

# Merrifield West Precinct Structure Plan Traffic and Transport Impact Assessment

Prepared for Merrifield Corporation Pty & Evolve Development

July 2012









| Project Name:   | Merrifield West Precinct Structure Plan Transport Impact Assessment |
|-----------------|---------------------------------------------------------------------|
| Project Number: | 3004740                                                             |
| Report for:     | Merrifield Corporation Pty Ltd and Evolve Development               |

# PREPARATION, REVIEW AND AUTHORISATION

| Revision # | Date                  | Prepared by | Reviewed by | Approved for Issue by |
|------------|-----------------------|-------------|-------------|-----------------------|
| 0          | 24/05/12 D. Suppiah   |             | A. Fransos  | D. Hitchins           |
| 1          | 1 02/07/12 D. Suppiah |             | A. Fransos  | D. Hitchins           |

#### **ISSUE REGISTER**

| Distribution List                                | Date Issued | Number of Copies |
|--------------------------------------------------|-------------|------------------|
| Merrifield Corporation and Evolve Development    | 02/07/12    | 1x PDF           |
| SMEC staff:                                      |             |                  |
| Associates:                                      |             |                  |
| Melbourne Office Library (SMEC office location): |             |                  |
| SMEC Project File:                               |             |                  |

# **SMEC COMPANY DETAILS**

# **SMEC Australia Pty Ltd**

Level 4, 71 Queens Road, Melbourne VIC 3004

Tel: (03) 9514 1500

Fax: (03) 9514 1502

Email: <u>derrick.hitchins@smec.com</u>

Web: <u>www.smec.com</u>

The information within this document is and shall remain the property of SMEC Australia Pty Ltd



# Merrifield West Precinct Structure Plan

**Traffic and Transport Impact Assessment** 

For: Merrifield Corporation Pty Ltd and Evolve Development

**JULY 2012** 

# **TABLE OF CONTENTS**

| 1 | INTE | RODUCTION                                                         | 1  |
|---|------|-------------------------------------------------------------------|----|
|   | 1.1  | Purpose of this report                                            | 1  |
|   | 1.2  | Draft Northern Growth Corridor Plan                               | 1  |
|   | 1.3  | Merrifield West Precinct Structure Plan                           | 2  |
|   | 1.4  | Surrounding Land Uses                                             | 3  |
| 2 | EXIS | STING AND FUTURE ROAD NETWORK                                     | 5  |
|   | 2.1  | Key Existing Roads                                                | 5  |
|   | 2.2  | E14/ Aitken Boulevard / Future OMR/E6                             | 5  |
|   | 2.3  | Western Connector Road                                            | 6  |
| 3 | MET  | HODOLOGY                                                          | 7  |
|   | 3.1  | Strategic Context                                                 | 7  |
|   | 3.2  | The 4-step Modelling Process                                      | 7  |
|   | 3.3  | Base Year Model Development                                       | 7  |
|   | 3.4  | Future Year Strategic Model Forecasts                             | 8  |
| 4 | LAN  | D USE AND NETWORK ASSUMPTIONS                                     | 9  |
|   | 4.1  | MITM Model Zone Structure for the Melbourne North Growth Corridor | 9  |
|   | 4.2  | Merrifield West PSP Zone Structure                                | 10 |
|   | 4.3  | Land Use Assumptions                                              | 11 |
|   | 4.4  | Public Transport Infrastructure                                   | 13 |
|   | 4.5  | Cycle and Pedestrian Paths                                        | 14 |
| 5 | MOE  | DEL OUTPUTS                                                       | 15 |
|   | 5.1  | Trip Generation Rates                                             | 15 |
|   | 5.2  | Future Traffic Demand for 2021 Interim Model Year                 | 15 |
|   | 5.3  | Future Traffic Demand for 2046 Ultimate Model Year                | 17 |
| 6 | DET  | AILED INTERSECTION ASSESSMENTS                                    | 18 |
|   | 6.1  | Future Intersection Capacity Tests                                | 18 |
|   | 6.2  | Performance Criteria                                              | 18 |
|   | 6.3  | Pedestrian and Cyclist Movements                                  | 19 |
|   | 6.4  | Public Transport Priority                                         | 19 |
|   | 6.5  | Intersections Identified as Contributing to the DCP               | 20 |
|   | 6.6  | Assessment of the 2021 PM Peak Hour                               | 21 |
|   | 6.7  | Interim Intersection Assessments                                  | 25 |
|   | 6    | 7.1 Intersections IT01, IT02 and IT03 along Western Connector     | 25 |
|   | 6.   | 7.2 Intersection IT04: Collector Road IT04 and Donnybrook Road    | 25 |
|   | 6    | 7.3 Intersection IT05: Collector Road IT05 and Donnybrook Road    | 27 |



|     | 6.7.4    | Intersection IT06: Collector Road IT06 and Donnybrook Road   | 29 |
|-----|----------|--------------------------------------------------------------|----|
|     | 6.7.5    | Intersection IT07: Donnybrook Road and Old Sydney Road       | 31 |
|     | 6.8 Ulti | mate Intersection Assessments                                | 33 |
|     | 6.8.1    | Western Connector Intersection Linking                       | 33 |
|     | 6.8.2    | Intersection IT01: Collector Road IT01 and Western Connector | 33 |
|     | 6.8.3    | Intersection IT02: Collector Road IT02 and Western Connector | 36 |
|     | 6.8.4    | Intersection IT03: Collector Road IT03 and Western Connector | 38 |
|     | 6.8.5    | Intersection IT04: Collector Road IT04 and Donnybrook Road   | 40 |
|     | 6.8.6    | Intersection IT05: Collector Road IT05 and Donnybrook Road   | 42 |
|     | 6.8.7    | Intersection IT06: Collector Road IT06 and Donnybrook Road   | 44 |
|     | 6.8.8    | Intersection IT07: Donnybrook Road and Old Sydney Road       | 46 |
| 7   | CROSS    | SECTIONS                                                     | 48 |
|     | 7.1 Ove  | erview                                                       | 48 |
|     | 7.2 Roa  | ad Hierarchy Assessment                                      | 48 |
|     | 7.3 Cor  | nfirmation of Higher Order Roads                             | 53 |
|     | 7.4 Sta  | ndard Drawings                                               | 54 |
|     | 7.4.1    | Connector Street                                             | 54 |
|     | 7.4.2    | Boulevard Connector                                          | 54 |
|     | 7.4.3    | Secondary Arterial Road                                      | 55 |
|     | 7.4.4    | Primary Arterial Road                                        | 55 |
| 8   | CONCLU   | JSIONS                                                       | 57 |
|     | 8.1 Col  | lector Road IT01 and Western Connector                       | 57 |
|     | 8.2 Col  | lector Road IT02 and Western Connector                       | 57 |
|     | 8.3 Col  | lector Road IT03 and Western Connector                       | 57 |
|     | 8.4 Col  | lector Road IT04 and Donnybrook Road                         | 57 |
|     | 8.5 Col  | lector Road IT05 and Donnybrook Road                         | 58 |
|     | 8.6 Col  | lector Road IT06 and Donnybrook Road                         | 58 |
|     | 8.7 IT0  | 7 Donnybrook Road and Old Sydney Road                        | 59 |
| 9   | RECOM    | MENDATIONS                                                   | 60 |
| AP  | PENDIX   | 1 – MITM CALIBRATION AND VALIDATION REPORT                   | A  |
| ΑP  | PENDIX : | 2 – MERRIFIELD WEST PRECINCT STRUCTURE PLAN                  | B  |
| AP  |          | 3 – MITM INTERIM (2021) AND ULTIMATE (2046) NETWORK          | 1  |
|     |          |                                                              |    |
| A D | DEVIDIA  | 4 CIDDA OUTDUTE                                              |    |

# LIST OF TABLES

| TABLE 1: MITM LAND USES WITHIN THE PSP BY SUB-AREA FOR 2021 AND 2046 SCENARIOS                                                                                                    | 11       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| TABLE 2: MITM LAND USES OUTSIDE THE PSP BY SUB-AREA FOR 2021 SCENARI                                                                                                              | 0        |
| TABLE 3: MITM LAND USES OUTSIDE THE PSP BY SUB-AREA FOR 2046 SCENARI                                                                                                              | O        |
| TABLE 4: FIRST PRINCIPLES ASSESSMENT                                                                                                                                              | 15<br>18 |
| TABLE 6: PM TRIP GENERATION BY LAND USE WITHIN THE MTCTABLE 7: RETAIL TRIP DISTRIBUTION BASED ON FIRST PRINCIPLES ASSESSMEN                                                       | ΙT       |
| TABLE 8: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT04, 2021 AM PEAR                                                                                                            | (        |
| TABLE 9: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT04, 2021 PM PEAR                                                                                                            | (        |
| TABLE 10: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT05, 2021 AM PEA                                                                                                            | ١K       |
| TABLE 11: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT05, 2021 PM PEA                                                                                                            | ١K       |
| TABLE 12: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT06, 2021 AM PEA                                                                                                            | ιK       |
| TABLE 13: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT06, 2021 PM PEA                                                                                                            | ιK       |
| TABLE 14: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT07, 2021 AM PEA                                                                                                            | ιK       |
| TABLE 15: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT07, 2021 PM PEA                                                                                                            | ١K       |
| TABLE 16: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT01, 2046 AM PEA                                                                                                            | ١K       |
| TABLE 17: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT01 (TURN BANS<br>AT IT02 AND IT03), 2046 AM PEAK<br>TABLE 18: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT01, 2046 PM PEA | 34       |
|                                                                                                                                                                                   | ir<br>35 |
| TABLE 19: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT01 (TURN BANS AT IT02 AND IT03), 2046 PM PEAK                                                                              | 35       |
| TABLE 20: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT02, 2046 AM PEA                                                                                                            | 37       |
| TABLE 21: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT02, 2046 PM PEA                                                                                                            | 37       |
| TABLE 22: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT03, 2046 AM PEA                                                                                                            | 39       |
| TABLE 23: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT03, 2046 PM PEA                                                                                                            | λΚ<br>39 |
| TABLE 24: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT04, 2046 AM PEA                                                                                                            | ιΚ<br>41 |
| TABLE 25: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT04, 2046 PM PEA                                                                                                            | λΚ<br>41 |
| TABLE 26: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT05, 2046 AM PEA                                                                                                            | ١K       |
| TABLE 27: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT05, 2046 PM PEA                                                                                                            | ιK       |
| TABLE 28: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT06, 2046 AM PEA                                                                                                            | ιK       |
| TABLE 29: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT06, 2046 PM PEA                                                                                                            | ١K       |



| TABLE 30: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT07, 2046 AM PEA                                                                                                        |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| TABLE 31: RESULTS OF SIDRA ANALYSIS FOR INTERSECTION IT07, 2046 PM PE                                                                                                         | 47<br>47 |
| TABLE 32: MINIMUM CROSS SECTIONS                                                                                                                                              | 48<br>50 |
| LIST OF FIGURES                                                                                                                                                               |          |
| FIGURE 1: DRAFT MELBOURNE NORTH GROWTH CORRIDOR PLAN & THE MERRIFIELD WEST PRECINCT STRUCTURE PLANFIGURE 2: PRECINCT STRUCTURE PLAN STAGING PLANFIGURE 3: MERRIFIELD WEST PSP | 3        |
| FIGURE 4: KEY EXISTING ROADS WITHIN THE VICINITY OF THE MERRIFIELD WEST PSP                                                                                                   |          |
| FIGURE 5: CORRIDOR PLAN ZONE SYSTEMFIGURE 6: MITM MODEL ZONE STRUCTURE WITHIN THE PSP FOR 2046FIGURE 7: PUBLIC TRANSPORT ROUTES WITHIN MITM FOR ULTIMATE 2046 YEAR            | 10<br>\R |
| FIGURE 8: LOCATIONS OF PROPOSED CYCLE AND PEDESTRIAN FACILITIES FIGURE 9: FORECAST DAILY VOLUMES ON ROADS IN VICINITY OF MERRIFIELD WEST IN 2021 INTERIM SCENARIO             | 14       |
| FIGURE 10: FORECAST DAILY VOLUMES ON ROADS IN VICINITY OF MERRIFIELD WEST IN 2046 ULTIMATE SCENARIO                                                                           | )<br>.17 |
| FIGURE 11: LOCATION OF PROPOSED INTERSECTIONS                                                                                                                                 | 22       |
| FIGURE 14: ADDITIONAL TRIPS FROM RETAIL TO BE ADDED TO TRANSPOSED A MATRIX                                                                                                    | M<br>24  |
| FIGURE 15: PM PEAK TRAFFIC VOLUMESFIGURE 16: LOCATION OF DETECTOR POINTSFIGURE 17: PROPOSED ROAD HIERARCHY                                                                    | 49       |
| FIGURE 18: SAMPLE CROSS SECTION FOR 2-LANE CONNECTOR STREET (SOURCE: VICROADS, "GROWTH AREAS: TYPICAL INTERSECTION DRAWINGS")                                                 | 54       |
| FIGURE 19: SAMPLE CROSS SECTION FOR 2-LANE BOULEVARD CONNECTOR (SOURCE: VICROADS, "GROWTH AREAS: TYPICAL INTERSECTION                                                         |          |
| FIGURE 20: SAMPLE CROSS SECTION FOR 4-LANE SECONDARY ARTERIAL (SOURCE: VICROADS, "GROWTH AREAS: TYPICAL INTERSECTION                                                          | 54       |
| DRAWINGS")FIGURE 21: CROSS SECTION PROPOSED FOR DONNYBROOK ROAD (SOURCE: FUNCTIONAL LAYOUT PLAN PRODUCED BY SMEC ON BEHALF OF                                                 | 55       |
| MERRIFIEI D CORPORATION IN 2011 FOR VICROADS)                                                                                                                                 | 56       |

# 1 INTRODUCTION

# 1.1 Purpose of this report

SMEC has been engaged by Merrifield Corporation Pty Ltd and Evolve Development to undertake traffic modelling for the Merrifield West Precinct Structure Plan (PSP) and translate the outputs into road cross sections and intersection requirements for input into the Planning Scheme Amendment process.

# 1.2 Draft Northern Growth Corridor Plan

Melbourne's north is undergoing substantial transformation, with a widening socio-economic mix, and a diversifying economy. The region plays an international and interstate gateway role in terms of the Melbourne Airport, Hume Freeway and the Melbourne-Sydney-Brisbane rail line.

The draft Melbourne North Growth Corridor Plan (Corridor Plan) released by the Victorian Government in November 2011 provides for the establishment of a wide range of employment and housing and will make a significant contribution to the growth and diversification of the broader metropolitan area.

The area covered by the Corridor Plans will eventually accommodate a population of 220,000 or more people and has the capacity to provide for at least 68,000 jobs. The majority of new industrial land for the northern metropolitan region will be located within the Northern Growth Corridor.

The Corridor has good accessibility to the CBD and other major employment precincts. It features excellent road, rail, freight and public transport infrastructure, most notably Melbourne Airport and other significant logistics hubs.

The PSP and the broader Merrifield holdings are strategically located in the western portion of the Corridor Plan (see Figure 1 below).

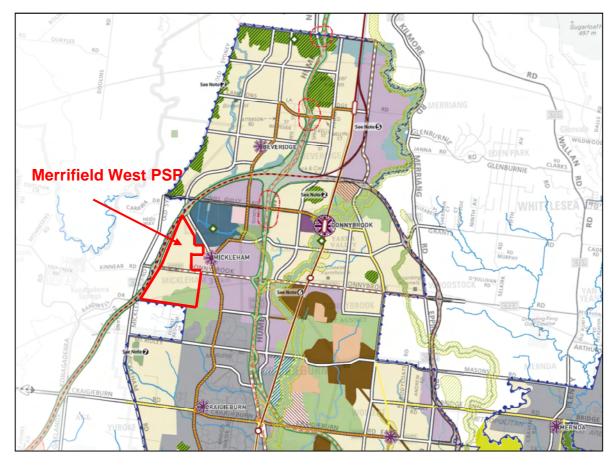



Figure 1: Draft Melbourne North Growth Corridor Plan & the Merrifield West Precinct Structure Plan

Source: GAA website

#### 1.3 Merrifield West Precinct Structure Plan

The ultimate vision for the PSP is for residents and visitors to work live and play in a 24-hour mixed-use community acknowledging the sustainability benefits of providing jobs where people live.

The PSP is bound by Mickleham Road/Old Sydney Road and the Outer Metropolitan Ring Road (OMR) to the west and the Melbourne Water Retarding Basin to the north. Donnybrook Road bisects the PSP area and provides key linkages between the designated Mickleham Major Town Centre (MTC) to the east and the zoned Merrifield and Folkestone employment areas. Towards the south, the PSP is bordered by the existing Mt Ridley Road rural residential area.

The PSP provides for approximately 7,115 allotments for approximately 20,000 residents. The PSP will facilitate delivery of a number of key infrastructure assets including schools, community facilities, active open space, local town centres and parks. The PSP is situated within close proximity to the proposed MTC

The PSP will offer a range of housing types of varying densities including multi-unit and small-lot housing to improve the efficiency of service delivery and positioned to maximise access to a range of retail, commercial, community and open space facilities. The highest densities are likely to occur near the MTC and local town centres within the PSP area. Figure 2 shows the Precinct Structure Plan Staging Plan.

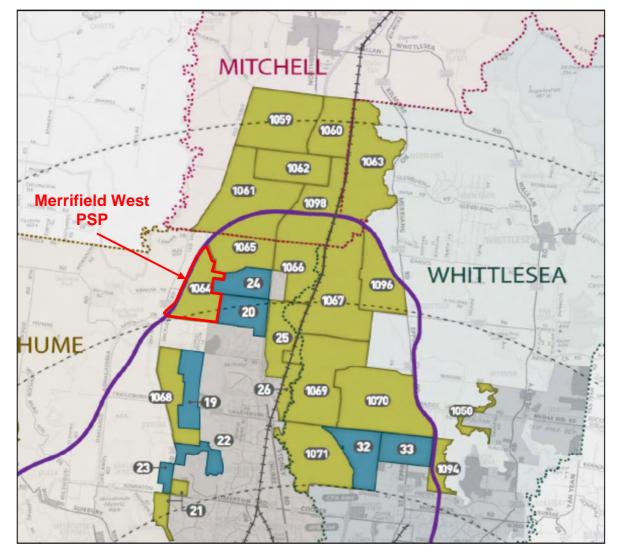



Figure 2: Precinct Structure Plan Staging Plan

Source: GAA website

# 1.4 Surrounding Land Uses

Future residents of the PSP will have access to jobs within the precinct, and nearby within the MTC and Merrifield and Folkestone employment areas. A wide range of diverse employment opportunities will be provided as the development unfolds – making the PSP a jobs-led-community from the outset and at the completion.

The precinct's proximity adjacent the Melbourne Water Kalkallo Retarding Basin and Mt. Ridley Woodland Park, will, when master planned, offer residents passive and district level active recreational opportunities. A network of passive open space linkages along drainage corridors located within the precinct will connect to the Kalkallo Retarding Basin, the MTC area and Mt. Ridley Woodland Park, encouraging residents to walk and cycle to these key destination locations.

The precinct will be conveniently accessed via the Hume Freeway and OMR. Regional arterial roads servicing the precinct include Donnybrook Road which will provide the link between the OMR, E14/Aitken Boulevard and Hume Highway. Aitkin Boulevard will have a frequent bus rapid transit service linking the precinct south to Broadmeadows via Craigieburn and to the north to Wallan via Beveridge. Cycling will be convenient, with an extensive network on off-road

and dedicated on-road trails linking throughout the site and beyond. Figure 3 shows the Merrifield West PSP




Figure 3: Merrifield West PSP

Source: GAA website

# 2 EXISTING AND FUTURE ROAD NETWORK

# 2.1 Key Existing Roads

The future regional transport network was determined by the Department of Transport (DoT) in October 2011 based on the original December 2010 version of the MITM. The model also includes a number of road network changes as advised by the Growth Areas Authority (GAA) and VicRoads to accord with the Corridor Plan. The purpose of this work was to establish a future road network consistent with the assumed future land use to adequately cater for the growth and planning needs of the northern region in the long term.

#### **Donnybrook Road**

Donnybrook Road is a 2-lane declared arterial road under the control of VicRoads that currently carries 1,900 vehicles per day, with traffic volumes peaking during the morning peak hour period at 200 vehicles/ hour. Towards the south, the PSP will provide for three intersections with Donnybrook Road. Donnybrook Road is currently the primary east west connector and is planned to be constructed as a major arterial and operate as a 6-lane arterial road in its ultimate form.

#### Mickleham Road / Old Sydney Road

Mickleham Road/Old Sydney Road comprises a 2-lane road, carrying around 3,700 vehicles per day. Mickleham Road (south of Donnybrook Road) is a declared Arterial Road. Old Sydney Road is constructed to a rural standard and services a number of rural properties along its length. The intersection of Mickleham Road/Old Sydney Road and Donnybrook Road is an unsignalised T-intersection

# **Gunns Gully Road**

Gunns Gully Road functions as a 2-lane access lane to properties west of the Hume Highway towards Old Sydney and is mainly an unsealed road north of the PSP. The road currently provides access to a number of rural properties. The road is sealed for a short length near the Hume Freeway end and caters for a very low number of vehicle movements.

#### **Hume Highway/Freeway**

The Hume Highway/Freeway corridor provides access to the PSP area via full interchange with Donnybrook Road to the east of the PSP area and adjacent to the Merrifield Employment. The Hume Freeway is currently a divided carriageway and operates as a Limited Access Road under current VicRoads policy. The cross section is generally configured with two traffic lanes and emergency stopping lanes in each direction. A 50 metre carriageway (approx) is set within a 75 metre road reserve (approx).

#### 2.2 E14/ Aitken Boulevard / Future OMR/E6

The PSP abuts the planned OMR/E6 corridor on its western boundary and transport corridor extends some 93 kilometres from the Princes Freeway near Werribee in the south-west of Melbourne to the Metropolitan Ring Road in Thomastown in the north of Melbourne. The OMR section of the corridor abutting the PSP area will ultimately feature four lanes in both directions with a central reserve for four rail tracks carrying both freight and passenger trains.

An interchange is proposed at the intersection of Donnybrook Road/OMR with land surrounding the interchange set aside, assuming movements on all approaches. The OMR is likely to be constructed post 2020 and will form the northern and western boundary of the PSP. The OMR will provide for regional freight connections to the northern metropolitan area including the Melbourne Airport and industrial areas to the west.

The following intersection locations are planned to connect with the OMR with roads in the vicinity of the PSP area

- East of the intersection of Mickleham Road/ Old Sydney Road; along Donnybrook Road;
- Gunns Gully Road, east of Old Sydney Road;
- Western Connector to the north of the PSP area; and
- Hume Freeway to the north of Gunns Gully Road, in Beveridge.

Regionally, the E14/Aitken Boulevard provides linkages between growth areas in Beveridge in the north and the more established activity areas such as Craigieburn and Broadmeadows in the south.

Figure 4 provides an overview of the existing major roads within the area proposed Merrifield West PSP.

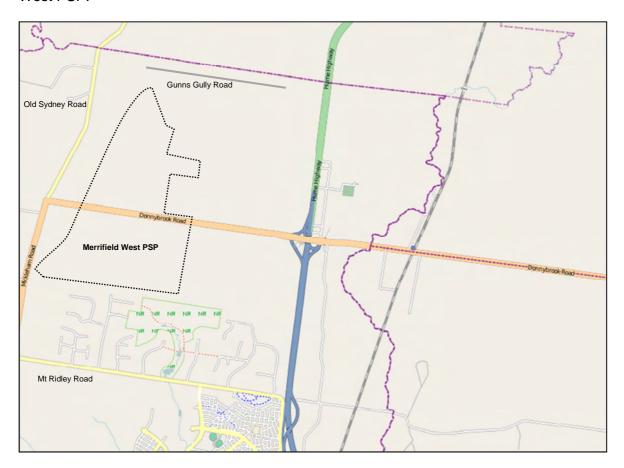



Figure 4: Key existing roads within the vicinity of the Merrifield West PSP

Locality plan (source: http://www.openstreetmap.org)

#### 2.3 Western Connector Road

The "Western Connector" road is proposed as part of the draft Corridor Plan and is located within the Melbourne Water Retarding Basin adjacent to the PSP area. It will provide the northern-eastern access between the MTC, the PSP and the OMR.

# 3.1 Strategic Context

The strategic location of the PSP within the Corridor requires the transport modelling to be conducted on a regional scale. SMEC has utilised the MITM strategic transport model to forecast future travel patterns within the Corridor Plan.

Travel patterns associated with the PSP are aligned with the underlying land use and interact strongly with proposed neighbouring MTC, employment and residential areas. Although the construction of the intersections and road infrastructure are viewed at a local street level, travel patterns need to be modelled at a strategic corridor level since these occur on a much wider regional scale.

# 3.2 The 4-step Modelling Process

The MITM uses a four-step process: trip generation, trip distribution, mode split and trip assignment. These steps can be described in more detail as follows:

**Trip generation** involves calculating the total number of trips generated for a collection of land uses (also known as a zone) within a strategic model. The land use inputs are used to generate the number of trips in each zone, based on internal models that divide the distribution of households into various household types, car ownership, number and type of workers, numbers of students and other influencing variables. Trips are generated for 14 trip purposes that include home based work, education, shopping and recreation trips and non-home based work, shopping and other trips.

**Trip distribution** is the process in which these trips are distributed throughout the model from zone to zone based on the relative cost of travelling through the model. This involves calculating the cost of travelling from zone to zone, and then trips are arranged accordingly in a trip matrix.

**Mode split** further processes the trip matrix by separating the number of trips within a model based on the mode of travel. Trips are separated by modes such as private vehicles, public transport or walking / cycling depending on the availability of the transport infrastructure associated with each mode.

**Trip assignment** assigns trips from the trip matrices to the road network. This allows all trips to select the path they wish to take to reach their destination. The trips assigned to the network represent a 2 hour AM peak period. The AM peak is considered to be representative of the highest travel demand during an average weekday.

# 3.3 Base Year Model Development

MITM is a strategic model widely accepted by consultants and government organisations practicing in Victoria due to the robustness of the calibration process that has been undertaken by the DoT in developing the tool. Model calibration is the process by which strategic model travel demand forecasts for a given base year are compared against observed travel patterns for the same base year. The accuracy and validity of the strategic model promotes confidence in the strategic model to forecast future travel demands.

The base year calibration of this model in the Corridor Plan area required additional enhancement to refine the relatively coarse zone system. To improve the accuracy of MITM, the model's calibration was reviewed and updated in the Hume, Whittlesea and Mitchell LGAs. A full description of the method used and results of the re-calibration are contained in the report "Northern Growth Corridor MITM Modelling: Calibration and Validation Assessment – Strategic Modelling Report" prepared by GTA Consultants included as Appendix 1.

# 3.4 Future Year Strategic Model Forecasts

Two future years have been modelled:

- Interim scenario An interim scenario has been completed for the 2021 future year. This scenario is required for DCP purposes commensurate with a full build out of the PSP by 2021, but without the inclusion of the OMR.
- **Ultimate scenario** Based on the vision of the PSP, strategic modelling works have been completed for the future year 2046. This year is considered the ultimate development scenario for the MNGCP.

The 2021 interim scenario is required for DCP purposes to be able to quantify the contributions that land owners need to make towards infrastructure to service the PSP. Calculating construction costs for road infrastructure to service the PSP is the DCP requires travel demand forecasting for an interim development scenario.

The 2046 ultimate scenario is required to be able to assess the future road corridor requirements commensurate with the delivery of the OMR, the E14/Aitken Boulevard and the Western Connector which are planned to be constructed within this timeframe.

The information obtained from these two model time horizons have been used to develop a road hierarchy and select an appropriate cross section for roads within the PSP. To assist with the preparation of the DCP, this information has also been used to prepare a number of Functional Layout Plans for the various intersections along Donnybrook Road.

# 4 LAND USE AND NETWORK ASSUMPTIONS

# 4.1 MITM Model Zone Structure for the Melbourne North Growth Corridor

The zone system for the Corridor Plan as represented in MITM has been refined in comparison to previous versions of the model. Figure 5: Corridor Plan zone system

Figure 5 shows the overall zone system of the Corridor Plan in accordance with the information provided by the DOT.

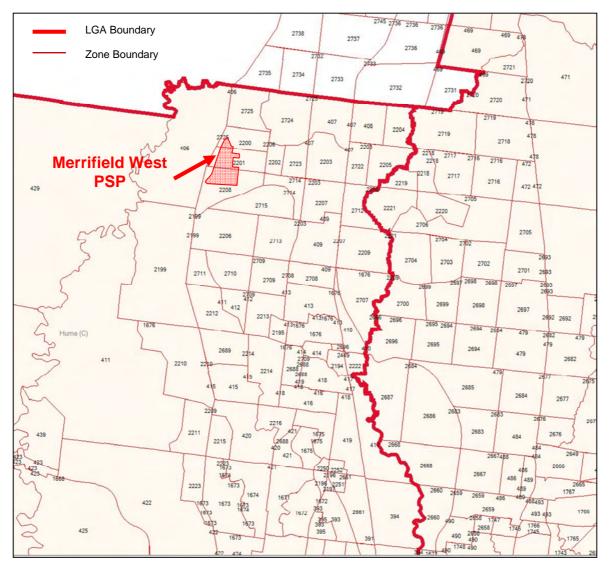



Figure 5: Corridor Plan zone system

Figure 5 shows that the MITM model zone structure in the unmodified MITM in the vicinity of the PSP is very coarsely represented. In addition, there is a poor correlation between the proposed PSP boundary and the current MITM zone structure. A disaggregation and refinement process has therefore been undertaken to better align these boundaries and thereby improving the accuracy of travel patterns within the PSP.

# 4.2 Merrifield West PSP Zone Structure

The sub-areas boundaries have been developed to align with the internal and external PSP road network reflecting planned land uses such as residential, retail, community and open space.

Figure 6 shows the zone structure within the PSP as a result of the work that was undertaken to disaggregate and reflect the most dominate land uses, i.e. residential, retail and employment. Roads which run through these zones are recognised by the zone connectors are placed onto the internal and surrounding road network.

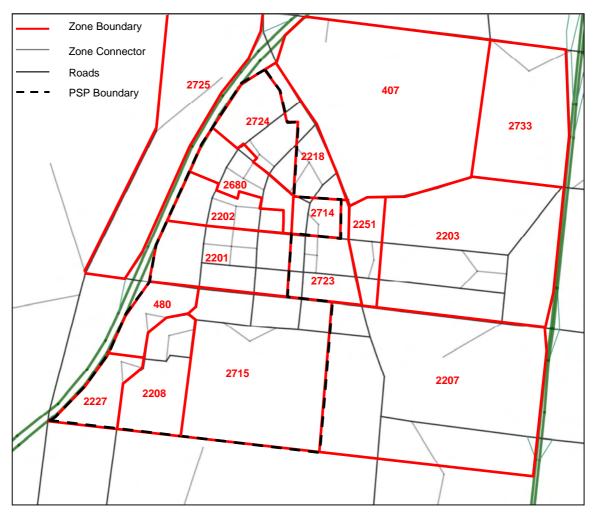



Figure 6: MITM model zone structure within the PSP for 2046

**Note:** Road network as described above includes additional road links not yet included in the December 2011 version of MITM. Accordingly, the network immediately surrounding the PSP has been modified to recognise the future road shown in the Corridor Plan as follows:

#### 2021

- Connections east of the E14/Aitken Boulevard to recognise future development in the Merrifield West PSP;
- Realigning the E14/Aitken Boulevard towards the north-east and away from the OMR;
- Inclusion of the Western Connector; and
- Modifications to the lower order roads south of Donnybrook Road and their connections through the PSP area.

