L) .    |          | odours, sheen, e               | ic)      |
| 11:22              | -/                        | 972 MS           | 7.62            | 18.7        | 87         | 2.56,       | -           | Cloud    | 4.                             |          |
|                    |                           |                  |                 |             | Λ          | 1           |             |          |                                |          |
| Sa                 | pled f                    | ran a            | toup            | outsid      | de t       | h /         | non         | bui      | lang                           | 2        |
| re                 | Xt to                     | the Y            | in Wi           | inter       | Stora      | le cu       | ea-         |          |                                |          |
|                    |                           |                  |                 |             |            | `           |             |          |                                |          |
|                    |                           |                  |                 |             |            |             |             |          |                                |          |
|                    |                           |                  |                 |             |            |             |             |          |                                |          |
|                    |                           |                  |                 |             |            |             |             |          |                                |          |
|                    |                           |                  | 1               |             | 7          |             |             | P        |                                |          |
|                    |                           |                  |                 |             |            |             |             |          |                                |          |
|                    |                           |                  |                 |             |            |             |             |          |                                |          |
| *                  |                           |                  |                 |             |            |             |             |          |                                |          |
|                    |                           |                  |                 |             | -          |             |             |          |                                |          |
|                    |                           |                  |                 |             |            |             |             |          |                                |          |
|                    |                           |                  |                 |             |            |             |             |          |                                |          |
|                    |                           |                  |                 |             |            |             |             |          |                                |          |
|                    |                           |                  |                 |             |            |             |             |          |                                |          |
|                    |                           |                  |                 |             |            |             |             |          |                                |          |
| Stabilisation Crit | teria                     | +/- 3%           | +/- 0.05        | +/- 10%     | +/- 10%    | +/-         | 10%         |          |                                |          |
| Well Volume        |                           | [                |                 |             |            |             |             |          |                                |          |
| ·                  |                           |                  |                 |             |            |             |             |          |                                | •        |
| Casing Diamete     |                           | 25mm             | 50mm            | 100mm       | 125mm      | 150mm       | 200mm       | 250mm    | 300mm                          |          |
| Conversion Fa      | actor                     | 0.98             | 1.96            | 7.85        | 31.4       | 49.1        | 70.7        | 125.7    | 196.3                          | ]        |
|                    |                           | VATER LEVEL (    |                 |             |            |             |             |          |                                |          |
|                    | m ( - )                   |                  | (=)             |             |            |             |             |          |                                |          |
|                    |                           | WATER COLU       | JMN (X)C        | ONVERSIO    | N FACTO    | R(=)LITE    | RES PER V   | VELL VOL | JME                            |          |
|                    |                           |                  | (X)_            |             |            | _ (=)       |             | L        | \ \                            |          |



# **Appendix C. Lithology of registered bores**



Bore Details: 79155

Lithology details for bore: 79155

| Log Type | From (m) | To (m) | Description      |
|----------|----------|--------|------------------|
| Driller  | 0.00     | 14.63  | WEATHERED BASALT |

**Disclaimer:** The content of this web site is provided for information purposes only. No claim is made as to the accuracy of authenticity of the content of the website. In no event will the Corangamite CMA, University of Ballarat or its agents and employees be liable for the accuracy of the information contained on this web site nor its use or reliance placed on it. Information is considered to be true and correct at the time of publication. Changes in circumstances after the time of publication may impact on the accuracy of this information.

.....





Bore Details: 145710

Printable Version

Lithology details for bore: 145710

| Log Type | From (m) | To (m) | Description         |
|----------|----------|--------|---------------------|
| Driller  | 0.00     | 1.00   | TOPSOIL & SUBSOIL   |
| Driller  | 1.00     | 2.00   | CLAY & LOOSE ROCKS  |
| Driller  | 2.00     | 2.10   | BROWN CLAY          |
| Driller  | 2.10     | 2.70   | GREY CLAY           |
| Driller  | 2.70     | 2.90   | LIGHT BROWN CLAY    |
| Driller  | 2.90     | 4.30   | HARD BLUESTONE      |
| Driller  | 4.30     | 12.00  | WEATHERED BASALT    |
| Driller  | 12.00    | 13.70  | VERY HARD BLUESTONE |





Bore Details: 145714

Printable Version

Lithology details for bore: 145714

| Log Type | From (m) | To (m) | Description          |
|----------|----------|--------|----------------------|
| Driller  | 0.00     | 1.00   | TOP SOIL & RUBBLE    |
| Driller  | 1.00     | 1.80   | RED BROWN CLAY       |
| Driller  | 1.80     | 16.70  | VERY HARD BLUESTONE  |
| Driller  | 16.70    | 17.30  | FRA CTURED BLUESTONE |
| Driller  | 17.30    | 20.60  | HARD BLUESTONE       |





Bore Details: 145715

Lithology details for bore: 145715

| Log Type | From (m) | To (m) | Description         |
|----------|----------|--------|---------------------|
| Driller  | 0.00     | 1.00   | GREY TOPSOIL & CLAY |
| Driller  | 1.00     | 3.10   | GREY CLAY           |
| Driller  | 3.10     | 4.30   | RED BROWN CLAY      |
| Driller  | 4.30     | 7.40   | LIGHT GREY CLAY     |
| Driller  | 7.40     | 17.20  | WEATHERED BASALT    |
| Driller  | 17.20    | 18.20  | YELLOW CLAY         |





Bore Details: 145711 Printable Version

Lithology details for bore: 145711

| Log Type | From (m) | To (m) | Description         |
|----------|----------|--------|---------------------|
| Driller  | 0.00     | 0.50   | TOPSOIL & BOULDERS  |
| Driller  | 0.50     | 1.20   | GREY CLAY           |
| Driller  | 1.20     | 1.40   | YELLOW CAY          |
| Driller  | 1.40     | 9.00   | VERY HARD BLUESTONE |
| Driller  | 9.00     | 13.00  | WEATHERED BASALT    |
| Driller  | 13.00    | 15.80  | VERY HARD BLUESTONE |





# **Appendix D. Chain of custody documentation**

| - |
|---|

Sinclair Knight Merz Pty Ltd PO Box 2500 Malvern, VIC 3144

Ph: +61 3 9248 3100

# **CHAIN OF CUSTODY &**

Page 1 of 1 LAB: Eurofins ADDRESS: 3-5 Kingston Town Close, Oakeligh 9564 7055 PHONE:

|              |               | ABN :       | 37 001 | 024 ( | 095   | F         | X: +  | 61 3 9         | 9248     | 3364  |       |               |            |                                    |                                                                                |                                          |      |                    |        |          |       |       |       |         | FAX:   | 9      | 9564 7190                                            |                                       |                  |                 |
|--------------|---------------|-------------|--------|-------|-------|-----------|-------|----------------|----------|-------|-------|---------------|------------|------------------------------------|--------------------------------------------------------------------------------|------------------------------------------|------|--------------------|--------|----------|-------|-------|-------|---------|--------|--------|------------------------------------------------------|---------------------------------------|------------------|-----------------|
| PROJECT#     |               | PROJECT NAM | 1E     |       |       |           |       |                |          |       |       |               |            |                                    |                                                                                | N                                        | ETHO | D COL              | DE & A | NALY     | SIS F | REQUI | RED   |         |        | - F    | PRELIM. RESULTS BY:                                  |                                       | VERBAL           |                 |
| VWO          | 7335          | Bever       | idae P | SP GI | N Sar | nnlina    | Prog  | am - N         | Mar 14   | 1     |       |               |            | Ğ,                                 | ό                                                                              | 70                                       |      |                    |        |          |       |       |       |         |        |        |                                                      |                                       | FAX              | ı               |
|              | CTOR'S NAME   | 2010.       | age i  | LAB J |       | i piii ig | riogi |                |          |       |       |               | 2          | Co, C<br>Hg, Z                     | nitrite,                                                                       | , total                                  |      |                    |        |          |       | 7     |       |         |        |        |                                                      | 7                                     | EMAIL            |                 |
|              | Corey Bann    | victor      |        |       |       |           |       |                |          |       |       |               | SS         | Q I                                | Nutrients (ammonia, nitrate, n<br>stotal Kjeldahl nitrogen, total<br>nitrogen) | Inorganics (sulphate, fluoride, cyanide) |      |                    |        |          |       |       |       |         |        | F      | FINAL REPORT BY:                                     | SEND TO                               | EMAIL ADDRESS(   | (ES):           |
|              | Coley balli   | lister      |        |       |       |           |       |                |          |       | ,     | ш             | 声          | Ca,<br>Na,                         | nitra<br>, tol                                                                 | fluo                                     |      |                    |        |          |       |       |       |         |        |        | Std TAT                                              | Sampler:                              | cbannister @glob |                 |
|              | - I           |             | Т      | l     |       |           |       |                | ) / A TI | ON    | !     | Ā             | Ā          | B, Cd,<br>Mn, K,                   | , ger                                                                          | ate,                                     |      |                    |        |          |       |       |       |         |        |        |                                                      | Proj Mgr:                             | cbannister @glob |                 |
|              |               |             | 1      | MA    | TRIX  |           | PR    |                | RVATI    | ON    | 1     |               | CONTAINERS | e, e,                              | nitro                                                                          | 습                                        |      |                    |        |          |       |       |       |         |        | l t    | LAB QUOTE REF:                                       | SKM ORI                               |                  | Jaiokiii, Colli |
| SAMPLE       | DEPTH         | LAB         | -      |       | -     |           |       | IVIL I         | I        |       |       | ž             |            | S, B                               | (am<br>lahl                                                                    | S (SI                                    |      |                    |        |          |       |       |       |         |        |        |                                                      |                                       | Batch 1          |                 |
| ID           | (metres)      | #           | W W    |       |       | GE        |       |                | 2        | ш     | 1     | 7             | OF.        | S :-                               | ints<br>(jeld<br>en)                                                           | de (e                                    |      |                    |        |          |       |       |       |         |        | H      |                                                      |                                       |                  | e below)        |
|              |               |             | WATER  | SOIL  | AIR   | SLUDGE    | ICE   | ACID-<br>IFIED | OTHER    | NONE  |       | SAMPLING DATE | No.        | Metals (As, Be,<br>Cu, Ni, Pb, Mg, | tal F                                                                          | orga<br>/ani                             | TDS  |                    | 1      |          |       |       |       |         |        |        | COMME                                                | ENTS                                  |                  | (2) (3)         |
|              |               |             |        | S     | ⋖     | S         |       | ĄΨ             | 0        | z     |       |               |            |                                    | Z Q E                                                                          |                                          |      |                    | _      |          |       |       |       |         | _      |        |                                                      |                                       |                  |                 |
| BH2<br>BH5   |               |             | X      | _     |       |           | X     |                |          |       |       | 1/3           | 4          | XX                                 |                                                                                | X                                        | X    |                    |        |          |       |       |       |         |        |        |                                                      |                                       |                  |                 |
| 6413         |               |             | X      |       |       |           | X     |                |          |       | 11    | 3             | 4          | 7                                  | ×                                                                              | ×                                        | -    |                    |        |          |       |       |       |         |        |        |                                                      |                                       |                  |                 |
| CHID         |               |             | ×      |       |       |           | ×     |                |          |       | 11    | /3            | 4          | X                                  | 7                                                                              | ×                                        | ×    |                    |        |          |       |       |       |         |        |        |                                                      |                                       |                  |                 |
|              |               |             |        | _     |       |           |       |                |          |       |       |               |            |                                    |                                                                                |                                          |      |                    |        |          |       |       |       |         |        |        |                                                      |                                       |                  |                 |
| 1            |               |             |        |       |       |           |       |                |          |       |       |               |            |                                    |                                                                                | FIF                                      |      |                    |        |          |       |       |       | hsi .   |        |        |                                                      |                                       |                  |                 |
| The L        |               |             |        |       |       |           |       |                |          |       |       |               |            |                                    |                                                                                |                                          |      |                    |        |          | 12    |       |       |         |        |        |                                                      |                                       |                  |                 |
| 79.          |               |             |        |       |       |           |       |                |          |       |       |               |            |                                    |                                                                                | 2.                                       |      | NAME OF THE PERSON |        |          |       |       |       |         |        |        |                                                      |                                       |                  |                 |
|              |               |             |        |       |       |           |       |                |          |       |       |               |            |                                    | 61 3                                                                           |                                          |      |                    |        |          |       |       |       |         |        |        |                                                      |                                       |                  |                 |
|              |               |             |        |       |       |           |       |                |          | 33    | -     |               |            |                                    |                                                                                |                                          |      |                    |        |          |       |       |       | 1.      |        |        | , V                                                  |                                       |                  |                 |
|              |               |             |        |       |       |           |       |                |          |       |       |               |            |                                    |                                                                                |                                          |      |                    |        |          |       |       |       |         |        |        |                                                      |                                       |                  |                 |
|              |               |             |        |       |       |           |       |                |          |       |       |               |            |                                    |                                                                                |                                          |      |                    |        |          |       |       |       |         |        |        |                                                      |                                       |                  |                 |
|              |               |             | -      | -     |       |           |       |                |          |       |       |               |            |                                    |                                                                                |                                          |      |                    |        |          |       |       |       |         |        |        |                                                      |                                       |                  |                 |
|              |               |             |        |       |       |           |       |                |          |       |       |               |            |                                    |                                                                                |                                          | -    |                    |        |          |       |       |       |         |        |        |                                                      |                                       |                  |                 |
|              |               |             |        |       |       |           |       |                |          |       |       |               |            |                                    |                                                                                |                                          | -    |                    |        |          | 7     |       |       |         |        |        |                                                      |                                       |                  | 0-0             |
|              |               | V           |        | -     |       | _         |       |                |          |       |       |               |            |                                    |                                                                                |                                          |      |                    |        |          |       |       | -     |         |        |        |                                                      |                                       |                  |                 |
|              |               |             | -      | -     |       |           |       |                |          |       |       | ř.            |            |                                    |                                                                                | -                                        | -    |                    |        |          |       |       |       |         |        |        |                                                      |                                       |                  |                 |
|              |               |             |        |       |       |           |       |                |          |       |       |               |            |                                    |                                                                                |                                          |      |                    |        |          | -     |       |       |         |        |        | *                                                    |                                       |                  | 0-0             |
|              |               |             |        |       |       |           |       |                |          |       |       |               |            |                                    |                                                                                | _                                        |      |                    |        |          |       |       |       |         |        |        |                                                      |                                       |                  |                 |
|              |               | 4           |        |       |       |           |       |                |          |       |       |               |            |                                    |                                                                                |                                          |      |                    |        |          |       |       |       |         |        |        |                                                      |                                       |                  |                 |
|              |               |             |        |       |       |           |       |                |          |       |       |               |            |                                    |                                                                                |                                          |      |                    |        |          |       |       |       |         |        |        |                                                      |                                       |                  |                 |
|              |               |             |        |       |       |           |       |                |          |       |       |               |            |                                    |                                                                                |                                          |      |                    |        |          |       |       |       |         |        |        | -                                                    |                                       |                  |                 |
|              |               |             |        |       |       |           |       |                |          |       |       |               |            |                                    |                                                                                |                                          |      |                    |        |          |       |       |       |         |        |        |                                                      |                                       |                  |                 |
|              |               |             |        |       |       |           |       |                |          |       |       |               |            |                                    |                                                                                |                                          |      |                    |        |          |       |       |       |         |        |        |                                                      |                                       |                  |                 |
|              |               |             |        |       |       |           |       |                |          |       |       |               |            |                                    |                                                                                |                                          |      |                    |        |          |       |       |       |         |        |        |                                                      |                                       |                  |                 |
|              |               |             |        |       |       |           |       |                |          |       |       |               |            |                                    |                                                                                |                                          |      |                    |        |          |       |       |       |         |        |        |                                                      |                                       |                  | 0-0             |
|              |               |             |        |       |       |           |       |                |          |       |       |               |            |                                    |                                                                                |                                          |      |                    |        |          |       |       |       |         |        |        |                                                      |                                       |                  |                 |
|              | TOTALS        |             | 1      | 1     | 0     | 0         |       |                |          | -     |       |               |            | 0                                  | 1                                                                              | 0                                        | 0    | 0                  | 0      | 2        | 0     | 0     | 0     | 0       | 0      | 0      |                                                      |                                       |                  |                 |
| Relinquished | by (SIGN/PRIN | T):         | 1 - 2  | Date  | 1     |           | Time  | Recei          | ved by   | (SIGN | PRINT | ):            |            |                                    | Date                                                                           |                                          |      | Time               | (      | Custod   | y     | Var   | / N/~ | Additio | nal Co | mments | /Instructions:                                       |                                       |                  |                 |
| CAR          | 4B            | of SKM      |        | 12    | 3     | 180       | am    |                |          |       |       |               | of         |                                    |                                                                                |                                          |      |                    | Sea    | als Inta | ct?   | res   | / No  |         |        |        | e provided electronically                            |                                       |                  |                 |
| Relinquished | by (SIGN/PRIN |             |        | Date  |       |           | Time  |                |          | (SIGN |       | ):            |            | cl                                 | Date                                                                           | 1.                                       |      | Time               |        | ple Re   | ceipt |       | °C    |         |        |        | hly contaminated; (2) San<br>H chromatogram required |                                       |                  |                 |
|              |               | of          |        |       |       |           |       | Co             | alta     | au    | ine   |               | of F       | at                                 | 12                                                                             | 13                                       | 125  | 59 P               | ~      | Temp.    |       |       | C     | detecte |        | V.E.   | ·····································                | a server All tale are acculiated as a |                  |                 |