#### 2046

- Connections east of the E14/Aitken Boulevard to recognise future development in the PSP Realigning the E14/Aitken Boulevard towards the north-east and away from the OMR;
- Inclusion of the OMR;
- Inclusion of the Western Connector; and
- Inclusion of a lower order connection on to the Hume Freeway servicing the future Mickleham North Employment Area.

# 4.3 Land Use Assumptions

MITM requires land use assumptions to be multiplied by a range of trip generation factors in order to determine the total trips generated for a given area. Land use assumptions for both within the Merrifield West PSP and the immediate vicinity of the PSP have been provided by Merrifield Corporation.

A summary of the assumed land uses contained within each model zone are provided Table 1, Table 2 and Table 3 below:

- Table 1 refers to the land use assumptions specifically within the PSP boundaries which are assumed to remain unchanged in both future model years, i.e. 2021 and 2046.
- Table 2 refers to the assumed land uses outside the PSP for the 2021 model year.
- Table 3 refers to the assumed land uses outside the PSP for the 2046 model year.

Table 1: MITM Land uses within the PSP by Sub-Area for 2021 and 2046 scenarios

| Zone Number | Population | Dwellings   | Enrolments | Jobs |
|-------------|------------|-------------|------------|------|
| 480         | 1,950      | 600         | 0          | 0    |
| 2201        | 4,225      | 1,300       | 400        | 0    |
| 2202        | 1,625      | 500         | 1,550      | 0    |
| 2208        | 2,275      | 700 850     |            | 248  |
| 2227        | 975        | 300         | 1,500      | 0    |
| 2680        | 3,250      | 3,250 1,000 |            | 124  |
| 2714        | 2,025      | 623 0       |            | 0    |
| 2715        | 3,250      | 1,000       | 0          | 0    |
| 2724        | 3,250      | 1,000       | 0          | 124  |
| TOTAL       | 22,825     | 7,023       | 4,300      | 496  |

Table 2: MITM Land uses outside the PSP by Sub-Area for 2021 scenario

| Zone Number | Population | Dwellings | Enrolments | Jobs  |  |
|-------------|------------|-----------|------------|-------|--|
| 407         | 325        | 100       | 0          | 0     |  |
| 2203        | 0          | 0         | 0          | 1,000 |  |
| 2207        | 0          | 0         | 0          | 2,500 |  |
| 2218        | 0          | 0 0       |            | 0     |  |
| 2251        | 1,400      | 500       | 500        | 2,500 |  |
| 2723        | 1,400      | 500 0     |            | 1,000 |  |
| 2725        | 137        | 42        | 0          | 2     |  |
| 2733        | 0          | 0         | 0          | 0     |  |
| TOTAL       | 3,262      | 1,142     | 500        | 7,002 |  |

Table 3: MITM Land uses outside the PSP by Sub-Area for 2046 scenario

| Zone Number | Population | Dwellings   | Enrolments | Jobs   |
|-------------|------------|-------------|------------|--------|
| 407         | 4,225      | 1,300 0     |            | 50     |
| 2203        | 0          | 0           | 0          | 12,272 |
| 2207        | 0          | 0           | 0          | 5,000  |
| 2218        | 1,625      | 500         | 0          | 50     |
| 2251        | 2,940      | 1,050 1,500 |            | 7,116  |
| 2723        | 2,940      | 1,050       | 0          | 7,116  |
| 2725        | 3,250      | 1,000       | 0          | 3      |
| 2733        | 0          | 0           | 0          | 7,480  |
| TOTAL       | 14,980     | 4,900       | 1,500      | 39,087 |

Table 1, Table 2 and Table 3 indicate that the PSP is predominantly represented by residential and educational land uses. Zones adjacent to the PSP such as the zone 2723, representing the MTC, include employment land uses which may attract higher proportion of retail trips during the PM peak period.

The land use plan for the PSP can be seen in Appendix 2.

# 4.4 Public Transport Infrastructure

Principal public transport infrastructure has been planned along the E14/Aitken Boulevard from the south, turning eastwards through the MTC and then north to the Beveridge Major Town Centre.

These routes will be serviced by a high frequency bus services along clearly demarcated bus routes. Bus drop-off and pick-up points will be located near the MTC retail area. There is also potential for buses to loop further west into the PSP to ensure that the maximum desirable 400 metres walking distances to bus stops is achieved.

Refer to Figure 7 for public transport routes within the Merrifield West PSP in the Ultimate scenario.



Figure 7: Public transport routes within MITM for Ultimate 2046 year

The bus routes as shown in Figure 7 represent services for major links as represented in the MITM strategic model. The Merrifield West PSP will provide opportunity for bus routes to service local connections within the PSP which may not be shown in Figure 7. Links to major bus routes are planned at key interchanges at Donnybrook and the potential future Lockerbie railway stations. Localised feeder bus routes are planned to provide access to and from the PSP to both Donnybrook and the potential future Lockerbie railway stations.

# 4.5 Cycle and Pedestrian Paths

The PSP is very permeable in that it provides both pedestrians and cyclists with a number of options to connect and cross-connect within the site.

Cycle and pedestrian paths have been planned to focus on providing access between the various activity centres and schools within the MTC. All internal streets have pedestrian paths and on road cycle paths to connect with the broader community as well as creating opportunities for shorter recreational routes within the site.

Figure 8 shows schematically the proposed locations of the cycle and pedestrian paths.



Figure 8: Locations of proposed cycle and pedestrian facilities

# **5.1 Trip Generation Rates**

The DoT commissioned a Victorian Integrated Survey of Travel and Activity (VISTA) in 2007 to obtain a detailed picture of how people travel within the metropolitan area and its neighbouring regions on an average weekday. According to the VISTA survey results, the average household produces between 8.5 and 10 trips per day, depending on car ownership rates, accessibility, demographic structure, etc. The MITM trip generation results in an average of 9 trips per household per day. This shows that the average trip generation per household per day is well within the expected range.

Table 4 provides a breakdown of a First Principles Assessment of the MITM Trip Generation Rates for the interim and ultimate scenarios of the PSP. A comparison shows that the number of trips generated by MITM are within 10% of the equivalent number of trips calculated using the First Principles Assessment.

| Zone       | PSP Land Use<br>Composition                                                                                                                | PSP<br>Totals       | MITM Daily<br>Trip<br>Generation<br>Rate | MITM<br>Daily<br>Trips | First Principles Daily Trip Generation Rate | First<br>Principles<br>Daily Trips |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------|------------------------|---------------------------------------------|------------------------------------|
| Households | N/A                                                                                                                                        | 7,023<br>households | 9.59 per<br>household                    | 67,351                 | 9 per<br>household <sup>1</sup>             | 63,207                             |
| Employees  | 2 x Local Town<br>Centres<br>1 x Mixed Use<br>Area                                                                                         | 496<br>employees    |                                          |                        | 6.61 per<br>employee <sup>3</sup>           | 3,279                              |
| Enrolments | 2 x State Primary<br>Schools<br>2 x Catholic<br>Primary Schools<br>1 x State<br>Secondary<br>School<br>1 x Catholic<br>Secondary<br>School | 4,300<br>enrolments | Various <sup>2</sup>                     | 12,816                 | 1.87 per<br>enrolment <sup>3</sup>          | 8,031                              |
| Total      |                                                                                                                                            |                     |                                          | 80,167                 |                                             | 74,517                             |

<sup>1 -</sup> RTA Guide to Traffic Generating Developments 2002

#### 5.2 Future Traffic Demand for 2021 Interim Model Year

The construction of transport infrastructure within the PSP requires a quantifiable method by which estimated infrastructure funding costs can be attributed to all of the relevant stakeholders. Calculating these construction costs is part of the DCP process and requires that a future travel demand forecast for an interim development scenario be established.

<sup>2 -</sup> MITM is a trip production based model and therefore trip attractors can vary in terms of trip generation

<sup>3 –</sup> ITE Trip Generation Rates 8<sup>th</sup> Edition 2008

For DCP purposes, the 2021 model year has been selected by the Growth Areas Authority and VicRoads as the appropriate year for the future travel demand forecast to be determined. It is assumed that the PSP will be fully developed or approaching full development at this point in time.

Figure 9 shows the forecasted daily travel demands within PSP for the interim 2021 modelled year.

Additional MITM plots are included as Appendix 3.

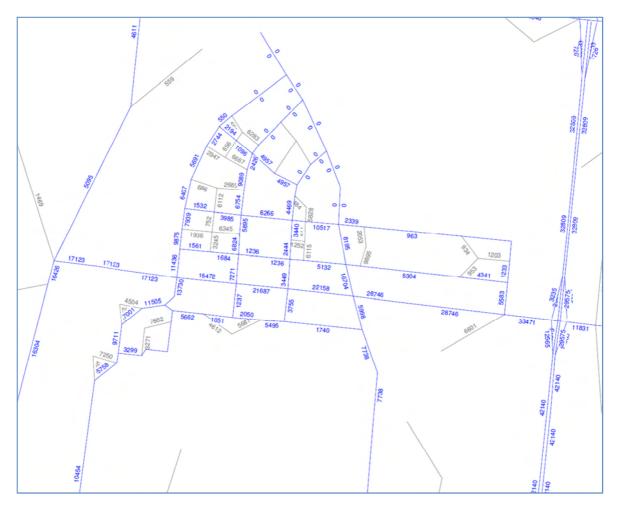



Figure 9: Forecast daily volumes on roads in vicinity of Merrifield West in 2021 interim scenario

The interim scenario indicates that there are significant traffic volumes travelling along Donnybrook Road.

The Western Connector carries zero flows as there are no connections towards the north of the Merrifield West PSP.

Traffic volumes within the immediate vicinity of the MTC are higher than on other local internal streets in response to the anticipated higher number of retail trips assumed for the zones in this part of the model. These daily forecast traffic volumes do not recognise the variation in trip types occurring during the AM versus PM peak, e.g. retail and employment related trips.

# 5.3 Future Traffic Demand for 2046 Ultimate Model Year

The ultimate scenario has been modelled for the 2046 year to recognise projects that are planned to be constructed within this timeframe.

The projected daily traffic volumes on the road network in around the PSP in 2046 are shown in Figure 10. Additional MITM plots are included as Appendix 3.

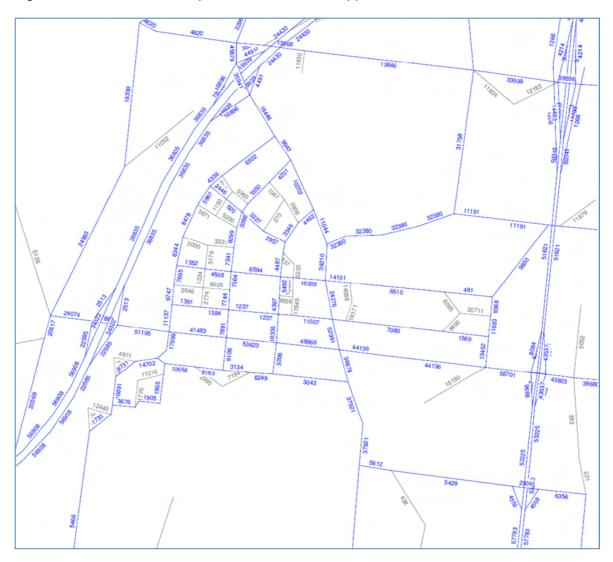



Figure 10: Forecast daily volumes on roads in vicinity of Merrifield West in 2046 ultimate scenario

# **6 DETAILED INTERSECTION ASSESSMENTS**

# **6.1 Future Intersection Capacity Tests**

Analyses of a number of intersections were undertaken using SIDRA Intersection 5.1 to assess the performance of individual traffic signal controlled sites for the 2021 and 2046 years. The following design and operational requirements have been considered:

- Lane configuration, signal phasing and coordination requirements at the traffic signals to ensure the safe and efficient operation of the road network for the current and future design traffic flows, as specified;
- The needs of all road users (e.g. private vehicles, heavy vehicles, freight, buses, pedestrians and cyclists) are taken into account, and
- Traffic signal integration within the VicRoads SCATS® system, which is used to monitor and control traffic signal operation.

It is important to note that the traffic volumes shown in Section 5 reflect an estimated 24-hour demand. In this section, tables represent only the morning peak hour flows that were used to analyse the performance of the intersection during the AM period.

Studies of the distribution of traffic volumes through the day show that the peak hour flows are generally about 55% of the peak 2-hour period flows. The morning peak hour flows are therefore obtained by reducing the MITM 2-hour forecasts by a factor of 0.55.

#### 6.2 Performance Criteria

The modelling using SIDRA has confirmed that the traffic signal design and operation of individual sites satisfies the performance criteria as specified in Table 5. General descriptions of the operating conditions of each of the levels of service are provided below:

| Table 5: SIDRA | performance criteria |
|----------------|----------------------|
|----------------|----------------------|

| Criterion              | New Traffic Signals |
|------------------------|---------------------|
| Degree of Saturation   | ≤ 0.95              |
| Level of Service (LOS) | LOS D or better     |

**LOS A** describes primarily free-flow operations. Average operating speeds at the free-flow speed generally prevail. Vehicles are almost completely unimpeded in their ability to man oeuvre within the traffic stream. Even at the maximum density for LOS A, the average spacing between vehicles is about 160m, or 26 car lengths, which affords the motorist with a high level of physical and psychological comfort. The effects of incidents or point breakdowns are easily absorbed at this level.

**LOS B** also represents reasonably free-flow, and speeds at the free-flow speed are generally maintained. The lowest average spacing between vehicles is about 110m, or 18 car lengths. The ability to man oeuvre within the traffic the traffic stream is only slightly restricted, and the general level of physical and psychological comfort provided to drivers is still easily absorbed, though local deterioration in service may be more severe than for LOS A.

LOS C provides for flow with speeds still at or near the free-flow speed of the roadway. Freedom to man oeuvre within the traffic stream is noticeably restricted at LOS C, and lane changes require more vigilance on the part of the driver. Minimum average spacings are in the range of 70m, or 11 car lengths. Minor incidents may still be absorbed, but the local

deterioration in service will be substantial. Queues may be expected to form behind any significant blockage.

**LOS D** is the level at which speeds begin to decline slightly with increasing flows. In this range, density begins to deteriorate somewhat more quickly with increasing flow. Freedom to manoeuvre within the traffic stream is more noticeably limited, and the driver experiences reduced physical and psychological comfort levels. Even minor incidents can be expected to create queuing, because the traffic stream has little space to absorb disruptions.

**LOS E** describes operation at capacity. Operations in this level are volatile, because there are virtually no useable gaps in the traffic stream. Vehicles are spaced at approximately 6 car lengths, leaving little room to manoeuvre within the traffic stream. Any disruption to the traffic stream, such as vehicles entering from a ramp or a vehicle changing lanes can cause following vehicles to give way to admit the vehicle. This can establish a disruption wave that propagates throughout the upstream traffic flow. At capacity the traffic stream has no ability to dissipate even the most minor disruptions, and any incident can be expected to produce a serious breakdown with extensive queuing.

**LOS F** describes breakdowns in vehicular flow. Such conditions generally exist within queues forming behind breakdown points. Such breakdowns occur for a number of reasons. Recurring points of congestion exist, such as merge or weaving areas, where the number of vehicles arriving is greater than the number of vehicles discharged. In forecasting situations, any location presents a problem when the projected peak hour (or other) flow rate exceeds the estimated capacity of the location.

# **6.3 Pedestrian and Cyclist Movements**

All pedestrian and cyclist movements are incorporated in the traffic signal layouts. The pedestrians and cyclists share the same signal group within the phase in which they run.

Pedestrians and cyclists using the pedestrian crossings have been allocated crossing time in the SIDRA models and lanterns would be provided post construction. It is assumed that all pedestrian facilities will be utilised by both pedestrians and cyclists.

Currently, SIDRA assumes that 50 pedestrians pass through each movement per hour. It should be noted that this is a conservative assumption as pedestrian movements tend only to be considered when pedestrian signals are activated.

# **6.4 Public Transport Priority**

Buses have not been identified as an exclusive vehicle class for the purposes of determining overall intersection performance using SIDRA. Rather, buses have been included in the overall heavy vehicle composition, recognising that at some point in the future the traffic signal phasing may need to be modified to give buses the priority they require.

# 6.5 Intersections Identified as Contributing to the DCP

The strategic model gives an indication of the demand and trip patterns at intersections which will form part of the Development Contribution Plan (DCP). Major intersections within the PSP identified for inclusion in the DCP include:

- IT01: Collector Road with Western Connector;
- IT02: Collector Road with Western Connector;
- IT03: Collector Road with Western Connector;
- IT04: Collector Road with Donnybrook Road;
- IT05: Collector Road with Donnybrook Road;
- IT06: Collector Road with Donnybrook Road; and
- IT07: Donnybrook Road Old Sydney Road/Mickleham Road.

Figure 11 shows the location of the proposed intersections within the PSP.

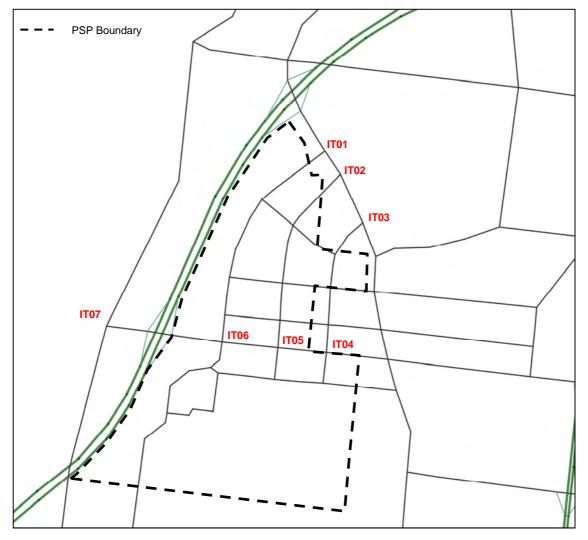



Figure 11: Location of proposed intersections

#### 6.6 Assessment of the 2021 PM Peak Hour

MITM in its current form has been developed to forecast commuter trips in the AM peak 2-hour average weekday period. Although the AM peak is considered to be the critical peak period for assessing major infrastructure projects within Melbourne, trip patterns change during the course of a day which means that the AM peak does not necessarily reflect the same travel patterns and traffic composition during the PM peak. Further analysis using SIDRA was therefore also undertaken for selected intersections within the MTC to confirm their continued acceptable performance during the 2021 PM peak hour.

The local town centres within the PSP, north and south of Donnybrook Road, are also expected to produce retail trips during the PM peak. It is assumed that the additional traffic generated by these smaller centres service short-distance local traffic only. The anticipated catchment of these town centres is therefore expected to be small and in turn have a minimal effect on major intersections recognised in the DCP process.

During the PM peak, the travel patterns associated with the MTC are anticipated to contain a large number of retail trips as during the PM peak, activity within the retail precinct coincides with a much higher travel demand. To recognise this shift in travel behaviour between the AM peak and PM peak, a desktop analysis has been undertaken to determine a more likely set of PM peak turning volumes for input into the SIDRA analyses.

The PM peak turning movement volumes have been developed as follows:

- 1. Extract the AM peak traffic volumes from MITM for the intersections that are required to be analysed.
- 2. Transpose the AM peak traffic volumes to produce an indicative set of PM peak traffic volumes as a starting point for the calculation.
- 3. Determine total number of retail trips produced by the MTC within the PM peak period using a First Principles Assessment
- 4. Distribute total additional trips in accordance with the anticipated travel patterns within the Corridor in 2021.
- 5. Add home-based retail trips (trips to and from the MTC) to PM peak starting volumes.
- 6. Perform SIDRA intersection analyses using these revised traffic volumes to determine a more likely set of PM peak intersection performance conditions.

It should be noted that the total number of commuter trips has not been reduced in this approach, i.e. retail trips have simply been added to the overall intersection demands. This is a conservative approach in recognition of the fact that the PM peak is likely to be the critical peak associated with the close proximity of the neighbouring MTC. To simplify the process, the MTC is analysed as a standalone influence.

The purpose of the 2021 PM peak hour turning volume assessment is to ensure that all of the intersections along Donnybrook are able to adequately cater for the projected AM and PM traffic conditions in 2021. Other neighbouring retail areas have been assumed to service local their local environments in a similar way but to a lesser extent.

#### Step 1 – AM Peak Traffic Volumes

Figure 12 shows the AM peak hour traffic volumes extracted from MITM for intersections IT04, IT05, IT06 and IT07 along Donnybrook Road to be assessed using SIDRA analysis.

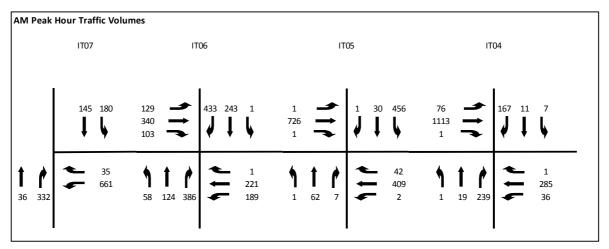



Figure 12: AM peak traffic volumes

#### Step 2 – Transposed AM Peak Traffic Volumes

Figure 13 shows the transposed AM peak hour traffic volumes at these intersections.

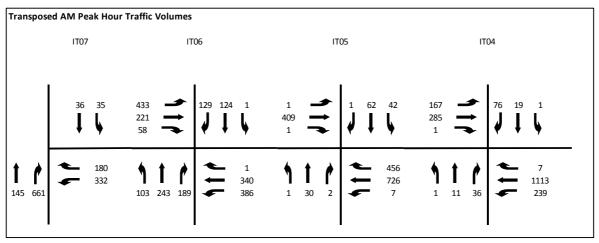



Figure 13: Transposed AM peak traffic volumes

#### **Step 3 – First Principles Assessment**

Preliminary master planning by Merrifield Corporation suggests that up to 98,333 sqm of retail and 46,650 sqm bulky goods floor space and approximately 2,100 dwellings can be supported in the MTC. It should be noted that these figures were determined prior to approval of the NGCP and thus represents a 'worst case' demand scenario. The ultimate retail floor space and dwellings numbers will be confirmed through a separate planning and rezoning process for the MTC.

The Roads and Traffic Authority (RTA) of New South Wales Guide to Traffic Generating Developments (2002) indicates that a Friday PM peak produces approximately 11 trips per 1,000 sqm of retail. However, retail rates can vary greatly depending on the total floor area of the retail precinct.

As the planned retail area is above 40,000sqm maximum category for retail floor space referred to in the RTA Guide, the lowest rate was applied. This equates to a total of 1,149 trips per hour produced by the MTC within the PM peak period, as shown in Table 6 below:

Table 6: PM trip generation by land use within the MTC

| Land Use              | Land Use<br>Size   | Trip Rate                  | Trips       | Internal trip<br>Reduction % | Additional PM<br>Retail Trips |
|-----------------------|--------------------|----------------------------|-------------|------------------------------|-------------------------------|
| Retail                | 98,333sqm          | 11 trips per<br>1,000 sqm  | 1,082 trips | 0%                           | Add 1,082 trips               |
| Bulky Goods<br>Retail | 46,650sqm          | 11 trips per<br>1,000 sqm  | 513 trips   | 0%                           | Add 513 trips                 |
| Residential           | 2,100<br>dwellings | 0.85 trips per<br>dwelling | 1,785 trips | 25%                          | Minus 446 trips               |
|                       |                    |                            |             | TOTAL                        | 1,149 trips                   |

According to the RTA Guide, not all residential trips are considered to be external trips. As a guide, about 25% of trips will be internal to any subdivision, involving local shopping, schools and local social visits. When reviewing the impact of traffic generated on subregional and regional roads, some adjustment can be claimed, depending on the location of retail centres, schools and recreational facilities relative to any town centre development. During the PM peak, these conditions are considered to be met based on the land use composition for zone 2723 and 2251 representing the MTC.

#### Step 4 – Retail Trip Distribution

Although the MTC is planned to service the PSP, it is assumed that a proportion of trips are also long distance trips which may travel to and from zones external of the PSP. The following assumptions have been used to determine trip distribution to and from the MTC:

• 50% of trips will travel to and from the PSP north of Donnybrook Road,

**NOTE:** (According to the Austroads Guide to Traffic Management – Part 3, the theoretical maximum lane capacity for a local road is deemed to have been reached at 900 vehicles per lane per hour. This means that when including these additional trips, the resultant PM hourly volumes within the PSP can be accommodated on the available local road network. (Refer to Appendix 3 for hourly volumes)

- 20% of trips will travel to and from the PSP south of Donnybrook Road,
- 10% of trips are considered to be long distance trips travelling to and from Mickleham Road in the west; and
- 20% of trips are considered to be long distance trips travelling to and from both the Hume Freeway and other PSP developments to the east.

Table 7: Retail Trip Distribution based on First Principles Assessment

| Land Use              | Additional PM<br>Retail Trips | 50% North | 20% South | 20% East  | 10% West  |
|-----------------------|-------------------------------|-----------|-----------|-----------|-----------|
| Retail                | + 1,082 trips                 | + 541     | +216      | +216      | + 108     |
| Bulky Goods<br>Retail | + 513 trips                   | +257      | +103      | +103      | + 51      |
| Residential           | - 446 trips                   | -223      | - 89      | - 89      | - 45      |
| TOTAL                 | 1,149 trips                   | 575 trips | 230 trips | 230 trips | 115 trips |

# Step 5 – Add Home-based Retail Trips

Figure 14 shows the additional home-based retail trips to and from the MTC to be added to the transposed AM peak traffic volumes.

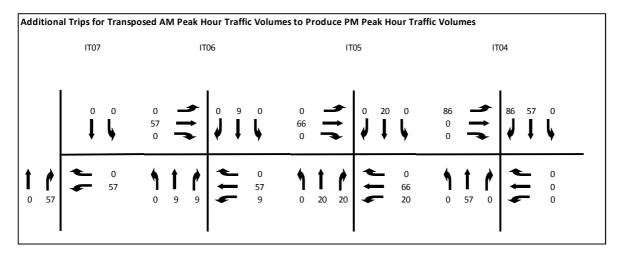



Figure 14: Additional trips from Retail to be added to transposed AM matrix

#### Step 6 - PM Peak Traffic Volumes

Figure 15 shows the PM peak hour traffic volumes for intersections IT04, IT05, IT06 and IT07 along Donnybrook Road to be assessed using SIDRA analysis.

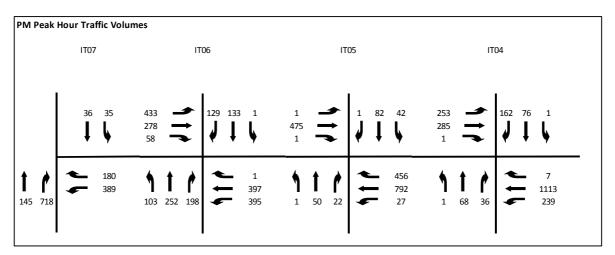
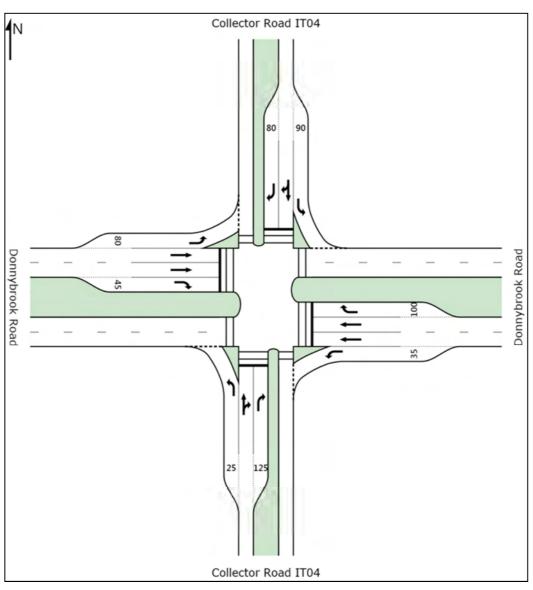



Figure 15: PM peak traffic volumes

#### 6.7 Interim Intersection Assessments


# 6.7.1 Intersections IT01, IT02 and IT03 along Western Connector

These intersections have not been assessed for the interim scenario based on the 2021 MITM model analysis which indicates that because the OMR has not been constructed as there is no demand for travel to the north and therefore the Western Connector is not required.

Detailed SIDRA outputs for all of the remaining intersections for the interim year are provided in Appendix 4. Turn lane lengths modelled in SIDRA represent the storage length of the turn lanes only. The turn lane lengths as shown in any functional layout will comprise of the storage lengths as determined by SIDRA, plus provision for vehicle deceleration and pocket taper.

# 6.7.2 Intersection IT04: Collector Road IT04 and Donnybrook Road

The interim layout of the Collector Road IT04 and Donnybrook Road intersection is shown below.



Results for this intersection are shown in Table 8 and Table 9. This table shows that the intersection operates at LOS A during the AM and PM peak periods with approximately 33 seconds delay for all vehicles being experienced on average.