411557

6. Page 1 of 1 Sinclair Knight Merz Pty Ltd LAB: **Furofins** PO Box 2500 **CHAIN OF CUSTODY &** ADDRESS: 3-5 Kingston Town Close, Oakeligh Malvern, VIC 3144 Ph: +61 3 9248 3100 PHONE: 9564 7055 ABN 37 001 024 095 Fx: +61 3 9248 3364 FAX: 9564 7190 PROJECT # PROJECT NAME PRELIM. RESULTS BY: METHOD CODE & ANALYSIS REQUIRED U VERBAL VW07335 Beveridge PSP GW Sampling Progam - Mar 14 5 E clal ☐ FAX Nutrients (ammonia, nitrate, nitrite, total Kjeldahl nitrogen, total nitrogen) SAMPLE COLLECTOR'S NAME S 표 ✓ EMAIL fluoride, No. OF CONTAINERS FINAL REPORT BY: Corey Bannister Metals (As, Be, B, Cd, Ca, Cu, Ni, Pb, Mg, Mn, K, Na, SEND TO EMAIL ADDRESS(ES): SAMPLING DATE Std TAT Sampler: Corey.Bannister Inorganics (sulphate, cyanide) PRESERVATION MATRIX Proj Mgr. Corey Sannister @jacobs.com METHOD SKM ORDER No: LAB QUOTE REF: SAMPLE DEPTH LAB SLUDGE WATER Batch 1 OTHER ID (metres) # NONE ACID-SOIL (see below) ₹DS AR. 핑 COMMENTS (1) (2) (3) 13/3/14 EFF Х Х 4 Х х Х Х WSBH Х Х 13/3/14 Х Х Х Х 4 **BH15** Х Х 13/3/14 Х Х Х Eurofius mys Х 13/14 BH18 Х Х 4 Х Х Х Х Х Х BH7 12/3/14 Х Х Х Х 13/3/14 Х **BH17** Х 4 Х Х Х Х **BH12** Х Х 12/3/14 Х Х Х Х 12/3/14 X BH14 Х 4 Х Х Х Х 12/3/14 **BH16** Х Х 4 Х Х Х Х Х Х BH11 Х Х Х Х 4 Х Х X 1303-QA1 Х 13-Mar-14 3 Х Х Х Х Х 1303-QA2 Х 13-Mar-14 4 Please send to ALS х R1-1203 Х 12-Mar-14 4 Х Х Х 1103-R1 Х Х 11-Mar-14 Х Х Х \*Please see sample bottles for sampling dates -0-0-0 Sample 1303-QA1 - please analyse for cyanide from inorganics bottle -0-0-0 (no bottle for cyanide) -0-0-0 -0-0-0 **TOTALS** 15 0 13 13 13 13 0 0 2 0 0 0 0 0 Relinquished by (SIGN/PRINT): Date Time Received by (SIGN/PRINT): Europins Time Additional Comments/Instructions: Custody (Pe)/No John 12:530 14-Mar-14 10.15am Seals Intact? All final lab reports to be provided electronically as .pdf and datafile to both emails Relinquished by (SIGN/PRINT): above. (1) Sample highly contaminated; (2) Sample unfiltered - lab to filter prior to Received by (SIGN/PRINT): Sample Receipt metals analysis; (3) TPH chromatogram required in prelim, and final reports (if TPH Temp. of detected)

|                                    | KM                    | Sincla<br>PO B<br>Malve<br>ABN | ox 250<br>ern, VI<br>37 00 | 00<br>IC 314 | 14           | ty Ltd | Ph:    |      | 1 3 92<br>1 3 92 |        |         |               | C          | HA                                                            | IN C                                                                 |                          |      |          |       |                |       |     |        |              | LAB:<br>ADDRE<br>PHONE<br>FAX: | SS:    | Lana                                                                                           | ge 1 of            |
|------------------------------------|-----------------------|--------------------------------|----------------------------|--------------|--------------|--------|--------|------|------------------|--------|---------|---------------|------------|---------------------------------------------------------------|----------------------------------------------------------------------|--------------------------|------|----------|-------|----------------|-------|-----|--------|--------------|--------------------------------|--------|------------------------------------------------------------------------------------------------|--------------------|
| PROJECT #                          |                       |                                |                            |              |              |        |        |      |                  |        |         |               |            | <u></u>                                                       |                                                                      |                          | METH | OD CO    | DDE 8 | L ANA          | LYSIS | REQ | JIRED  |              |                                | P      | RELIM. RESULTS BY: VER                                                                         | BAL                |
|                                    | 07335<br>ector's name | Bever                          | idge P                     | SP G'        |              | amplin | ng Pro | ogar | n - M            | ar 14  | 1       | ]             |            | 9. <u>2</u>                                                   | ije                                                                  | total                    |      |          |       |                |       |     |        |              |                                |        | ☐ FAX                                                                                          |                    |
| SAMPLE GOLL                        |                       |                                |                            | LABJ         | UB#          |        |        |      |                  |        |         |               | တ          | S, E                                                          | ŧ                                                                    | Je t                     |      |          |       |                |       | İ   |        |              |                                | L      | EMA                                                                                            | dL.                |
|                                    | Corey Ban             | nister                         |                            |              |              |        |        |      |                  |        |         | ш             | Ä          | Ca,                                                           | nitrate<br>, total                                                   | fluoride,                |      |          |       |                |       |     |        |              |                                | F      | INAL REPORT BY: SEND TO EMAIL AS                                                               | ` '                |
|                                    |                       |                                | Τ                          | МА           | TRIX         | ··     | F      |      | SER              |        | ON      | SAMPLING DATE | CONTAINERS | Metals (As, Be, B, Cd, Ca, Co, Cu, Ni, Pb, Mg, Mn, K, Na, Hg, | Nutrients (ammonia, nitrate, nitrite, total Kjeldahl nitrogen, total | Inorganics (sulphate, fl |      |          |       |                |       |     |        |              |                                |        | Std IAI Sampler: Corey.Banı Proj Mgr: Corey.Banı                                               |                    |
| SAMPLE                             | DEPTH                 | LAB                            |                            |              |              |        |        | 7    | METH             | IOD    |         | 9             | ļ ģ        | ag ag                                                         | ᄪ                                                                    | l snlb                   |      |          |       |                |       |     |        |              |                                |        | AB QUOTE REF: SKM ORDER No                                                                     | :                  |
| ID                                 | (metres)              | #                              | #                          |              |              | J H    |        |      |                  | E.     | ш       | <b>=</b>      | 유          | S (As,                                                        | ints (a<br>Geldal                                                    | anics                    | ₹    |          |       |                |       |     | -      |              |                                | L      | Batc                                                                                           |                    |
|                                    |                       |                                | WATER                      | SOIL         | AIR          | SLUDGE | i i    | 1 12 |                  | OTHER  | NONE    | SAM           | NO.        | Metals<br>Cu, N                                               | Vutrie<br>otal K                                                     | Inorganic                | TDS  |          |       |                |       |     |        |              |                                |        | COMMENTS                                                                                       | (1) (2)            |
| 1303-QA2                           |                       |                                | X                          | 1            |              |        | ×      |      |                  |        |         | 13-Mar-14     | 4          | Х                                                             | X                                                                    | X                        | Х    |          |       |                |       |     |        |              |                                |        |                                                                                                |                    |
|                                    |                       |                                | T                          | 1            |              |        |        |      |                  |        |         |               |            |                                                               |                                                                      |                          |      |          |       |                |       |     |        |              |                                |        |                                                                                                | 00                 |
|                                    |                       |                                |                            |              |              |        |        |      |                  |        |         |               |            |                                                               |                                                                      |                          |      |          |       |                |       |     |        |              |                                |        |                                                                                                |                    |
|                                    |                       |                                | T                          |              |              |        |        |      |                  |        |         |               |            |                                                               |                                                                      |                          |      |          |       |                |       |     |        | Ī            |                                |        |                                                                                                |                    |
|                                    |                       |                                |                            |              |              |        |        |      |                  |        |         |               |            |                                                               |                                                                      |                          |      |          |       |                |       |     |        | T            |                                |        |                                                                                                |                    |
|                                    |                       |                                |                            |              |              |        |        |      |                  |        |         |               |            |                                                               |                                                                      |                          |      |          |       |                |       |     |        |              |                                |        |                                                                                                |                    |
|                                    |                       |                                |                            |              |              |        |        |      |                  |        |         |               |            |                                                               |                                                                      |                          |      |          |       |                |       |     |        |              |                                |        |                                                                                                |                    |
|                                    | <u> </u>              |                                | ļ                          | <u> </u>     | ļ            |        | _      |      |                  |        |         |               |            |                                                               |                                                                      |                          |      |          |       |                |       |     |        |              |                                |        |                                                                                                |                    |
|                                    |                       |                                |                            |              |              |        |        |      |                  |        |         |               |            |                                                               |                                                                      |                          |      |          |       |                |       |     |        |              |                                |        |                                                                                                |                    |
|                                    |                       | <u> </u>                       |                            | <u> </u>     |              |        |        | _    |                  |        |         |               | ļ          |                                                               | <u> </u>                                                             |                          |      |          |       |                |       |     |        |              | ļļ                             |        |                                                                                                |                    |
| .,, .,, .,, .,, .,, .,, .,, .,, ., |                       |                                |                            | ļ            |              |        |        |      |                  |        |         |               |            | _                                                             |                                                                      |                          |      |          |       |                |       |     |        |              | . [                            |        |                                                                                                |                    |
|                                    |                       |                                |                            | <u> </u>     | <del></del>  |        |        |      |                  |        | ļ       |               |            | ļ                                                             |                                                                      |                          |      |          |       |                |       |     |        |              |                                |        |                                                                                                |                    |
|                                    |                       |                                |                            | <b></b>      | ļ            |        |        | _    |                  |        |         | ļ             | ļ          |                                                               | <u> </u>                                                             |                          |      |          |       |                |       |     |        |              |                                |        | Environmental Division                                                                         |                    |
|                                    | ļ                     |                                |                            |              | ļ            |        |        | -    |                  |        |         |               |            |                                                               |                                                                      |                          |      |          |       |                |       |     | _      | 4            |                                |        | Melbourne                                                                                      |                    |
|                                    | ļ                     |                                |                            | <b></b>      |              |        |        | _    |                  |        |         |               |            | <u> </u>                                                      | <u> </u>                                                             |                          |      |          |       |                |       |     |        |              |                                |        | Work Order                                                                                     |                    |
|                                    | <del> </del>          | !<br>                          | -                          | <del> </del> | <del> </del> |        |        |      |                  |        |         | ļ             |            |                                                               |                                                                      |                          |      |          |       |                |       |     |        | <del> </del> | _                              |        |                                                                                                |                    |
|                                    |                       |                                | <del> </del>               | <del> </del> |              |        |        |      |                  |        |         |               |            |                                                               |                                                                      |                          |      |          |       |                |       |     |        |              |                                |        | EM1402371                                                                                      |                    |
|                                    |                       |                                |                            | <del> </del> | +            |        |        |      |                  |        |         |               |            |                                                               |                                                                      |                          |      |          |       |                |       |     |        |              |                                |        |                                                                                                |                    |
|                                    |                       |                                |                            |              |              |        |        |      |                  |        |         |               |            |                                                               |                                                                      |                          |      |          |       |                |       |     |        |              |                                |        | )                                                                                              |                    |
|                                    |                       |                                |                            |              | +            |        |        |      |                  |        |         |               |            |                                                               |                                                                      |                          |      |          | +     |                |       | -   |        |              | -                              |        | 1                                                                                              |                    |
|                                    | <del> </del>          |                                | +                          | ╁            | +            |        |        |      |                  |        |         |               |            |                                                               |                                                                      |                          |      |          |       |                |       |     |        |              |                                |        |                                                                                                | n :                |
| w-venuen venuenen                  |                       |                                |                            |              | +            |        |        |      | _                |        |         |               |            |                                                               |                                                                      |                          |      |          | +     |                | +     |     |        | <del></del>  |                                |        |                                                                                                |                    |
|                                    |                       |                                |                            |              |              |        |        |      |                  |        |         |               |            | <b></b>                                                       |                                                                      |                          |      |          |       |                |       |     |        |              |                                |        | Telephone: +61-3-8549 9600                                                                     |                    |
|                                    |                       |                                |                            |              |              |        |        |      |                  |        |         |               |            |                                                               |                                                                      |                          |      |          | -     |                |       |     |        |              |                                | ·····  |                                                                                                | , <del>-</del> - i |
|                                    | TOTALS                | L                              | 1                          | 1            | 0            | 10     | $\top$ | +    | $\dashv$         |        |         |               |            | 1                                                             | 1                                                                    | 1                        | 1    | 0        | 0     | 2              | 0     | 0   | 0      | 0            | 0                              | 0      |                                                                                                |                    |
| Relinquished                       | by (SIGN/PRIN         | (T):                           |                            | Date         |              | 1      |        | e Re | eceive           | d by ( |         | PRINT):       |            |                                                               | Date ,                                                               | 1.                       |      | Time     | T     | Custo          | dy    |     |        | Addit        | ional Com                      | ments/ | Instructions:                                                                                  | <del></del>        |
| Corey B                            |                       | of SKM                         |                            |              | /lar-14      | 4 10.  |        |      |                  |        | , .     |               | of         |                                                               | 13/3                                                                 | 1/4                      |      | <u> </u> | an s  | eals int       | tact? | Ye  | s / No |              |                                |        | provided electronically as .pdf and datafile to                                                |                    |
| Relinquished                       | by (SIGN/PRIN         | IT):<br>of                     |                            | Date         |              |        | Tim    | e R  | eceive           | d by ( | (SIGN/I | PRINT):       | of         |                                                               | Date /                                                               | 1                        | 1    | Time     | Sa    | mple R<br>Temp | •     |     | °C     |              | s analysis; i                  |        | y contaminated; (2) Sample unfiltered - lab to<br>chromatogram required in prelim. and final r |                    |