Table 8: Results of SIDRA Analysis for intersection IT04, 2021 AM peak

| Move    | nent Pe  | erformance     | - Vehic | les      |                  |                     |                      |                      |                 |                        |                  |
|---------|----------|----------------|---------|----------|------------------|---------------------|----------------------|----------------------|-----------------|------------------------|------------------|
| Mov ID  | ) Turn   | Demand<br>Flow | HV D    | eg. Satn | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate | Average<br>Speed |
|         |          | veh/h          | %       | v/c      | sec              |                     | veh                  | m                    |                 | perveh                 | km/h             |
| South:  | Collecte | or Road IT04   |         |          |                  |                     |                      |                      |                 |                        |                  |
| 10      | L        | 1              | 5.0     | 0.002    | 7.9              | LOSA                | 0.0                  | 0.1                  | 0.15            | 0.59                   | 44.7             |
| 11      | Т        | 19             | 5.0     | 0.567    | 55.0             | LOSA                | 9.1                  | 66.3                 | 0.99            | 0.79                   | 21.0             |
| 12      | R        | 239            | 5.0     | 0.568    | 62.3             | LOSA                | 9.1                  | 66.3                 | 0.99            | 0.80                   | 21.9             |
| Approx  | ach      | 259            | 5.0     | 0.568    | 61.5             | LOSA                | 9.1                  | 66.3                 | 0.99            | 0.80                   | 21.9             |
| East: D | onnybr   | ook Road       |         |          |                  |                     |                      |                      |                 |                        |                  |
| 1       | L        | 37             | 5.0     | 0.029    | 8.3              | LOSA                | 0.1                  | 0.6                  | 0.05            | 0.62                   | 47.7             |
| 2       | Т        | 285            | 5.0     | 0.145    | 4.6              | LOSA                | 2.0                  | 14.3                 | 0.17            | 0.14                   | 56.9             |
| 3       | R        | 1              | 5.0     | 0.011    | 68.8             | LOSA                | 0.1                  | 0.7                  | 0.97            | 0.59                   | 21.8             |
| Approx  | ach      | 323            | 5.0     | 0.145    | 5.2              | LOSA                | 2.0                  | 14.3                 | 0.16            | 0.20                   | 55.5             |
| North:  | Collecto | or Road IT04   |         |          |                  |                     |                      |                      |                 |                        |                  |
| 7       | L        | 7              | 5.0     | 0.014    | 11.1             | LOSA                | 0.1                  | 0.9                  | 0.25            | 0.65                   | 47.7             |
| 8       | Т        | 11             | 5.0     | 0.455    | 57.2             | LOSA                | 6.7                  | 48.9                 | 0.98            | 0.77                   | 21.2             |
| 9       | R        | 168            | 5.0     | 0.455    | 64.7             | LOSA                | 6.7                  | 48.9                 | 0.98            | 0.78                   | 22.7             |
| Approx  | ach      | 186            | 5.0     | 0.455    | 62.3             | LOSA                | 6.7                  | 48.9                 | 0.95            | 0.77                   | 23.1             |
| West: I | Donnyb   | rook Road      |         |          |                  |                     |                      |                      |                 |                        |                  |
| 7       | L        | 77             | 5.0     | 0.058    | 9.1              | LOSA                | 0.4                  | 3.1                  | 0.12            | 0.65                   | 53.3             |
| 8       | Т        | 1113           | 5.0     | 0.565    | 6.0              | LOSA                | 10.4                 | 75.7                 | 0.29            | 0.26                   | 57.5             |
| 9       | R        | 1              | 5.0     | 0.011    | 66.4             | LOSA                | 0.1                  | 0.6                  | 0.93            | 0.59                   | 21.5             |
| Approx  | ach      | 1191           | 5.0     | 0.564    | 6.3              | LOSA                | 10.4                 | 75.7                 | 0.28            | 0.29                   | 57.1             |
| All Veh | icles    | 1959           | 5.0     | 0.568    | 18.7             | LOSA                | 10.4                 | 75.7                 | 0.42            | 0.38                   | 41.5             |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

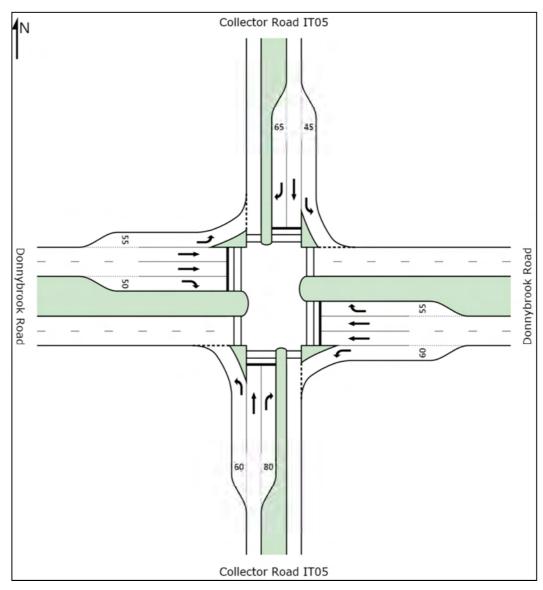
Vehicle movement LOS values are based on degree of saturation per movement

Intersection and Approach LOS values are based on worst degree of saturation for any vehicle movement. SIDRA Standard Delay Model used.

Table 9: Results of SIDRA Analysis for intersection IT04, 2021 PM peak

| Movem    | ient Pe  | erformance - | <b>Vehic</b> | les      |         |          |          |          |        |           |         |
|----------|----------|--------------|--------------|----------|---------|----------|----------|----------|--------|-----------|---------|
| Mov ID   | Turn     | Demand       | HV D         | eg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|          |          | Flow         |              |          | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|          |          | veh/h        | %            | v/c      | sec     |          | veh      | m        |        | perveh    | km/h    |
| South: 0 | Collecto | or Road IT04 |              |          |         |          |          |          |        |           |         |
| 10       | L        | 1            | 5.0          | 0.003    | 9.2     | LOSA     | 0.0      | 0.1      | 0.23   | 0.60      | 43.6    |
| 11       | Т        | 68           | 5.0          | 0.329    | 54.9    | LOSA     | 3.8      | 27.7     | 0.96   | 0.74      | 21.4    |
| 12       | R        | 36           | 5.0          | 0.183    | 61.1    | LOSA     | 2.0      | 14.4     | 0.94   | 0.73      | 22.1    |
| Approac  |          | 105          | 5.0          | 0.329    | 56.6    | LOSA     | 3.8      | 27.7     | 0.95   | 0.73      | 21.7    |
| East: Do | onnybro  | ook Road     |              |          |         |          |          |          |        |           |         |
| 1        | L        | 239          | 5.0          | 0.200    | 8.4     | LOSA     | 0.5      | 3.9      | 0.06   | 0.63      | 47.6    |
| 2        | Т        | 1113         | 5.0          | 0.556    | 5.3     | LOSA     | 7.8      | 57.0     | 0.26   | 0.23      | 54.7    |
| 3        | R        | 7            | 5.0          | 0.017    | 42.3    | LOSA     | 0.3      | 2.1      | 0.75   | 0.67      | 29.6    |
| Approac  | ch       | 1359         | 5.0          | 0.556    | 6.1     | LOSA     | 7.8      | 57.0     | 0.23   | 0.31      | 53.2    |
| North: 0 | Collecto | r Road IT04  |              |          |         |          |          |          |        |           |         |
| 7        | L        | 1            | 5.0          | 0.001    | 9.3     | LOSA     | 0.0      | 0.0      | 0.16   | 0.63      | 49.4    |
| 8        | Т        | 76           | 5.0          | 0.554    | 56.9    | LOSA     | 6.9      | 50.5     | 0.99   | 0.79      | 21.7    |
| 9        | R        | 162          | 5.0          | 0.554    | 64.5    | LOSA     | 6.9      | 50.5     | 0.99   | 0.79      | 22.8    |
| Approac  |          | 239          | 5.0          | 0.554    | 61.9    | LOSA     | 6.9      | 50.5     | 0.99   | 0.79      | 22.6    |
| West: D  | onnybr   | ook Road     |              |          |         |          |          |          |        |           |         |
| 7        | L        | 253          | 5.0          | 0.220    | 9.4     | LOSA     | 1.4      | 10.5     | 0.17   | 0.67      | 53.0    |
| 8        | Т        | 285          | 5.0          | 0.249    | 24.3    | LOSA     | 4.7      | 34.6     | 0.60   | 0.49      | 38.8    |
| 9        | R        | 1            | 5.0          | 0.011    | 66.4    | LOSA     | 0.1      | 0.4      | 0.93   | 0.59      | 21.5    |
| Approac  |          | 539          | 5.0          | 0.249    | 17.4    | LOSA     | 4.7      | 34.6     | 0.40   | 0.57      | 44.1    |
| All Vehi | cles     | 2242         | 5.0          | 0.556    | 17.1    | LOSA     | 7.8      | 57.0     | 0.38   | 0.44      | 40.3    |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).


Vehicle movement LOS values are based on degree of saturation per movement

Intersection and Approach LOS values are based on worst degree of saturation for any vehicle movement. SIDRA Standard Delay Model used.



# 6.7.3 Intersection IT05: Collector Road IT05 and Donnybrook Road

The interim layout of the Collector Road IT05 and Donnybrook Road intersection is shown below.



Results for this intersection are shown in Table 10 and Table 11. This table shows that the intersection operates at LOS D during the AM peak and LOS A during the PM peak periods with approximately 35 seconds delay for all vehicles being experienced on average.

#### Note:

For the PM peak, westbound right turn volumes have been equally apportioned between IT05 and IT06. Local modelling phenomenon such as this can usually be overcome by including junction delays at the trip path assignment stage in the four-step modelling process or through the use of micro-simulation modelling at a local street level.

Table 10: Results of SIDRA Analysis for intersection IT05, 2021 AM peak

| Movement Performance - Vehicles |          |                |              |       |                  |                     |                      |                      |                 |                        |                  |
|---------------------------------|----------|----------------|--------------|-------|------------------|---------------------|----------------------|----------------------|-----------------|------------------------|------------------|
|                                 | ) Turn   | Demand<br>Flow | HV Deg. Satn |       | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate | Average<br>Speed |
|                                 |          | veh/h          | %            | v/c   | sec              |                     | veh                  | m                    |                 | perveh                 | km/h             |
| South:                          | Collecte | or Road IT05   |              |       |                  |                     |                      |                      |                 |                        |                  |
| 10                              | L        | 1              | 5.0          | 0.001 | 8.4              | LOSA                | 0.0                  | 0.1                  | 0.19            | 0.59                   | 44.2             |
| 11                              | Т        | 62             | 5.0          | 0.156 | 41.9             | LOSA                | 3.0                  | 21.7                 | 0.86            | 0.66                   | 24.6             |
| 12                              | R        | 8              | 5.0          | 0.088 | 69.0             | LOSA                | 0.5                  | 3.4                  | 0.98            | 0.66                   | 20.6             |
| Appro                           | ach      | 71             | 5.0          | 0.156 | 44.5             | LOSA                | 3.0                  | 21.7                 | 0.86            | 0.66                   | 24.2             |
| East: D                         | onnybr   | ook Road       |              |       |                  |                     |                      |                      |                 |                        |                  |
| 1                               | L        | 2              | 5.0          | 0.002 | 8.5              | LOSA                | 0.0                  | 0.0                  | 0.11            | 0.62                   | 47.2             |
| 2                               | Т        | 409            | 5.0          | 0.514 | 37.8             | LOSA                | 9.6                  | 70.2                 | 0.84            | 0.70                   | 25.0             |
| 3                               | R        | 43             | 5.0          | 0.158 | 37.9             | LOSA                | 1.7                  | 12.4                 | 0.71            | 0.72                   | 31.5             |
| Appro                           | ach      | 454            | 5.0          | 0.514 | 37.7             | LOSA                | 9.6                  | 70.2                 | 0.83            | 0.70                   | 25.7             |
| North:                          | Collecto | or Road IT05   |              |       |                  |                     |                      |                      |                 |                        |                  |
| 7                               | L        | 456            | 5.0          | 0.915 | 18.4             | LOSD                | 10.1                 | 73.4                 | 0.51            | 0.76                   | 41.6             |
| 8                               | Т        | 31             | 5.0          | 0.078 | 42.2             | LOSA                | 1.5                  | 10.6                 | 0.84            | 0.64                   | 26.4             |
| 9                               | R        | 2              | 5.0          | 0.022 | 69.0             | LOSA                | 0.1                  | 0.8                  | 0.97            | 0.61                   | 21.8             |
| Appro                           | ach      | 489            | 5.0          | 0.915 | 20.1             | LOSD                | 10.1                 | 73.4                 | 0.53            | 0.76                   | 40.1             |
| West:                           | Donnyb   | rook Road      |              |       |                  |                     |                      |                      |                 |                        |                  |
| 7                               | L        | 1              | 5.0          | 0.001 | 9.1              | LOSA                | 0.0                  | 0.0                  | 0.14            | 0.63                   | 53.1             |
| 8                               | Т        | 726            | 5.0          | 0.913 | 50.2             | LOSD                | 22.8                 | 166.1                | 1.00            | 0.97                   | 26.6             |
| 9                               | R        | 1              | 5.0          | 0.004 | 36.1             | LOSA                | 0.0                  | 0.3                  | 0.68            | 0.61                   | 31.3             |
| Appro                           | ach      | 728            | 5.0          | 0.913 | 50.1             | LOSD                | 22.8                 | 166.1                | 1.00            | 0.97                   | 26.6             |
| All Veh                         | nicles   | 1742           | 5.0          | 0.915 | 38.2             | LOSD                | 22.8                 | 166.1                | 0.82            | 0.83                   | 29.3             |

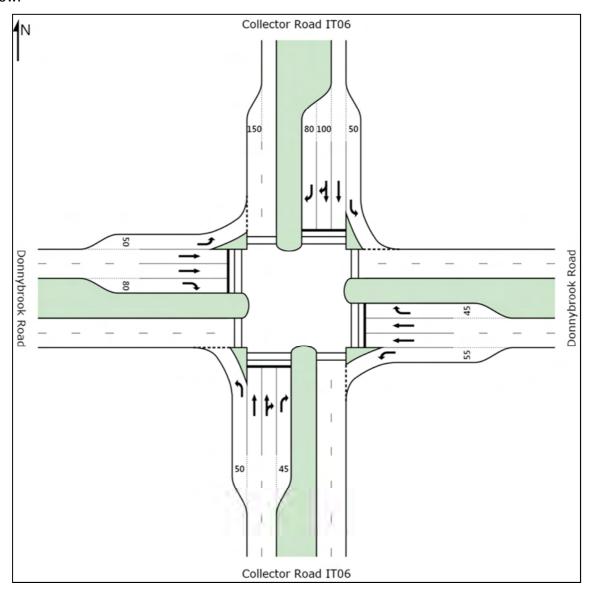
Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Vehicle movement LOS values are based on degree of saturation per movement

Intersection and Approach LOS values are based on worst degree of saturation for any vehicle movement. SIDRA Standard Delay Model used.

Table 11: Results of SIDRA Analysis for intersection IT05, 2021 PM peak

| Movement Performance - Vehicles |          |                |      |          |                  |                     |                      |                      |                 |                        |                  |
|---------------------------------|----------|----------------|------|----------|------------------|---------------------|----------------------|----------------------|-----------------|------------------------|------------------|
| Mov ID                          | ) Turn   | Demand<br>Flow | HV D | eg. Satn | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate | Average<br>Speed |
|                                 |          | veh/h          | %    | v/c      | sec              |                     | veh                  | m                    |                 | perveh                 | km/h             |
| South:                          | Collect  | or Road IT05   |      |          |                  |                     |                      |                      |                 |                        |                  |
| 10                              | L        | 1              | 5.0  | 0.002    | 8.1              | LOSA                | 0.0                  | 0.0                  | 0.17            | 0.59                   | 44.4             |
| 11                              | Т        | 50             | 5.0  | 0.242    | 54.2             | LOSA                | 2.8                  | 20.1                 | 0.95            | 0.72                   | 21.5             |
| 12                              | R        | 22             | 5.0  | 0.243    | 70.2             | LOSA                | 1.3                  | 9.6                  | 0.99            | 0.71                   | 20.3             |
| Approa                          | ach      | 73             | 5.0  | 0.243    | 58.4             | LOSA                | 2.8                  | 20.1                 | 0.95            | 0.71                   | 21.3             |
| East: D                         | onnybr   | ook Road       |      |          |                  |                     |                      |                      |                 |                        |                  |
| 1                               | L        | 27             | 5.0  | 0.026    | 8.8              | LOSA                | 0.1                  | 1.0                  | 0.14            | 0.63                   | 47.0             |
| 2                               | Т        | 792            | 5.0  | 0.453    | 10.3             | LOSA                | 8.3                  | 60.3                 | 0.39            | 0.34                   | 46.1             |
| 3                               | R        | 256            | 5.0  | 0.546    | 24.3             | LOSA                | 5.8                  | 42.3                 | 0.78            | 0.79                   | 39.1             |
| Approa                          | ach      | 1075           | 5.0  | 0.546    | 13.6             | LOSA                | 8.3                  | 60.3                 | 0.47            | 0.45                   | 43.7             |
| North:                          | Collecto | or Road IT05   |      |          |                  |                     |                      |                      |                 |                        |                  |
| 7                               | L        | 42             | 5.0  | 0.064    | 10.2             | LOSA                | 0.4                  | 2.7                  | 0.21            | 0.65                   | 48.6             |
| 8                               | Т        | 82             | 5.0  | 0.397    | 56.6             | LOSA                | 4.6                  | 33.7                 | 0.97            | 0.76                   | 22.2             |
| 9                               | R        | 1              | 5.0  | 0.011    | 68.6             | LOSA                | 0.1                  | 0.4                  | 0.97            | 0.59                   | 21.9             |
| Approa                          | ach      | 125            | 5.0  | 0.397    | 41.1             | LOSA                | 4.6                  | 33.7                 | 0.72            | 0.72                   | 27.7             |
| West: [                         | Donnyb   | rook Road      |      |          |                  |                     |                      |                      |                 |                        |                  |
| 7                               | L        | 1              | 5.0  | 0.001    | 10.6             | LOSA                | 0.0                  | 0.1                  | 0.23            | 0.63                   | 51.3             |
| 8                               | T        | 475            | 5.0  | 0.553    | 36.0             | LOSA                | 11.1                 | 80.8                 | 0.84            | 0.70                   | 32.0             |
| 9                               | R        | 1              | 5.0  | 0.005    | 50.6             | LOSA                | 0.0                  | 0.3                  | 0.83            | 0.60                   | 25.8             |
| Approa                          | ach      | 477            | 5.0  | 0.553    | 36.0             | LOSA                | 11.1                 | 80.8                 | 0.83            | 0.70                   | 32.0             |
| All Veh                         | icles    | 1750           | 5.0  | 0.553    | 23.5             | LOSA                | 11.1                 | 80.8                 | 0.61            | 0.55                   | 36.0             |
|                                 |          |                |      |          |                  |                     |                      |                      |                 |                        |                  |


Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Vehicle movement LOS values are based on degree of saturation per movement

Intersection and Approach LOS values are based on worst degree of saturation for any vehicle movement. SIDRA Standard Delay Model used.

# 6.7.4 Intersection IT06: Collector Road IT06 and Donnybrook Road

The interim layout of the Collector Road IT06 and Donnybrook Road intersection is shown below.



Results for this intersection are shown in Table 12 and Table 13. This table shows the intersection operates at LOS A during the AM peak and LOS C during the PM peak periods with approximately 35 seconds delay for all vehicles being experienced on average.

#### Note:

For the PM peak, westbound right turn volumes have been equally apportioned between IT05 and IT06. Local modelling phenomenon such as this can usually be overcome by including junction delays at the trip path assignment stage in the four-step modelling process or through the use of micro-simulation modelling at a local street level.

Table 12: Results of SIDRA Analysis for intersection IT06, 2021 AM Peak

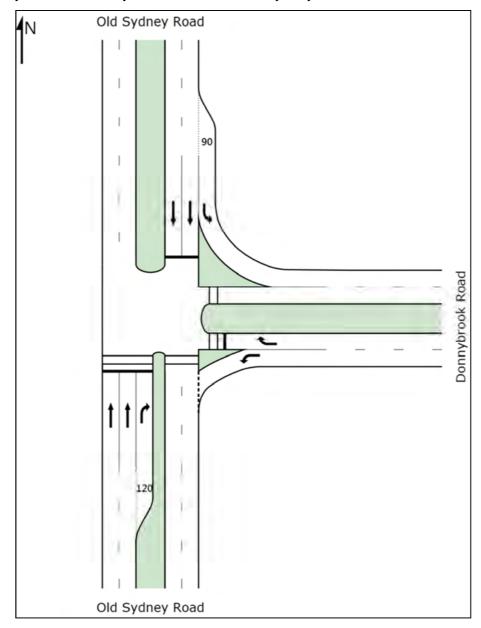

| Moven    | nent Pe  | erformance     | - Vehic | les      |                  |                     |                      |                      |                 |                        |                  |
|----------|----------|----------------|---------|----------|------------------|---------------------|----------------------|----------------------|-----------------|------------------------|------------------|
| Mov ID   | Turn     | Demand<br>Flow | HV D    | eg. Satn | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate | Average<br>Speed |
|          |          | veh/h          | %       | v/c      | sec              |                     | veh                  | m                    |                 | perveh                 | km/h             |
| South: ( | Collect  | or Road IT06   |         |          |                  |                     |                      |                      |                 |                        |                  |
| 10       | L        | 58             | 5.0     | 0.100    | 10.0             | LOSA                | 0.7                  | 5.1                  | 0.27            | 0.64                   | 43.0             |
| 11       | Т        | 125            | 5.0     | 0.254    | 38.0             | LOSA                | 5.8                  | 42.4                 | 0.84            | 0.68                   | 25.8             |
| 12       | R        | 387            | 5.0     | 0.575    | 48.0             | LOSA                | 13.8                 | 100.8                | 0.90            | 0.81                   | 25.3             |
| Approa   | ch       | 570            | 5.0     | 0.575    | 41.9             | LOSA                | 13.8                 | 100.8                | 0.82            | 0.76                   | 26.6             |
| East: Do | onnybr   | ook Road       |         |          |                  |                     |                      |                      |                 |                        |                  |
| 1        | L        | 190            | 5.0     | 0.314    | 11.4             | LOSA                | 2.6                  | 18.9                 | 0.30            | 0.68                   | 43.2             |
| 2        | Т        | 221            | 5.0     | 0.347    | 41.9             | LOSA                | 5.2                  | 38.3                 | 0.84            | 0.67                   | 23.5             |
| 3        | R        | 1              | 5.0     | 0.006    | 60.9             | LOSA                | 0.1                  | 0.4                  | 0.92            | 0.60                   | 23.7             |
| Approa   | ch       | 412            | 5.0     | 0.347    | 27.8             | LOSA                | 5.2                  | 38.3                 | 0.59            | 0.67                   | 29.2             |
| North: 0 | Collecte | or Road IT06   |         |          |                  |                     |                      |                      |                 |                        |                  |
| 7        | L        | 1              | 5.0     | 0.002    | 12.5             | LOSA                | 0.0                  | 0.1                  | 0.31            | 0.62                   | 46.3             |
| 8        | Т        | 244            | 5.0     | 0.465    | 40.2             | LOSA                | 11.9                 | 86.8                 | 0.88            | 0.76                   | 27.0             |
| 9        | R        | 434            | 5.0     | 0.580    | 47.3             | LOSA                | 11.6                 | 84.4                 | 0.87            | 0.81                   | 27.4             |
| Approa   | ch       | 679            | 5.0     | 0.580    | 44.7             | LOSA                | 11.9                 | 86.8                 | 0.88            | 0.79                   | 27.3             |
| West: D  | onnyb    | rook Road      |         |          |                  |                     |                      |                      |                 |                        |                  |
| 7        | L        | 130            | 5.0     | 0.144    | 9.5              | LOSA                | 0.8                  | 5.9                  | 0.17            | 0.66                   | 52.8             |
| 8        | Т        | 340            | 5.0     | 0.535    | 43.5             | LOSA                | 8.6                  | 62.8                 | 0.89            | 0.73                   | 28.9             |
| 9        | R        | 103            | 5.0     | 0.569    | 66.1             | LOSA                | 6.0                  | 43.8                 | 1.00            | 0.79                   | 21.7             |
| Approa   | ch       | 573            | 5.0     | 0.569    | 39.8             | LOSA                | 8.6                  | 62.8                 | 0.75            | 0.72                   | 30.3             |
| All Vehi | cles     | 2234           | 5.0     | 0.580    | 39.6             | LOSA                | 13.8                 | 100.8                | 0.78            | 0.74                   | 28.1             |
|          |          |                |         |          |                  |                     |                      |                      |                 |                        |                  |

Table 13: Results of SIDRA Analysis for intersection IT06, 2021 PM Peak

| Mover   | nent Pe  | erformance     | - Vehic | les      |                  |                     |                      |                      |                 |                        |                  |
|---------|----------|----------------|---------|----------|------------------|---------------------|----------------------|----------------------|-----------------|------------------------|------------------|
| Mov ID  | Turn     | Demand<br>Flow | HV D    | eg. Satn | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate | Average<br>Speed |
|         |          | veh/h          | %       | v/c      | sec              |                     | veh                  | m                    |                 | perveh                 | km/h             |
| South:  | Collect  | or Road IT06   |         |          |                  |                     |                      |                      |                 |                        |                  |
| 10      | L        | 103            | 5.0     | 0.155    | 9.6              | LOSA                | 1.1                  | 8.4                  | 0.26            | 0.64                   | 43.3             |
| 11      | Т        | 252            | 5.0     | 0.729    | 56.7             | LOSC                | 10.1                 | 74.0                 | 1.00            | 0.85                   | 20.9             |
| 12      | R        | 198            | 5.0     | 0.729    | 64.6             | LOSC                | 10.1                 | 74.0                 | 0.99            | 0.87                   | 21.5             |
| Approa  | ich      | 553            | 5.0     | 0.729    | 50.7             | LOSC                | 10.1                 | 74.0                 | 0.86            | 0.82                   | 23.5             |
| East: D | onnybr   | ook Road       |         |          |                  |                     |                      |                      |                 |                        |                  |
| 1       | L        | 395            | 5.0     | 0.463    | 9.4              | LOSA                | 3.4                  | 24.5                 | 0.23            | 0.67                   | 46.0             |
| 2       | Т        | 397            | 5.0     | 0.734    | 49.4             | LOSC                | 11.2                 | 81.6                 | 0.98            | 0.82                   | 21.0             |
| 3       | R        | 200            | 5.0     | 0.772    | 42.6             | LOSC                | 8.8                  | 64.3                 | 0.74            | 0.85                   | 29.6             |
| Approa  | ich      | 992            | 5.0     | 0.772    | 32.1             | LOSC                | 11.2                 | 81.6                 | 0.63            | 0.77                   | 28.5             |
| North:  | Collecto | or Road IT06   |         |          |                  |                     |                      |                      |                 |                        |                  |
| 7       | L        | 1              | 5.0     | 0.002    | 10.4             | LOSA                | 0.0                  | 0.1                  | 0.22            | 0.62                   | 48.4             |
| 8       | Т        | 133            | 5.0     | 0.434    | 56.9             | LOSA                | 5.1                  | 37.0                 | 0.98            | 0.76                   | 22.0             |
| 9       | R        | 129            | 5.0     | 0.434    | 64.4             | LOSA                | 4.9                  | 36.1                 | 0.98            | 0.78                   | 22.9             |
| Approa  | ich      | 263            | 5.0     | 0.434    | 60.4             | LOSA                | 5.1                  | 37.0                 | 0.98            | 0.77                   | 22.5             |
| West: [ | Donnyb   | rook Road      |         |          |                  |                     |                      |                      |                 |                        |                  |
| 7       | L        | 433            | 5.0     | 0.718    | 12.4             | LOSC                | 6.8                  | 49.3                 | 0.38            | 0.72                   | 49.4             |
| 8       | Т        | 278            | 5.0     | 0.514    | 46.8             | LOSA                | 7.2                  | 52.9                 | 0.91            | 0.73                   | 27.8             |
| 9       | R        | 58             | 5.0     | 0.139    | 29.9             | LOSA                | 2.0                  | 14.4                 | 0.62            | 0.71                   | 34.6             |
| Approa  | ich      | 769            | 5.0     | 0.718    | 26.1             | LOSC                | 7.2                  | 52.9                 | 0.59            | 0.73                   | 37.4             |
| All Veh | icles    | 2577           | 5.0     | 0.772    | 37.2             | LOSC                | 11.2                 | 81.6                 | 0.70            | 0.77                   | 28.4             |

#### 6.7.5 Intersection IT07: Donnybrook Road and Old Sydney Road

The interim layout of the Donnybrook Road and Old Sydney Road intersection is shown below.



Results for this intersection are shown in Table 14 and Table 15. This table shows the intersection operates at LOS A during the AM peak and LOS D PM peak periods with approximately 25 seconds delay for all vehicles being experienced on average.

Table 14: Results of SIDRA Analysis for intersection IT07, 2021 AM peak

| Mover   | ment Pe | erformance | - Vehic | les      |         |          |          |          |        |           |         |
|---------|---------|------------|---------|----------|---------|----------|----------|----------|--------|-----------|---------|
| Mov ID  | ) Turn  | Demand     | HV D    | eg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|         |         | Flow       |         |          | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|         |         | veh/h      | %       | v/c      | sec     |          | veh      | m        |        | perveh    | km/h    |
| South:  | Old Syc | dney Road  |         |          |         |          |          |          |        |           |         |
| 11      | Т       | 37         | 5.0     | 0.012    | 2.7     | LOSA     | 0.3      | 2.5      | 0.22   | 0.16      | 63.1    |
| 12      | R       | 332        | 5.0     | 0.432    | 19.2    | LOSA     | 9.9      | 72.0     | 0.46   | 0.76      | 44.4    |
| Approx  | ach     | 369        | 5.0     | 0.432    | 17.6    | LOSA     | 9.9      | 72.0     | 0.44   | 0.70      | 45.7    |
| East: D | onnybr  | ook Road   |         |          |         |          |          |          |        |           |         |
| 1       | L       | 661        | 5.0     | 0.418    | 10.5    | LOSA     | 6.9      | 50.6     | 0.22   | 0.70      | 48.0    |
| 3       | R       | 35         | 5.0     | 0.178    | 63.4    | LOSA     | 2.8      | 20.6     | 0.94   | 0.73      | 24.1    |
| Approx  | ach     | 696        | 5.0     | 0.418    | 13.2    | LOSA     | 6.9      | 50.6     | 0.25   | 0.70      | 44.9    |
| North:  | Old Syc | iney Road  |         |          |         |          |          |          |        |           |         |
| 7       | L       | 181        | 5.0     | 0.100    | 9.5     | X        | X        | X        | X      | 0.65      | 54.6    |
| 8       | Т       | 145        | 5.0     | 0.415    | 57.6    | LOSA     | 5.6      | 41.1     | 0.99   | 0.75      | 24.5    |
| Approx  | ach     | 326        | 5.0     | 0.415    | 30.9    | LOSA     | 5.6      | 41.1     | 0.44   | 0.70      | 35.3    |
| All Veh | icles   | 1391       | 5.0     | 0.432    | 18.5    | LOSA     | 9.9      | 72.0     | 0.35   | 0.70      | 42.0    |

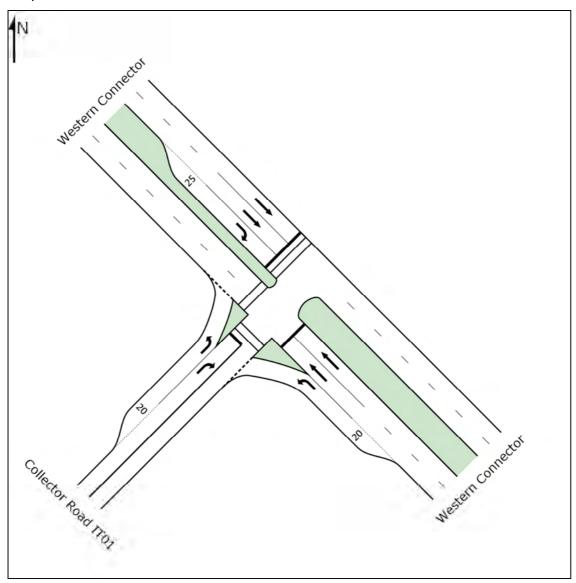
X: Not applicable for Continuous movement.