# **Appendix E. Laboratory certificates of analysis**



## Jacobs SKM PO Box 312 Flinders Lane Melbourne VIC 8009



# Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Corey Bannister

Report 411557-W

Client Reference BEVERIDGE PSP GW SAMPLING PROGRAM - MAR 14 VW07335

Received Date Mar 12, 2014

| Client Sample ID<br>Sample Matrix |        |      | BH2<br>Water | BH5<br>Water | BH10<br>Water |
|-----------------------------------|--------|------|--------------|--------------|---------------|
| Eurofins   mgt Sample No.         |        |      | M14-Ma08465  | M14-Ma08466  | M14-Ma08467   |
| Date Sampled                      |        |      | Mar 11, 2014 | Mar 11, 2014 | Mar 11, 2014  |
| Test/Reference                    | LOR    | Unit |              |              |               |
|                                   |        |      |              |              |               |
| Ammonia (as N)                    | 0.01   | mg/L | < 0.01       | < 0.01       | < 0.01        |
| Cyanide (total)                   | 0.005  | mg/L | < 0.005      | < 0.005      | < 0.005       |
| Fluoride                          | 0.5    | mg/L | < 0.5        | < 0.5        | < 0.5         |
| Nitrate (as N)                    | 0.02   | mg/L | 2.4          | < 0.02       | 1.6           |
| Nitrite (as N)                    | 0.02   | mg/L | < 0.02       | < 0.02       | < 0.02        |
| Sulphate (as S)                   | 5      | mg/L | 7.4          | 12           | < 5           |
| Total Dissolved Solids            | 10     | mg/L | 1600         | 1500         | 1600          |
| Total Nitrogen Set (as N)         |        |      |              |              |               |
| Nitrate & Nitrite (as N)          | 0.05   | mg/L | 2.4          | < 0.05       | 1.6           |
| Total Kjeldahl Nitrogen (as N)    | 0.2    | mg/L | < 0.2        | < 0.2        | < 0.2         |
| Total Nitrogen (as N)             | 0.2    | mg/L | 2.4          | < 0.2        | 1.6           |
| Heavy Metals                      |        |      |              |              |               |
| Arsenic (filtered)                | 0.001  | mg/L | < 0.001      | < 0.001      | < 0.001       |
| Beryllium (filtered)              | 0.001  | mg/L | < 0.001      | < 0.001      | < 0.001       |
| Boron (filtered)                  | 0.05   | mg/L | 0.05         | < 0.05       | < 0.05        |
| Cadmium (filtered)                | 0.0002 | mg/L | < 0.0002     | < 0.0002     | < 0.0002      |
| Chromium (filtered)               | 0.001  | mg/L | < 0.001      | < 0.001      | 0.003         |
| Cobalt (filtered)                 | 0.001  | mg/L | < 0.001      | < 0.001      | < 0.001       |
| Copper (filtered)                 | 0.001  | mg/L | < 0.001      | 0.013        | < 0.001       |
| Lead (filtered)                   | 0.001  | mg/L | < 0.001      | < 0.001      | < 0.001       |
| Manganese (filtered)              | 0.005  | mg/L | < 0.005      | 0.036        | < 0.005       |
| Mercury (filtered)                | 0.0001 | mg/L | < 0.0001     | < 0.0001     | < 0.0001      |
| Nickel (filtered)                 | 0.001  | mg/L | < 0.001      | < 0.001      | < 0.001       |
| Zinc (filtered)                   | 0.001  | mg/L | 0.011        | 0.016        | 0.007         |
| Alkali Metals                     |        |      |              |              |               |
| Calcium                           | 0.5    | mg/L | 36           | 40           | 57            |
| Magnesium                         | 0.5    | mg/L | 160          | 130          | 170           |
| Potassium                         | 0.5    | mg/L | 5.0          | 10           | 5.3           |
| Sodium                            | 0.5    | mg/L | 290          | 360          | 270           |

Report Number: 411557-W



#### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                    | Testing Site | Extracted    | <b>Holding Time</b> |
|----------------------------------------------------------------|--------------|--------------|---------------------|
| Ammonia (as N)                                                 | Melbourne    | Mar 13, 2014 | 28 Day              |
| - Method: APHA 4500-NH3 Ammonia Nitrogen by FIA                |              |              |                     |
| Cyanide (total)                                                | Melbourne    | Mar 12, 2014 | 14 Day              |
| - Method: USEPA 9010 Cyanide                                   |              |              |                     |
| Fluoride                                                       | Melbourne    | Mar 12, 2014 | 28 Day              |
| - Method: LM-LTM-INO-4300 (Fluoride by Ion Chromatography)     |              |              |                     |
| Nitrate (as N)                                                 | Melbourne    | Mar 13, 2014 | 2 Day               |
| - Method: APHA 4500-NO3 Nitrate Nitrogen by FIA                |              |              |                     |
| Nitrite (as N)                                                 | Melbourne    | Mar 13, 2014 | 2 Day               |
| - Method: APHA 4500-NO2 Nitrite Nitrogen by FIA                |              |              |                     |
| Sulphate (as S)                                                | Melbourne    | Mar 12, 2014 | 28 Day              |
| - Method: In house MGT1110A (SO4 by Discrete Analyser)         |              |              |                     |
| Total Dissolved Solids                                         | Melbourne    | Mar 17, 2014 | 7 Day               |
| - Method: APHA 2540C Total Dissolved Solids                    |              |              |                     |
| Total Nitrogen Set (as N)                                      |              |              |                     |
| Nitrate & Nitrite (as N)                                       | Melbourne    | Mar 13, 2014 | 28 Day              |
| - Method: APHA 4500-NO3/NO2 Nitrate-Nitrite Nitrogen by FIA    |              |              |                     |
| Total Kjeldahl Nitrogen (as N)                                 | Melbourne    | Mar 13, 2014 | 7 Day               |
| - Method: APHA 4500 TKN                                        |              |              |                     |
| Heavy Metals (filtered)                                        | Melbourne    | Mar 12, 2014 | 180 Day             |
| - Method: USEPA 6020 Heavy Metals                              |              |              |                     |
| Mobil Metals : Metals M15                                      | Melbourne    | Mar 12, 2014 | 28 Day              |
| - Method: USEPA 6010/6020 Heavy Metals & USEPA 7470/71 Mercury |              |              |                     |
| Alkali Metals                                                  | Melbourne    | Mar 12, 2014 | 180 Day             |
|                                                                |              |              |                     |

Report Number: 411557-W

- Method: USEPA 6010 Alkali Metals



#### **Eurofins | mgt Internal Quality Control Review and Glossary**

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

\*\*NOTE: pH duplicates are reported as a range NOT as RPD

#### UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

#### **TERMS**

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

**Surr - Surrogate** The addition of a like compound to the analyte target and reported as percentage recovery.

**Duplicate**A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

#### **QC - ACCEPTANCE CRITERIA**

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%  $\,$ 

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150% - Phenols 20-130%.

### QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxophene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
  in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

  Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- $10. \ \ Duplicate \ RPD's \ are \ calculated \ from \ raw \ analytical \ data \ thus \ it \ is \ possible \ to \ have \ two \ sets \ of \ data.$

Report Number: 411557-W



## **Quality Control Results**

| Test                           | Units  | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|--------------------------------|--------|----------|----------------------|----------------|--------------------|
| Method Blank                   |        |          |                      |                |                    |
| Ammonia (as N)                 | mg/L   | < 0.01   | 0.01                 | Pass           |                    |
| Cyanide (total)                | mg/L   | < 0.005  | 0.005                | Pass           |                    |
| Fluoride                       | mg/L   | < 0.5    | 0.5                  | Pass           |                    |
| Nitrate (as N)                 | mg/L   | < 0.02   | 0.02                 | Pass           |                    |
| Nitrite (as N)                 | mg/L   | < 0.02   | 0.02                 | Pass           |                    |
| Sulphate (as S)                | mg/L   | < 5      | 5                    | Pass           |                    |
| Total Dissolved Solids         | mg/L   | < 10     | 10                   | Pass           |                    |
| Method Blank                   |        |          |                      |                |                    |
| Total Nitrogen Set (as N)      |        |          |                      |                |                    |
| Nitrate & Nitrite (as N)       | mg/L   | < 0.05   | 0.05                 | Pass           |                    |
| Total Kjeldahl Nitrogen (as N) | mg/L   | < 0.2    | 0.2                  | Pass           |                    |
| Method Blank                   |        |          |                      |                |                    |
| Heavy Metals                   |        |          |                      |                |                    |
| Arsenic (filtered)             | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Beryllium (filtered)           | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Boron (filtered)               | mg/L   | < 0.05   | 0.05                 | Pass           |                    |
| Cadmium (filtered)             | mg/L   | < 0.0002 | 0.0002               | Pass           |                    |
| Chromium (filtered)            | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Cobalt (filtered)              | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Copper (filtered)              | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Lead (filtered)                | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Manganese (filtered)           | mg/L   | < 0.005  | 0.001                | Pass           |                    |
| Mercury (filtered)             | mg/L   | < 0.0001 | 0.0001               | Pass           |                    |
| Nickel (filtered)              | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Zinc (filtered)                | mg/L   | < 0.001  | 0.001                | Pass           |                    |
| Method Blank                   | IIIg/L | < 0.001  | 0.001                | Fass           |                    |
| Alkali Metals                  |        | T T      |                      |                |                    |
| Calcium                        | mg/L   | < 0.5    | 0.5                  | Pass           |                    |
|                                | mg/L   | < 0.5    | 0.5                  | Pass           |                    |
| Magnesium<br>Sodium            |        | < 0.5    | 0.5                  | Pass           |                    |
| LCS - % Recovery               | mg/L   | < 0.5    | 0.5                  | Fass           |                    |
| -                              | 0/     | 00       | 70.420               | Door           |                    |
| Ammonia (as N)                 | %      | 99       | 70-130               | Pass           |                    |
| Cyanide (total)                | %      | 109      | 70-130               | Pass           |                    |
| Fluoride                       | %      | 99       | 70-130               | Pass           |                    |
| Nitrate (as N)                 | %      | 102      | 70-130               | Pass           |                    |
| Nitrite (as N)                 | %      | 92       | 70-130               | Pass           |                    |
| Sulphate (as S)                | %      | 109      | 70-130               | Pass           |                    |
| LCS - % Recovery               |        | T T      |                      | T              |                    |
| Total Nitrogen Set (as N)      |        |          |                      | _              |                    |
| Nitrate & Nitrite (as N)       | %      | 102      | 70-130               | Pass           |                    |
| Total Kjeldahl Nitrogen (as N) | %      | 92       | 70-130               | Pass           |                    |
| LCS - % Recovery               |        |          |                      | T              |                    |
| Heavy Metals                   |        |          |                      |                |                    |
| Arsenic (filtered)             | %      | 87       | 80-120               | Pass           |                    |
| Boron (filtered)               | %      | 91       | 80-120               | Pass           |                    |
| Cadmium (filtered)             | %      | 88       | 80-120               | Pass           |                    |
| Chromium (filtered)            | %      | 88       | 80-120               | Pass           |                    |
| Cobalt (filtered)              | %      | 86       | 80-120               | Pass           |                    |
| Copper (filtered)              | %      | 87       | 80-120               | Pass           |                    |
| Lead (filtered)                | %      | 87       | 80-120               | Pass           |                    |
| Manganese (filtered)           | %      | 88       | 80-120               | Pass           |                    |

Report Number: 411557-W



| Test                           | :             |              | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|--------------------------------|---------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------|
| Mercury (filtered)             |               |              | %     | 80       |          |     | 70-130               | Pass           |                    |
| Nickel (filtered)              |               |              | %     | 86       |          |     | 80-120               | Pass           |                    |
| Zinc (filtered)                |               |              | %     | 89       |          |     | 80-120               | Pass           |                    |
| LCS - % Recovery               |               |              |       | •        |          |     |                      |                |                    |
| Alkali Metals                  |               |              |       |          |          |     |                      |                |                    |
| Calcium                        |               |              | %     | 89       |          |     | 70-130               | Pass           |                    |
| Magnesium                      |               |              | %     | 88       |          |     | 70-130               | Pass           |                    |
| Potassium                      |               |              | %     | 80       |          |     | 70-130               | Pass           |                    |
| Sodium                         |               |              | %     | 83       |          |     | 70-130               | Pass           |                    |
| Test                           | Lab Sample ID | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Spike - % Recovery             |               |              |       |          |          |     |                      |                |                    |
|                                |               |              |       | Result 1 |          |     |                      |                |                    |
| Ammonia (as N)                 | M14-Ma08323   | NCP          | %     | 99       |          |     | 70-130               | Pass           |                    |
| Cyanide (total)                | M14-Ma05350   | NCP          | %     | 104      |          |     | 70-130               | Pass           |                    |
| Fluoride                       | M14-Ma08094   | NCP          | %     | 101      |          |     | 70-130               | Pass           |                    |
| Nitrate (as N)                 | M14-Ma08323   | NCP          | %     | 104      |          |     | 70-130               | Pass           |                    |
| Nitrite (as N)                 | M14-Ma08323   | NCP          | %     | 86       |          |     | 70-130               | Pass           |                    |
| Sulphate (as S)                | M14-Ma08436   | NCP          | %     | 90       |          |     | 70-130               | Pass           |                    |
| Spike - % Recovery             |               |              |       |          |          |     |                      |                |                    |
| Total Nitrogen Set (as N)      |               | I            | ı     | Result 1 |          |     |                      |                |                    |
| Nitrate & Nitrite (as N)       | M14-Ma08323   | NCP          | %     | 104      |          |     | 70-130               | Pass           |                    |
| Total Kjeldahl Nitrogen (as N) | M14-Ma10615   | NCP          | %     | 87       |          |     | 70-130               | Pass           |                    |
| Spike - % Recovery             |               |              |       |          |          |     |                      |                |                    |
| Heavy Metals                   |               | 1            | 1     | Result 1 |          |     |                      |                |                    |
| Arsenic (filtered)             | M14-Ma08600   | NCP          | %     | 85       |          |     | 70-130               | Pass           |                    |
| Beryllium (filtered)           | M14-Ma08600   | NCP          | %     | 81       |          |     | 75-125               | Pass           |                    |
| Boron (filtered)               | M14-Ma08600   | NCP          | %     | 78       |          |     | 75-125               | Pass           |                    |
| Cadmium (filtered)             | M14-Ma08600   | NCP          | %     | 76       |          |     | 70-130               | Pass           |                    |
| Chromium (filtered)            | M14-Ma08600   | NCP          | %     | 83       |          |     | 70-130               | Pass           |                    |
| Cobalt (filtered)              | M14-Ma08600   | NCP          | %     | 80       |          |     | 75-125               | Pass           |                    |
| Copper (filtered)              | M14-Ma08600   | NCP          | %     | 77       |          |     | 70-130               | Pass           |                    |
| Lead (filtered)                | M14-Ma08600   | NCP          | %     | 80       |          |     | 70-130               | Pass           |                    |
| Manganese (filtered)           | M14-Ma08600   | NCP          | %     | 81       |          |     | 70-130               | Pass           |                    |
| Mercury (filtered)             | M14-Ma09544   | NCP          | %     | 92       |          |     | 70-130               | Pass           |                    |
| Nickel (filtered)              | M14-Ma08600   | NCP          | %     | 77       |          |     | 70-130               | Pass           |                    |
| Zinc (filtered)                | M14-Ma08600   | NCP          | %     | 79       |          |     | 70-130               | Pass           |                    |
| Spike - % Recovery             |               |              |       | T        | 1        |     | 1                    | ı              |                    |
| Alkali Metals                  | 1             |              | I .   | Result 1 |          |     |                      | _              |                    |
| Calcium                        | M14-Ma08462   | NCP          | %     | 92       |          |     | 70-130               | Pass           |                    |
| Magnesium                      | M14-Ma08462   | NCP          | %     | 100      |          |     | 70-130               | Pass           |                    |
| Potassium                      | M14-Ma08462   | NCP          | %     | 82       |          |     | 70-130               | Pass           |                    |
| Sodium                         | M14-Ma08462   | NCP          | %     | 98       |          |     | 70-130               | Pass           |                    |
| Test                           | Lab Sample ID | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Duplicate                      |               |              |       |          |          |     |                      |                |                    |
|                                |               |              |       | Result 1 | Result 2 | RPD | 222:                 | _              |                    |
| Ammonia (as N)                 | M14-Ma08323   | NCP          | mg/L  | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| Cyanide (total)                | M14-Ma07187   | NCP          | mg/L  | < 0.005  | < 0.005  | <1  | 30%                  | Pass           |                    |
| Fluoride                       | M14-Ma08094   | NCP          | mg/L  | 0.63     | 0.61     | 3.0 | 30%                  | Pass           |                    |
| Nitrate (as N)                 | M14-Ma08323   | NCP          | mg/L  | < 0.02   | < 0.02   | <1  | 30%                  | Pass           |                    |
| Nitrite (as N)                 | M14-Ma08323   | NCP          | mg/L  | < 0.02   | < 0.02   | <1  | 30%                  | Pass           |                    |
| Sulphate (as S)                | M14-Ma08754   | NCP          | mg/L  | 180      | 180      | <1  | 30%                  | Pass           |                    |

Report Number: 411557-W



| Duplicate                      |             |     |      |          |          |     |     |      |  |
|--------------------------------|-------------|-----|------|----------|----------|-----|-----|------|--|
| Total Nitrogen Set (as N)      |             |     |      | Result 1 | Result 2 | RPD |     |      |  |
| Nitrate & Nitrite (as N)       | M14-Ma08323 | NCP | mg/L | < 0.05   | < 0.05   | <1  | 30% | Pass |  |
| Total Kjeldahl Nitrogen (as N) | M14-Ma10615 | NCP | mg/L | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Duplicate                      |             |     |      |          |          |     |     |      |  |
| Heavy Metals                   |             |     |      | Result 1 | Result 2 | RPD |     |      |  |
| Arsenic (filtered)             | M14-Ma08600 | NCP | mg/L | 0.0017   | 0.0016   | 1.6 | 30% | Pass |  |
| Beryllium (filtered)           | M14-Ma08600 | NCP | mg/L | < 0.001  | < 0.001  | <1  | 30% | Pass |  |
| Boron (filtered)               | M14-Ma08600 | NCP | mg/L | 0.35     | 0.34     | 2.5 | 30% | Pass |  |
| Cadmium (filtered)             | M14-Ma08600 | NCP | mg/L | < 0.0002 | < 0.0002 | <1  | 30% | Pass |  |
| Chromium (filtered)            | M14-Ma08600 | NCP | mg/L | < 0.001  | < 0.001  | <1  | 30% | Pass |  |
| Cobalt (filtered)              | M14-Ma08600 | NCP | mg/L | < 0.001  | < 0.001  | <1  | 30% | Pass |  |
| Copper (filtered)              | M14-Ma08600 | NCP | mg/L | 0.013    | 0.013    | 3.5 | 30% | Pass |  |
| Lead (filtered)                | M14-Ma08600 | NCP | mg/L | < 0.001  | < 0.001  | <1  | 30% | Pass |  |
| Manganese (filtered)           | M14-Ma08600 | NCP | mg/L | 0.031    | 0.030    | 4.7 | 30% | Pass |  |
| Mercury (filtered)             | M14-Ma09544 | NCP | mg/L | < 0.0001 | < 0.0001 | <1  | 30% | Pass |  |
| Nickel (filtered)              | M14-Ma08600 | NCP | mg/L | 0.0065   | 0.0064   | 2.6 | 30% | Pass |  |
| Zinc (filtered)                | M14-Ma08600 | NCP | mg/L | 0.095    | 0.095    | <1  | 30% | Pass |  |
| Duplicate                      |             |     |      |          |          |     |     |      |  |
| Alkali Metals                  |             |     |      | Result 1 | Result 2 | RPD |     |      |  |
| Calcium                        | M14-Ma09226 | NCP | mg/L | 5.4      | 5.7      | 5.0 | 30% | Pass |  |
| Magnesium                      | M14-Ma09226 | NCP | mg/L | 46       | 47       | 2.0 | 30% | Pass |  |
| Potassium                      | M14-Ma08462 | NCP | mg/L | 25       | 28       | 14  | 30% | Pass |  |
| Sodium                         | M14-Ma09226 | NCP | mg/L | 190      | 190      | 2.0 | 30% | Pass |  |
| Duplicate                      |             |     |      |          |          |     |     |      |  |
|                                |             |     |      | Result 1 | Result 2 | RPD |     |      |  |
| Total Dissolved Solids         | M14-Ma08467 | CP  | mg/L | 1600     | 1600     | 3.0 | 30% | Pass |  |



#### Comments

## Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Organic samples had Teflon liners
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

## **Authorised By**

Adrian Tabacchiera Client Services

Emily Rosenberg Senior Analyst-Metal (VIC)
Huong Le Senior Analyst-Inorganic (VIC)



## Glenn Jackson

#### **Laboratory Manager**

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- \* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins, Img shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report, In on case shall Eurofins I mg be liable for consequential claims, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall be reported.

Report Number: 411557-W



Jacobs SKM PO Box 312 Flinders Lane Melbourne VIC 8009

# Certificate of Analysis



NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Corey Bannister

Report 411868-W

Client Reference BEVERIDGE PSP GW SAMPLING PROGRAM MAR 14 VW07335

Received Date Mar 14, 2014

| Client Sample ID<br>Sample Matrix |        |      | EFF<br>Water | WSBH<br>Water | BH15<br>Water | BH18<br>Water |
|-----------------------------------|--------|------|--------------|---------------|---------------|---------------|
| Eurofins   mgt Sample No.         |        |      | M14-Ma10861  | M14-Ma10862   | M14-Ma10863   | M14-Ma10864   |
| Date Sampled                      |        |      | Mar 13, 2014 | Mar 13, 2014  | Mar 13, 2014  | Mar 13, 2014  |
| Test/Reference                    | LOR    | Unit |              |               | ,             |               |
|                                   |        | J 0  |              |               |               |               |
| Ammonia (as N)                    | 0.01   | mg/L | < 0.01       | < 0.01        | < 0.01        | < 0.01        |
| Cyanide (total)                   | 0.005  | mg/L | 0.023        | < 0.005       | < 0.005       | < 0.005       |
| Fluoride                          | 0.5    | mg/L | 0.7          | < 0.5         | < 0.5         | < 0.5         |
| Nitrate (as N)                    | 0.02   | mg/L | 5.8          | 0.08          | 5.0           | 0.22          |
| Nitrite (as N)                    | 0.02   | mg/L | 3.6          | < 0.02        | < 0.02        | < 0.02        |
| Sulphate (as S)                   | 5      | mg/L | 14           | 12            | 14            | < 5           |
| Total Dissolved Solids            | 10     | mg/L | 620          | 1800          | 1700          | 770           |
| Total Nitrogen Set (as N)         |        |      |              |               |               |               |
| Nitrate & Nitrite (as N)          | 0.05   | mg/L | 9.4          | 0.08          | 5.0           | 0.22          |
| Total Kjeldahl Nitrogen (as N)    | 0.2    | mg/L | 3.1          | < 0.2         | 2.7           | < 0.2         |
| Total Nitrogen (as N)             | 0.2    | mg/L | 13           | < 0.2         | 7.7           | 0.22          |
| Heavy Metals                      |        |      |              |               |               |               |
| Arsenic (filtered)                | 0.001  | mg/L | 0.003        | < 0.001       | < 0.001       | < 0.001       |
| Beryllium (filtered)              | 0.001  | mg/L | < 0.001      | < 0.001       | < 0.001       | < 0.001       |
| Boron (filtered)                  | 0.05   | mg/L | 0.07         | < 0.05        | < 0.05        | 0.09          |
| Cadmium (filtered)                | 0.0002 | mg/L | < 0.0002     | < 0.0002      | < 0.0002      | < 0.0002      |
| Chromium (filtered)               | 0.001  | mg/L | < 0.001      | < 0.001       | < 0.001       | < 0.001       |
| Cobalt (filtered)                 | 0.001  | mg/L | 0.001        | 0.001         | < 0.001       | < 0.001       |
| Copper (filtered)                 | 0.001  | mg/L | 0.002        | 0.012         | 0.30          | 0.007         |
| Lead (filtered)                   | 0.001  | mg/L | < 0.001      | < 0.001       | < 0.001       | < 0.001       |
| Manganese (filtered)              | 0.005  | mg/L | 0.029        | 0.60          | 0.012         | 0.060         |
| Mercury (filtered)                | 0.0001 | mg/L | < 0.0001     | < 0.0001      | < 0.0001      | < 0.0001      |
| Nickel (filtered)                 | 0.001  | mg/L | 0.005        | 0.003         | < 0.001       | < 0.001       |
| Zinc (filtered)                   | 0.001  | mg/L | < 0.001      | 0.098         | 0.15          | 0.36          |
| Alkali Metals                     |        |      |              |               |               |               |
| Calcium                           | 0.5    | mg/L | 18           | 79            | 40            | 19            |
| Magnesium                         | 0.5    | mg/L | 18           | 170           | 140           | 40            |
| Potassium                         | 0.5    | mg/L | 47           | 21            | 42            | 25            |
| Sodium                            | 0.5    | mg/L | 180          | 340           | 400           | 250           |