Table 15: Results of SIDRA Analysis for intersection IT07, 2021 PM peak

| Movem    | nent Pe | erformance     | - Vehic | les      |                  |                     |                      |                      |                 |                        |                  |
|----------|---------|----------------|---------|----------|------------------|---------------------|----------------------|----------------------|-----------------|------------------------|------------------|
| Mov ID   | Turn    | Demand<br>Flow | HV D    | eg. Satn | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate | Average<br>Speed |
|          |         | veh/h          | %       | v/c      | sec              |                     | veh                  | m                    |                 | perveh                 | km/h             |
| South: ( | Old Syd | iney Road      |         |          |                  |                     |                      |                      |                 |                        |                  |
| 11       | Т       | 145            | 5.0     | 0.048    | 2.8              | LOSA                | 0.9                  | 6.5                  | 0.23            | 0.18                   | 62.9             |
| 12       | R       | 718            | 5.0     | 0.923    | 34.3             | LOSD                | 26.8                 | 195.8                | 0.89            | 0.91                   | 34.4             |
| Approa   | ch      | 863            | 5.0     | 0.923    | 29.0             | LOSD                | 26.8                 | 195.8                | 0.78            | 0.79                   | 37.2             |
| East: Do | onnybr  | ook Road       |         |          |                  |                     |                      |                      |                 |                        |                  |
| 1        | L       | 389            | 5.0     | 0.239    | 10.0             | LOSA                | 1.8                  | 13.0                 | 0.15            | 0.68                   | 48.6             |
| 3        | R       | 180            | 5.0     | 0.917    | 83.1             | LOSD                | 12.5                 | 91.1                 | 1.00            | 1.02                   | 20.0             |
| Approa   | ch      | 569            | 5.0     | 0.917    | 33.1             | LOSD                | 12.5                 | 91.1                 | 0.42            | 0.79                   | 30.9             |
| North: ( | Old Syc | iney Road      |         |          |                  |                     |                      |                      |                 |                        |                  |
| 7        | L       | 35             | 5.0     | 0.019    | 9.5              | X                   | X                    | X                    | X               | 0.65                   | 54.6             |
| 8        | Т       | 36             | 5.0     | 0.113    | 56.4             | LOSA                | 1.0                  | 7.3                  | 0.96            | 0.67                   | 24.8             |
| Approa   | ch      | 71             | 5.0     | 0.113    | 33.3             | LOSD                | 1.0                  | 7.3                  | 0.48            | 0.66                   | 34.0             |
| All Vehi | cles    | 1503           | 5.0     | 0.923    | 30.8             | LOSD                | 26.8                 | 195.8                | 0.63            | 0.78                   | 34.8             |

X: Not applicable for Continuous movement.

#### **6.8 Ultimate Intersection Assessments**


Detailed SIDRA outputs for all of the ultimate year configurations discussed below are provided in Appendix 4.

#### 6.8.1 Western Connector Intersection Linking

Intersections IT01, IT02 and IT03 were analysed to determine the impact of signalising all three intersections simultaneously. A second analysis was performed where right turns were banned at IT02 and IT03 to determine if IT01 would still continue to perform adequately with this additional right turn traffic from IT02 and IT03.

#### 6.8.2 Intersection IT01: Collector Road IT01 and Western Connector

The ultimate layout of the Collector Road IT01 and Western Connector intersection for the AM and PM peaks in 2046 is shown below.



Results for this intersection (with no turn bans at IT02 and IT03 on the E14/ Aitken Boulevard) during the AM peak are shown in Table 16 and Table 17 while the PM peak is shown in Table 18 and Table 19. This table shows the intersection operates at LOS B and LOS D during the AM and PM peaks respectively. This indicates that the intersection will perform adequately in 2046.

Table 16: Results of SIDRA Analysis for intersection IT01, 2046 AM Peak

| nent Pe | erformance                                      | - Vehic                                                                                                                                             | les                                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Turn    | Demand<br>Flow                                  | HV D                                                                                                                                                | eg. Satn                                                                                                                                                                                    | Average<br>Delay                                                                                                                                                                                                                                       | Level of<br>Service                                                                                                                                                                                                                                                                                                                  | 95% Back<br>Vehicles                                                                                                                                                                                                                                                                                                                                                                                                        | of Queue<br>Distance | Prop.<br>Queued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Effective<br>Stop Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Average<br>Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | veh/h                                           | %                                                                                                                                                   | v/c                                                                                                                                                                                         | sec                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                      | veh                                                                                                                                                                                                                                                                                                                                                                                                                         | m                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | perveh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | km/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ast: We | estern Conn                                     | ector                                                                                                                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| L       | 1                                               | 5.0                                                                                                                                                 | 0.001                                                                                                                                                                                       | 8.3                                                                                                                                                                                                                                                    | LOSA                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                  | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 47.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Т       | 235                                             | 5.0                                                                                                                                                 | 0.672                                                                                                                                                                                       | 55.8                                                                                                                                                                                                                                                   | LOSB                                                                                                                                                                                                                                                                                                                                 | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                         | 49.9                 | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ch      | 236                                             | 5.0                                                                                                                                                 | 0.672                                                                                                                                                                                       | 55.6                                                                                                                                                                                                                                                   | LOSB                                                                                                                                                                                                                                                                                                                                 | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                         | 49.9                 | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Vest: W | estern Conn                                     | ector                                                                                                                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Т       | 568                                             | 5.0                                                                                                                                                 | 0.208                                                                                                                                                                                       | 1.0                                                                                                                                                                                                                                                    | LOSA                                                                                                                                                                                                                                                                                                                                 | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.4                  | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 67.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| R       | 284                                             | 5.0                                                                                                                                                 | 0.364                                                                                                                                                                                       | 14.3                                                                                                                                                                                                                                                   | LOSA                                                                                                                                                                                                                                                                                                                                 | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.0                  | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ch      | 852                                             | 5.0                                                                                                                                                 | 0.364                                                                                                                                                                                       | 5.5                                                                                                                                                                                                                                                    | LOSA                                                                                                                                                                                                                                                                                                                                 | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.0                  | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 59.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Vest: C | ollector Road                                   | d ITO1                                                                                                                                              |                                                                                                                                                                                             |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| L       | 246                                             | 5.0                                                                                                                                                 | 0.473                                                                                                                                                                                       | 8.7                                                                                                                                                                                                                                                    | LOSA                                                                                                                                                                                                                                                                                                                                 | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.3                 | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| R       | 1                                               | 5.0                                                                                                                                                 | 0.003                                                                                                                                                                                       | 49.7                                                                                                                                                                                                                                                   | LOSA                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3                  | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ch      | 247                                             | 5.0                                                                                                                                                 | 0.473                                                                                                                                                                                       | 8.8                                                                                                                                                                                                                                                    | LOSA                                                                                                                                                                                                                                                                                                                                 | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.3                 | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| cles    | 1335                                            | 5.0                                                                                                                                                 | 0.672                                                                                                                                                                                       | 14.9                                                                                                                                                                                                                                                   | LOSB                                                                                                                                                                                                                                                                                                                                 | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                         | 49.9                 | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | East: We L T Ch West: W T R Ch Vest: Co L R Cch | Turn Demand Flow veh/h sast: Western Connormal L 1 1 1 235 ch 236 eh 236 West: Western Connormal R 284 ch 852 Vest: Collector Road L 246 R 1 ch 247 | Turn Demand Flow veh/h % sast: Western Connector L 1 5.0 T 235 5.0 ch 236 5.0 Vest: Western Connector T 568 5.0 R 284 5.0 ch 852 5.0 Vest: Collector Road IT01 L 246 5.0 R 1 5.0 ch 247 5.0 | Flow  veh/h % v/c  fast: Western Connector  L 1 5.0 0.001  T 235 5.0 0.672  ch 236 5.0 0.672  Vest: Western Connector  T 568 5.0 0.208  R 284 5.0 0.364  ch 852 5.0 0.364  Vest: Collector Road IT01  L 246 5.0 0.473  R 1 5.0 0.003  ch 247 5.0 0.473 | Turn Demand Flow Work Deg. Satn Average Delay veh/h % v/c sec Sast: Western Connector  L 1 5.0 0.001 8.3  T 235 5.0 0.672 55.8 ch 236 5.0 0.672 55.6 West: Western Connector  T 568 5.0 0.208 1.0  R 284 5.0 0.364 14.3 ch 852 5.0 0.364 5.5 Vest: Collector Road IT01  L 246 5.0 0.473 8.7  R 1 5.0 0.003 49.7 ch 247 5.0 0.473 8.8 | Turn Demand Flow W/C Sec Service veh/h % v/c sec Seast: Western Connector  L 1 5.0 0.001 8.3 LOSA T 235 5.0 0.672 55.8 LOSB Ch 236 5.0 0.672 55.6 LOSB Ch 236 5.0 0.672 55.6 LOSB Ch 236 5.0 0.672 55.6 LOSB Ch 236 5.0 0.208 1.0 LOSA R 284 5.0 0.364 14.3 LOSA Ch 852 5.0 0.364 14.3 LOSA Ch 852 5.0 0.364 5.5 LOSA Ch 852 5.0 0.364 5.5 LOSA Ch 852 5.0 0.473 8.7 LOSA R 1 5.0 0.003 49.7 LOSA Ch 247 5.0 0.473 8.8 LOSA | Turn Demand Flow     | Turn         Demand Flow         HV Deg. Satn V/c         Average Delay         Level of Service         95% Back of Queue Vehicles         Distance Distance           east: Western Connector         V/c         sec         veh         m           East: Western Connector         Sec         Vehicles         Distance           L         1         5.0         0.001         8.3         LOSA         0.0         0.0           T         235         5.0         0.672         55.8         LOSB         6.8         49.9           Vest: Western Connector         T         568         5.0         0.208         1.0         LOSA         1.0         7.4           R         284         5.0         0.364         14.3         LOSA         1.1         8.0           Vest: Collector Road IT01         Vest: Collector Road IT01         Vest: Collector Road IT01         Vest: Collector Road IT01         LOSA         1.8         13.3           R         1         5.0         0.003         49.7         LOSA         0.0         0.3           ch         247         5.0         0.473         8.8         LOSA         1.8         13.3 | Turn         Demand Flow         HV Deg. Satn Flow         Average Delay         Level of Service         95% Back of Queue         Prop. Queued           veh/h         %         v/c         sec         veh         m           east: Western Connector            0.0         0.0         0.05           T         235         5.0         0.672         55.8         LOSB         6.8         49.9         0.99           ch         236         5.0         0.672         55.6         LOSB         6.8         49.9         0.99           Vest: Western Connector          T         568         5.0         0.208         1.0         LOSA         1.0         7.4         0.07           R         284         5.0         0.364         14.3         LOSA         1.1         8.0         0.25           ch         852         5.0         0.364         5.5         LOSA         1.1         8.0         0.13           Vest: Collector Road IT01          L         246         5.0         0.473         8.7         LOSA         1.8         13.3         0.27           R         1         5.0         0.003 | Turn         Demand Flow         HV Deg. Satn Flow         Average Delay         Level of Service         95% Back of Queue Vehicles         Prop. Distance Queue         Effective Stop Rate           veh/h         %         v/c         sec         veh         m         per veh           east: Western Connector         veh         m         per veh           T         235         5.0         0.001         8.3         LOSA         0.0         0.0         0.05         0.62           T         236         5.0         0.672         55.8         LOSB         6.8         49.9         0.99         0.80           Vest: Western Connector         T         568         5.0         0.208         1.0         LOSA         1.0         7.4         0.07         0.06           R         284         5.0         0.364         14.3         LOSA         1.1         8.0         0.25         0.71           ch         852         5.0         0.364         5.5         LOSA         1.1         8.0         0.13         0.28           Vest: Collector Road IT01         L         246         5.0         0.473         8.7         LOSA         1.8         13.3         0.27         0 |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Vehicle movement LOS values are based on degree of saturation per movement

Intersection and Approach LOS values are based on worst degree of saturation for any vehicle movement. SIDRA Standard Delay Model used.

If right turns are banned at IT02 and IT03, the analysis shows that IT01 would still operate satisfactorily at LOS C. Table 17 shows the result of this analysis. This is the design that has been adopted for the ultimate year.

Table 17: Results of SIDRA Analysis for intersection IT01 (turn bans at IT02 and IT03), 2046 AM Peak

| Moven    | nent Pe | erformance     | - Vehic | les      |                  |                     |                      |                      |                 |                        |                  |
|----------|---------|----------------|---------|----------|------------------|---------------------|----------------------|----------------------|-----------------|------------------------|------------------|
| Mov ID   | Turn    | Demand<br>Flow | HV D    | eg. Satn | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate | Average<br>Speed |
|          |         | veh/h          | %       | v/c      | sec              |                     | veh                  | m                    |                 | perveh                 | km/h             |
| South E  | ast: We | estern Conne   | ector   |          |                  |                     |                      |                      |                 |                        |                  |
| 1        | L       | 1              | 5.0     | 0.002    | 8.3              | LOSA                | 0.0                  | 0.0                  | 0.05            | 0.62                   | 47.7             |
| 2        | Т       | 235            | 5.0     | 0.672    | 55.8             | LOSB                | 6.8                  | 49.9                 | 0.99            | 0.80                   | 19.4             |
| Approa   | ch      | 236            | 5.0     | 0.672    | 55.6             | LOSB                | 6.8                  | 49.9                 | 0.99            | 0.80                   | 19.4             |
| North V  | Vest: W | estern Conn    | ector   |          |                  |                     |                      |                      |                 |                        |                  |
| 8        | Т       | 568            | 5.0     | 0.208    | 1.0              | LOSA                | 1.0                  | 7.4                  | 0.07            | 0.06                   | 67.3             |
| 9        | R       | 496            | 5.0     | 0.613    | 17.7             | LOSB                | 2.6                  | 19.1                 | 0.47            | 0.77                   | 43.3             |
| Approa   | ch      | 1064           | 5.0     | 0.613    | 8.8              | LOSB                | 2.6                  | 19.1                 | 0.26            | 0.39                   | 54.1             |
| South V  | Nest: C | ollector Road  | d IT01  |          |                  |                     |                      |                      |                 |                        |                  |
| 10       | L       | 246            | 5.0     | 0.473    | 8.7              | LOSA                | 1.8                  | 13.3                 | 0.27            | 0.65                   | 44.0             |
| 12       | R       | 240            | 5.0     | 0.723    | 59.4             | LOSC                | 13.8                 | 100.6                | 1.00            | 0.87                   | 22.4             |
| Approa   | ch      | 486            | 5.0     | 0.723    | 33.7             | LOSC                | 13.8                 | 100.6                | 0.63            | 0.76                   | 29.8             |
| All Vehi | cles    | 1786           | 5.0     | 0.723    | 21.8             | LOSC                | 13.8                 | 100.6                | 0.45            | 0.54                   | 38.3             |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Vehicle movement LOS values are based on degree of saturation per movement

Intersection and Approach LOS values are based on worst degree of saturation for any vehicle movement.

SIDRA Standard Delay Model used.

Table 18: Results of SIDRA Analysis for intersection IT01, 2046 PM Peak

| Moven    | nent Pe  | erformance     | - Vehic | les      |                  |                     |                      |                      |                 |                        |                  |
|----------|----------|----------------|---------|----------|------------------|---------------------|----------------------|----------------------|-----------------|------------------------|------------------|
| Mov ID   | Turn     | Demand<br>Flow | HV D    | eg. Satn | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate | Average<br>Speed |
|          |          | veh/h          | %       | v/c      | sec              |                     | veh                  | m                    |                 | perveh                 | km/h             |
| South E  | East: We | estern Conn    | ector   |          |                  |                     |                      |                      |                 |                        |                  |
| 1        | L        | 1              | 5.0     | 0.001    | 8.3              | LOSA                | 0.0                  | 0.0                  | 0.05            | 0.62                   | 47.7             |
| 2        | Т        | 568            | 5.0     | 0.812    | 46.1             | LOSC                | 16.2                 | 117.9                | 0.98            | 0.87                   | 22.0             |
| Approa   | ıch      | 569            | 5.0     | 0.812    | 46.0             | LOSC                | 16.2                 | 117.9                | 0.98            | 0.87                   | 22.0             |
| North V  | Nest: W  | estern Conn    | ector   |          |                  |                     |                      |                      |                 |                        |                  |
| 8        | Т        | 235            | 5.0     | 0.086    | 0.9              | LOSA                | 0.4                  | 2.7                  | 0.06            | 0.05                   | 67.6             |
| 9        | R        | 246            | 5.0     | 0.825    | 35.7             | LOSC                | 4.5                  | 32.6                 | 0.80            | 0.83                   | 31.5             |
| Approa   | ıch      | 481            | 5.0     | 0.825    | 18.7             | LOSC                | 4.5                  | 32.6                 | 0.44            | 0.45                   | 43.5             |
| South V  | West: Co | ollector Roa   | d IT01  |          |                  |                     |                      |                      |                 |                        |                  |
| 10       | L        | 284            | 5.0     | 0.906    | 14.8             | LOSD                | 4.5                  | 32.6                 | 0.51            | 0.72                   | 39.6             |
| 12       | R        | 1              | 5.0     | 0.003    | 49.7             | LOSA                | 0.0                  | 0.3                  | 0.83            | 0.60                   | 24.7             |
| Approa   | ich      | 285            | 5.0     | 0.906    | 14.9             | LOSD                | 4.5                  | 32.6                 | 0.51            | 0.72                   | 39.5             |
| All Vehi | icles    | 1335           | 5.0     | 0.906    | 29.5             | LOSD                | 16.2                 | 117.9                | 0.68            | 0.69                   | 31.9             |

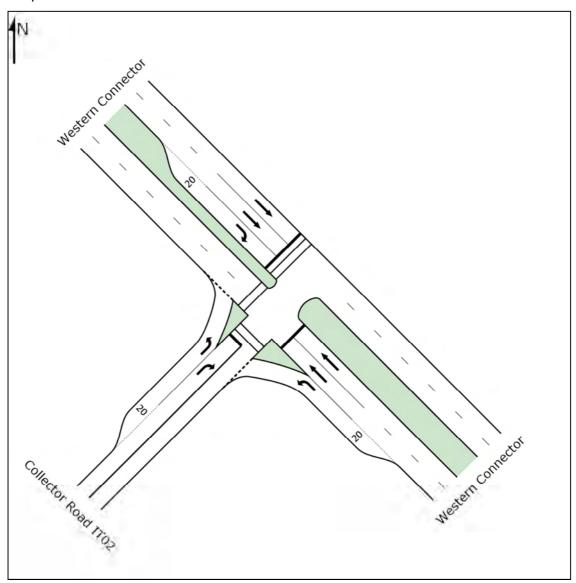

If right turns are banned at IT02 and IT03, the analysis shows that IT01 would still operate satisfactorily at LOS C. Table 17 shows the result of this analysis. This is the design that has been adopted for the ultimate year.

Table 19: Results of SIDRA Analysis for intersection IT01 (turn bans at IT02 and IT03), 2046 PM Peak

| Move    | ment Pe  | erformance   | - Vehic | les      |         |          |          |          |        |           |         |
|---------|----------|--------------|---------|----------|---------|----------|----------|----------|--------|-----------|---------|
| Mov ID  | ) Turn   | Demand       | HV D    | eg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|         |          | Flow         |         |          | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|         |          | veh/h        | %       | v/c      | sec     |          | veh      | m        |        | perveh    | km/h    |
| South   | East: We | estern Conn  | ector   |          |         |          |          |          |        |           |         |
| 1       | L        | 1            | 5.0     | 0.001    | 8.3     | LOSA     | 0.0      | 0.0      | 0.05   | 0.62      | 47.7    |
| 2       | Т        | 568          | 5.0     | 0.893    | 52.8    | LOSC     | 17.6     | 128.2    | 1.00   | 0.94      | 20.1    |
| Approx  | ach      | 569          | 5.0     | 0.893    | 52.7    | LOSC     | 17.6     | 128.2    | 1.00   | 0.94      | 20.1    |
| North 1 | West: W  | estern Conn  | ector   |          |         |          |          |          |        |           |         |
| 8       | Т        | 235          | 5.0     | 0.086    | 0.9     | LOSA     | 0.4      | 2.7      | 0.06   | 0.05      | 67.6    |
| 9       | R        | 344          | 5.0     | 0.891    | 33.7    | LOSC     | 5.6      | 40.8     | 0.87   | 0.85      | 32.5    |
| Approx  | ach      | 579          | 5.0     | 0.891    | 20.4    | LOSC     | 5.6      | 40.8     | 0.54   | 0.52      | 41.9    |
| South ' | West: C  | ollector Roa | d IT01  |          |         |          |          |          |        |           |         |
| 10      | L        | 284          | 5.0     | 0.749    | 14.7    | LOSC     | 4.5      | 32.6     | 0.49   | 0.71      | 39.6    |
| 12      | R        | 162          | 5.0     | 0.488    | 55.6    | LOSA     | 8.7      | 63.1     | 0.95   | 0.81      | 23.3    |
| Approx  | ach      | 446          | 5.0     | 0.749    | 29.6    | LOSC     | 8.7      | 63.1     | 0.66   | 0.74      | 31.6    |
| All Veh | icles    | 1594         | 5.0     | 0.893    | 34.5    | LOSC     | 17.6     | 128.2    | 0.74   | 0.73      | 29.6    |

#### 6.8.3 Intersection IT02: Collector Road IT02 and Western Connector

The ultimate layout of the Collector Road IT02 and Western Connector intersection for the AM and PM peaks in 2046 is shown below.



Results for this intersection (with no turn bans at IT02 and IT03 on the Western Connector) during the AM peak are shown in Table 20 while the PM peak is shown in Table 21. This table shows the intersection operates at LOS A and LOS A during the AM and PM peaks respectively. This indicates that the intersection will perform adequately in 2046.

Table 20: Results of SIDRA Analysis for intersection IT02, 2046 AM Peak

| Moven    | nent Pe  | erformance     | - Vehic | les      | 77.5             |                     |                      |                      |                 |                        |                  |
|----------|----------|----------------|---------|----------|------------------|---------------------|----------------------|----------------------|-----------------|------------------------|------------------|
| Mov ID   | Turn     | Demand<br>Flow | HV D    | eg. Satn | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate | Average<br>Speed |
|          |          | veh/h          | %       | v/c      | sec              |                     | veh                  | m                    |                 | perveh                 | km/h             |
| South E  | ast: We  | estern Conne   | ector   |          |                  |                     |                      |                      |                 |                        |                  |
| 1        | L        | 70             | 5.0     | 0.074    | 8.3              | LOSA                | 0.1                  | 0.8                  | 0.06            | 0.62                   | 47.7             |
| 2        | Т        | 178            | 5.0     | 0.373    | 48.1             | LOSA                | 4.6                  | 33.5                 | 0.90            | 0.70                   | 21.5             |
| Approa   | ch       | 248            | 5.0     | 0.373    | 36.9             | LOSA                | 4.6                  | 33.5                 | 0.66            | 0.68                   | 24.9             |
| North V  | Vest: W  | estern Conn    | ector   |          |                  |                     |                      |                      |                 |                        |                  |
| 8        | Т        | 470            | 5.0     | 0.172    | 1.0              | LOSA                | 0.8                  | 5.8                  | 0.06            | 0.05                   | 67.4             |
| 9        | R        | 98             | 5.0     | 0.181    | 12.3             | LOSA                | 0.6                  | 4.4                  | 0.13            | 0.68                   | 48.8             |
| Approa   | ch       | 568            | 5.0     | 0.181    | 3.0              | LOSA                | 0.8                  | 5.8                  | 0.08            | 0.16                   | 63.6             |
| South V  | Vest: Co | ollector Road  | d IT02  |          |                  |                     |                      |                      |                 |                        |                  |
| 10       | L        | 57             | 5.0     | 0.102    | 7.8              | LOSA                | 0.3                  | 2.2                  | 0.14            | 0.61                   | 44.8             |
| 12       | R        | 119            | 5.0     | 0.358    | 54.2             | LOSA                | 6.2                  | 45.1                 | 0.92            | 0.79                   | 23.6             |
| Approa   | ch       | 176            | 5.0     | 0.358    | 39.2             | LOSA                | 6.2                  | 45.1                 | 0.67            | 0.73                   | 27.9             |
| All Vehi | cles     | 992            | 5.0     | 0.373    | 17.9             | LOSA                | 6.2                  | 45.1                 | 0.33            | 0.39                   | 41.4             |

If right turns are banned at IT02 (and IT03), it is anticipated that the volume of right turning vehicles from Collector Road IT02 and the north-west approach of the Western Connector would divert to IT01. This is confirmed by the results of the SIDRA analysis as shown in Table 17, and the analysis results which indicate that IT01 would operate satisfactorily with right turn bans at IT02 and IT03.

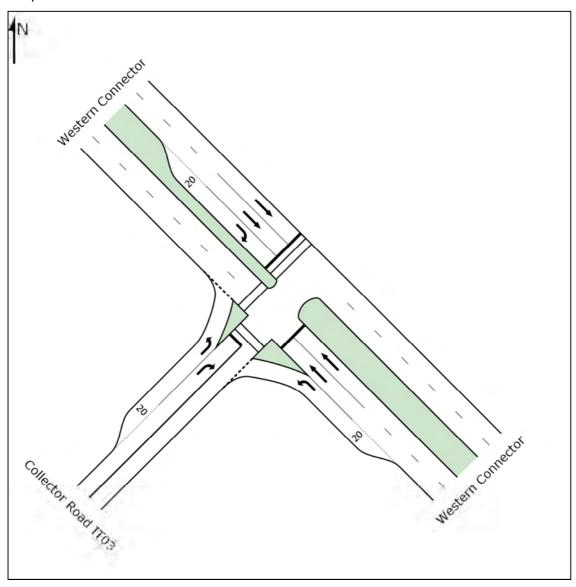

Due to the redistribution of right turning vehicles to IT01, signals may not be required at IT02. This is the design that has been adopted for the ultimate year.

Table 21: Results of SIDRA Analysis for intersection IT02, 2046 PM Peak

| Moven    | nent Pe | erformance     | - Vehic | les      |                  |                     |                      |                      |                 |                        |                  |
|----------|---------|----------------|---------|----------|------------------|---------------------|----------------------|----------------------|-----------------|------------------------|------------------|
| Mov ID   | Turn    | Demand<br>Flow | HV D    | eg. Satn | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate | Average<br>Speed |
|          |         | veh/h          | %       | v/c      | sec              |                     | veh                  | m                    |                 | perveh                 | km/h             |
| South E  | East: W | estern Conn    | ector   |          |                  |                     |                      |                      |                 |                        |                  |
| 1        | L       | 119            | 5.0     | 0.123    | 8.4              | LOSA                | 0.2                  | 1.5                  | 0.06            | 0.63                   | 47.7             |
| 2        | Т       | 470            | 5.0     | 0.369    | 21.7             | LOSA                | 7.7                  | 55.9                 | 0.59            | 0.50                   | 34.1             |
| Approa   | ıch     | 589            | 5.0     | 0.369    | 19.0             | LOSA                | 7.7                  | 55.9                 | 0.49            | 0.53                   | 35.9             |
| North V  | Nest: W | estern Conn    | ector   |          |                  |                     |                      |                      |                 |                        |                  |
| 8        | Т       | 178            | 5.0     | 0.065    | 0.9              | LOSA                | 0.3                  | 2.0                  | 0.06            | 0.05                   | 67.6             |
| 9        | R       | 57             | 5.0     | 0.366    | 28.3             | LOSA                | 1.5                  | 11.3                 | 0.49            | 0.71                   | 35.5             |
| Approa   | ch      | 235            | 5.0     | 0.366    | 7.6              | LOSA                | 1.5                  | 11.3                 | 0.16            | 0.21                   | 56.3             |
| South V  | West: C | ollector Roa   | d IT02  |          |                  |                     |                      |                      |                 |                        |                  |
| 10       | L       | 98             | 5.0     | 0.262    | 8.4              | LOSA                | 8.0                  | 5.7                  | 0.19            | 0.63                   | 44.3             |
| 12       | R       | 70             | 5.0     | 0.211    | 52.7             | LOSA                | 3.5                  | 25.7                 | 0.89            | 0.76                   | 23.9             |
| Approa   | ıch     | 168            | 5.0     | 0.262    | 26.8             | LOSA                | 3.5                  | 25.7                 | 0.48            | 0.68                   | 32.8             |
| All Vehi | icles   | 992            | 5.0     | 0.369    | 17.6             | LOSA                | 7.7                  | 55.9                 | 0.41            | 0.48                   | 39.2             |
|          |         |                |         |          |                  |                     |                      |                      |                 |                        |                  |

#### 6.8.4 Intersection IT03: Collector Road IT03 and Western Connector

The ultimate layout of the Collector Road IT03 and Western Connector intersection for the AM and PM peaks in 2046 is shown below.



Results for this intersection (with no turn bans at IT02 and IT03 on the E14/ Aitken Boulevard) during the AM peak are shown in Table 22 while the PM peak is shown in Table 23. This table shows the intersection operates at LOS A and LOS A during the AM and PM peaks respectively. This indicates that the intersection will perform adequately in 2046.

Table 22: Results of SIDRA Analysis for intersection IT03, 2046 AM Peak

| Movem    | ient Pe | erformance     | - Vehic | les      |                  |                     |                      |                      |                 |                        |                  |
|----------|---------|----------------|---------|----------|------------------|---------------------|----------------------|----------------------|-----------------|------------------------|------------------|
| Mov ID   | Turn    | Demand<br>Flow | HV D    | eg. Satn | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate | Average<br>Speed |
|          |         | veh/h          | %       | v/c      | sec              |                     | veh                  | m                    |                 | perveh                 | km/h             |
| South E  | ast: We | estern Conn    | ector   |          |                  |                     |                      |                      |                 |                        |                  |
| 1        | L       | 91             | 5.0     | 0.101    | 8.4              | LOSA                | 0.2                  | 1.2                  | 0.06            | 0.63                   | 47.7             |
| 2        | Т       | 207            | 5.0     | 0.271    | 36.7             | LOSA                | 4.5                  | 32.6                 | 0.77            | 0.61                   | 25.6             |
| Approac  | ch      | 298            | 5.0     | 0.271    | 28.0             | LOSA                | 4.5                  | 32.6                 | 0.55            | 0.62                   | 29.3             |
| North V  | Vest: W | estern Conn    | ector   |          |                  |                     |                      |                      |                 |                        |                  |
| 8        | Т       | 475            | 5.0     | 0.189    | 1.2              | LOSA                | 0.8                  | 6.0                  | 0.07            | 0.06                   | 67.0             |
| 9        | R       | 114            | 5.0     | 0.555    | 26.6             | LOSA                | 2.3                  | 17.1                 | 0.52            | 0.73                   | 36.6             |
| Approac  | ch      | 589            | 5.0     | 0.555    | 6.1              | LOSA                | 2.3                  | 17.1                 | 0.15            | 0.19                   | 58.4             |
| South V  | Vest: C | ollector Roa   | d IT03  |          |                  |                     |                      |                      |                 |                        |                  |
| 10       | L       | 41             | 5.0     | 0.076    | 7.8              | LOSA                | 0.2                  | 1.5                  | 0.14            | 0.61                   | 44.8             |
| 12       | R       | 120            | 5.0     | 0.274    | 47.4             | LOSA                | 5.7                  | 41.8                 | 0.86            | 0.78                   | 25.3             |
| Approac  | ch      | 161            | 5.0     | 0.274    | 37.3             | LOSA                | 5.7                  | 41.8                 | 0.67            | 0.74                   | 28.5             |
| All Vehi | cles    | 1048           | 5.0     | 0.555    | 17.1             | LOSA                | 5.7                  | 41.8                 | 0.35            | 0.39                   | 42.0             |

If right turns are banned at IT03 (and IT02), it is anticipated that the volume of right turning vehicles from Collector Road IT03 and the north-west approach of the Western Connector would divert to IT01. This is confirmed by the results of the SIDRA analysis as shown in Table 17, and the analysis results which indicate that IT01 would operate satisfactorily with right turn bans at IT02 and IT03.