| Client Sample ID<br>Sample Matrix |        |      | BH7<br>Water | BH17<br>Water | BH12<br>Water | BH14<br>Water |
|-----------------------------------|--------|------|--------------|---------------|---------------|---------------|
| Eurofins   mgt Sample No.         |        |      | M14-Ma10865  | M14-Ma10866   | M14-Ma10867   | M14-Ma10868   |
| Date Sampled                      |        |      | Mar 12, 2014 | Mar 13, 2014  | Mar 12, 2014  | Mar 12, 2014  |
| Test/Reference                    | LOR    | Unit |              |               |               |               |
|                                   |        |      |              |               |               |               |
| Ammonia (as N)                    | 0.01   | mg/L | < 0.01       | < 0.01        | 0.27          | < 0.01        |
| Cyanide (total)                   | 0.005  | mg/L | < 0.005      | < 0.005       | < 0.005       | < 0.005       |
| Fluoride                          | 0.5    | mg/L | < 0.5        | < 0.5         | < 0.5         | < 0.5         |
| Nitrate (as N)                    | 0.02   | mg/L | 2.8          | 3.2           | 7.3           | 1.9           |
| Nitrite (as N)                    | 0.02   | mg/L | < 0.02       | < 0.02        | 0.22          | < 0.02        |
| Sulphate (as S)                   | 5      | mg/L | 12           | < 5           | 16            | 11            |
| Total Dissolved Solids            | 10     | mg/L | 1200         | 700           | 2200          | 1300          |
| Total Nitrogen Set (as N)         |        |      |              |               |               |               |
| Nitrate & Nitrite (as N)          | 0.05   | mg/L | 2.8          | 3.2           | 7.6           | 1.9           |
| Total Kjeldahl Nitrogen (as N)    | 0.2    | mg/L | < 0.2        | < 0.2         | 1.6           | < 0.2         |
| Total Nitrogen (as N)             | 0.2    | mg/L | 2.8          | 3.2           | 9.2           | 1.9           |
| Heavy Metals                      |        |      |              |               |               |               |
| Arsenic (filtered)                | 0.001  | mg/L | < 0.001      | < 0.001       | 0.003         | < 0.001       |
| Beryllium (filtered)              | 0.001  | mg/L | < 0.001      | < 0.001       | < 0.001       | < 0.001       |
| Boron (filtered)                  | 0.05   | mg/L | < 0.05       | < 0.05        | < 0.05        | < 0.05        |
| Cadmium (filtered)                | 0.0002 | mg/L | < 0.0002     | < 0.0002      | < 0.0002      | < 0.0002      |
| Chromium (filtered)               | 0.001  | mg/L | < 0.001      | 0.003         | < 0.001       | < 0.001       |
| Cobalt (filtered)                 | 0.001  | mg/L | < 0.001      | < 0.001       | < 0.001       | < 0.001       |
| Copper (filtered)                 | 0.001  | mg/L | 0.001        | 0.002         | 0.003         | 0.047         |
| Lead (filtered)                   | 0.001  | mg/L | < 0.001      | < 0.001       | < 0.001       | 0.001         |
| Manganese (filtered)              | 0.005  | mg/L | 0.013        | < 0.005       | 0.038         | < 0.005       |
| Mercury (filtered)                | 0.0001 | mg/L | < 0.0001     | < 0.0001      | < 0.0001      | < 0.0001      |
| Nickel (filtered)                 | 0.001  | mg/L | 0.001        | < 0.001       | 0.002         | 0.001         |
| Zinc (filtered)                   | 0.001  | mg/L | 0.007        | 0.014         | 0.011         | 0.030         |
| Alkali Metals                     |        |      |              |               |               |               |
| Calcium                           | 0.5    | mg/L | 32           | 28            | 16            | 19            |
| Magnesium                         | 0.5    | mg/L | 130          | 82            | 230           | 110           |
| Potassium                         | 0.5    | mg/L | 22           | 18            | 16            | 3.6           |
| Sodium                            | 0.5    | mg/L | 280          | 180           | 580           | 330           |

| Client Sample ID Sample Matrix Eurofins   mgt Sample No. Date Sampled |       |      | BH16<br>Water<br>M14-Ma10869<br>Mar 12, 2014 | BH11<br>Water<br>M14-Ma10870<br>Mar 11, 2014 | 1303-QA1<br>Water<br>M14-Ma10871<br>Mar 13, 2014 | R1-1203<br>Water<br>M14-Ma10872<br>Mar 12, 2014 |
|-----------------------------------------------------------------------|-------|------|----------------------------------------------|----------------------------------------------|--------------------------------------------------|-------------------------------------------------|
| Test/Reference                                                        | LOR   | Unit |                                              |                                              |                                                  |                                                 |
| Ammonia (as N)                                                        | 0.01  | mg/L | < 0.01                                       | 0.03                                         | < 0.01                                           | < 0.01                                          |
| Cyanide (total)                                                       | 0.005 | mg/L | < 0.005                                      | < 0.005                                      | < 0.005                                          | < 0.005                                         |
| Fluoride                                                              | 0.5   | mg/L | < 0.5                                        | < 0.5                                        | 0.6                                              | < 0.5                                           |
| Nitrate (as N)                                                        | 0.02  | mg/L | < 0.02                                       | < 0.02                                       | 5.5                                              | < 0.02                                          |
| Nitrite (as N)                                                        | 0.02  | mg/L | < 0.02                                       | < 0.02                                       | 3.8                                              | < 0.02                                          |
| Sulphate (as S)                                                       | 5     | mg/L | 10                                           | 43                                           | 14                                               | < 5                                             |
| Total Dissolved Solids                                                | 10    | mg/L | 2000                                         | 3500                                         | 700                                              | -                                               |
| Total Nitrogen Set (as N)                                             |       |      |                                              |                                              |                                                  |                                                 |
| Nitrate & Nitrite (as N)                                              | 0.05  | mg/L | < 0.05                                       | < 0.05                                       | 9.3                                              | < 0.05                                          |
| Total Kjeldahl Nitrogen (as N)                                        | 0.2   | mg/L | < 0.2                                        | < 0.2                                        | < 0.2                                            | < 0.2                                           |
| Total Nitrogen (as N)                                                 | 0.2   | mg/L | < 0.2                                        | < 0.2                                        | 9.3                                              | < 0.2                                           |



| Client Sample ID<br>Sample Matrix |        |      | BH16<br>Water | BH11<br>Water | 1303-QA1<br>Water | R1-1203<br>Water |
|-----------------------------------|--------|------|---------------|---------------|-------------------|------------------|
| · •                               |        |      | M14-Ma10869   | M14-Ma10870   | M14-Ma10871       | M14-Ma10872      |
| Eurofins   mgt Sample No.         |        |      |               |               |                   |                  |
| Date Sampled                      |        |      | Mar 12, 2014  | Mar 11, 2014  | Mar 13, 2014      | Mar 12, 2014     |
| Test/Reference                    | LOR    | Unit |               |               |                   |                  |
| Heavy Metals                      |        | 1    |               |               |                   |                  |
| Arsenic                           | 0.001  | mg/L | -             | -             | -                 | < 0.001          |
| Arsenic (filtered)                | 0.001  | mg/L | < 0.001       | 0.005         | 0.003             | -                |
| Beryllium                         | 0.001  | mg/L | -             | -             | -                 | < 0.001          |
| Beryllium (filtered)              | 0.001  | mg/L | < 0.001       | < 0.001       | < 0.001           | -                |
| Boron                             | 0.05   | mg/L | -             | -             | -                 | < 0.05           |
| Boron (filtered)                  | 0.05   | mg/L | < 0.05        | < 0.05        | 0.07              | -                |
| Cadmium                           | 0.0002 | mg/L | -             | -             | -                 | < 0.0002         |
| Cadmium (filtered)                | 0.0002 | mg/L | 0.0002        | < 0.0002      | < 0.0002          | -                |
| Chromium                          | 0.001  | mg/L | -             | -             | -                 | < 0.001          |
| Chromium (filtered)               | 0.001  | mg/L | < 0.001       | < 0.001       | < 0.001           | -                |
| Cobalt                            | 0.001  | mg/L | -             | -             | -                 | < 0.001          |
| Cobalt (filtered)                 | 0.001  | mg/L | 0.003         | 0.011         | 0.001             | -                |
| Copper                            | 0.001  | mg/L | -             | -             | -                 | < 0.001          |
| Copper (filtered)                 | 0.001  | mg/L | 0.024         | < 0.001       | 0.002             | -                |
| Lead                              | 0.001  | mg/L | -             | -             | -                 | < 0.001          |
| Lead (filtered)                   | 0.001  | mg/L | < 0.001       | < 0.001       | < 0.001           | -                |
| Manganese                         | 0.005  | mg/L | -             | -             | -                 | < 0.005          |
| Manganese (filtered)              | 0.005  | mg/L | 0.75          | 0.24          | 0.038             | -                |
| Mercury                           | 0.0001 | mg/L | -             | -             | -                 | < 0.0001         |
| Mercury (filtered)                | 0.0001 | mg/L | < 0.0001      | < 0.0001      | < 0.0001          | -                |
| Nickel                            | 0.001  | mg/L | -             | -             | -                 | < 0.001          |
| Nickel (filtered)                 | 0.001  | mg/L | 0.001         | 0.026         | 0.005             | -                |
| Zinc                              | 0.001  | mg/L | -             | -             | -                 | < 0.001          |
| Zinc (filtered)                   | 0.001  | mg/L | 0.32          | 0.005         | 0.003             | -                |
| Alkali Metals                     |        |      |               |               |                   |                  |
| Calcium                           | 0.5    | mg/L | 78            | 33            | 21                | < 0.5            |
| Magnesium                         | 0.5    | mg/L | 240           | 290           | 21                | < 0.5            |
| Potassium                         | 0.5    | mg/L | 33            | 10            | 39                | < 0.5            |
| Sodium                            | 0.5    | mg/L | 460           | 720           | 180               | < 0.5            |

| Client Sample ID Sample Matrix Eurofins   mgt Sample No. Date Sampled |       |      | 1103-R1<br>Water<br>M14-Ma10873<br>Mar 11, 2014 |
|-----------------------------------------------------------------------|-------|------|-------------------------------------------------|
| Test/Reference                                                        | LOR   | Unit |                                                 |
| Ammonia (as N)                                                        | 0.01  | mg/L | < 0.01                                          |
| Cyanide (total)                                                       | 0.005 | mg/L | < 0.005                                         |
| Fluoride                                                              | 0.5   | mg/L | < 0.5                                           |
| Nitrate (as N)                                                        | 0.02  | mg/L | < 0.02                                          |
| Nitrite (as N)                                                        | 0.02  | mg/L | < 0.02                                          |
| Sulphate (as S)                                                       | 5     | mg/L | < 5                                             |
| Total Nitrogen Set (as N)                                             |       |      |                                                 |
| Nitrate & Nitrite (as N)                                              | 0.05  | mg/L | < 0.05                                          |
| Total Kjeldahl Nitrogen (as N)                                        | 0.2   | mg/L | < 0.2                                           |
| Total Nitrogen (as N)                                                 | 0.2   | mg/L | < 0.2                                           |



| Client Sample ID<br>Sample Matrix |      |         | 1103-R1<br>Water |
|-----------------------------------|------|---------|------------------|
| Eurofins   mgt Sample No.         |      |         | M14-Ma10873      |
| Date Sampled                      |      |         | Mar 11, 2014     |
| Test/Reference                    | LOI  | R Unit  |                  |
| Heavy Metals                      |      |         |                  |
| Arsenic                           | 0.00 | 1 mg/L  | < 0.001          |
| Beryllium                         | 0.00 | 1 mg/L  | < 0.001          |
| Boron                             | 0.0  | 5 mg/L  | < 0.05           |
| Cadmium                           | 0.00 | 02 mg/L | < 0.0002         |
| Chromium                          | 0.00 | 1 mg/L  | < 0.001          |
| Cobalt                            | 0.00 | 1 mg/L  | < 0.001          |
| Copper                            | 0.00 | 1 mg/L  | < 0.001          |
| Lead                              | 0.00 | 1 mg/L  | < 0.001          |
| Manganese                         | 0.00 | 5 mg/L  | < 0.005          |
| Mercury                           | 0.00 | 01 mg/L | < 0.0001         |
| Nickel                            | 0.00 | 1 mg/L  | < 0.001          |
| Zinc                              | 0.00 | 1 mg/L  | < 0.001          |
| Alkali Metals                     |      |         |                  |
| Calcium                           | 0.5  | mg/L    | < 0.5            |
| Magnesium                         | 0.5  | mg/L    | < 0.5            |
| Potassium                         | 0.5  | mg/L    | < 0.5            |
| Sodium                            | 0.5  | mg/L    | < 0.5            |



## Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                    | Testing Site | Extracted    | <b>Holding Time</b> |
|----------------------------------------------------------------|--------------|--------------|---------------------|
| Ammonia (as N)                                                 | Melbourne    | Mar 14, 2014 | 28 Day              |
| - Method: APHA 4500-NH3 Ammonia Nitrogen by FIA                |              |              |                     |
| Cyanide (total)                                                | Melbourne    | Mar 14, 2014 | 14 Day              |
| - Method: USEPA 9010 Cyanide                                   |              |              |                     |
| Fluoride                                                       | Melbourne    | Mar 18, 2014 | 28 Day              |
| - Method: LM-LTM-INO-4300 (Fluoride by Ion Chromatography)     |              |              |                     |
| Nitrate (as N)                                                 | Melbourne    | Mar 14, 2014 | 2 Day               |
| - Method: APHA 4500-NO3 Nitrate Nitrogen by FIA                |              |              |                     |
| Nitrite (as N)                                                 | Melbourne    | Mar 14, 2014 | 2 Day               |
| - Method: APHA 4500-NO2 Nitrite Nitrogen by FIA                |              |              |                     |
| Sulphate (as S)                                                | Melbourne    | Mar 14, 2014 | 28 Day              |
| - Method: In house MGT1110A (SO4 by Discrete Analyser)         |              |              |                     |
| Total Dissolved Solids                                         | Melbourne    | Mar 20, 2014 | 7 Day               |
| - Method: APHA 2540C Total Dissolved Solids                    |              |              |                     |
| Total Nitrogen Set (as N)                                      |              |              |                     |
| Nitrate & Nitrite (as N)                                       | Melbourne    | Mar 14, 2014 | 28 Day              |
| - Method: APHA 4500-NO3/NO2 Nitrate-Nitrite Nitrogen by FIA    |              |              |                     |
| Total Kjeldahl Nitrogen (as N)                                 | Melbourne    | Mar 14, 2014 | 7 Day               |
| - Method: APHA 4500 TKN                                        |              |              |                     |
| Heavy Metals                                                   | Melbourne    | Mar 14, 2014 | 180 Day             |
| - Method: USEPA 6010/6020 Heavy Metals                         |              |              |                     |
| Heavy Metals (filtered)                                        | Melbourne    | Mar 14, 2014 | 180 Day             |
| - Method: USEPA 6020 Heavy Metals                              |              |              |                     |
| Mobil Metals : Metals M15                                      | Melbourne    | Mar 14, 2014 | 28 Day              |
| - Method: USEPA 6010/6020 Heavy Metals & USEPA 7470/71 Mercury |              |              |                     |
| Alkali Metals                                                  | Melbourne    | Mar 14, 2014 | 180 Day             |
|                                                                |              |              |                     |

Report Number: 411868-W

- Method: USEPA 6010 Alkali Metals



### **Eurofins | mgt Internal Quality Control Review and Glossary**

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

\*\*NOTE: pH duplicates are reported as a range NOT as RPD

#### UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

#### **TERMS**

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

**Surr - Surrogate** The addition of a like compound to the analyte target and reported as percentage recovery.

**Duplicate**A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

## **QC - ACCEPTANCE CRITERIA**

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%  $\,$ 

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150% - Phenols 20-130%.

## QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxophene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
  in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

  Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- $10. \ \ Duplicate \ RPD's \ are \ calculated \ from \ raw \ analytical \ data \ thus \ it \ is \ possible \ to \ have \ two \ sets \ of \ data.$



## **Quality Control Results**

| Test                           | Units | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|--------------------------------|-------|----------|----------------------|----------------|--------------------|
| Method Blank                   |       |          |                      | ,              |                    |
| Ammonia (as N)                 | mg/L  | < 0.01   | 0.01                 | Pass           |                    |
| Fluoride                       | mg/L  | < 0.5    | 0.5                  | Pass           |                    |
| Nitrate (as N)                 | mg/L  | < 0.02   | 0.02                 | Pass           |                    |
| Nitrite (as N)                 | mg/L  | < 0.02   | 0.02                 | Pass           |                    |
| Sulphate (as S)                | mg/L  | < 5      | 5                    | Pass           |                    |
| Total Dissolved Solids         | mg/L  | < 10     | 10                   | Pass           |                    |
| Method Blank                   |       |          |                      |                |                    |
| Total Nitrogen Set (as N)      |       |          |                      |                |                    |
| Nitrate & Nitrite (as N)       | mg/L  | < 0.05   | 0.05                 | Pass           |                    |
| Total Kjeldahl Nitrogen (as N) | mg/L  | < 0.2    | 0.2                  | Pass           |                    |
| Method Blank                   |       |          |                      |                |                    |
| Heavy Metals                   |       |          |                      |                |                    |
| Arsenic                        | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Arsenic (filtered)             | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Beryllium                      | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Beryllium (filtered)           | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Boron                          | mg/L  | < 0.05   | 0.05                 | Pass           |                    |
| Boron (filtered)               | mg/L  | < 0.05   | 0.05                 | Pass           |                    |
| Cadmium                        | mg/L  | < 0.0002 | 0.0002               | Pass           |                    |
| Cadmium (filtered)             | mg/L  | < 0.0002 | 0.0002               | Pass           |                    |
| Chromium                       | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Chromium (filtered)            | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Cobalt                         | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Cobalt (filtered)              | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Copper                         | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Copper (filtered)              | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Lead                           | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Lead (filtered)                | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Manganese                      | mg/L  | < 0.005  | 0.005                | Pass           |                    |
| Manganese (filtered)           | mg/L  | < 0.005  | 0.005                | Pass           |                    |
| Mercury                        | mg/L  | < 0.0001 | 0.0001               | Pass           |                    |
| Mercury (filtered)             | mg/L  | < 0.0001 | 0.0001               | Pass           |                    |
| Nickel                         | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Nickel (filtered)              | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Zinc                           | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Zinc (filtered)                | mg/L  | < 0.001  | 0.001                | Pass           |                    |
| Method Blank                   |       |          |                      |                |                    |
| Alkali Metals                  |       |          |                      |                |                    |
| Calcium                        | mg/L  | < 0.5    | 0.5                  | Pass           |                    |
| Magnesium                      | mg/L  | < 0.5    | 0.5                  | Pass           |                    |
| Potassium                      | mg/L  | < 0.5    | 0.5                  | Pass           |                    |
| LCS - % Recovery               |       |          |                      |                |                    |
| Ammonia (as N)                 | %     | 90       | 70-130               | Pass           |                    |
| Fluoride                       | %     | 91       | 70-130               | Pass           |                    |
| Nitrate (as N)                 | %     | 107      | 70-130               | Pass           |                    |
| Nitrite (as N)                 | %     | 96       | 70-130               | Pass           |                    |
| Sulphate (as S)                | %     | 108      | 70-130               | Pass           |                    |
| LCS - % Recovery               |       |          |                      |                |                    |
| Total Nitrogen Set (as N)      |       |          |                      |                |                    |
| Nitrate & Nitrite (as N)       | %     | 107      | 70-130               | Pass           |                    |
| Total Kjeldahl Nitrogen (as N) | %     | 98       | 70-130               | Pass           |                    |



| Test                                                                                                                                                                                                                                                                                                                | t .                                                                                                                                                          |                                                                    | Units                                     | Result 1                                                                                             | Acceptance<br>Limits                                                                                       | Pass<br>Limits                          | Qualifying<br>Code |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------|
| LCS - % Recovery                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              |                                                                    |                                           |                                                                                                      |                                                                                                            |                                         |                    |
| Heavy Metals                                                                                                                                                                                                                                                                                                        |                                                                                                                                                              |                                                                    |                                           |                                                                                                      |                                                                                                            |                                         |                    |
| Arsenic                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |                                                                    | %                                         | 93                                                                                                   | 80-120                                                                                                     | Pass                                    |                    |
| Arsenic (filtered)                                                                                                                                                                                                                                                                                                  |                                                                                                                                                              |                                                                    | %                                         | 94                                                                                                   | 80-120                                                                                                     | Pass                                    |                    |
| Beryllium                                                                                                                                                                                                                                                                                                           |                                                                                                                                                              |                                                                    | %                                         | 90                                                                                                   | 80-120                                                                                                     | Pass                                    |                    |
| Boron                                                                                                                                                                                                                                                                                                               |                                                                                                                                                              |                                                                    | %                                         | 85                                                                                                   | 80-120                                                                                                     | Pass                                    |                    |
| Boron (filtered)                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              |                                                                    | %                                         | 98                                                                                                   | 80-120                                                                                                     | Pass                                    |                    |
| Cadmium                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |                                                                    | %                                         | 90                                                                                                   | 80-120                                                                                                     | Pass                                    |                    |
| Cadmium (filtered)                                                                                                                                                                                                                                                                                                  |                                                                                                                                                              |                                                                    | %                                         | 93                                                                                                   | 80-120                                                                                                     | Pass                                    |                    |
| Chromium                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                    | %                                         | 89                                                                                                   | 80-120                                                                                                     | Pass                                    |                    |
| Chromium (filtered)                                                                                                                                                                                                                                                                                                 |                                                                                                                                                              |                                                                    | %                                         | 92                                                                                                   | 80-120                                                                                                     | Pass                                    |                    |
| Cobalt                                                                                                                                                                                                                                                                                                              |                                                                                                                                                              |                                                                    | %                                         | 89                                                                                                   | 80-120                                                                                                     | Pass                                    |                    |
| Cobalt (filtered)                                                                                                                                                                                                                                                                                                   |                                                                                                                                                              |                                                                    | %                                         | 93                                                                                                   | 80-120                                                                                                     | Pass                                    |                    |
| Copper                                                                                                                                                                                                                                                                                                              |                                                                                                                                                              |                                                                    | %                                         | 88                                                                                                   | 80-120                                                                                                     | Pass                                    |                    |
| Copper (filtered)                                                                                                                                                                                                                                                                                                   |                                                                                                                                                              |                                                                    | %                                         | 93                                                                                                   | 80-120                                                                                                     | Pass                                    |                    |
| Lead                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |                                                                    | %                                         | 90                                                                                                   | 80-120                                                                                                     | Pass                                    |                    |
| Lead (filtered)                                                                                                                                                                                                                                                                                                     |                                                                                                                                                              |                                                                    | %                                         | 91                                                                                                   | 80-120                                                                                                     | Pass                                    |                    |
| Manganese                                                                                                                                                                                                                                                                                                           |                                                                                                                                                              |                                                                    | <u>%</u>                                  | 89                                                                                                   | 80-120                                                                                                     | Pass                                    |                    |
| Manganese (filtered)                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |                                                                    | %                                         | 91                                                                                                   | 80-120                                                                                                     | Pass                                    |                    |
| ,                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                              |                                                                    | <u>%</u>                                  | 80                                                                                                   | 75-125                                                                                                     | Pass                                    |                    |
| Mercury (filtered)                                                                                                                                                                                                                                                                                                  |                                                                                                                                                              |                                                                    | %                                         |                                                                                                      |                                                                                                            |                                         |                    |
| Mercury (filtered)                                                                                                                                                                                                                                                                                                  |                                                                                                                                                              |                                                                    |                                           | 80                                                                                                   | 70-130                                                                                                     | Pass                                    |                    |
| Nickel                                                                                                                                                                                                                                                                                                              |                                                                                                                                                              |                                                                    | %                                         | 89                                                                                                   | 80-120                                                                                                     | Pass                                    |                    |
| Nickel (filtered)                                                                                                                                                                                                                                                                                                   |                                                                                                                                                              |                                                                    | %                                         | 91                                                                                                   | 80-120                                                                                                     | Pass                                    |                    |
| Zinc                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |                                                                    | %                                         | 92                                                                                                   | 80-120                                                                                                     | Pass                                    |                    |
| Zinc (filtered)                                                                                                                                                                                                                                                                                                     |                                                                                                                                                              |                                                                    | %                                         | 94                                                                                                   | 80-120                                                                                                     | Pass                                    |                    |
| LCS - % Recovery                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              |                                                                    |                                           |                                                                                                      |                                                                                                            |                                         |                    |
| Alkali Metals                                                                                                                                                                                                                                                                                                       |                                                                                                                                                              |                                                                    |                                           |                                                                                                      |                                                                                                            | _                                       |                    |
| Calcium                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |                                                                    | %                                         | 80                                                                                                   | 70-130                                                                                                     | Pass                                    |                    |
| Magnesium                                                                                                                                                                                                                                                                                                           |                                                                                                                                                              |                                                                    | %                                         | 81                                                                                                   | 70-130                                                                                                     | Pass                                    |                    |
| Potassium                                                                                                                                                                                                                                                                                                           |                                                                                                                                                              |                                                                    | %                                         | 98                                                                                                   | 70-130                                                                                                     | Pass                                    |                    |
| Sodium                                                                                                                                                                                                                                                                                                              |                                                                                                                                                              |                                                                    | %                                         | 81                                                                                                   | 70-130                                                                                                     | Pass                                    |                    |
| Test                                                                                                                                                                                                                                                                                                                | Lab Sample ID                                                                                                                                                | QA<br>Source                                                       | Units                                     | Result 1                                                                                             | Acceptance<br>Limits                                                                                       | Pass<br>Limits                          | Qualifying<br>Code |
| Spike - % Recovery                                                                                                                                                                                                                                                                                                  |                                                                                                                                                              |                                                                    |                                           | T T                                                                                                  |                                                                                                            |                                         |                    |
|                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                              |                                                                    |                                           |                                                                                                      |                                                                                                            |                                         |                    |
| Ammonia (oo NI)                                                                                                                                                                                                                                                                                                     |                                                                                                                                                              |                                                                    |                                           | Result 1                                                                                             |                                                                                                            |                                         |                    |
| Ammonia (as N)                                                                                                                                                                                                                                                                                                      | M14-Ma09777                                                                                                                                                  | NCP                                                                | %                                         | 82                                                                                                   | 70-130                                                                                                     | Pass                                    |                    |
| Nitrate (as N)                                                                                                                                                                                                                                                                                                      | M14-Ma09777                                                                                                                                                  | NCP                                                                | %                                         | 82<br>104                                                                                            | 70-130                                                                                                     | Pass                                    |                    |
|                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                              |                                                                    |                                           | 82                                                                                                   |                                                                                                            |                                         |                    |
| Nitrate (as N) Nitrite (as N) Spike - % Recovery                                                                                                                                                                                                                                                                    | M14-Ma09777                                                                                                                                                  | NCP                                                                | %                                         | 82<br>104<br>95                                                                                      | 70-130                                                                                                     | Pass                                    |                    |
| Nitrate (as N) Nitrite (as N)                                                                                                                                                                                                                                                                                       | M14-Ma09777<br>M14-Ma09777                                                                                                                                   | NCP                                                                | %                                         | 82<br>104                                                                                            | 70-130                                                                                                     | Pass<br>Pass                            |                    |
| Nitrate (as N) Nitrite (as N) Spike - % Recovery                                                                                                                                                                                                                                                                    | M14-Ma09777                                                                                                                                                  | NCP                                                                | %                                         | 82<br>104<br>95                                                                                      | 70-130                                                                                                     | Pass                                    |                    |
| Nitrate (as N) Nitrite (as N) Spike - % Recovery Total Nitrogen Set (as N)                                                                                                                                                                                                                                          | M14-Ma09777<br>M14-Ma09777                                                                                                                                   | NCP<br>NCP                                                         | %<br>%                                    | 82<br>104<br>95<br>Result 1                                                                          | 70-130<br>70-130                                                                                           | Pass<br>Pass                            |                    |
| Nitrate (as N) Nitrite (as N)  Spike - % Recovery  Total Nitrogen Set (as N)  Nitrate & Nitrite (as N)                                                                                                                                                                                                              | M14-Ma09777<br>M14-Ma09777<br>M14-Ma09777                                                                                                                    | NCP<br>NCP                                                         | %<br>%                                    | 82<br>104<br>95<br>Result 1<br>104                                                                   | 70-130<br>70-130<br>70-130                                                                                 | Pass Pass Pass                          |                    |
| Nitrate (as N) Nitrite (as N) Spike - % Recovery Total Nitrogen Set (as N) Nitrate & Nitrite (as N) Total Kjeldahl Nitrogen (as N)                                                                                                                                                                                  | M14-Ma09777<br>M14-Ma09777<br>M14-Ma09777                                                                                                                    | NCP<br>NCP                                                         | %<br>%                                    | 82<br>104<br>95<br>Result 1<br>104                                                                   | 70-130<br>70-130<br>70-130                                                                                 | Pass Pass Pass                          |                    |
| Nitrate (as N) Nitrite (as N) Spike - % Recovery Total Nitrogen Set (as N) Nitrate & Nitrite (as N) Total Kjeldahl Nitrogen (as N) Spike - % Recovery                                                                                                                                                               | M14-Ma09777<br>M14-Ma09777<br>M14-Ma09777                                                                                                                    | NCP<br>NCP                                                         | %<br>%                                    | 82<br>104<br>95<br>Result 1<br>104<br>95                                                             | 70-130<br>70-130<br>70-130                                                                                 | Pass Pass Pass                          |                    |
| Nitrate (as N) Nitrite (as N) Spike - % Recovery Total Nitrogen Set (as N) Nitrate & Nitrite (as N) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Heavy Metals                                                                                                                                                  | M14-Ma09777<br>M14-Ma09777<br>M14-Ma09777<br>M14-Ma10233                                                                                                     | NCP<br>NCP<br>NCP                                                  | %<br>%<br>%                               | 82<br>104<br>95<br>Result 1<br>104<br>95<br>Result 1                                                 | 70-130<br>70-130<br>70-130<br>70-130                                                                       | Pass Pass Pass Pass                     |                    |
| Nitrate (as N)  Nitrite (as N)  Spike - % Recovery  Total Nitrogen Set (as N)  Nitrate & Nitrite (as N)  Total Kjeldahl Nitrogen (as N)  Spike - % Recovery  Heavy Metals  Arsenic (filtered)                                                                                                                       | M14-Ma09777 M14-Ma09777 M14-Ma09777 M14-Ma10233 M14-Ma11361                                                                                                  | NCP<br>NCP<br>NCP<br>NCP                                           | %<br>%<br>%<br>%                          | 82<br>104<br>95<br>Result 1<br>104<br>95<br>Result 1<br>92                                           | 70-130<br>70-130<br>70-130<br>70-130<br>70-130                                                             | Pass Pass Pass Pass Pass                |                    |
| Nitrate (as N)  Nitrite (as N)  Spike - % Recovery  Total Nitrogen Set (as N)  Nitrate & Nitrite (as N)  Total Kjeldahl Nitrogen (as N)  Spike - % Recovery  Heavy Metals  Arsenic (filtered)  Beryllium (filtered)                                                                                                 | M14-Ma09777 M14-Ma09777 M14-Ma09777 M14-Ma10233  M14-Ma11361 M14-Ma11361                                                                                     | NCP<br>NCP<br>NCP<br>NCP                                           | %<br>%<br>%<br>%                          | 82<br>104<br>95<br>Result 1<br>104<br>95<br>Result 1<br>92<br>78                                     | 70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>75-125                                                   | Pass Pass Pass Pass Pass Pass           |                    |
| Nitrate (as N)  Nitrite (as N)  Spike - % Recovery  Total Nitrogen Set (as N)  Nitrate & Nitrite (as N)  Total Kjeldahl Nitrogen (as N)  Spike - % Recovery  Heavy Metals  Arsenic (filtered)  Beryllium (filtered)  Boron (filtered)                                                                               | M14-Ma09777 M14-Ma09777 M14-Ma09777 M14-Ma10233  M14-Ma11361 M14-Ma11361 M14-Ma11361                                                                         | NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP                             | %<br>%<br>%<br>%<br>%                     | 82<br>104<br>95<br>Result 1<br>104<br>95<br>Result 1<br>92<br>78<br>79                               | 70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>75-125<br>75-125                                         | Pass Pass Pass Pass Pass Pass Pass Pass |                    |
| Nitrate (as N) Nitrite (as N) Spike - % Recovery Total Nitrogen Set (as N) Nitrate & Nitrite (as N) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Heavy Metals Arsenic (filtered) Beryllium (filtered) Boron (filtered) Cadmium (filtered)                                                                      | M14-Ma09777 M14-Ma09777 M14-Ma09777 M14-Ma10233  M14-Ma11361 M14-Ma11361 M14-Ma11361 M14-Ma11361                                                             | NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP               | %<br>%<br>%<br>%<br>%<br>%                | 82<br>104<br>95<br>Result 1<br>104<br>95<br>Result 1<br>92<br>78<br>79<br>82                         | 70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>75-125<br>75-125<br>70-130                               | Pass Pass Pass Pass Pass Pass Pass Pass |                    |
| Nitrate (as N) Nitrite (as N) Spike - % Recovery Total Nitrogen Set (as N) Nitrate & Nitrite (as N) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Heavy Metals Arsenic (filtered) Beryllium (filtered) Boron (filtered) Cadmium (filtered) Chromium (filtered)                                                  | M14-Ma09777 M14-Ma09777 M14-Ma09777 M14-Ma10233  M14-Ma11361 M14-Ma11361 M14-Ma11361 M14-Ma11361 M14-Ma11361                                                 | NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP        | %<br>%<br>%<br>%<br>%<br>%<br>%           | 82<br>104<br>95<br>Result 1<br>104<br>95<br>Result 1<br>92<br>78<br>79<br>82<br>89                   | 70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>75-125<br>75-125<br>70-130<br>70-130                     | Pass Pass Pass Pass Pass Pass Pass Pass |                    |
| Nitrate (as N)  Nitrite (as N)  Spike - % Recovery  Total Nitrogen Set (as N)  Nitrate & Nitrite (as N)  Total Kjeldahl Nitrogen (as N)  Spike - % Recovery  Heavy Metals  Arsenic (filtered)  Beryllium (filtered)  Cadmium (filtered)  Chromium (filtered)  Cobalt (filtered)                                     | M14-Ma09777 M14-Ma09777 M14-Ma09777 M14-Ma10233  M14-Ma11361 M14-Ma11361 M14-Ma11361 M14-Ma11361 M14-Ma11361 M14-Ma11361 M14-Ma11361                         | NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP | % % % % % % % % % % % % %                 | 82<br>104<br>95<br>Result 1<br>104<br>95<br>Result 1<br>92<br>78<br>79<br>82<br>89<br>86             | 70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>75-125<br>75-125<br>70-130<br>70-130<br>75-125           | Pass Pass Pass Pass Pass Pass Pass Pass |                    |
| Nitrate (as N)  Nitrite (as N)  Spike - % Recovery  Total Nitrogen Set (as N)  Nitrate & Nitrite (as N)  Total Kjeldahl Nitrogen (as N)  Spike - % Recovery  Heavy Metals  Arsenic (filtered)  Beryllium (filtered)  Cadmium (filtered)  Chromium (filtered)  Cobalt (filtered)  Copper (filtered)  Lead (filtered) | M14-Ma09777 M14-Ma09777 M14-Ma09777 M14-Ma10233  M14-Ma11361 M14-Ma11361 M14-Ma11361 M14-Ma11361 M14-Ma11361 M14-Ma11361 M14-Ma11361 M14-Ma11361             | NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP | %<br>%<br>%<br>%<br>%<br>%<br>%<br>%<br>% | 82<br>104<br>95<br>Result 1<br>104<br>95<br>Result 1<br>92<br>78<br>79<br>82<br>89<br>86<br>85       | 70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>75-125<br>75-125<br>70-130<br>75-125<br>70-130           | Pass Pass Pass Pass Pass Pass Pass Pass |                    |
| Nitrate (as N)  Nitrite (as N)  Spike - % Recovery  Total Nitrogen Set (as N)  Nitrate & Nitrite (as N)  Total Kjeldahl Nitrogen (as N)  Spike - % Recovery  Heavy Metals  Arsenic (filtered)  Beryllium (filtered)  Cadmium (filtered)  Chromium (filtered)  Cobalt (filtered)  Copper (filtered)                  | M14-Ma09777 M14-Ma09777 M14-Ma09777 M14-Ma10233  M14-Ma11361 M14-Ma11361 M14-Ma11361 M14-Ma11361 M14-Ma11361 M14-Ma11361 M14-Ma11361 M14-Ma11361 M14-Ma11361 | NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP<br>NCP | % % % % % % % % % % % % %                 | 82<br>104<br>95<br>Result 1<br>104<br>95<br>Result 1<br>92<br>78<br>79<br>82<br>89<br>86<br>85<br>86 | 70-130<br>70-130<br>70-130<br>70-130<br>70-130<br>75-125<br>75-125<br>70-130<br>70-130<br>70-130<br>70-130 | Pass Pass Pass Pass Pass Pass Pass Pass |                    |