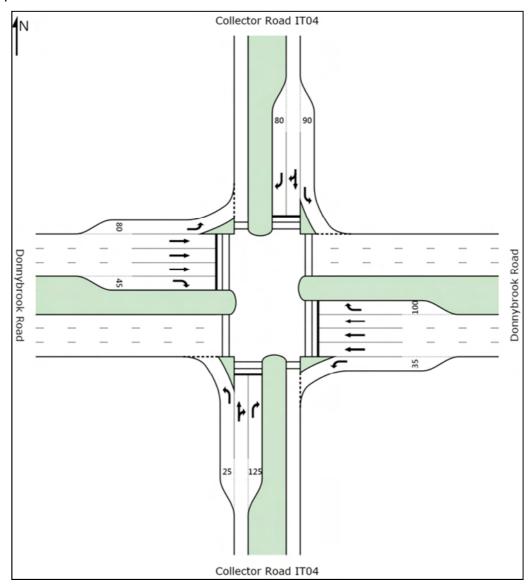

Due to the redistribution of right turning vehicles to IT01, signals may not be required at IT03. This is the design that has been adopted for the ultimate year.

Table 23: Results of SIDRA Analysis for intersection IT03, 2046 PM Peak

| Movem    | ient Pe | erformance     | - Vehic | les      |                  |                     |                      |                      |                 |                        |                  |
|----------|---------|----------------|---------|----------|------------------|---------------------|----------------------|----------------------|-----------------|------------------------|------------------|
| Mov ID   | Turn    | Demand<br>Flow | HV D    | eg. Satn | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate | Average<br>Speed |
|          |         | veh/h          | %       | v/c      | sec              |                     | veh                  | m                    |                 | perveh                 | km/h             |
| South E  | ast: We | estern Conn    | ector   |          |                  |                     |                      |                      |                 |                        |                  |
| 1        | L       | 120            | 5.0     | 0.121    | 8.4              | LOSA                | 0.2                  | 1.5                  | 0.06            | 0.63                   | 47.7             |
| 2        | Т       | 475            | 5.0     | 0.318    | 15.4             | LOSA                | 6.0                  | 44.0                 | 0.47            | 0.39                   | 39.9             |
| Approac  | ch      | 595            | 5.0     | 0.318    | 14.0             | LOSA                | 6.0                  | 44.0                 | 0.38            | 0.44                   | 41.1             |
| North W  | Vest: W | estern Conn    | ector   |          |                  |                     |                      |                      |                 |                        |                  |
| 8        | Т       | 207            | 5.0     | 0.076    | 0.9              | LOSA                | 0.3                  | 2.3                  | 0.06            | 0.05                   | 67.6             |
| 9        | R       | 41             | 5.0     | 0.315    | 34.5             | LOSA                | 1.3                  | 9.8                  | 0.59            | 0.71                   | 32.1             |
| Approac  | ch      | 248            | 5.0     | 0.315    | 6.5              | LOSA                | 1.3                  | 9.8                  | 0.14            | 0.16                   | 58.0             |
| South V  | Vest: C | ollector Roa   | d IT03  |          |                  |                     |                      |                      |                 |                        |                  |
| 10       | L       | 114            | 5.0     | 0.287    | 8.1              | LOSA                | 0.8                  | 5.8                  | 0.18            | 0.63                   | 44.5             |
| 12       | R       | 91             | 5.0     | 0.274    | 53.4             | LOSA                | 4.6                  | 33.8                 | 0.90            | 0.77                   | 23.8             |
| Approac  | ch      | 205            | 5.0     | 0.287    | 28.2             | LOSA                | 4.6                  | 33.8                 | 0.50            | 0.69                   | 32.1             |
| All Vehi | cles    | 1048           | 5.0     | 0.318    | 15.0             | LOSA                | 6.0                  | 44.0                 | 0.35            | 0.42                   | 41.8             |

#### 6.8.5 Intersection IT04: Collector Road IT04 and Donnybrook Road

The ultimate layout of the Collector Road IT04 and Donnybrook Road intersection for the AM and PM peaks in 2046 is shown below.



Analysis shows that this intersection will operate at LOS B during the AM peak and LOS C during the PM peak, which is satisfactory. Results of the analysis are shown in Table 24 and Table 25.

Table 24: Results of SIDRA Analysis for intersection IT04, 2046 AM Peak

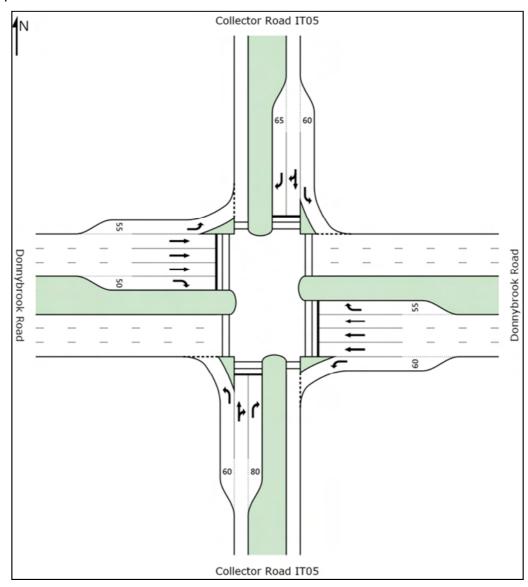

| Mov ID   | Turn     | Demand       | HV D | eg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|----------|----------|--------------|------|----------|---------|----------|----------|----------|--------|-----------|---------|
|          |          | Flow         |      |          | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|          |          | veh/h        | %    | v/c      | sec     |          | veh      | m        |        | perveh    | km/ł    |
| South: ( | Collecto | or Road IT04 |      |          |         |          |          |          |        |           |         |
| 10       | L        | 1            | 5.0  | 0.004    | 11.8    | LOSA     | 0.0      | 0.1      | 0.32   | 0.60      | 41.6    |
| 11       | Т        | 44           | 5.0  | 0.354    | 52.1    | LOSA     | 4.8      | 34.9     | 0.95   | 0.74      | 21.8    |
| 12       | R        | 129          | 5.0  | 0.354    | 59.3    | LOSA     | 4.8      | 34.9     | 0.95   | 0.77      | 22.0    |
| Approa   | ch       | 174          | 5.0  | 0.354    | 57.2    | LOSA     | 4.8      | 34.9     | 0.95   | 0.76      | 22.     |
| East: Do | onnybr   | ook Road     |      |          |         |          |          |          |        |           |         |
| 1        | L        | 63           | 5.0  | 0.065    | 8.6     | LOSA     | 0.2      | 1.6      | 0.12   | 0.63      | 47.2    |
| 2        | Т        | 1803         | 5.0  | 0.663    | 10.2    | LOSB     | 15.3     | 111.4    | 0.47   | 0.42      | 45.8    |
| 3        | R        | 1            | 5.0  | 0.011    | 68.6    | LOSA     | 0.1      | 0.4      | 0.97   | 0.59      | 21.9    |
| Approa   | ch       | 1867         | 5.0  | 0.663    | 10.2    | LOSB     | 15.3     | 111.4    | 0.46   | 0.43      | 45.8    |
| North: ( | Collecto | or Road IT04 |      |          |         |          |          |          |        |           |         |
| 7        | L        | 97           | 5.0  | 0.186    | 12.7    | LOSA     | 1.6      | 11.5     | 0.34   | 0.70      | 46.2    |
| 8        | Т        | 27           | 5.0  | 0.656    | 55.6    | LOSB     | 9.7      | 71.1     | 1.00   | 0.83      | 21.     |
| 9        | R        | 311          | 5.0  | 0.656    | 63.0    | LOSB     | 9.7      | 71.1     | 1.00   | 0.83      | 23.2    |
| Approa   | ch       | 435          | 5.0  | 0.656    | 51.3    | LOSB     | 9.7      | 71.1     | 0.85   | 0.80      | 26.0    |
| West: D  | onnyb    | rook Road    |      |          |         |          |          |          |        |           |         |
| 7        | L        | 365          | 5.0  | 0.289    | 9.2     | LOSA     | 1.8      | 13.1     | 0.16   | 0.67      | 53.0    |
| 8        | Т        | 1780         | 5.0  | 0.655    | 10.1    | LOSB     | 14.9     | 108.4    | 0.47   | 0.42      | 51.4    |
| 9        | R        | 1            | 5.0  | 0.011    | 66.2    | LOSA     | 0.1      | 0.4      | 0.93   | 0.59      | 21.     |
| Approa   | ch       | 2146         | 5.0  | 0.655    | 10.0    | LOSB     | 14.9     | 108.4    | 0.41   | 0.46      | 51.6    |
| All Vehi |          | 4622         | 5.0  | 0.663    | 15.7    | LOSB     | 15.3     | 111.4    | 0.49   | 0.49      | 42.9    |

Table 25: Results of SIDRA Analysis for intersection IT04, 2046 PM Peak

| Mov ID Turn   Demand   Flow   Web   Sath   Average   Level of Delay   Service   Service   Vehicles   Distance   Queued   Stop Ra   Vehicles   Distance   Vehicles   Distance   Vehicles   Stop Ra   Vehicles   Distance   Vehicles   Stop Ra   Vehicles   Distance   D | e Speed<br>h km/h<br>0 38.1<br>4 22.0<br>6 22.7 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| veh/h         %         v/c         sec         veh         m         per ver           South: Collector Road IT04         10         L         1         5.0         0.005         16.9         LOSA         0.0         0.2         0.45         0.6           11         T         84         5.0         0.330         51.9         LOSA         4.6         33.3         0.95         0.7           12         R         63         5.0         0.261         58.5         LOSA         3.4         24.7         0.94         0.7           Approach         148         5.0         0.330         54.5         LOSA         4.6         33.3         0.94         0.7           East: Donnybrook Road         1         L         129         5.0         0.177         9.0         LOSA         0.8         6.0         0.17         0.6           2         T         1780         5.0         0.794         20.4         LOSC         25.3         184.8         0.78         0.7           3         R         97         5.0         0.803         75.5         LOSC         25.3         184.8         0.75         0.7           Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | h km/h<br>0 38.1<br>4 22.0<br>6 22.7            |
| South: Collector Road IT04  10 L 1 5.0 0.005 16.9 LOSA 0.0 0.2 0.45 0.6  11 T 84 5.0 0.330 51.9 LOSA 4.6 33.3 0.95 0.3  12 R 63 5.0 0.261 58.5 LOSA 3.4 24.7 0.94 0.3  Approach 148 5.0 0.330 54.5 LOSA 4.6 33.3 0.94 0.3  East: Donnybrook Road  1 L 129 5.0 0.177 9.0 LOSA 0.8 6.0 0.17 0.6  2 T 1780 5.0 0.794 20.4 LOSC 25.3 184.8 0.78 0.3  3 R 97 5.0 0.803 75.5 LOSC 6.2 45.3 1.00 0.8  Approach 2006 5.0 0.803 22.4 LOSC 25.3 184.8 0.75 0.3  North: Collector Road IT04  7 L 1 5.0 0.002 14.3 LOSA 0.0 0.1 0.36 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 38.1<br>4 22.0<br>6 22.7                      |
| 10 L 1 5.0 0.005 16.9 LOSA 0.0 0.2 0.45 0.6  11 T 84 5.0 0.330 51.9 LOSA 4.6 33.3 0.95 0.7  12 R 63 5.0 0.261 58.5 LOSA 3.4 24.7 0.94 0.7  Approach 148 5.0 0.330 54.5 LOSA 4.6 33.3 0.94 0.7  East: Donnybrook Road  1 L 129 5.0 0.177 9.0 LOSA 0.8 6.0 0.17 0.6  2 T 1780 5.0 0.794 20.4 LOSC 25.3 184.8 0.78 0.7  3 R 97 5.0 0.803 75.5 LOSC 6.2 45.3 1.00 0.8  Approach 2006 5.0 0.803 22.4 LOSC 25.3 184.8 0.75 0.7  North: Collector Road IT04  7 L 1 5.0 0.002 14.3 LOSA 0.0 0.1 0.36 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 22.0<br>6 22.7                                |
| 11         T         84         5.0         0.330         51.9         LOSA         4.6         33.3         0.95         0.7           12         R         63         5.0         0.261         58.5         LOSA         3.4         24.7         0.94         0.7           Approach         148         5.0         0.330         54.5         LOSA         4.6         33.3         0.94         0.7           East: Donnybrook Road         1         L         129         5.0         0.177         9.0         LOSA         0.8         6.0         0.17         0.6           2         T         1780         5.0         0.794         20.4         LOSC         25.3         184.8         0.78         0.7           3         R         97         5.0         0.803         75.5         LOSC         6.2         45.3         1.00         0.8           Approach         2006         5.0         0.803         22.4         LOSC         25.3         184.8         0.75         0.7           North: Collector Road IT04         7         L         1         5.0         0.002         14.3         LOSA         0.0         0.1 <t< td=""><td>4 22.0<br/>6 22.7</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 22.0<br>6 22.7                                |
| 12       R       63       5.0       0.261       58.5       LOSA       3.4       24.7       0.94       0.7         Approach       148       5.0       0.330       54.5       LOSA       4.6       33.3       0.94       0.7         East: Donnybrook Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 22.7                                          |
| Approach         148         5.0         0.330         54.5         LOSA         4.6         33.3         0.94         0.7           East: Donnybrook Road         1         L         129         5.0         0.177         9.0         LOSA         0.8         6.0         0.17         0.6           2         T         1780         5.0         0.794         20.4         LOSC         25.3         184.8         0.78         0.7           3         R         97         5.0         0.803         75.5         LOSC         6.2         45.3         1.00         0.8           Approach         2006         5.0         0.803         22.4         LOSC         25.3         184.8         0.75         0.7           North: Collector Road IT04         7         L         1         5.0         0.002         14.3         LOSA         0.0         0.1         0.36         0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |
| East: Donnybrook Road  1 L 129 5.0 0.177 9.0 LOSA 0.8 6.0 0.17 0.6 2 T 1780 5.0 0.794 20.4 LOSC 25.3 184.8 0.78 0.7 3 R 97 5.0 0.803 75.5 LOSC 6.2 45.3 1.00 0.8 Approach 2006 5.0 0.803 22.4 LOSC 25.3 184.8 0.75 0.7 North: Collector Road IT04 7 L 1 5.0 0.002 14.3 LOSA 0.0 0.1 0.36 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 22.4                                          |
| 1 L 129 5.0 0.177 9.0 LOSA 0.8 6.0 0.17 0.6 2 T 1780 5.0 0.794 20.4 LOSC 25.3 184.8 0.78 0.7 3 R 97 5.0 0.803 75.5 LOSC 6.2 45.3 1.00 0.8 Approach 2006 5.0 0.803 22.4 LOSC 25.3 184.8 0.75 0.7 North: Collector Road IT04 7 L 1 5.0 0.002 14.3 LOSA 0.0 0.1 0.36 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |
| 2     T     1780     5.0     0.794     20.4     LOSC     25.3     184.8     0.78     0.7       3     R     97     5.0     0.803     75.5     LOSC     6.2     45.3     1.00     0.8       Approach     2006     5.0     0.803     22.4     LOSC     25.3     184.8     0.75     0.7       North: Collector Road IT04       7     L     1     5.0     0.002     14.3     LOSA     0.0     0.1     0.36     0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |
| 3 R 97 5.0 0.803 75.5 LOSC 6.2 45.3 1.00 0.8 Approach 2006 5.0 0.803 22.4 LOSC 25.3 184.8 0.75 0.7 North: Collector Road IT04 7 L 1 5.0 0.002 14.3 LOSA 0.0 0.1 0.36 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 46.6                                          |
| Approach         2006         5.0         0.803         22.4         LOSC         25.3         184.8         0.75         0.7           North: Collector Road IT04         7         L         1         5.0         0.002         14.3         LOSA         0.0         0.1         0.36         0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 34.5                                          |
| North: Collector Road IT04 7 L 1 5.0 0.002 14.3 LOSA 0.0 0.1 0.36 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 20.5                                          |
| 7 L 1 5.0 0.002 14.3 LOSA 0.0 0.1 0.36 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 33.5                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 44.7                                          |
| 8 T 101 5.0 0.791 53.8 LOSC 18.0 131.1 1.00 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 22.2                                          |
| 9 R 451 5.0 0.791 60.8 LOSC 18.0 131.1 0.99 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 23.8                                          |
| Approach 553 5.0 0.791 59.4 LOSC 18.0 131.1 0.99 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 23.5                                          |
| West: Donnybrook Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |
| 7 L 397 5.0 0.386 10.2 LOSA 3.7 27.2 0.24 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 52.0                                          |
| 8 T 1803 5.0 0.804 20.8 LOSC 26.2 191.0 0.79 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 40.6                                          |
| 9 R 1 5.0 0.008 62.7 LOSA 0.1 0.4 0.91 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9 22.5                                          |
| Approach 2201 5.0 0.804 18.9 LOSC 26.2 191.0 0.69 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 42.2                                          |
| All Vehicles 4908 5.0 0.804 26.0 LOSC 26.2 191.0 0.75 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 34.7                                          |

#### 6.8.6 Intersection IT05: Collector Road IT05 and Donnybrook Road

The ultimate layout of the Collector Road IT05 and Donnybrook Road intersection for the AM and PM peaks in 2046 is shown below.



Analysis shows that this intersection will operate at LOS C during the AM peak and LOS D during the PM peak, which is still a good operating level. Results of the analysis are shown in Table 26 and Table 27.

#### Note:

For the PM peak, westbound right turn volumes have been equally apportioned between IT05 and IT06. Local modelling phenomenon such as this can usually be overcome by including junction delays at the trip path assignment stage in the four-step modelling process or through the use of micro-simulation modelling at a local street level.

Table 26: Results of SIDRA Analysis for intersection IT05, 2046 AM Peak

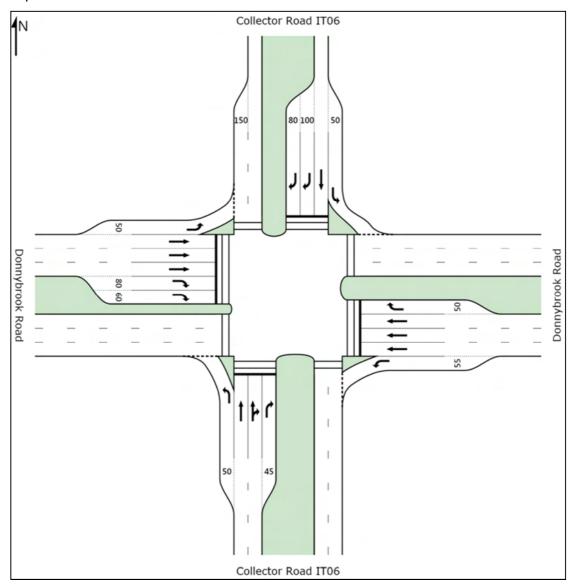

| Moven    | nent Pe  | erformance -   | - Vehic | les      |                  |                     |                      |                      |                 |                        |                  |
|----------|----------|----------------|---------|----------|------------------|---------------------|----------------------|----------------------|-----------------|------------------------|------------------|
| Mov ID   | Turn     | Demand<br>Flow | HV D    | eg. Satn | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate | Average<br>Speed |
|          |          | veh/h          | %       | v/c      | sec              |                     | veh                  | m                    |                 | perveh                 | km/h             |
| South:   | Collect  | or Road IT05   |         |          |                  |                     |                      |                      |                 |                        |                  |
| 10       | L        | 86             | 5.0     | 0.177    | 10.5             | LOSA                | 1.2                  | 8.6                  | 0.30            | 0.65                   | 42.6             |
| 11       | Т        | 42             | 5.0     | 0.300    | 52.7             | LOSA                | 3.8                  | 27.9                 | 0.95            | 0.73                   | 21.7             |
| 12       | R        | 96             | 5.0     | 0.300    | 59.8             | LOSA                | 3.8                  | 27.9                 | 0.95            | 0.76                   | 22.5             |
| Approa   | ch       | 224            | 5.0     | 0.300    | 39.5             | LOSA                | 3.8                  | 27.9                 | 0.70            | 0.71                   | 27.3             |
| East: D  | onnybr   | ook Road       |         |          |                  |                     |                      |                      |                 |                        |                  |
| 1        | L        | 449            | 5.0     | 0.414    | 8.9              | LOSA                | 2.7                  | 19.5                 | 0.18            | 0.66                   | 46.7             |
| 2        | Т        | 1516           | 5.0     | 0.676    | 18.4             | LOSB                | 18.3                 | 133.5                | 0.67            | 0.59                   | 36.4             |
| 3        | R        | 150            | 5.0     | 0.710    | 67.1             | LOSC                | 9.0                  | 65.4                 | 1.00            | 0.85                   | 22.3             |
| Approa   | ch       | 2115           | 5.0     | 0.710    | 19.9             | LOSC                | 18.3                 | 133.5                | 0.59            | 0.62                   | 35.6             |
| North:   | Collecto | or Road IT05   |         |          |                  |                     |                      |                      |                 |                        |                  |
| 7        | L        | 410            | 5.0     | 0.795    | 22.8             | LOSC                | 12.0                 | 87.3                 | 0.49            | 0.79                   | 38.6             |
| 8        | Т        | 40             | 5.0     | 0.126    | 47.3             | LOSA                | 2.0                  | 14.6                 | 0.89            | 0.68                   | 24.7             |
| 9        | R        | 2              | 5.0     | 0.008    | 53.0             | LOSA                | 0.1                  | 0.7                  | 0.85            | 0.63                   | 25.7             |
| Approa   | ch       | 452            | 5.0     | 0.795    | 25.1             | LOSC                | 12.0                 | 87.3                 | 0.53            | 0.78                   | 36.8             |
| West: D  | Oonnyb   | rook Road      |         |          |                  |                     |                      |                      |                 |                        |                  |
| 7        | L        | 1              | 5.0     | 0.001    | 10.0             | LOSA                | 0.0                  | 0.1                  | 0.20            | 0.63                   | 52.1             |
| 8        | Т        | 1638           | 5.0     | 0.731    | 19.0             | LOSC                | 21.1                 | 154.1                | 0.71            | 0.64                   | 42.1             |
| 9        | R        | 29             | 5.0     | 0.142    | 56.0             | LOSA                | 1.4                  | 10.5                 | 0.86            | 0.71                   | 24.2             |
| Approa   | ch       | 1668           | 5.0     | 0.731    | 19.6             | LOSC                | 21.1                 | 154.1                | 0.72            | 0.64                   | 41.7             |
| All Vehi | icles    | 4459           | 5.0     | 0.795    | 21.3             | LOSC                | 21.1                 | 154.1                | 0.64            | 0.65                   | 37.5             |
|          |          |                |         |          |                  |                     |                      |                      |                 |                        |                  |

Table 27: Results of SIDRA Analysis for intersection IT05, 2046 PM Peak

| Mover   | nent Pe  | erformance     | - Vehic | les      |                  |                     |                      |                      |                 |                        |                  |
|---------|----------|----------------|---------|----------|------------------|---------------------|----------------------|----------------------|-----------------|------------------------|------------------|
| Mov ID  | Turn     | Demand<br>Flow | HV D    | eg. Satn | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate | Average<br>Speed |
|         |          | veh/h          | %       | v/c      | sec              |                     | veh                  | m                    |                 | perveh                 | km/h             |
| South:  | Collect  | or Road IT05   |         |          |                  |                     |                      |                      |                 |                        |                  |
| 10      | L        | 29             | 5.0     | 0.067    | 10.1             | LOSA                | 0.4                  | 2.6                  | 0.27            | 0.63                   | 42.9             |
| 11      | Т        | 60             | 5.0     | 0.917    | 70.5             | LOSD                | 18.5                 | 134.9                | 1.00            | 1.09                   | 18.3             |
| 12      | R        | 469            | 5.0     | 0.917    | 76.4             | LOSD                | 18.5                 | 134.9                | 1.00            | 1.06                   | 19.4             |
| Approa  | ich      | 558            | 5.0     | 0.917    | 72.3             | LOSD                | 18.5                 | 134.9                | 0.96            | 1.04                   | 19.8             |
| East: D | onnybr   | ook Road       |         |          |                  |                     |                      |                      |                 |                        |                  |
| 1       | L        | 116            | 5.0     | 0.124    | 9.3              | LOSA                | 0.8                  | 6.1                  | 0.19            | 0.65                   | 46.2             |
| 2       | Т        | 1704           | 5.0     | 0.674    | 13.4             | LOSB                | 17.3                 | 126.0                | 0.56            | 0.50                   | 41.5             |
| 3       | R        | 210            | 5.0     | 0.918    | 63.7             | LOSD                | 12.3                 | 89.8                 | 0.95            | 0.89                   | 23.1             |
| Approa  | ich      | 2030           | 5.0     | 0.918    | 18.4             | LOSD                | 17.3                 | 126.0                | 0.58            | 0.55                   | 37.5             |
| North:  | Collecto | or Road IT05   |         |          |                  |                     |                      |                      |                 |                        |                  |
| 7       | L        | 150            | 5.0     | 0.373    | 22.4             | LOSA                | 4.2                  | 30.7                 | 0.57            | 0.73                   | 38.8             |
| 8       | Т        | 62             | 5.0     | 0.244    | 52.3             | LOSA                | 3.3                  | 24.2                 | 0.93            | 0.72                   | 23.3             |
| 9       | R        | 1              | 5.0     | 0.004    | 56.6             | LOSA                | 0.1                  | 0.4                  | 0.88            | 0.60                   | 24.7             |
| Approa  | ich      | 213            | 5.0     | 0.373    | 31.3             | LOSA                | 4.2                  | 30.7                 | 0.68            | 0.73                   | 32.9             |
| West: [ | Donnyb   | rook Road      |         |          |                  |                     |                      |                      |                 |                        |                  |
| 7       | L        | 1              | 5.0     | 0.001    | 10.6             | LOSA                | 0.0                  | 0.1                  | 0.23            | 0.63                   | 51.3             |
| 8       | Т        | 1582           | 5.0     | 0.921    | 41.1             | LOSD                | 32.5                 | 236.9                | 0.99            | 0.99                   | 29.7             |
| 9       | R        | 86             | 5.0     | 0.712    | 68.9             | LOSC                | 5.2                  | 38.2                 | 1.00            | 0.80                   | 21.1             |
| Approa  | ich      | 1669           | 5.0     | 0.921    | 42.5             | LOSD                | 32.5                 | 236.9                | 0.99            | 0.98                   | 29.1             |
| All Veh | icles    | 4470           | 5.0     | 0.921    | 34.7             | LOSD                | 32.5                 | 236.9                | 0.79            | 0.78                   | 29.8             |

#### 6.8.7 Intersection IT06: Collector Road IT06 and Donnybrook Road

The ultimate layout of the Collector Road IT06 and Donnybrook Road intersection for the AM and PM peaks in 2046 is shown below.



Analysis shows that this intersection will operate at LOS C during the AM peak and LOS D during the PM peak, which is still a good operating level. Results of the analysis are shown in Table 28 and Table 29.

#### Note:

For the PM peak, westbound right turn volumes have been equally apportioned between IT05 and IT06. Local modelling phenomenon such as this can usually be overcome by including junction delays at the trip path assignment stage in the four-step modelling process or through the use of micro-simulation modelling at a local street level.

Table 28: Results of SIDRA Analysis for intersection IT06, 2046 AM Peak

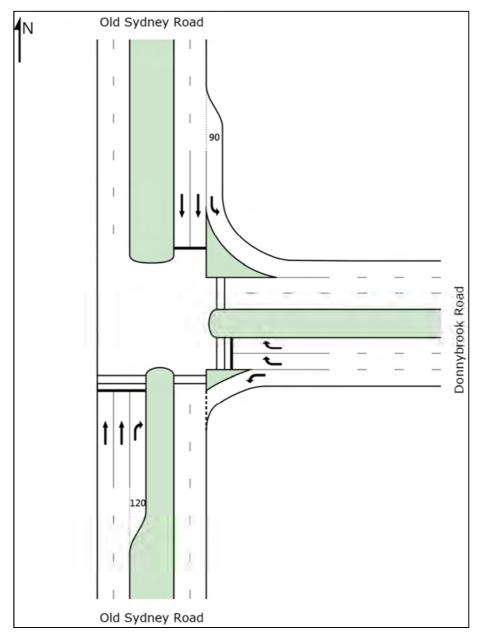

| Moven    | rent Pe  | erformance -   | - Vehic | les      |                  |                     |                      |                      |                 |                        |                 |
|----------|----------|----------------|---------|----------|------------------|---------------------|----------------------|----------------------|-----------------|------------------------|-----------------|
| Mov ID   | Turn     | Demand<br>Flow | HV D    | eg. Satn | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate | Averag<br>Speed |
|          |          | veh/h          | %       | v/c      | sec              |                     | veh                  | m                    |                 | perveh                 | km/r            |
| South:   | Collecte | or Road IT06   |         |          |                  |                     |                      |                      |                 |                        |                 |
| 10       | L        | 269            | 5.0     | 0.697    | 19.1             | LOSB                | 7.4                  | 53.7                 | 0.54            | 0.74                   | 36.9            |
| 11       | Т        | 95             | 5.0     | 0.260    | 44.8             | LOSA                | 4.8                  | 34.8                 | 0.89            | 0.71                   | 23.8            |
| 12       | R        | 257            | 5.0     | 0.480    | 53.4             | LOSA                | 8.8                  | 64.3                 | 0.92            | 0.79                   | 24.0            |
| Approa   | ch       | 621            | 5.0     | 0.697    | 37.2             | LOSB                | 8.8                  | 64.3                 | 0.75            | 0.75                   | 28.3            |
| East: D  | onnybr   | ook Road       |         |          |                  |                     |                      |                      |                 |                        |                 |
| 1        | L        | 227            | 5.0     | 0.406    | 12.9             | LOSA                | 3.8                  | 28.0                 | 0.36            | 0.69                   | 41.3            |
| 2        | Т        | 1377           | 5.0     | 0.780    | 29.6             | LOSC                | 22.2                 | 162.3                | 0.87            | 0.78                   | 28.6            |
| 3        | R        | 1              | 5.0     | 0.011    | 68.5             | LOSA                | 0.1                  | 0.4                  | 0.97            | 0.59                   | 22.0            |
| Approa   | ch       | 1605           | 5.0     | 0.780    | 27.2             | LOSC                | 22.2                 | 162.3                | 0.80            | 0.77                   | 29.7            |
| North: ( | Collecto | or Road IT06   |         |          |                  |                     |                      |                      |                 |                        |                 |
| 7        | L        | 1              | 5.0     | 0.003    | 13.1             | LOSA                | 0.0                  | 0.1                  | 0.32            | 0.63                   | 45.7            |
| 8        | Т        | 194            | 5.0     | 0.610    | 52.1             | LOSB                | 10.7                 | 78.5                 | 0.98            | 0.81                   | 23.3            |
| 9        | R        | 469            | 5.0     | 0.777    | 64.2             | LOSC                | 14.0                 | 102.5                | 1.00            | 0.90                   | 23.0            |
| Approa   | ch       | 664            | 5.0     | 0.777    | 60.6             | LOSC                | 14.0                 | 102.5                | 0.99            | 0.87                   | 23.             |
| West: D  | onnyb    | rook Road      |         |          |                  |                     |                      |                      |                 |                        |                 |
| 7        | L        | 151            | 5.0     | 0.159    | 9.4              | LOSA                | 0.9                  | 6.4                  | 0.16            | 0.66                   | 52.9            |
| 8        | Т        | 1411           | 5.0     | 0.629    | 18.0             | LOSB                | 16.1                 | 117.7                | 0.63            | 0.56                   | 43.2            |
| 9        | R        | 385            | 5.0     | 0.797    | 60.4             | LOSC                | 11.3                 | 82.5                 | 1.00            | 0.86                   | 23.             |
| Approa   | ch       | 1947           | 5.0     | 0.797    | 25.7             | LOSC                | 16.1                 | 117.7                | 0.67            | 0.63                   | 37.             |
| All Vehi | cles     | 4837           | 5.0     | 0.797    | 32.5             | LOSC                | 22.2                 | 162.3                | 0.77            | 0.72                   | 31.1            |

Table 29: Results of SIDRA Analysis for intersection IT06, 2046 PM Peak

| Moven    | nent Pe  | erformance     | <ul> <li>Vehic</li> </ul> | les      |                  |                     |                      |                      |                 |                        |                  |
|----------|----------|----------------|---------------------------|----------|------------------|---------------------|----------------------|----------------------|-----------------|------------------------|------------------|
| Mov ID   | Turn     | Demand<br>Flow | HV D                      | eg. Satn | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate | Average<br>Speed |
|          |          | veh/h          | %                         | v/c      | sec              |                     | veh                  | m                    |                 | perveh                 | km/h             |
| South:   | Collect  | or Road IT06   |                           |          |                  |                     |                      |                      |                 |                        |                  |
| 10       | L        | 385            | 5.0                       | 0.862    | 22.7             | LOSC                | 11.2                 | 81.6                 | 0.51            | 0.77                   | 34.9             |
| 11       | Т        | 203            | 5.0                       | 0.584    | 51.2             | LOSA                | 9.4                  | 68.8                 | 0.97            | 0.79                   | 22.1             |
| 12       | R        | 236            | 5.0                       | 0.584    | 57.8             | LOSA                | 9.4                  | 68.8                 | 0.96            | 0.80                   | 23.0             |
| Approa   | ch       | 824            | 5.0                       | 0.862    | 39.8             | LOSC                | 11.2                 | 81.6                 | 0.75            | 0.78                   | 27.1             |
| East: D  | onnybr   | ook Road       |                           |          |                  |                     |                      |                      |                 |                        |                  |
| 1        | L        | 266            | 5.0                       | 0.387    | 10.2             | LOSA                | 2.9                  | 21.5                 | 0.26            | 0.68                   | 44.8             |
| 2        | T        | 1468           | 5.0                       | 0.905    | 40.7             | LOSD                | 29.3                 | 214.1                | 0.99            | 0.96                   | 23.7             |
| 3        | R        | 200            | 5.0                       | 0.930    | 59.8             | LOSD                | 11.2                 | 81.6                 | 0.92            | 0.87                   | 24.1             |
| Approa   | ch       | 1934           | 5.0                       | 0.930    | 38.4             | LOSD                | 29.3                 | 214.1                | 0.88            | 0.91                   | 25.2             |
| North: ( | Collecto | or Road IT06   |                           |          |                  |                     |                      |                      |                 |                        |                  |
| 7        | L        | 1              | 5.0                       | 0.003    | 15.7             | LOSA                | 0.0                  | 0.1                  | 0.39            | 0.62                   | 43.5             |
| 8        | Т        | 104            | 5.0                       | 0.409    | 53.8             | LOSA                | 5.7                  | 41.7                 | 0.96            | 0.76                   | 22.9             |
| 9        | R        | 151            | 5.0                       | 0.313    | 60.3             | LOSA                | 4.1                  | 29.9                 | 0.95            | 0.77                   | 23.9             |
| Approa   | ch       | 256            | 5.0                       | 0.409    | 57.5             | LOSA                | 5.7                  | 41.7                 | 0.95            | 0.76                   | 23.6             |
| West: D  | onnyb    | rook Road      |                           |          |                  |                     |                      |                      |                 |                        |                  |
| 7        | L        | 469            | 5.0                       | 0.819    | 21.0             | LOSC                | 11.2                 | 81.6                 | 0.46            | 0.78                   | 41.5             |
| 8        | Т        | 1434           | 5.0                       | 0.884    | 38.4             | LOSC                | 27.6                 | 201.2                | 0.97            | 0.93                   | 30.8             |
| 9        | R        | 269            | 5.0                       | 0.410    | 42.2             | LOSA                | 6.4                  | 46.6                 | 0.75            | 0.76                   | 28.8             |
| Approa   | ch       | 2172           | 5.0                       | 0.884    | 35.1             | LOSC                | 27.6                 | 201.2                | 0.83            | 0.87                   | 32.3             |
| All Vehi | cles     | 5186           | 5.0                       | 0.930    | 38.2             | LOSD                | 29.3                 | 214.1                | 0.84            | 0.87                   | 28.3             |
|          |          |                |                           |          |                  |                     |                      |                      |                 |                        |                  |

#### 6.8.8 Intersection IT07: Donnybrook Road and Old Sydney Road

The ultimate layout of the Donnybrook Road and Old Sydney Road intersection for the AM and PM peaks in 2046 is shown below.



The analysis shows that this intersection will operate at LOS A during the AM peak and LOS C during the PM peak, which is satisfactory. Results of the analysis are shown in Table 30 and Table 31.

The double right turn lanes on Donnybrook Road are required to service the evening peak right turn movement which is expected to be much higher than in the morning peak given the high volume of left turning vehicles from Old Sydney Road in the morning peak.

Table 30: Results of SIDRA Analysis for intersection IT07, 2046 AM Peak

| Moven    | nent Pe | erformance     | - Vehic | les      |                  |                     |                      |                      |                 |                        |                  |
|----------|---------|----------------|---------|----------|------------------|---------------------|----------------------|----------------------|-----------------|------------------------|------------------|
| Mov ID   | Turn    | Demand<br>Flow | HV D    | eg. Satn | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate | Average<br>Speed |
|          |         | veh/h          | %       | v/c      | sec              |                     | veh                  | m                    |                 | perveh                 | km/h             |
| South:   | Old Syd | dney Road      |         |          |                  |                     |                      |                      |                 |                        |                  |
| 11       | Т       | 35             | 5.0     | 0.012    | 2.7              | LOSA                | 0.2                  | 1.5                  | 0.22            | 0.16                   | 63.1             |
| 12       | R       | 268            | 5.0     | 0.563    | 47.7             | LOSA                | 13.1                 | 95.4                 | 0.88            | 0.83                   | 28.8             |
| Approa   | ch      | 303            | 5.0     | 0.563    | 42.5             | LOSA                | 13.1                 | 95.4                 | 0.81            | 0.75                   | 30.7             |
| East: D  | onnybr  | ook Road       |         |          |                  |                     |                      |                      |                 |                        |                  |
| 1        | L       | 348            | 5.0     | 0.338    | 16.0             | LOSA                | 8.8                  | 64.0                 | 0.50            | 0.77                   | 41.3             |
| 3        | R       | 74             | 5.0     | 0.189    | 63.4             | LOSA                | 2.0                  | 14.8                 | 0.95            | 0.74                   | 24.2             |
| Approa   | ch      | 422            | 5.0     | 0.338    | 24.3             | LOSA                | 8.8                  | 64.0                 | 0.58            | 0.76                   | 35.4             |
| North: ( | Old Syc | iney Road      |         |          |                  |                     |                      |                      |                 |                        |                  |
| 7        | L       | 959            | 5.0     | 0.529    | 9.6              | X                   | X                    | X                    | X               | 0.65                   | 54.5             |
| 8        | Т       | 949            | 5.0     | 0.553    | 25.7             | LOSA                | 20.1                 | 146.9                | 0.79            | 0.70                   | 37.4             |
| Approa   | ch      | 1908           | 5.0     | 0.553    | 17.6             | LOSA                | 20.1                 | 146.9                | 0.39            | 0.67                   | 44.4             |
| All Vehi | cles    | 2633           | 5.0     | 0.563    | 21.6             | LOSA                | 20.1                 | 146.9                | 0.47            | 0.70                   | 40.9             |

X: Not applicable for Continuous movement.

Table 31: Results of SIDRA Analysis for intersection IT07, 2046 PM Peak

| Mov ID  | Turn    | Domond         | HVD | on Coto  | Augrana          | Laural of           | OFO/ Book | of Queue | Prop.  | Effective | Augrana          |
|---------|---------|----------------|-----|----------|------------------|---------------------|-----------|----------|--------|-----------|------------------|
| MOV ID  | Turn    | Demand<br>Flow | п۷Ъ | eg. Satn | Average<br>Delay | Level of<br>Service | Vehicles  | Distance | Queued | Stop Rate | Average<br>Speed |
|         |         | veh/h          | %   | v/c      | sec              |                     | veh       | m        |        | perveh    | km/h             |
| South:  | Old Sy  | dney Road      |     |          |                  |                     |           |          |        |           |                  |
| 11      | Т       | 949            | 5.0 | 0.452    | 17.1             | LOSA                | 16.4      | 119.5    | 0.64   | 0.57      | 43.9             |
| 12      | R       | 405            | 5.0 | 0.759    | 42.1             | LOSC                | 19.2      | 139.9    | 0.84   | 0.85      | 30.9             |
| Approa  | ch      | 1354           | 5.0 | 0.759    | 24.6             | LOSC                | 19.2      | 139.9    | 0.70   | 0.66      | 39.0             |
| East: D | onnybr  | ook Road       |     |          |                  |                     |           |          |        |           |                  |
| 1       | L       | 325            | 5.0 | 0.201    | 9.9              | LOSA                | 1.2       | 9.1      | 0.13   | 0.68      | 48.8             |
| 3       | R       | 959            | 5.0 | 0.756    | 47.3             | LOSC                | 25.1      | 183.3    | 0.95   | 0.88      | 29.0             |
| Approa  | ch      | 1284           | 5.0 | 0.756    | 37.8             | LOSC                | 25.1      | 183.3    | 0.74   | 0.83      | 31.4             |
| North:  | Old Syc | iney Road      |     |          |                  |                     |           |          |        |           |                  |
| 7       | L       | 74             | 5.0 | 0.041    | 9.5              | X                   | X         | X        | X      | 0.65      | 54.6             |
| 8       | Т       | 35             | 5.0 | 0.085    | 52.7             | LOSA                | 0.9       | 6.9      | 0.93   | 0.66      | 25.9             |
| Approa  | ch      | 109            | 5.0 | 0.085    | 23.4             | LOSC                | 0.9       | 6.9      | 0.30   | 0.65      | 40.3             |
| All Veh | icles   | 2747           | 5.0 | 0.759    | 30.7             | LOSC                | 25.1      | 183.3    | 0.70   | 0.74      | 35.2             |

#### X: Not applicable for Continuous movement.

#### 7.1 Overview

For roads that are noted for inclusion in the PSP, we have identified the following road profiles in accordance with the projected traffic volumes for the interim and ultimate model years. Table 32 provides an indication of the minimum cross section for all the roads contained within the PSP.

**Table 32: Minimum cross sections** 

| Road Name                          | Lane Configuration             | Volumes<br>(vehicles per day) |
|------------------------------------|--------------------------------|-------------------------------|
| Connector Street                   | 2-lane (Undivided)             | 3,000 to 7,000                |
| Boulevard Connector                | 2-lane (Divided)               | 7,000 to 12,000               |
| E14/ Aitken Boulevard              | 4-lane Secondary Arterial Road | 12,000 to 40,000              |
| Donnybrook Road –<br>2021 Interim  | 4-lane Secondary Arterial Road | 12,000 to 40,000              |
| Donnybrook Road –<br>2046 Ultimate | 6-lane Primary Arterial Road   | 40,000 +                      |

#### 7.2 Road Hierarchy Assessment

The road network, hierarchy and cross sections that are applied to the roads within the PSP have been guided by the outputs from the MITM strategic model.

Daily vehicle volumes have been calculated by extracting the 2-hour two-way AM peak period volumes from MITM and applying a conversion factor of 6.76 to obtain the equivalent daily flows. This factoring of the peak period volume to a daily flow is generally expressed as a two-way volume output to remove any misrepresentation that may be caused by factoring any heavily directional peak period travel pattern that might occur.

The road network, hierarchy and cross sections that are applied to the roads within the PSP have been guided by the outputs from the MITM model. Both the GAA and VicRoads have standards relating to the daily vehicular capacity of particular road types. Due to the coarseness of the strategic model, a 10% margin of error should be applied to any link volumes referred to in Table 33 and Table 34.

To assess the suitability of individual roads to carry the volumes forecast in the strategic model, a number of select points were created to produce specific 'traffic counts' across the network. The location of the detector points are shown in Figure 16. These have been tabulated against the published volume thresholds of the GAA and Austroads for the interim and ultimate scenarios as shown in Table 33 and Table 34.

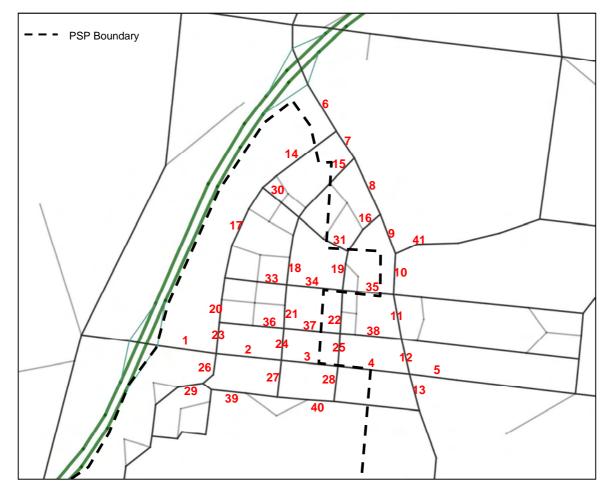



Figure 16: Location of detector points

The cross sections provided in Table 33 and Table 34 confirm that the projected MITM traffic volumes fall within the intended road classifications as outlined in the Merrifield West PSP.

Small variations in link type coding and the position of zone connectors within the model may influence travel time and travel distance calculations which in turn may influence the actual demand flows assigned to each competing link. Where the projected volumes do not fit within the banding identified for any specific road, it is important to note that this variance may need to be viewed in conjunction with the projected traffic volume associated with any other nearby parallel link. Being a strategic transport model, MITM by its very nature, is sometimes unable to fully balance the demand flows across the various road links.

Major improvements which are likely to have an impact on the difference in travel patterns between the interim and ultimate models include:

- The delivery of the OMR by 2046 including a new diamond interchange to the north of the PSP;
- The upgrade of Donnybrook Road from a 4-lane Arterial Road to a 6-lane Arterial Road;
- The construction of the E14/Aitken Boulevard, including any public transport priority; and
- The construction of the Western Connection joining the E14/ Aitken Boulevard with the OMR.

Table 33: PSP – 2021 Interim volumes scenario 1 high residential (vehicles per day)

| Detector |                  | GAA                          | BALTRA (          |
|----------|------------------|------------------------------|-------------------|
| Points   | Volume           | Category                     | MITM (vpd)        |
| 1        | 40,000 +         | Primary Arterial Road        | 17,123            |
| 2        | 40,000 +         | Primary Arterial Road        | 15,472            |
| 3        | 40,000 +         | Primary Arterial Road        | 21,687            |
| 4        | 40,000 +         | Primary Arterial Road        | 22,158            |
| 5        | 40,000 +         | Primary Arterial Road        | 28,746            |
| 6        | 12,000 to 40,000 | Secondary Arterial Road      | N/A               |
| 7        | 12,000 to 40,000 | Secondary Arterial Road      | N/A               |
| 8        | 12,000 to 40,000 | Secondary Arterial Road      | N/A               |
| 9        | 12,000 to 40,000 | Secondary Arterial Road      | N/A               |
| 10       | 12,000 to 40,000 | Secondary Arterial Road      | N/A               |
| 11       | 12,000 to 40,000 | Secondary Arterial Road      | 8,195             |
| 12       | 12,000 to 40,000 | Secondary Arterial Road      | 16,704            |
| 13       | 12,000 to 40,000 | Secondary Arterial Road      | 5,998             |
| 14       | 7,000 to 12,000  | Connector Boulevard          | N/A               |
| 15       | 3,000 to 7,000   | Connector Street (Undivided) | N/A               |
| 16       | 3,000 to 7,000   | Connector Street (Undivided) | N/A               |
| 17       | 7,000 to 12,000  | Connector Boulevard          | 5,691             |
| 18       | 3,000 to 7,000   | Connector Street (Undivided) | 6,754             |
| 19       | 3,000 to 7,000   | Connector Street (Undivided) | 4,469             |
| 20       | 7,000 to 12,000  | Connector Boulevard          | 9,875             |
| 21       | 3,000 to 7,000   | Connector Street (Undivided) | 6,824             |
| 22       | 7,000 to 12,000  | Connector Boulevard          | 2,444             |
| 23       | 7,000 to 12,000  | Connector Boulevard          | 11,436            |
| 24       | 3,000 to 7,000   | Connector Street (Undivided) | 7,271             |
| 25       | 7,000 to 12,000  | Connector Boulevard          | 3,449             |
| 26       | 12,000 to 40,000 | Secondary Arterial Road      | 13,730 (see note) |
| 27       | 3,000 to 7,000   | Connector Street (Undivided) | 1,237             |
| 28       | 7,000 to 12,000  | Connector Boulevard          | 3,755             |
| 29       | 7,000 to 12,000  | Connector Boulevard          | 11,505            |
| 30       | 3,000 to 7,000   | Connector Street (Undivided) | 2,194             |
| 31       | 3,000 to 7,000   | Connector Street (Undivided) | 4,957             |
| 33       | 3,000 to 7,000   | Connector Street (Undivided) | 3,985             |
| 34       | 3,000 to 7,000   | Connector Street (Undivided) | 6,266             |
| 35       | 7,000 to 12,000  | Connector Boulevard          | 10,517            |
| 36       | 3,000 to 7,000   | Connector Street (Undivided) | 1,684             |
| 37       | 3,000 to 7,000   | Connector Street (Undivided) | 1,236             |
| 38       | 7,000 to 12,000  | Connector Boulevard          | 5,132             |
| 39       | 7,000 to 12,000  | Connector Boulevard          | 5,662             |
| 40       | 7,000 to 12,000  | Connector Boulevard          | 5,495             |
| 41       | 7,000 to 12,000  | Connector Boulevard          | N/A               |

#### Note:

Point 26 represents a very high demand related to the nearby secondary school which is planned to have 1,500 enrolments at full build out. The location of this secondary school is however likely to change and this has the potential to reduce volumes at this point. It should also be noted that volumes reduce significantly south of this point.

Table 34: PSP – 2046 Ultimate volumes scenario 1 high residential (vehicles per day)

| Detector |                  | GAA                          | BALTRA (con al)   |
|----------|------------------|------------------------------|-------------------|
| Points   | Volume           | Category                     | MITM (vpd)        |
| 1        | 40,000 +         | Primary Arterial Road        | 51,195            |
| 2        | 40,000 +         | Primary Arterial Road        | 41,483            |
| 3        | 40,000 +         | Primary Arterial Road        | 53,623            |
| 4        | 40,000 +         | Primary Arterial Road        | 48,866            |
| 5        | 40,000 +         | Primary Arterial Road        | 44,136            |
| 6        | 12,000 to 40,000 | Secondary Arterial Road      | 16,446            |
| 7        | 12,000 to 40,000 | Secondary Arterial Road      | 9,943             |
| 8        | 12,000 to 40,000 | Secondary Arterial Road      | 10,352            |
| 9        | 12,000 to 40,000 | Secondary Arterial Road      | 11,044            |
| 10       | 40,000 +         | Primary Arterial Road        | 39,210            |
| 11       | 40,000 +         | Primary Arterial Road        | 24,276            |
| 12       | 40,000 +         | Primary Arterial Road        | 52,991            |
| 13       | 40,000 +         | Primary Arterial Road        | 34,878            |
| 14       | 7,000 to 12,000  | Connector Boulevard          | 6,502             |
| 15       | 3,000 to 7,000   | Connector Street (Undivided) | 4,201             |
| 16       | 3,000 to 7,000   | Connector Street (Undivided) | 4,462             |
| 17       | 7,000 to 12,000  | Connector Boulevard          | 8,478             |
| 18       | 3,000 to 7,000   | Connector Street (Undivided) | 7,341             |
| 19       | 3,000 to 7,000   | Connector Street (Undivided) | 4,487             |
| 20       | 7,000 to 12,000  | Connector Boulevard          | 9,747             |
| 21       | 3,000 to 7,000   | Connector Street (Undivided) | 7,744             |
| 22       | 7,000 to 12,000  | Connector Boulevard          | 4,397             |
| 23       | 7,000 to 12,000  | Connector Boulevard          | 11,137            |
| 24       | 3,000 to 7,000   | Connector Street (Undivided) | 7,891             |
| 25       | 7,000 to 12,000  | Connector Boulevard          | 10,035            |
| 26       | 12,000 to 40,000 | Secondary Arterial Road      | 17,999 (see note) |
| 27       | 3,000 to 7,000   | Connector Street (Undivided) | 9,108 (see note)  |
| 28       | 7,000 to 12,000  | Connector Boulevard          | 3,206 (see note)  |
| 29       | 12,000 to 40,000 | Secondary Arterial Road      | 14,702 (see note) |
| 30       | 3,000 to 7,000   | Connector Street (Undivided) | 2,446             |
| 31       | 3,000 to 7,000   | Connector Street (Undivided) | 2,957             |
| 33       | 3,000 to 7,000   | Connector Street (Undivided) | 4,508             |
| 34       | 3,000 to 7,000   | Connector Street (Undivided) | 6,594             |
| 35       | 7,000 to 12,000  | Connector Boulevard          | 16,303 (see note) |
| 36       | 3,000 to 7,000   | Connector Street (Undivided) | 1,384             |
| 37       | 3,000 to 7,000   | Connector Street (Undivided) | 1,237             |
| 38       | 7,000 to 12,000  | Connector Boulevard          | 11,007            |
| 39       | 7,000 to 12,000  | Connector Boulevard          | 10,558            |
| 40       | 7,000 to 12,000  | Connector Boulevard          | 6,249             |
| 41       | 40,000 +         | Primary Arterial Road        | 32,380            |

#### Note:

Point 26 and Point 29 represents a very high demand related to the nearby secondary school which is planned to have 1,500 enrolments at full build out. The location of this secondary school is however likely to change and this has the potential to reduce volumes at these points. It should also be noted that volumes reduce significantly south of these points.

- In terms of overcoming the apparent excess demand observed at Point 27, it is recommended that this demand be 'paired' with the available capacity at Point 28 to accommodate the total demand emanating from Zone 2715. Local modelling phenomenon such as this can usually be overcome by including junction delays at the trip path assignment stage in the four-step modelling process or through the use of microsimulation modelling at a local street level.
- Excess demand observed at Point 35 is as a result of a road link being removed from an earlier version of the PSP. In the absence of this link, traffic along Point 35 represents a larger catchment including the town centre traffic almost exclusively. Further refinement of the road network will occur through the master planning process. It is anticipated that additional local road connections will allow for a further redistribution of local traffic demand seeking access onto the E14 (e.g. through the use of left-in left-out treatments and service road provisions).

#### 7.3 Confirmation of Higher Order Roads

Table 33 and Table 34 above indicate that the proposed 4-lane configuration for the E14/ Aitken Boulevard will cater for the required demand by the ultimate 2046 model year. However, volumes on the section immediately north of Donnybrook Road would be starting to approach the capacity of a typical 4-lane roadway by this time.

The daily demand for travel on Donnybrook Road indicates that it will need 6 lanes west of the E14/ Aitken Boulevard and east of the OMR. Although volumes on Donnybrook Road within the PSP indicate that a 4-lane configuration would suffice, this section should be constructed as a 6-lane cross-section for continuity with the design which has been approved for the Merrifield and Folkestone Employment Precincts.

The forecast daily volumes on the Western Connector suggest that this road requires 4 lanes along its entire length, including the short length through Melbourne Water property. Further detailed design and the precise form of the road is the subject of a separate project.

The proposed road hierarchy is shown in Figure 17.

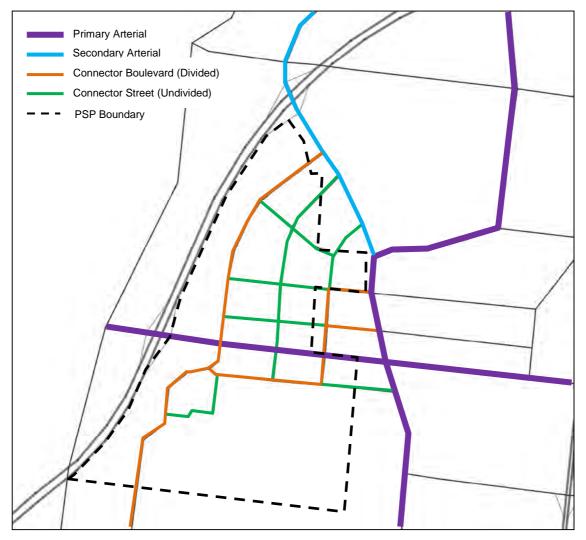



Figure 17: Proposed road hierarchy

#### 7.4 Standard Drawings

The following set of cross sections is provided as reference to the descriptions which have been used in Table 33 and Table 34 above. These cross sections have been extracted from the PSP document for ease of reference at this point in the report.

#### 7.4.1 Connector Street

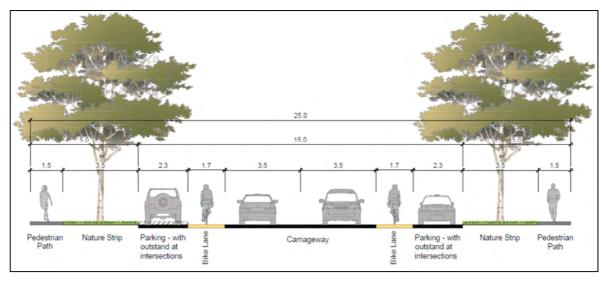



Figure 18: Sample cross section for 2-lane connector street (Source: VicRoads, "Growth Areas: Typical Intersection Drawings")

It is intended that Connector Streets carry between 3,000 and 7,000 vehicles per day. These are the lowest order of roads that are coded into the MITM model.

#### 7.4.2 Boulevard Connector

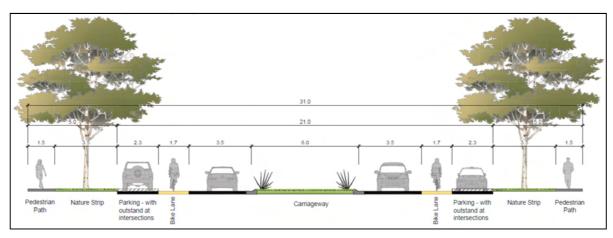



Figure 19: Sample cross section for 2-lane boulevard connector (Source: VicRoads, "Growth Areas: Typical Intersection Drawings")

It is intended that a Boulevard Connector carry between 7,000 and 12,000 vehicles per day.

#### 7.4.3 Secondary Arterial Road

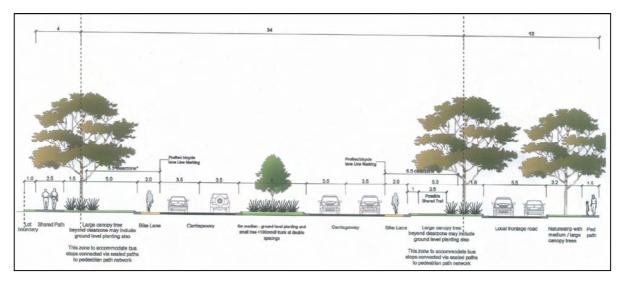



Figure 20: Sample cross section for 4-lane secondary arterial (Source: VicRoads, "Growth Areas: Typical Intersection Drawings")

Secondary Arterial Roads are designed to carry between 12,000 and 40,000 vehicles per day. The MITM model suggests that in both the interim and ultimate model years, the E14/ Aitken Boulevard will need to be a Secondary Arterial Road.

#### 7.4.4 Primary Arterial Road

Figure 21 shows the proposed cross section for Donnybrook Road. This cross section has been developed under the guidance of VicRoads and in consultation with all the relevant service authorities. This cross section will apply for the full length of Donnybrook Road between E14/ Aitken Boulevard in the east and Old Sydney Road in the west, immediately servicing the PSP.

It is intended that a Primary Arterial Road be a 6-lane divided roadway and be designed to carry in excess of 40,000 vehicles per day. The cross section provided in Figure 21 indicates that the Donnybrook Road reserve will be in the order of 50m as opposed to the GAA standard of 40m, excluding service roads, for a similar road. This is in response to the consultation that has been undertaken with all the service authorities involved.

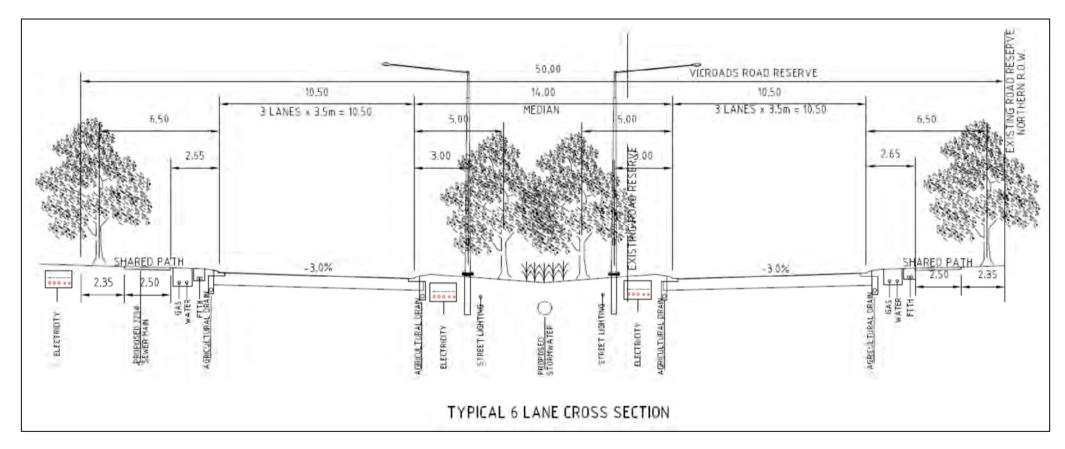



Figure 21: Cross section proposed for Donnybrook Road (Source: Functional Layout Plan produced by SMEC on behalf of Merrifield Corporation in 2011 for VicRoads)

#### 8 CONCLUSIONS

The infrastructure requirements in accordance with the results of the future year forecasting for the interim and ultimate development scenarios are summarised below. Layout plans for each of the intersections have previously been included in Section 6.

#### 8.1 Collector Road IT01 and Western Connector

Intersection Not Required in 2021 due to Zero Travel Demands

2046 - Intersection performance as follows:

| Performance Measure  | AM Peak | PM Peak |
|----------------------|---------|---------|
| Degree of Saturation | 0.723   | 0.893   |
| Level of Service     | С       | С       |

**Note:** These results assume right turn bans are in place at IT02 and IT03.

#### 8.2 Collector Road IT02 and Western Connector

Intersection Not Required in 2021 due to Zero Travel Demands

In 2046, there will be right turn bans in place for both the Western Connector and Collector Road IT02 approaches, therefore no signalised intersection required.

#### 8.3 Collector Road IT03 and Western Connector

Intersection Not Required in 2021 due to Zero Travel Demands

In 2046, there will be right turn bans in place for both the Western Connector and Collector Road IT03 approaches, therefore no signalised intersection required.