| Test                      | Lab Sample ID              | QA<br>Source | Units         | Result 1       |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|---------------------------|----------------------------|--------------|---------------|----------------|----------|-----|----------------------|----------------|--------------------|
| Spike - % Recovery        |                            |              |               |                |          |     |                      |                |                    |
| Alkali Metals             |                            |              |               | Result 1       |          |     |                      |                |                    |
| Calcium                   | M14-Ma10190                | NCP          | %             | 116            |          |     | 70-130               | Pass           |                    |
| Magnesium                 | M14-Ma10190                | NCP          | %             | 118            |          |     | 70-130               | Pass           |                    |
| Potassium                 | M14-Ma09241                | NCP          | %             | 108            |          |     | 70-130               | Pass           |                    |
| Sodium                    | M14-Ma10233                | NCP          | %             | 89             |          |     | 70-130               | Pass           |                    |
| Spike - % Recovery        |                            |              |               |                |          |     |                      |                |                    |
|                           |                            |              |               | Result 1       |          |     |                      |                |                    |
| Cyanide (total)           | M14-Ma10867                | CP           | %             | 75             |          |     | 70-130               | Pass           |                    |
| Spike - % Recovery        |                            |              |               | Ι              |          |     |                      |                |                    |
| Heavy Metals              |                            |              |               | Result 1       |          |     |                      | _              |                    |
| Mercury (filtered)        | M14-Ma10868                | CP           | %             | 84             |          |     | 70-130               | Pass           |                    |
| Spike - % Recovery        |                            |              |               |                | <u> </u> |     | T                    | I              |                    |
| <u></u>                   | 144.14.40074               | 0.0          |               | Result 1       |          |     | 70.400               | _              |                    |
| Fluoride                  | M14-Ma10871                | СР           | %             | 97             |          |     | 70-130               | Pass           |                    |
| Spike - % Recovery        |                            |              |               | Bosult 4       |          |     |                      |                |                    |
| Heavy Metals Arsenic      | M14-Ma10322                | NCP          | %             | Result 1<br>81 |          |     | 75-125               | Pass           |                    |
|                           |                            | NCP          |               |                |          |     | 75-125               |                |                    |
| Beryllium                 | M14-Ma10322                | NCP          | %             | 77             |          |     |                      | Pass           |                    |
| Boron                     | M14-Ma09244                | NCP          | %             | 91<br>75       |          |     | 75-125               | Pass           |                    |
| Chromium                  | M14-Ma10322                | NCP          | %             | 81             |          |     | 75-125               | Pass           |                    |
| Chromium<br>Cobalt        | M14-Ma10322<br>M14-Ma10322 | NCP          | <u>%</u><br>% | 77             |          |     | 75-125<br>75-125     | Pass<br>Pass   |                    |
| Copper                    | M14-Ma09244                | NCP          | <u> </u>      | 92             |          |     | 75-125               | Pass           |                    |
| Lead                      | M14-Ma10322                | NCP          | <u> </u>      | 82             |          |     | 75-125               | Pass           |                    |
| Manganese                 | M14-Ma10322                | NCP          | <u> </u>      | 83             |          |     | 75-125               | Pass           |                    |
| Mercury                   | M14-Ma11981                | NCP          | <u> </u>      | 78             |          |     | 70-130               | Pass           |                    |
| Nickel                    | M14-Ma09244                | NCP          | <u> </u>      | 84             |          |     | 75-125               | Pass           |                    |
| Zinc                      | M14-Ma09244                | NCP          | <del></del> % | 87             |          |     | 75-125               | Pass           |                    |
| Spike - % Recovery        | WITT MIGGOZ II             | 110.         | ,,,           | <u> </u>       |          |     | 70 120               | 1 400          |                    |
| opine /orkecore.y         |                            |              |               | Result 1       |          |     |                      |                |                    |
| Sulphate (as S)           | M14-Ma10873                | CP           | %             | 106            |          |     | 70-130               | Pass           |                    |
| Test                      | Lab Sample ID              | QA           | Units         | Result 1       |          |     | Acceptance           | Pass           | Qualifying         |
|                           |                            | Source       |               | 11000111       |          |     | Limits               | Limits         | Code               |
| Duplicate                 |                            |              |               | Result 1       | Result 2 | RPD | T                    |                |                    |
| Ammonia (as N)            | M14-Ma09777                | NCP          | mg/L          | 0.030          | 0.030    | 7.0 | 30%                  | Pass           |                    |
| Nitrate (as N)            | M14-Ma09777                | NCP          | mg/L          | 0.070          | 0.060    | 15  | 30%                  | Pass           |                    |
| Nitrite (as N)            | M14-Ma09777                | NCP          | mg/L          | < 0.02         | < 0.02   | <1  | 30%                  | Pass           |                    |
| Duplicate                 |                            | 1101         |               |                |          |     |                      | 1 0.00         |                    |
| Total Nitrogen Set (as N) |                            |              |               | Result 1       | Result 2 | RPD |                      |                |                    |
| Nitrate & Nitrite (as N)  | M14-Ma09777                | NCP          | mg/L          | 0.070          | 0.060    | 15  | 30%                  | Pass           |                    |
| Duplicate                 |                            |              |               |                |          |     |                      |                |                    |
| Heavy Metals              |                            |              |               | Result 1       | Result 2 | RPD |                      |                |                    |
| Arsenic (filtered)        | M14-Ma09544                | NCP          | mg/L          | < 0.001        | < 0.001  | <1  | 30%                  | Pass           |                    |
| Beryllium (filtered)      | M14-Ma09544                | NCP          | mg/L          | < 0.001        | < 0.001  | <1  | 30%                  | Pass           |                    |
| Boron (filtered)          | M14-Ma09544                | NCP          | mg/L          | 0.17           | 0.17     | 1.3 | 30%                  | Pass           |                    |
| Cadmium (filtered)        | M14-Ma09544                | NCP          | mg/L          | < 0.0002       | < 0.0002 | <1  | 30%                  | Pass           |                    |
| Chromium (filtered)       | M14-Ma09544                | NCP          | mg/L          | < 0.001        | < 0.001  | <1  | 30%                  | Pass           |                    |
| Cobalt (filtered)         | M14-Ma09544                | NCP          | mg/L          | < 0.001        | < 0.001  | <1  | 30%                  | Pass           |                    |
| Copper (filtered)         | M14-Ma09544                | NCP          | mg/L          | < 0.001        | < 0.001  | <1  | 30%                  | Pass           |                    |
| Lead (filtered)           | M14-Ma09544                | NCP          | mg/L          | < 0.001        | < 0.001  | <1  | 30%                  | Pass           |                    |
| Manganese (filtered)      | M14-Ma09544                | NCP          | mg/L          | 0.31           | 0.31     | 2.3 | 30%                  | Pass           |                    |
| Nickel (filtered)         | M14-Ma09544                | NCP          | mg/L          | < 0.001        | < 0.001  | <1  | 30%                  | Pass           |                    |
| Zinc (filtered)           | M14-Ma09544                | NCP          | mg/L          | < 0.001        | < 0.001  | <1  | 30%                  | Pass           |                    |