#### 8.4 Collector Road IT04 and Donnybrook Road

#### 2021 - Intersection performance as follows:

| Performance Measure  | AM Peak | PM Peak |
|----------------------|---------|---------|
| Degree of Saturation | 0.568   | 0.556   |
| Level of Service     | Α       | Α       |

#### 2046 - Intersection performance as follows:

| Performance Measure  | AM Peak | PM Peak |
|----------------------|---------|---------|
| Degree of Saturation | 0.663   | 0.804   |
| Level of Service     | В       | С       |

#### 8.5 Collector Road IT05 and Donnybrook Road

#### <u>2021 – Intersection performance as follows:</u>

| Performance Measure  | AM Peak | PM Peak |
|----------------------|---------|---------|
| Degree of Saturation | 0.915   | 0.553   |
| Level of Service     | D       | А       |

#### 2046 - Intersection performance as follows:

| Performance Measure  | AM Peak | PM Peak |
|----------------------|---------|---------|
| Degree of Saturation | 0.795   | 0.921   |
| Level of Service     | С       | D       |

### 8.6 Collector Road IT06 and Donnybrook Road

#### 2021 - Intersection performance as follows:

| Performance Measure  | AM Peak | PM Peak |
|----------------------|---------|---------|
| Degree of Saturation | 0.580   | 0.772   |
| Level of Service     | Α       | С       |

#### <u>2046 – Intersection performance as follows:</u>

| Performance Measure  | AM Peak | PM Peak |
|----------------------|---------|---------|
| Degree of Saturation | 0.797   | 0.930   |
| Level of Service     | С       | D       |

# 8.7 IT07 Donnybrook Road and Old Sydney Road

#### 2021 - Intersection performance as follows:

| Performance Measure  | AM Peak | PM Peak |
|----------------------|---------|---------|
| Degree of Saturation | 0.432   | 0.923   |
| Level of Service     | Α       | D       |

#### <u>2046 – Intersection performance as follows:</u>

| Performance Measure  | AM Peak | PM Peak |
|----------------------|---------|---------|
| Degree of Saturation | 0.563   | 0.759   |
| Level of Service     | А       | С       |

#### 9 RECOMMENDATIONS

In accordance with the modelling that has been undertaken for the interim 2021 modelled year, we recommend that:

- The construction of the Western Connector towards the OMR will not be required by the 2021 model year. This includes intersections IT01, IT02 and IT03. As such, the cost of constructing the Western Connector should not be attributed to the PSP.
- Donnybrook Road will be the major 4-lane Arterial Road servicing the interim traffic in 2021. Therefore, intersections IT04, IT05, IT06 and IT07 will be required by the 2021 interim model year.

In accordance with the modelling that has been undertaken for the ultimate 2046 modelled year, we recommend that:

- The Western Connector will be required by 2046 as it provides a key linkage to the OMR via a new interchange.
- Intersections IT01, IT02 and IT03 will be required for the ultimate scenario commensurate with the construction of the Western Connector. The recommended form of intersection control at IT01 is traffic signals, while IT02 and IT03 may not need to be signalised at the same time.
- Traffic volumes along Donnybrook Road will continue to increase after 2021 and beyond the 2046 scenario. Intersections IT04, IT05, IT06 and IT07 will therefore require further upgrades by the ultimate 2046 scenario year to accommodate the 6laning of Donnybrook Road.

# APPENDIX 1 – MITM CALIBRATION AND VALIDATION REPORT



Northern Growth Corridor MITM Modelling Model Calibration and Validation Report

transportation planning, de

and delivery

# Northern Growth Corridor MITM Modelling

# Model Calibration and Validation Report

Issue: A 17/02/2012

Client: Growth Areas Authority Reference: 12M1274000 GTA Consultants Office: VIC

#### Quality Record

| Issue | Date     | Description | Prepared By                    | Checked By    | Approved By |
|-------|----------|-------------|--------------------------------|---------------|-------------|
| A-Dr  | 14/10/11 | Draft       | Erna Sukardi/<br>Manesha Ravji | Nathan Moresi |             |
| Α     | 17/12/11 | Final       | Erna Sukardi/<br>Manesha Ravji | Nathan Moresi | N/Morei     |

© GTA Consultants (GTA Consultants (VIC) Pty Ltd) 2011
The information contained in this document is confidential and intended solely for the use of the client for the purpose for which it has been prepared and no representation is made or is to be implied as being made to any third party. Use or copying of this document in whole or in part without the written permission of GTA Consultants constitutes an infringement of copyright. The intellectual property contained in this document remains the property of GTA Consultants.





MELBOURNE • SYDNEY • BRISBANE • CANBERRA ADELAIDE • GOLD COAST • TOWNSVILLE www.gta.com.au



# Table of Contents

| 1.1   |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.1   | Background                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.2   | Study Area                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.3   | Purpose of the Strategic Model                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.4   | Model Limitations                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.5   | Model Establishment                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Mo    | del Structure                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.1   | Zone System                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.2   | Network Refinements                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Lan   | d Use Information                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.1   | DoT MITM Land Uses                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.2   | Land Use Refinements                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Met   | hodology                                                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.1   | Model Calibration Procedure                                                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.2   | Model Coverage Feedback                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Mod   | del Calibration Results                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.1   | Traffic Volumes Used for Calibration Purposes                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.2   | VicRoads Validation Criteria                                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.3   | Summary of Model Validation                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Exist | ing Conditions Results                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6.1   | Travel Pattern Summary                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6.2   | Trip Frequencies and Times Travelled                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Con   | clusions                                                                        | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | 1.2 1.3 1.4 1.5 Mo 2.1 2.2 Lan 3.1 3.2 Met 4.1 4.2 Mo 5.1 5.2 5.3 Exist 6.1 6.2 | 1.2 Study Area 1.3 Purpose of the Strategic Model 1.4 Model Limitations 1.5 Model Establishment  Model Structure 2.1 Zone System 2.2 Network Refinements  Land Use Information 3.1 DOT MITM Land Uses 3.2 Land Use Refinements  Methodology 4.1 Model Calibration Procedure 4.2 Model Coverage Feedback  Model Calibration Results 5.1 Traffic Volumes Used for Calibration Purposes 5.2 VicRoads Validation Criteria 5.3 Summary of Model Validation  Existing Conditions Results 6.1 Travel Pattern Summary 6.2 Trip Frequencies and Times Travelled  Conclusions |

#### **Appendices**

- A: MITM Network Coverage Area
- B: Suveyed and Modelled Traffic Volumes
- C: VicRoads Validation Criteria by LGA



| rigures     |                                                                                           |    |
|-------------|-------------------------------------------------------------------------------------------|----|
| Figure 1.1: | Northern Growth Corridor Study Area                                                       | 1  |
| Figure 2.1: | Northern Growth Corridor Strategic Modelling Area-Base Year<br>Modelled Network and Zones | 3  |
| Figure 3.1: | DoT MITM Modelled verses Visible Land Uses                                                | 5  |
| Figure 5.1: | MITM 2-Hour AM Peak Period – R-Squared Summary                                            | 10 |
| Figure 6.1: | Trip Length Frequency Distribution                                                        | 11 |
| Tables      |                                                                                           |    |
| Table 3.1:  | MITM Land Use Refinements                                                                 | 6  |
| Table 5.1:  | MITM 2 Hour AM Peak Period                                                                |    |
|             | <ul> <li>Root Mean Squared Error Calibration Statistics</li> </ul>                        | 9  |
| Table 5.2:  | Summary of VicRoads Validation Criteria                                                   | 10 |
| Table 6.1:  | Mode Split Comparison                                                                     | 11 |



# 1. Introduction

## 1.1 Background

In mid 2011 discussions were coordinated by the Growth Areas Authority (GAA) to obtain consensus and sign-off on an agreed strategic modelling process for the Northern Growth Corridor. At the time, the GAA was yet to release corridor framework plans for the area, and planning for growth in the corridor via the formulation of Precinct Structure Plans (PSPs) needed to continue, supported by an agreed base model for the purpose of preparing future PSPs.

At a meeting in late August between GAA, VicRoads, Department of Transport (DoT) and the Department of Planning and Community Development (DPCD) it was agreed that the DoT December 2010 version of the Melbourne Integrated Transport Model (MITM) was to be used as a basis for the initial planning of the corridor and that a number of future year land use/road network scenarios were to be tested in the absence of a corridor framework plan for the area.

GTA Consultants (GTA) with the assistance of SMEC (peer reviewer) were engaged to develop a base year MITM model suitable for testing future land use and road network scenarios in the Northern Growth Corridor area.

The following report confirms the validity of the MITM base year model developed by GTA for testing future scenarios in the Northern Growth Corridor area.

# 1.2 Study Area

The extent of the Northern Growth Corridor study area is shown in Figure 1.1.

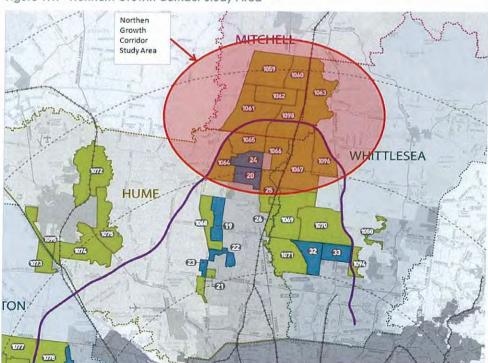



Figure 1.1: Northern Growth Corridor Study Area



# 1.3 Purpose of the Strategic Model

The strategic model is to be used to:

- understand the travel patterns through the study area in the base year (2010)
- run option tests for future year models to determine changes in traffic patterns across the study area, with varying land use and transport infrastructure assumptions.

#### 1.4 Model Limitations

The MITM model is an AM peak two hour period model, which means it does not produce daily traffic volume information directly. However, this is dealt with by preparing daily traffic volume estimates for existing and future years using conversion factors based on actual recorded volumes.

Furthermore the purpose of the strategic modelling is to identify broad level traffic and travel patterns and changes as an input to more detailed consideration during the Precinct Structure Planning (PSP) process.

#### 1.5 Model Establishment

#### 1.5.1 Base Year Model

For the purpose of this study, the DoT (December 2010) MITM model has been adopted and refined. This model is a travel demand model incorporating a link-based network model with an integrated public transport model. The model is implemented in the Cube Voyager software environment. The MITM networks contain all major freeways, main arterials and connector roads covering the entire Melbourne Statistical Division.

#### 1.5.2 Future Year Models

Once agreement is reached on the calibration and validation of the base year (existing condition) model, the future year models will be developed. This involves using the base year network and applying road network and land use scenarios that are to be tested.



# 2. Model Structure

# 2.1 Zone System

The generic MITM zone system contains 2,912 zones (including external zones) which were developed based on Census Collector Districts (CCD) and aggregated/disaggregated where necessary. The zone system for the Strategic Modelling Study Area is shown in Figure 2.1 with the complete metropolitan network coverage area shown in Appendix A.



Figure 2.1: Northern Growth Corridor Strategic Modelling Area-Base Year Modelled Network and Zones

As shown in Figure 2.1 the Strategic Modelling Area encompasses the Whittlesea, Hume and Mitchell Local Government Authority (LGA) area.

#### 2.2 Network Refinements

For the purpose of this study a full review of all links within the Whittlesea, Hume and Mitchell LGAs was conducted to ensure that they reflect actual road conditions. Zone centroid connectors were also adjusted in some cases to assist in satisfying the VicRoads' criteria for validation.

No refinements have been made to the zone structure (e.g. no zone splitting) in MITM as part this calibration/validation exercise.

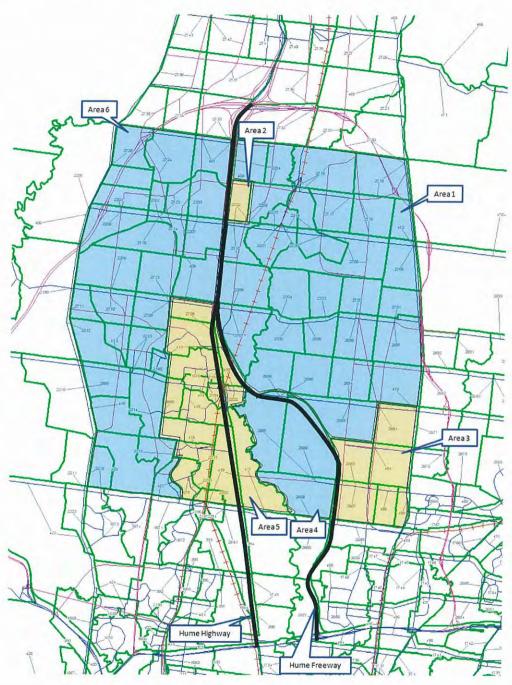


#### 3. Land Use Information

#### 3.1 **DoT MITM Land Uses**

Population and employment forecast figures have been produced by the Department of Planning and Community Development (DPCD) and Ratio Consultants for the DoT. The DPCD population forecasts, commonly referred to as the 'Victoria In Future' forecasts, are relevant for each year up to 2031, while Ratio Consultants employment data were exclusively produced for modelling purposes and are only for the years 2006, 2011, 2021 and 2031.

MITM inputs population in the form of households and educational facilities in the form of enrolments. All other uses such as retail floor space are input as jobs in 17 categories across blue collar and white collar jobs.


#### 3.2 Land Use Refinements

For the purposes for this calibration/validation exercise refinements have been made to the existing conditions DoT MITM model to reflect the current land use patterns in the Northern Growth Corridor area.

A high level review of the land uses coded the Northern Growth corridor area was undertaken by comparing the land use coded to recent aerial photographs. It was found that some zones in the DoT MITM contained notable land uses that were not visible on the aerial photography. Figure 3.1 summaries the differences observed between MITM and the aerial photography.



Figure 3.1: DoT MITM Modelled verses Visible Land Uses



Existing Development Coded in MITM (visible from aerial photography)

Development Coded in MITM however not evident on aerial photography

Key Road Network

|             |     |    | Area  |     |        |       |        |
|-------------|-----|----|-------|-----|--------|-------|--------|
| Summary     | 1   | 2  | 3     | 4   | 5      | 6     | Total  |
| House Holds | 338 | 7  | 1,531 | 6   | 10,339 | 3,183 | 15,405 |
| Enrollments | 3   | 0  | 34    | 7   | 4,475  | 3,101 | 7,620  |
| Employment  | 754 | 10 | 917   | 865 | 8,850  | 3,385 | 14,781 |



As shown in Figure 3.1 the area west of the Hume Highway (Area 6) contained a notable level of development not visible on recent aerial photographs. Accordingly refinements were made to the MITM land uses in selected zones.

The refinements made in the GTA MITM based model are summarised in Table 3.1.

Table 3.1: MITM Land Use Refinements

| VITM Zone |            | DoT Land Use |            | Land       | d Use Refineme | nts        |
|-----------|------------|--------------|------------|------------|----------------|------------|
| Number    | Households | Employment   | Enrolments | Households | Employment     | Enrolments |
| 2659      | 67         | 3,766        | 0          | 0          | 0              | 0          |
| 2199      | 27         | 42           | 132        | 0          | 0              | 0          |
| 2713      | 61         | 12           | 0          | 0          | 0              | 0          |
| 2709      | 57         | 16           | 193        | 0          | 0              | 0          |
| 2213      | 286        | 16           | 474        | 0          | 0              | 0          |
| 2214      | 640        | 15           | 0          | 0          | 0              | 0          |
| 2216      | 227        | 58           | 0          | 0          | 0              | 0          |
| Total     | 1,365      | 3,925        | 799        | 0          | 0              | 0          |



# 4. Methodology

#### 4.1 Model Calibration Procedure

#### 4.1.1 General

Model calibration is a process in which the model inputs are adjusted to reflect actual road characteristics to allow the model to produce travel demands in line with actual measured traffic conditions.

Existing traffic counts are used to compare against modelled link volumes after each model assignment. Following any link adjustments the model demands are once again assigned and modelled results compared to the traffic counts. This process is repeated until the model results converge to a point where they meet a number of calibration criteria.

Strategic network models are generally calibrated to reflect existing traffic counts across a wide corridor or regional area. Strategic network models are not expected to accurately match traffic counts at individual locations, instead model calibration is typically measured by comparing counts across a number of locations such as a screenline, and/or a group of counts at a regional level.

#### 4.1.2 Model Calibration Guidelines

Model Calibration and Validation guidelines are provided by VicRoads for use in strategic modelling work. The document entitled 'Guidelines on the Validation Process and Criteria for Strategic Transport Modelling (March 2010)' has been used as a reference in presenting the model results. This document outlines the model calibration targets for modelled traffic volumes.

The Percent Root Mean Square Error (%RMSE), Coefficient of Determination (R²) and slope of best-fit regression line statistics are used to measure the level of calibration where the targets are %RMSE of less than 30% for the study area, R² of greater than 0.90 and slope of best-fit regression line to have a gradient that is between 0.9 and 1.1 while constrained to pass through the origin.

# 4.2 Model Coverage Feedback

The current CUBE Voyager MITM model adopts 6 iterations from trip distribution to trip assignment.



# Model Calibration Results

# 5.1 Traffic Volumes Used for Calibration Purposes

Historic traffic count data for the Whittlesea, Hume, and Mitchell was provided by VicRoads and Councils. This data was refined by initially discarding counts prior to 2008. Where multiple counts were still present for the same location over a number of years the most recent traffic count was retained.

In the case of the Hume LGA, traffic counts directly relating to Melbourne Airport (e.g. the Tullamarine Freeway On-Ramp at the Airport) were also discarded. These counts were discarded as the traffic volumes in MITM are based on residential, employment and enrolment land uses only and do not take into consideration airport passenger generated trips. Hence including such surveyed traffic volumes in the calibration process would result in the overall outputs being skewed.

Furthermore it is noted that the DoT MITM model included the proposed relocation of the Melbourne's Wholesale Fruit and Vegetable Markets from West Melbourne to Epping. Given that this relocation has not occurred at the time the surveyed count data was collected, data points in close proximity to the proposed Epping Market site were discarded.

The survey data (2008 onwards) provided by VicRoads are included in Appendix B.

#### 5.2 VicRoads Validation Criteria

#### 5.2.1 Overview

The following detail of this section focuses on the VicRoads validation for the entire Strategic Modelling Area (i.e. the combined Whittlesea, Hume and Mitchell LGAs) with details of the individual LGAs provided in Appendix C.

#### 5.2.2 Root Mean Squared Error

The Percentage Root Mean Squared Error (%RMSE) is an indication of the correlation between modelled volumes and counts; however it is dependent on the size of the count volume. RMSE is ideal to be used during the validation process of a strategic model as it emphasises the need for counts with high volumes to be validated accurately and as such counts less than 1,000 vehicles have been excluded from the %RMSE calculation. It is expressed as:

$$\%RMSE = 100N \frac{\sqrt{\frac{\sum (M-C)^2}{(N-1)}}}{\sum C}$$

#### Where:

- %RMSE is the percentage root mean squared error
- N is the number of count/modelled link pairs
- ∑ is the summation of count/modelled link pair 1 to N
- M is the modelled one-way link volume (peak period)
- C is the measured average one-way link volume (peak period).



The VicRoads criteria for the validation of strategic models states that the overall %RMSE should be below 30%. The summary of the %RMSE (for counts greater than 1000 vehicles) is shown in Table 5.1.

Table 5.1: MITM 2 Hour AM Peak Period – Root Mean Squared Error Calibration Statistics

| 3 | 2000 - 5000  | 64  | 29.0 |
|---|--------------|-----|------|
| 4 | 5000 - 10000 | 12  | 20.4 |
| 5 | > 10000      | 0   | n/a  |
|   | All Counts   | 146 | 29.5 |

Table 5.1 shows that although the %RMSE is greater than 30% for counts between 1,000 and 2,000 (Count Category 2), the overall %RMSE is 29.5% which meets the VicRoads Criteria for an overall %RMSE of less than 30%. It is highlighted that strategic network models are not expected to accurately match traffic counts at individual locations; instead model calibration is typically measured by comparing counts at regional level where traffic volumes are higher and less effected by typical traffic variations. As such given that the overall %RMSE meets the VicRoads requirement, the refined model is considered suitable for testing the land use and road network scenarios proposed for the Northern Growth Corridor.

#### 5.2.3 Coefficient of Determination (R2)

The Coefficient of Determination (R-Squared) is used in the validation process as it is a measure of the correlation between modelled flows and count volumes in the form of a linear trend line. Although the R-Squared value is an efficient means of expressing correlation between two sets of data, it is not sufficient to use the R-Squared as the only method of validation as it is possible for the modelled flows to be well above or below measured counts and still produce a strong linear correlation. The R-Squared value is defined as:

$$r = \frac{\sum (C - \bar{C})(M - \bar{M})}{\sqrt{\sum (C - \bar{C})^2 \sum (M - \bar{M})^2}}$$

#### Where:

- r is the Coefficient of Determination (R-Squared)
- $\Sigma$  is the summation of count/modelled link pairs
- M is the modelled one-way link volume (peak period)
- C is the measured average one-way link volume (peak period)

Although the standard R-squared target for strategic models is a value above 0.88, the VicRoads guideline states that models should be validated to have an R-Squared value above 0.90. Figure 5.1 summarises the R-Squared value for the refined MITM model. Figure 5.1 indicates that the R-squared calculation for the refined MITM model is 0.90 which meets the VicRoads requirement exceedes the generally accepted targets for strategic modelling.

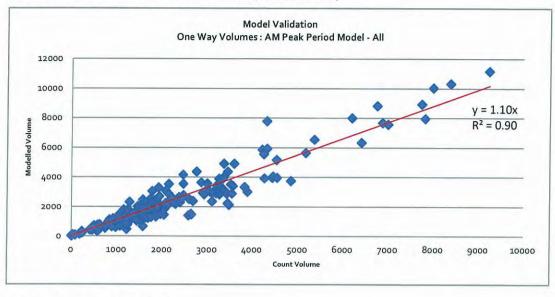



Figure 5.1: MITM 2-Hour AM Peak Period - R-Squared Summary

#### 5.2.4 Slope of Best Fit

The slope of best-fit regression line is similar to the R-squared process however this validation criterion is an overall measure of model performance and therefore it is not necessarily a measure of individual modelled volume correlation with its corresponding count volume. The VicRoads validation criteria require that the gradient of the trend line to be between 0.9 and 1.1 while restricted to pass through the origin.

Figure 5.1 calculates the gradient for the trend line to be 1.10 which satisfies the criterion and is considered satisfactory. Furthermore Figure 5.1 indicates that modelled traffic volumes are conservatively higher than surveyed volumes and as such would present a conservative assessment of future traffic volumes within the study area. This is considered acceptable in this instance given the intended use of the model (i.e. validating the future road network requirements) as it adds an inherent design contingency into any future road network.

# 5.3 Summary of Model Validation

The VicRoads guidelines for the validation of strategic models require three main criteria to be met. This includes the calculation of the Percent Root Mean Square Error (%RMSE), Coefficient of Determination (R²) and the slope of best-fit regression line. The results show that the strategic model for the Study Area satisfies all three criteria and is therefore satisfactory for the purposes of modelling existing and future years based on the statistics summarised in Table 5.2:

Table 5.2: Summary of VicRoads Validation Criteria

| Criteria                                                                     | VicRoads Requirement                                                                        | Overall |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------|
| Percent Root Square Mean Error for counts greater than 1,000 vehicles(%RMSE) | Below 30% overall                                                                           | 29.5%   |
| Coefficient of Determination (R-Squared)                                     | above 0.90                                                                                  | 0.90    |
| Slope of Best-Fit                                                            | Gradient of trend line between and 0.9 and 1.1 while constrained to pass through the origin | 1.10    |



# 6. Existing Conditions Results

# 6.1 Travel Pattern Summary

A comparison of the refined MITM model splits to the Victorian Integrated Survey of Travel and Activity (VIISTA) 2007 is presented in Table 6.1.

Table 6.1: Mode Split Comparison

|            |                | Refine             | d MITM              |         | VISTA          |                    |                     |               |         |
|------------|----------------|--------------------|---------------------|---------|----------------|--------------------|---------------------|---------------|---------|
| LGA        | Walk           | Private<br>Vehicle | Public<br>Transport | Total   | Walk           | Private<br>Vehicle | Public<br>Transport | Other         | Total   |
| Hume       | 42,243<br>(9%) | 384,793<br>(84%)   | 33,312<br>(7%)      | 460,349 | 37,571<br>(9%) | 331,606 (81%)      | 37,163<br>(9%)      | 2,450<br>(1%) | 408,790 |
| Mitchell   | 71<br>(2%)     | 3661<br>(98%)      | 7 (0%)              | 3,740   | n/a            | n/a                | n/a                 | n/a           | n/a     |
| Whittlesea | 30,863<br>(8%) | 349,905<br>(86%)   | 24,375<br>(6%)      | 405,143 | 24,849<br>(8%) | 273,340<br>(85%)   | 24,204<br>(8%)      | 323<br>(0%)   | 322,716 |

Note: VISTA does not include data for the Mitchell LGA

As shown in Table 6.1 the refined MITM mode splits are consistent with VISTA data.

## 6.2 Trip Frequencies and Times Travelled

Figure 6.1 shows a comparison between the DoT MITM model and the GTA/SMEC refined MITM model.

Figure 6.1: Trip Length Frequency Distribution

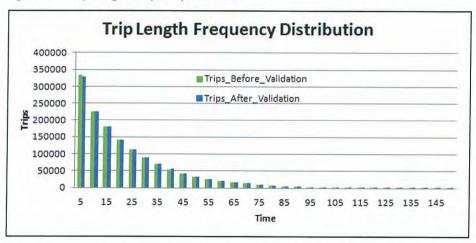
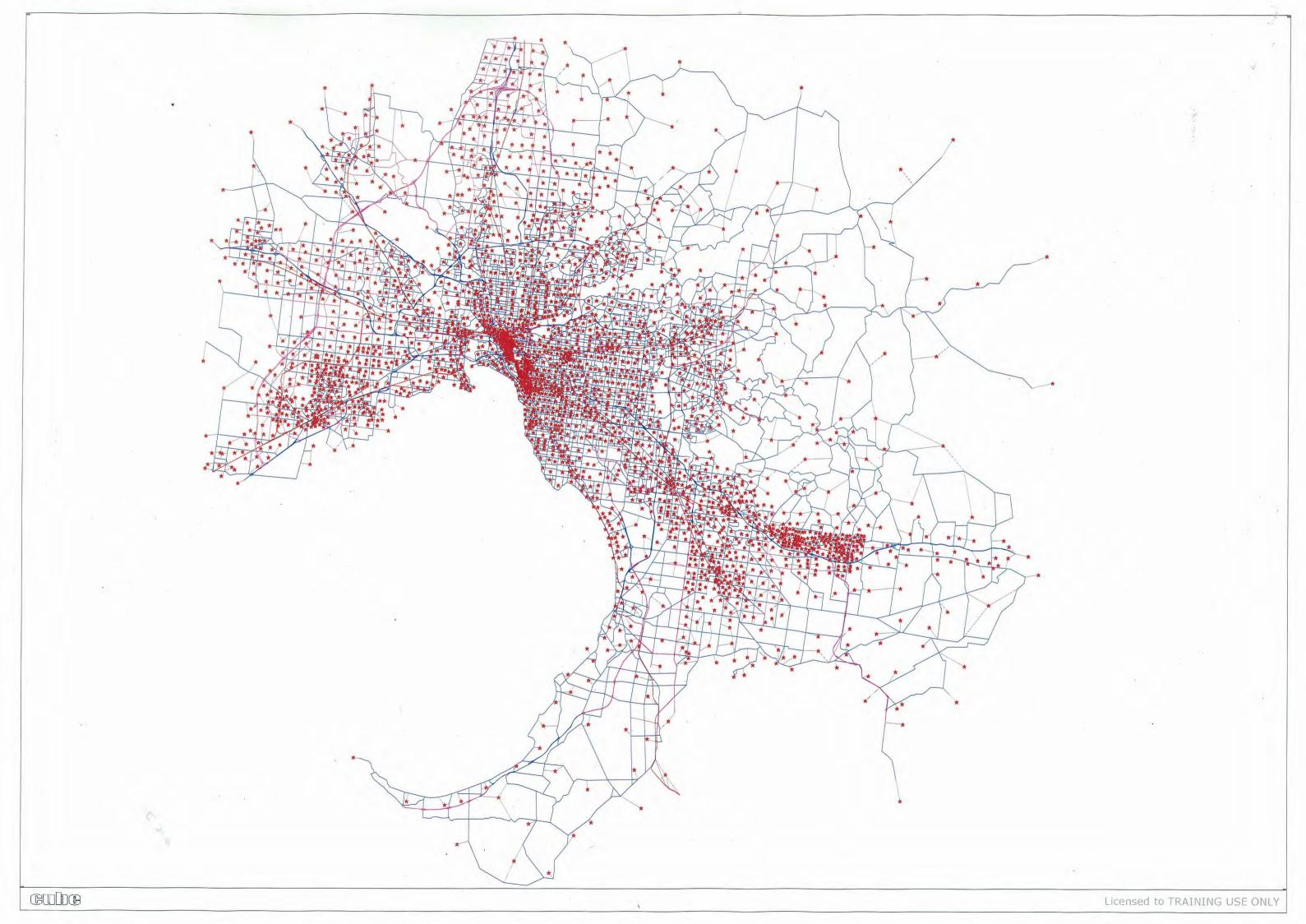



Figure 6.1 shows the trip length frequency distribution before and after the refinement process are consistent.




# 7. Conclusions

The MITM model refinement process undertaken by GTA and reviewed by SMEC has resulted in the development of a model suitable for testing future land uses and road network scenarios in the Northern Growth Corridor for the purposes of Growth Area Planning. The model meets all the VicRoads Validation Criteria and is therefore considered fit for purpose.