| <b>D</b>                         |                |          |                     |          |          |      |       |       |     |
|----------------------------------|----------------|----------|---------------------|----------|----------|------|-------|-------|-----|
| Duplicate                        |                |          |                     | D 11.4   |          | DDD  |       | _     |     |
|                                  | T              |          |                     | Result 1 | Result 2 | RPD  |       |       |     |
| Total Dissolved Solids           | M14-Ma10862    | CP       | mg/L                | 1800     | 1900     | 5.0  | 30%   | Pass  |     |
| Duplicate                        |                |          |                     |          | 1        |      |       | _     |     |
|                                  |                |          |                     | Result 1 | Result 2 | RPD  |       |       |     |
| Cyanide (total)                  | M14-Ma10867    | CP       | mg/L                | < 0.005  | < 0.005  | <1   | 30%   | Pass  |     |
| Duplicate                        |                |          |                     | 1        | 1        |      |       |       |     |
| Heavy Metals                     |                | 1        |                     | Result 1 | Result 2 | RPD  |       |       |     |
| Mercury (filtered)               | M14-Ma10868    | CP       | mg/L                | < 0.0001 | 0.0002   | 200  | 30%   | Fail  | Q15 |
| Duplicate                        |                |          |                     |          |          |      |       |       |     |
|                                  | _              | •        |                     | Result 1 | Result 2 | RPD  |       |       |     |
| Total Dissolved Solids           | M14-Ma10870    | CP       | mg/L                | 3500     | 3700     | 5.0  | 30%   | Pass  |     |
| Duplicate                        |                |          |                     |          |          |      |       |       |     |
| Alkali Metals                    |                |          |                     | Result 1 | Result 2 | RPD  |       |       |     |
| Calcium                          | M14-Ma10870    | CP       | mg/L                | 33       | 35       | 5.0  | 30%   | Pass  |     |
| Magnesium                        | M14-Ma10870    | CP       | mg/L                | 290      | 300      | 3.0  | 30%   | Pass  |     |
| Potassium                        | M14-Ma10870    | CP       | mg/L                | 10       | 11       | 4.0  | 30%   | Pass  |     |
| Sodium                           | M14-Ma10870    | CP       | mg/L                | 720      | 720      | 1.0  | 30%   | Pass  |     |
| Duplicate                        |                |          |                     |          |          |      |       |       |     |
|                                  |                |          |                     | Result 1 | Result 2 | RPD  |       |       |     |
| Fluoride                         | M14-Ma10871    | СР       | mg/L                | 0.6      | 0.6      | 2.0  | 30%   | Pass  |     |
| Duplicate                        |                |          |                     |          |          |      |       |       |     |
| Heavy Metals                     |                |          |                     | Result 1 | Result 2 | RPD  |       |       |     |
| Arsenic                          | M14-Ma10322    | NCP      | mg/L                | < 0.001  | < 0.001  | <1   | 30%   | Pass  |     |
| Beryllium                        | M14-Ma10322    | NCP      | mg/L                | < 0.001  | < 0.001  | <1   | 30%   | Pass  |     |
| Boron                            | M14-Ma10322    | NCP      | mg/L                | 0.18     | 0.17     | 3.4  | 30%   | Pass  |     |
| Cadmium                          | M14-Ma10322    | NCP      | mg/L                | < 0.0002 | < 0.0005 | <1   | 30%   | Pass  |     |
| Chromium                         | M14-Ma10322    | NCP      | mg/L                | 0.013    | 0.013    | 3.6  | 30%   | Pass  |     |
| Cobalt                           | M14-Ma10322    | NCP      | mg/L                | 0.014    | 0.013    | 6.1  | 30%   | Pass  |     |
| Copper                           | M14-Ma10322    | NCP      | mg/L                | < 0.001  | < 0.001  | <1   | 30%   | Pass  |     |
| Lead                             | M14-Ma10322    | NCP      | mg/L                | < 0.001  | < 0.001  | <1   | 30%   | Pass  |     |
| Manganese                        | M14-Ma10322    | NCP      | mg/L                | 0.027    | 0.027    | <1   | 30%   | Pass  |     |
| Mercury                          | M14-Ma11665    | NCP      | mg/L                | < 0.0001 | < 0.0001 | <1   | 30%   | Pass  |     |
| Nickel                           | M14-Ma10322    | NCP      | mg/L                | 0.064    | 0.064    | <1   | 30%   | Pass  |     |
| Zinc                             | M14-Ma10322    | NCP      | mg/L                | 0.033    | 0.032    | 1.0  | 30%   | Pass  |     |
| Duplicate                        |                |          | <i>y</i> , <b>–</b> | 1        |          |      | - 570 | 1.00  |     |
|                                  | Result 1       | Result 2 | RPD                 |          |          |      |       |       |     |
| Sulphate (as S)                  | M14-Ma10873    | CP       | mg/L                | < 5      | < 5      | <1   | 30%   | Pass  |     |
| Duplicate                        | 1              |          | 9/ =                |          |          | - '' |       | . 400 |     |
| Total Nitrogen Set (as N)        |                |          |                     | Result 1 | Result 2 | RPD  |       | T     |     |
| Total Kieldahl Nitrogen (as N)   | M14-Ma10873    | СР       | mg/L                | < 0.2    | < 0.2    | <1   | 30%   | Pass  |     |
| Total Injulatii Nillogoli (da N) | WITT WIG 10075 |          | mg/L                | \ 0.2    | \ ∪.∠    |      | 30 /0 | 1 000 |     |



#### Comments

## Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Organic samples had Teflon liners
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

## **Qualifier Codes/Comments**

### Code Description

Q15 The RPD reported passes Eurofins | mgt's Acceptance Criteria as stipulated in SOP 05. Refer to Glossary Page of this report for further details

### **Authorised By**

Adrian Tabacchiera Client Services

Emily Rosenberg Senior Analyst-Metal (VIC)
Huong Le Senior Analyst-Inorganic (VIC)

Glenn Jackson

## Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- \* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.



# **CERTIFICATE OF ANALYSIS**

Work Order : EM1402371 Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ : Environmental Division Melbourne

Contact : MR COREY BANNISTER Contact : Carol Walsh

Address : P O BOX 312 FLINDERS LANE Address : 4 Westall Rd Springvale VIC Australia 3171

MELBOURNE VIC AUSTRALIA 8009

Telephone : +61 03 9248 3100 Telephone : +61-3-8549 9608
Facsimile : +61 03 9248 3364 Facsimile : +61-3-8549 9601

Project : VW07335 Beveridge PSP GW Sampling Program - Mar 14 QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : -- Date Samples Received
 : 17-MAR-2014

 Sampler
 : CB
 Issue Date
 : 21-MAR-2014

Site : ----

No. of samples received : 1

Quote number : EN/003/13 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results



NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

# Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

 Signatories
 Position
 Accreditation Category

 Dilani Fernando
 Senior Inorganic Chemist
 Melbourne Inorganics

 Herman Lin
 Laboratory Manager
 Melbourne Inorganics

Address 4 Westall Rd Springvale VIC Australia 3171 PHONE +61-3-8549 9600 Facsimile +61-3-8549 9601 Environmental Division Melbourne ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company



Page : 2 of 4 Work Order : EM1402371

Client : SINCLAIR KNIGHT MERZ

Project : VW07335 Beveridge PSP GW Sampling Program - Mar 14



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- EK026SF: EM1402322-001 matrix spike failed for total cyanide due to possible sample interference. This has been confirmed by re-analysis.
- TDS by method EA-015 may bias high due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.

Page : 3 of 4
Work Order : EM1402371

Client : SINCLAIR KNIGHT MERZ

Project : VW07335 Beveridge PSP GW Sampling Program - Mar 14



# Analytical Results

| Sub-Matrix: WATER (Matrix: WATER)       | Client sample ID            |        |               | 1303-QA2          |  |  |  |  |
|-----------------------------------------|-----------------------------|--------|---------------|-------------------|--|--|--|--|
|                                         | Client sampling date / time |        |               | 13-MAR-2014 15:00 |  |  |  |  |
| Compound                                | CAS Number LOR Unit         |        | EM1402371-001 |                   |  |  |  |  |
| EA015: Total Dissolved Solids           |                             |        |               |                   |  |  |  |  |
| Total Dissolved Solids @180°C           |                             | 10     | mg/L          | 1540              |  |  |  |  |
| ED041G: Sulfate (Turbidimetric) as SO4  | 2- by DA                    |        |               |                   |  |  |  |  |
| Sulfate as SO4 - Turbidimetric          | 14808-79-8                  | 1      | mg/L          | 34                |  |  |  |  |
| ED093F: Dissolved Major Cations         |                             |        |               |                   |  |  |  |  |
| Calcium                                 | 7440-70-2                   | 1      | mg/L          | 16                |  |  |  |  |
| Magnesium                               | 7439-95-4                   | 1      | mg/L          | 17                |  |  |  |  |
| Sodium                                  | 7440-23-5                   | 1      | mg/L          | 157               |  |  |  |  |
| Potassium                               | 7440-09-7                   | 1      | mg/L          | 21                |  |  |  |  |
| EG020T: Total Metals by ICP-MS          |                             |        |               |                   |  |  |  |  |
| Arsenic                                 | 7440-38-2                   | 0.001  | mg/L          | 0.003             |  |  |  |  |
| Beryllium                               | 7440-41-7                   | 0.001  | mg/L          | <0.001            |  |  |  |  |
| Cadmium                                 | 7440-43-9                   | 0.0001 | mg/L          | <0.0001           |  |  |  |  |
| Chromium                                | 7440-47-3                   | 0.001  | mg/L          | 0.008             |  |  |  |  |
| Copper                                  | 7440-50-8                   | 0.001  | mg/L          | 0.009             |  |  |  |  |
| Cobalt                                  | 7440-48-4                   | 0.001  | mg/L          | 0.004             |  |  |  |  |
| Nickel                                  | 7440-02-0                   | 0.001  | mg/L          | 0.008             |  |  |  |  |
| Lead                                    | 7439-92-1                   | 0.001  | mg/L          | 0.002             |  |  |  |  |
| Zinc                                    | 7440-66-6                   | 0.005  | mg/L          | 0.020             |  |  |  |  |
| Manganese                               | 7439-96-5                   | 0.001  | mg/L          | 0.118             |  |  |  |  |
| Boron                                   | 7440-42-8                   | 0.05   | mg/L          | 0.19              |  |  |  |  |
| EG035T: Total Recoverable Mercury by    | FIMS                        |        |               |                   |  |  |  |  |
| Mercury                                 | 7439-97-6                   | 0.0001 | mg/L          | <0.0001           |  |  |  |  |
| EK026SF: Total CN by Segmented Flow     | Analyser                    |        |               |                   |  |  |  |  |
| Total Cyanide                           | 57-12-5                     | 0.004  | mg/L          | <0.004            |  |  |  |  |
| EK040P: Fluoride by PC Titrator         |                             |        |               |                   |  |  |  |  |
| Fluoride                                | 16984-48-8                  | 0.1    | mg/L          | 0.8               |  |  |  |  |
| EK055G: Ammonia as N by Discrete Ana    | alyser                      |        |               |                   |  |  |  |  |
| Ammonia as N                            | 7664-41-7                   | 0.01   | mg/L          | 0.20              |  |  |  |  |
| EK057G: Nitrite as N by Discrete Analys | ser                         |        |               |                   |  |  |  |  |
| Nitrite as N                            |                             | 0.01   | mg/L          | 1.39              |  |  |  |  |
| EK058G: Nitrate as N by Discrete Analys | ser                         |        |               |                   |  |  |  |  |
| Nitrate as N                            | 14797-55-8                  | 0.01   | mg/L          | 6.82              |  |  |  |  |
| EK059G: Nitrite plus Nitrate as N (NOx) | by Discrete Ana             | llyser |               |                   |  |  |  |  |
|                                         |                             |        |               |                   |  |  |  |  |

Page : 4 of 4 Work Order : EM1402371

Client : SINCLAIR KNIGHT MERZ

Project : VW07335 Beveridge PSP GW Sampling Program - Mar 14



# Analytical Results

| Sub-Matrix: WATER (Matrix: WATER)                                        | Client sample ID |      | 1303-QA2 |                   |  |  |  |  |  |
|--------------------------------------------------------------------------|------------------|------|----------|-------------------|--|--|--|--|--|
|                                                                          |                  |      |          |                   |  |  |  |  |  |
| Client sampling date / time                                              |                  |      |          | 13-MAR-2014 15:00 |  |  |  |  |  |
| Compound                                                                 | CAS Number       | LOR  | Unit     | EM1402371-001     |  |  |  |  |  |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser - Continued |                  |      |          |                   |  |  |  |  |  |
| Nitrite + Nitrate as N                                                   |                  | 0.01 | mg/L     | 8.21              |  |  |  |  |  |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyser                     |                  |      |          |                   |  |  |  |  |  |
| Total Kjeldahl Nitrogen as N                                             |                  | 0.1  | mg/L     | 3.2               |  |  |  |  |  |
| EK062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyser             |                  |      |          |                   |  |  |  |  |  |
| <sup>^</sup> Total Nitrogen as N                                         |                  | 0.1  | mg/L     | 11.4              |  |  |  |  |  |