# Appendix A

MITM Network Coverage Area



Appendix B

Appendix B

Suveyed and Modelled Traffic Volumes

Table 1. Surveyed vs Modelled Traffic Volumes

| Location                                         | Year | Surveyed<br>Count | Factored<br>Survey<br>Count | Modelled<br>Count |
|--------------------------------------------------|------|-------------------|-----------------------------|-------------------|
| Whittlesea Area                                  |      |                   |                             |                   |
| Settlement Rd W of Dalton Rd                     | 2009 | 279               | 507                         | 719               |
| Settlement Rd E of Dalton Rd                     | 2009 | 494               | 898                         | 644               |
| Dalton Rd SW of Settlement Rd                    | 2009 | 765               | 1391                        | 1291              |
| Dalton Rd NE of Settlement Rd                    | 2009 | 2671              | 4856                        | 3730              |
| Donnybrook Rd 1km E of Brookville Rd             | 2008 | 52                | 95                          | 82                |
| Donnybrook Rd 1km E of Brookville Rd             | 2008 | 138               | 251                         | 228               |
| Metropolitan Ring Road Offramp E of Edgars Rd    | 2008 | 588               | 1069                        | 687               |
| Metro Ring Road Offramp W of Edgars Rd           | 2008 | 807               | 1467                        | 2014              |
| Metropolitan Ring Rd Offramp to Dalton Rd        | 2008 | 892               | 1622                        | 1748              |
| Hume Fwy btw Oherns Rd & Craigieburn Rd East     | 2010 | 975               | 1773                        | 1902              |
| Metropolitan Ring Rd Offramp to Plenty Rd        | 2008 | 982               | 1785                        | 3029              |
| Cooper Street btw Merri Creek & Hume Fwy         | 2008 | 1005              | 1827                        | 1853              |
| Metropolitan Ring Rd In Bd Onramp from Plenty Rd | 2008 | 1046              | 1902                        | 2549              |
| Metropolitan Ring Rd Onramp from Dalton Rd       | 2008 | 1046              | 1902                        | 2048              |
| Hume Fwy Onramp from Metropolitan Ring Rd W Bd   | 2008 | 1056              | 1920                        | 1982              |
| Hume Fwy Offramp to Metropolitan Ring Rd W Bd    | 2008 | 1480              | 2691                        | 2383              |
| Hume Fwy btw Oherns Rd & Craigieburn Rd East     | 2010 | 1854              | 3371                        | 4892              |
| Cooper Street btw Hume Fwy Ramps & Merri Creek   | 2008 | 1953              | 3551                        | 2881              |
| Plenty Rd btw Childs Rd & Mayfield Dr            | 2010 | 2452              | 4458                        | 4040              |
| Settlement Rd W of Dalton Rd                     | 2009 | 565               | 1027                        | 856               |
| Dalton Rd NE of Settlement Rd                    | 2009 | 1126              | 2047                        | 2047              |
| Dalton Rd SW of Settlement Rd                    | 2009 | 1712              | 3113                        | 2358              |
| Metro Ring Rd btw Plenty Rd & Dalton Rd          | 2010 | 2376              | 4320                        | 7783              |
| Metro Ring Rd btw Dalton Rd & Edgars Rd          | 2010 | 3413              | 6205                        | 7990              |
| Metro Ring Rd btw Hume Hwy & Craigieburn Byp     | 2010 | 3528              | 6415                        | 6339              |
| Metro Ring Rd btw Craigieburn Byp & Edgars Rd    | 2010 | 3716              | 6756                        | 8808              |
| Metro Ring Rd btw Plenty Rd & Dalton Rd          | 2010 | 3851              | 7002                        | 7549              |
| Metro Ring Rd btw Dalton Rd & Edgars Rd          | 2010 | 4298              | 7815                        | 7946              |
| Metro Ring Rd btw Edgars Rd & Craigieburn Byp    | 2010 | 4395              | 7991                        | 10035             |
| Metro Ring Rd btw Craigieburn Byp & Hume Hwy     | 2010 | 4606              | 8375                        | 10312             |
| Hume Fwy Off Ramp S of Craigieburn Rd East       | 2008 | 231               | 420                         | 410               |
| Settlement Rd E of High St                       | 2008 | 255               | 464                         | 402               |
| Paschke Cr E of High St                          | 2009 | 291               | 529                         | 632               |
| Craigieburn Rd East E of Hume Fwy Off Ramp       | 2008 | 350               | 636                         | 698               |
| Wood St W of Settlement Rd                       | 2008 | 409               | 744                         | 528               |
| Cooper St W of Davisson St                       | 2008 | 417               | 758                         | 693               |
| Craigieburn Rd East W of Hume Fwy Off Ramp       | 2008 | 448               | 815                         | 973               |
| Keon Pde W of Dalton Rd                          | 2010 | 454               | 825                         | 805               |
| Settlement Rd NW of Wood St                      | 2008 | 467               | 849                         | 1122              |
| McDonalds Rd W of Plenty Rd                      | 2008 | 510               | 927                         | 1170              |
| Kingsway Dr W of High St                         | 2009 | 567               | 1031                        | 1066              |
| High St S of Paschke Cr                          | 2009 | 633               | 1151                        | 874               |
| Childs Rd W of Plenty Rd                         | 2010 | 636               | 1156                        | 1782              |
| The Boulevard E of Dalton Rd                     | 2008 | 660               | 1200                        | 1452              |
| High St S of Settlement Rd                       | 2008 | 669               | 1216                        | 1018              |
| Mckimmies Rd W of Plenty Rd                      | 2010 | 680               | 1236                        | 1657              |

| Location                                                        | Year | Surveyed<br>Count | Factored<br>Survey<br>Count | Modelled<br>Count |
|-----------------------------------------------------------------|------|-------------------|-----------------------------|-------------------|
| Edgars Rd SE of Victoria Dr                                     | 2010 | 689               | 1253                        | 1814              |
| Plenty Rd S of Gorge Rd                                         | 2008 | 705               | 1282                        | 230               |
| Edgars Rd S of Barry Rd                                         | 2008 | 713               | 1296                        | 1351              |
| Edgars Rd S of Metro Ring Rd                                    | 2008 | 766               | 1393                        | 1580              |
| Childs Rd W of Prince of Wales Dr                               | 2008 | 795               | 1445                        | 1038              |
| Gorge Rd E of Plenty Rd                                         | 2008 | 798               | 1451                        | 1092              |
| Metro Ring Rd Exit E of Dalton Rd                               | 2008 | 816               | 1484                        | 1539              |
| Mahoneys Rd W of Edgars Rd                                      | 2010 | 858               | 1560                        | 1437              |
| Settlement Rd E of Wood St                                      | 2008 | 867               | 1576                        | 1225              |
| Edgars Rd N of Barry Rd                                         | 2008 | 868               | 1578                        | 2451              |
| Mahoneys Rd W of Hughes Pde                                     | 2010 | 898               | 1633                        | 2296              |
| High St SW of Cooper St                                         | 2010 | 906               | 1647                        | 1237              |
| Craigieburn Bypass Onramp S of Cooper St                        | 2008 | 930               | 1691                        | 1798              |
| High St S of Childs Rd                                          | 2008 | 969               | 1762                        | 1273              |
| Childs Rd E of Prince of Wales Dr                               | 2008 | 978               | 1778                        | 2286              |
| Dalton Rd S of The Boulevard                                    | 2008 | 991               | 1802                        | 1763              |
| Dalton Rd S of Metro Ring Rd                                    | 2008 | 1021              | 1856                        | 2047              |
| Plenty Rd N of Gorge Rd                                         | 2008 | 1058              | 1924                        | 3278              |
| Cooper St W of Craigieburn Bypass                               | 2008 | 1132              | 2058                        | 1846              |
| High St N of Childs Rd                                          | 2008 | 1145              | 2082                        | 2217              |
| High St N of Settlement Rd                                      | 2008 | 1150              | 2091                        | 3061              |
| Dalton Rd N of Metro Ring Rd                                    | 2008 | 1162              | 2113                        | 2051              |
| Edgars Rd NW of Victoria Dr                                     | 2010 | 1184              | 2153                        | 3512              |
| High St N of Kingsway                                           | 2009 | 1185              | 2155                        | 2859              |
| Cooper St W of Edgars Rd                                        | 2008 | 1216              | 2211                        | 2627              |
| Mahoneys Rd E of Edgars Rd                                      | 2010 | 1342              | 2440                        | 2552              |
| Dalton Rd N of The Boulevard                                    | 2008 | 1433              | 2605                        | 2501              |
| Craigieburn Bypass Offramp S of Cooper St                       | 2008 | 1460              | 2655                        | 1468              |
| Edgars Rd N of Metro Ring Rd                                    | 2008 | 1523              | 2769                        | 4349              |
| Edgars Rd N of Mahoneys Rd                                      | 2010 | 1616              | 2938                        | 2827              |
| Dalton Rd NE of Keon Pde                                        | 2010 | 1717              | 3122                        | 2894              |
| Plenty Rd SW of Metropolitan Ring Rd                            | 2008 | 1769              | 3216                        | 3424              |
| Edgars Rd S of Metro Ring Rd                                    | 2008 | 1800              | 3273                        | 2827              |
| Cooper St E of Hospital Ent                                     | 2010 | 1811              | 3293                        | 3366              |
| Cooper St E of Craigieburn Bypass                               | 2008 | 1830              | 3327                        | 3816              |
| High St NE of Cooper St                                         | 2010 | 1856              | 3375                        | 4000              |
| Dalton Rd N of Alexander Av                                     | 2008 | 1891              | 3438                        | 2866              |
| Mahoneys Rd E of Hughes Pde                                     | 2010 | 1918              | 3487                        | 2117              |
| Plenty Rd N of Mckimmies Rd                                     | 2010 | 2496              | 4538                        | 5157              |
| Dalton Rd N of Metro Ring Rd                                    | 2008 | 2502              | 4549                        | 3962              |
| Plenty Rd N of Milton Pde                                       | 2010 | 2849              | 5180                        | 5632              |
| Hume Area                                                       |      |                   |                             |                   |
| Mitchells La W of Horne St                                      | 2010 | 322               | 585                         | 757               |
| Vineyard Rd S of McDougall Rd                                   | 2010 | 671               | 1220                        | 1506              |
| Melbourne-Lancefield Rd 300m S of Konagaderra Rd at             |      |                   |                             |                   |
| 42.8km                                                          | 2010 | 106               | 193                         | 145               |
| Sunbury-Riddells Creek Rd 200m S of Jacksons Creek at<br>11.9km | 2010 | 123               | 224                         | 232               |
| Mitchells La btw Vineyard Rd & Pasley St                        | 2010 | 134               | 244                         | 307               |

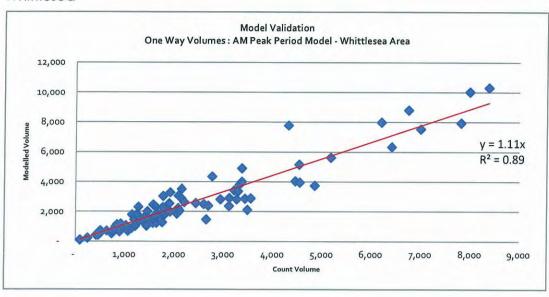
|                                                           |      |                   | Factored        | 1 V                  |
|-----------------------------------------------------------|------|-------------------|-----------------|----------------------|
| Location                                                  | Year | Surveyed<br>Count | Survey<br>Count | Modelled<br>Count    |
| Sunbury-Riddells Creek Rd 200m S of Jacksons Creek at     |      |                   |                 |                      |
| 11.9km                                                    | 2010 | 244               | 444             | 47.                  |
| Melbourne-Lancefield Rd 300m S of Konagaderra Rd at       |      | 0                 |                 |                      |
| 42.8km                                                    | 2010 | 318               | 578             | 319                  |
| Riggall St E of Railway Cres Riggall St E of Railway Cres | 2008 | 529               | 962             | 1100                 |
| Gap Rd btw Horne St & Pasley St                           |      | 536               | 975             | 976                  |
| Widford Street S of Jacana Ave                            | 2010 | 539               | 980             | 60:                  |
| Vineyard Rd btw Calder Fwy & Moore Rd                     | 2008 | 585               | 1064            | 1290                 |
| Hume Fwy S of Craigieburn at 22.9km Post                  | 2010 | 594               |                 | 151                  |
| Widford Street S of Jacana Ave                            | 2008 | 596<br>662        | 1084            | 106:                 |
| Station St btw Horne St & Evans St                        | 2010 | 678               | 1204            | 1134                 |
| Riddell Rd btw Horne St & Pasley St                       | 2010 | 758               | 1233            | 762                  |
| Somerton Rd btw Brendan Rd & Pascoe Vale Rd               | 2010 | 780               | 1378<br>1418    | 1308                 |
| Gap Rd btw Horne St & Pasley St                           | 2010 | 844               |                 | 1418                 |
| Barry Road btw Pascoe Vale Road & Yinnar St               | 2010 | 870               | 1535<br>1582    | 1033                 |
| Vineyard Rd btw Obeid Dr & Elizabeth Dr                   | 2010 | 905               | 1645            |                      |
| Station St btw Horne St & Evans St                        | 2010 | 919               | 1671            | 203 <u>3</u><br>1624 |
| Macedon St btw Horne St & Evans St                        | 2010 | 931               | 1693            | 1219                 |
| Somerton Rd btw Brendan Rd & Pascoe Vale Rd               | 2010 | 973               | 1769            | 2601                 |
| Vineyard Rd btw Calder Fwy & Moore Rd                     | 2010 | 989               | 1798            | 2050                 |
| Horne St btw Mitchells La & Neill St                      | 2010 | 996               | 1811            | 1626                 |
| Camp Road btw Pascoe Vale Road & Blair Street             | 2008 | 1027              | 1867            | 1323                 |
| Camp Road btw Blair Street & Pascoe Vale Road             | 2008 | 1126              | 2047            | 1441                 |
| Riddell Rd btw Horne St & Pasley St                       | 2010 | 1265              | 2300            | 2167                 |
| Macedon St btw Horne St & Evans St                        | 2010 | 1425              | 2591            | 1405                 |
| Barry Road btw Pascoe Vale Road & Yinnar St               | 2008 | 1453              | 2642            | 1520                 |
| Somerton Road btw Reservoir Dr & Union Rd                 | 2008 | 1633              | 2969            | 3076                 |
| Mickleham Rd btw Barrymore Rd & Ardlie St                 | 2010 | 1771              | 3220            | 3028                 |
| Hume Fwy S of Craigieburn at 22.9km Post                  | 2008 | 1902              | 3458            | 2224                 |
| Hume Hwy 88 M South of Glenbarry Rd                       | 2010 | 1981              | 3602            | 4889                 |
| Hume Fwy btw Metropolitan Ring Rd & Cooper St             | 2010 | 2143              | 3896            | 2988                 |
| Hume Fwy btw Metropolitan Ring Rd & Cooper St             | 2010 | 2378              | 4324            | 5915                 |
| Hume Hwy 150m North of Ainslie Rd                         | 2010 | 2446              | 4447            | 3934                 |
| Horne St NE of Reece Access Departure                     | 2010 | 704               | 1280            | 1588                 |
| Vineyard Rd N of McDougall Rd Departure                   | 2010 | 730               | 1327            | 1583                 |
| Vineyard Rd S of McDougall Rd Departure                   | 2010 | 839               | 1525            | 2033                 |
| Vineyard Rd SW of Reece Access Departure                  | 2010 | 933               | 1696            | 2071                 |
| Western Ring Rd btw Hume Hwy and Pascoe Vale Rd           | 2010 | 3783              | 6878            | 7682                 |
| Western Ring Rd btw Hume Hwy and Pascoe Vale Rd           | 2009 | 4257              | 7740            | 8919                 |
| Western Ring Rd btw Tullamarine Fwy & Pascoe Vale Rd      | 2010 | 5080              | 9236            | 11147                |
| Sydney Rd S of Cooper St                                  | 2008 | 1042              | 1895            | 2342                 |
| Sydney Rd S of Camp Rd                                    | 2008 | 2952              | 5367            | 6534                 |
| Coleraine St W of Pascoe Vale Rd                          | 2010 | 299               | 544             | 453                  |
| Shankland Bvd SW of Pascoe Vale Rd                        | 2008 | 345               | 627             | 765                  |
| Paringa Blvd NW of Pascoe Vale Rd                         | 2010 | 368               | 669             | 608                  |
| Hume Hwy S of Stanley Dr                                  | 2010 | 553               | 1005            | 1292                 |
| Craigieburn Rd W of Bridgewater Rd                        | 2008 | 595               | 1082            | 691                  |
| Camp Rd W of Hume Hwy                                     | 2008 | 609               | 1107            | 1174                 |

| Location                               | Year | Surveyed<br>Count | Factored<br>Survey<br>Count | Modelle<br>Count |
|----------------------------------------|------|-------------------|-----------------------------|------------------|
| Broadmeadows Rd W of Nth Circular Rd   | 2008 | 618               | 1124                        | 102              |
| Craigieburn Rd E of Bridgewater Rd     | 2008 | 672               | 1222                        | 46               |
| Bridgewater Rd S of Craigieburn Rd     | 2008 | 700               | 1273                        | 95               |
| Mickleham Rd N of Tangemere Av         | 2008 | 710               | 1291                        | 16               |
| Deviation Rd E of Nth Circular Rd      | 2008 | 846               | 1538                        | 14:              |
| Pascoe Vale Rd SE of Shankland Bvd     | 2008 | 941               | 1711                        | 14               |
| Cooper St E of Hume Hwy                | 2010 | 1069              | 1944                        | 269              |
| Pascoe Vale Rd SW of Paringa Blvd      | 2010 | 1085              | 1973                        | 148              |
| Pascoe Vale Rd S of Coleraine St       | 2010 | 1171              | 2129                        | 229              |
| Mickleham Rd N of Tangemere Av         | 2008 | 1308              | 2378                        | 262              |
| Mickleham Rd S of Rylandes Dr          | 2008 | 1321              | 2402                        | 22               |
| Mahoneys Rd E of Hume Hwy              | 2008 | 1349              | 2453                        | 258              |
| Western Ring Rd Offramp E of Hume Hwy  | 2008 | 1356              | 2465                        | 41               |
| Pascoe Vale Rd NW of Shankland Bvd     | 2008 | 1360              | 2473                        | 354              |
| Somerton Rd W of Hume Hwy              | 2010 | 1364              | 2480                        | 276              |
| Pascoe Vale Rd NE of Dimboola Rd       | 2010 | 1655              | 3009                        | 355              |
| Pascoe Vale Rd NE of Paringa Blvd      | 2010 | 1682              | 3058                        | 300              |
| Hume Hwy N of Somerton Rd              | 2010 | 1741              | 3165                        | 309              |
| Cooper St E of Freight Dr              | 2008 | 1762              | 3204                        | 288              |
| Pascoe Vale Rd N of Coleraine St       | 2010 | 1799              | 3271                        | 388              |
| Hume Hwy N of Stanley Dr               | 2010 | 1862              | 3385                        | 309              |
| Hume Hwy N of Somerset Rd              | 2010 | 1900              | 3455                        | 435              |
| Pascoe Vale Rd N of Western Ring Rd    | 2010 | 1941              | 3529                        | 350              |
| Pascoe Vale Rd N of Sunset Blvd        | 2008 | 1966              | 3575                        | 339              |
| Pascoe Vale Rd S of Sunset Blvd        | 2008 | 2105              | 3827                        | 331              |
| Hume Hwy N of Western Ring Rd          | 2008 | 2322              | 4222                        | 586              |
| Hume Hwy N of Western Ring Rd          | 2008 | 2322              | 4222                        | 586              |
| Hume Hwy S of Somerset Rd              | 2010 | 2338              | 4251                        | 556              |
| Mickleham Rd N of Rylandes Dr          | 2008 | 2348              | 4269                        | 391              |
| Mitchell                               |      |                   |                             |                  |
| Old Sydney Rd 2.2km N of Donnybrook Rd | 2010 | 8                 | 15                          | 1                |
| Old Sydney Rd 2.2km N of Donnybrook Rd | 2010 | 20                | 36                          | 10               |
| Hume Fwy 800m S of Northern Hwy        | 2009 | 839               | 1525                        | 172              |
| Hume Hwy S of Beveridge at 36.9km Post | 2010 | 860               | 1564                        | 188              |
| Hume Hwy S of Beveridge at 36.9km Post | 2010 | 1578              | 2869                        | 364              |
| Hume Fwy 800m S of Northern Hwy        | 2009 | 1598              | 2905                        | 293              |

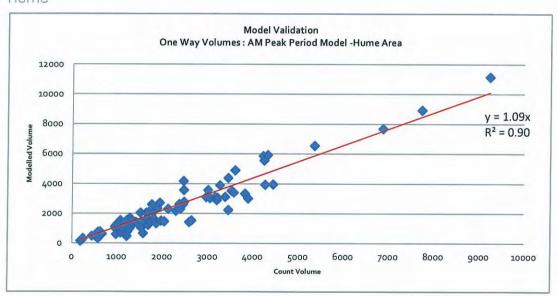
Table 2. The Counts Which Have Been Removed

| Location                                      | Year | Surveyed<br>Count | Comment                                                       |
|-----------------------------------------------|------|-------------------|---------------------------------------------------------------|
| Whittlesea Area                               |      |                   |                                                               |
| Edgars Rd N of Barry Rd                       | 2008 | 868               |                                                               |
| Edgars Rd S of Barry Rd                       | 2008 | 713               |                                                               |
| Barry Rd W of Edgars Rd                       | 2008 | 211               |                                                               |
| Victoria Dr SW of Edgars Rd                   | 2010 | 422               |                                                               |
| Edgars Rd SE of Victoria Dr                   | 2010 | 689               |                                                               |
| Edgars Rd NW of Victoria Dr                   | 2010 | 1184              |                                                               |
| Edgars Rd N of Metro Ring Rd                  | 2008 | 1523              |                                                               |
| Edgars Rd N of Metro Ring Rd                  | 2008 | 598               | = 1                                                           |
| Metro Ring Rd Onramp E of Edgars Rd           | 2008 | 433               | To close<br>to                                                |
| Edgars Rd S of Metro Ring Rd                  | 2008 | 1800              | proposed                                                      |
| Metro Ring Rd Offramp E of Edgars Rd          | 2008 | 511               | Epping                                                        |
| Metro Ring Rd Onramp W of Edgars Rd           | 2008 | 720               | market                                                        |
| Metro Ring Road Onramp W of Edgars Rd         | 2008 | 745               | site                                                          |
| Metro Ring Rd Offramp W of Edgars Rd          | 2008 | 783               |                                                               |
| Metro Ring Road Offramp W of Edgars Rd        | 2008 | 807               |                                                               |
| Edgars Rd S of Metro Ring Rd                  | 2008 | 766               |                                                               |
| Mahoneys Rd W of Edgars Rd                    | 2010 | 858               |                                                               |
| Edgars Rd N of Mahoneys Rd                    | 2010 | 1616              |                                                               |
| Metropolitan Ring Road Onramp E of Edgars Rd  | 2008 | 445               |                                                               |
| Metropolitan Ring Road Offramp E of Edgars Rd | 2008 | 588               |                                                               |
| Metropolitan Ring Rd Offramp to Dalton Road   | 2008 | 1150              |                                                               |
| Settlement Rd E of Dalton Rd                  | 2009 | 806               |                                                               |
| Dalton Rd S of Darebin Dr                     | 2008 | 1072              |                                                               |
| Metro Ring Rd Exit W of Dalton Rd             | 2008 | 1140              | T(C                                                           |
| Metropolitan Ring Rd Onramp from Dalton Road  | 2008 | 451               | Traffic<br>Count                                              |
| Metro Ring Rd Entry W of Dalton Rd            | 2008 | 937               | same                                                          |
| Metro Ring Rd Offramp W of Plenty Rd          | 2008 | 919               | location                                                      |
| High St SW of Epping Plaza Sth                | 2008 | 1092              | in model                                                      |
| High St NE of Epping Plaza Sth                | 2008 | 1048              |                                                               |
| Dalton Rd S of Metro Ring Rd                  | 2008 | 2928              |                                                               |
| Cooper St E of High St                        | 2010 | 574               |                                                               |
| Wallan-Woodstock Rd .3km N of Station Ln      | 2010 | 148               | To close to                                                   |
| Wallan-Woodstock Rd .3km N of Station Ln      | 2010 | 82                | Beveridge<br>area which                                       |
| Beveridge Rd 750m W of Merriang Rd            | 2008 | 11                | was more                                                      |
| Beveridge Rd 750m W of Merriang Rd            | 2008 | 19                | modelled<br>growth than<br>visible on<br>aerial<br>photograph |

| Location                                                  | Year | Surveyed | Comme   |
|-----------------------------------------------------------|------|----------|---------|
| Hume Area                                                 |      |          |         |
| Centre Rd SW of Melbourne Dr                              | 2008 | 342      |         |
| Tullamarine Fwy btw Centre Rd & Melbourne Dr (From        |      |          |         |
| Sunbury)                                                  | 2008 | 1194     |         |
| Tullamarine Fwy btw Airport Dr & Centre Rd (To Sunbury)   | 2008 | 332      |         |
| Tullamarine Fwy Onramp from Airport (Melbourne Drive)     | 2008 | 1981     | Airport |
| Tullamarine Fwy btw Centre Rd/Melbourne Dr & Mickleham Rd | 2010 | 3025     |         |
| Tullamarine Fwy 1km NW of Mickleham Rd                    | 2010 | 2939     |         |
| Tullamarine Fwy btw Mickleham Rd & Western Ring Rd        | 2010 | 4269     |         |
| Tullamarine Fwy btw Mickleham Rd & Western Ring Rd        | 2010 | 3456     |         |
| Tullamarine Fwy 1km NW of Mickleham Rd                    | 2010 | 3026     | Traffic |
| Tullamarine Fwy btw Airport Dr and Mickleham Rd           | 2010 | 3035     | Count   |
| Western Ring Rd btw Pascoe Vale Rd & Tullamarine Fwy      | 2010 | 4839     | same    |
| Western Ring Rd btw Hume Hwy & Pascoe Vale Rd             | 2009 | 3935     | in mode |
| Western Ring Rd btw Hume Hwy & Pascoe Vale Rd             | 2009 | 4283     |         |
| Sydney Rd S of Cooper St                                  | 2008 | 2326     |         |
| Hume Hwy btw Glenbarry Rd & Jessica Rd                    | 2010 | 2049     |         |
| Hume Hwy S of Camp Rd                                     | 2008 | 2808     |         |
| Somerton Road btw Reservoir Dr & Union Rd                 | 2008 | 751      |         |
| Hume Hwy S of Somerton Rd                                 | 2010 | 621      |         |
| Vineyard Rd N of McDougall Rd                             | 2010 | 916      |         |
| Mitchells La btw Vineyard Rd & Pasley St                  | 2010 | 293      |         |
| Vineyard Rd btw McDougall Rd & Watsons Rd                 | 2010 | 904      |         |
| Vineyard Rd btw McDougall Rd & Watsons Rd                 | 2010 | 593      |         |
| Horne St btw Mitchells La & Neill St                      | 2010 | 663      |         |
| Horne St NE of Reece Access                               | 2010 | 775      |         |
| Mitchells La W of Horne St Departure                      | 2010 | 129      |         |
| Vineyard Rd SW of Reece Access                            | 2010 | 678      |         |
| Brookville Dr 300 M South of Donnybrook Rd                | 2008 | 40       |         |
| Brookville Dr 300 M South of Donnybrook Rd                | 2008 | 23       | TC too  |
| Reece Access E of Horne St Departure                      | 2010 | 38       | small   |
| Reece Access E of Horne St                                | 2010 | 29       |         |

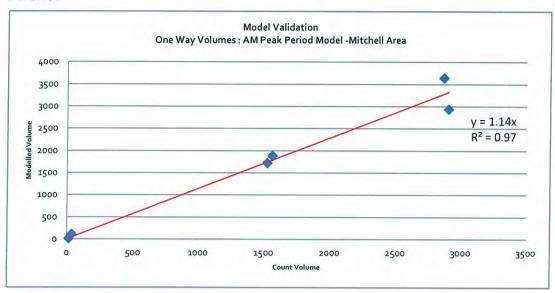

# Appendix C

# Appendix C

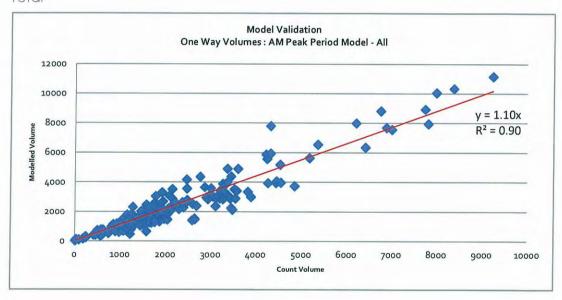

VicRoads Validation Criteria by LGA



#### Whittlesea




#### Hume






#### Mitchell



#### Total





#### Melbourne

A 87 High Street South PO Box 684 KEW VIC 3101

P +613 9851 9600

F +613 9851 9610

E melbourne@gta.com.au

#### Sydney

A Level 2, 815 Pacific Highway CHATSWOOD NSW 2067 PO Box 5254 WEST CHATSWOOD NSW 1515

P +612 8448 1800

F +612 8448 1810

E sydney@gta.com.au

#### Brisbane

A Level 3, 527 Gregory Terrace BOWENHILLS QLD 4006 PO Box 555 FORTITUDE VALLEY QLD 4006

P +61731135000 F +61731135010

E brisbane@gta.com.au

#### Canberra

A Level 11, 60 Marcus Clarke Street CANBERRA ACT 2601 PO Box 1109 CIVIC SQUARE ACT 2608 P +612 6243 4826

F +612 6243 4848

E canberra@gta.com.au

#### Adelaide

A Suite 4, Level 1, 136 The Parade PO Box 3421 NORWOOD SA 5000

P +618 8334 3600

F +618 8334 3610

E adelaide@gta.com.au

#### Gold Coast

A Level 9, Corporate Centre 2 Box 37 1 Corporate Court BUNDALL QLD 4217

P +617 5510 4800

F +617 5510 4814 E goldcoast@gta.com.au

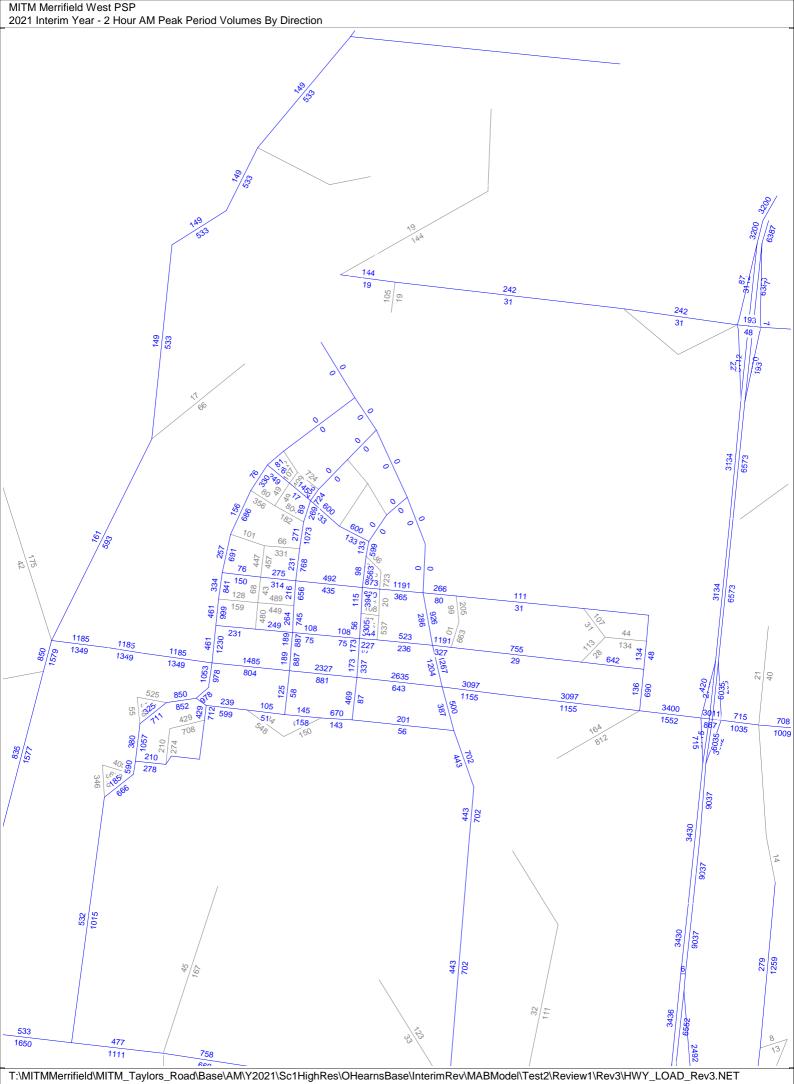
#### Townsville

A Level 1, 25 Sturt Street PO Box 1064 TOWNSVILLE QLD 4810

P +617 4722 2765

F +617 4722 2761

E townsville@gta.com.au

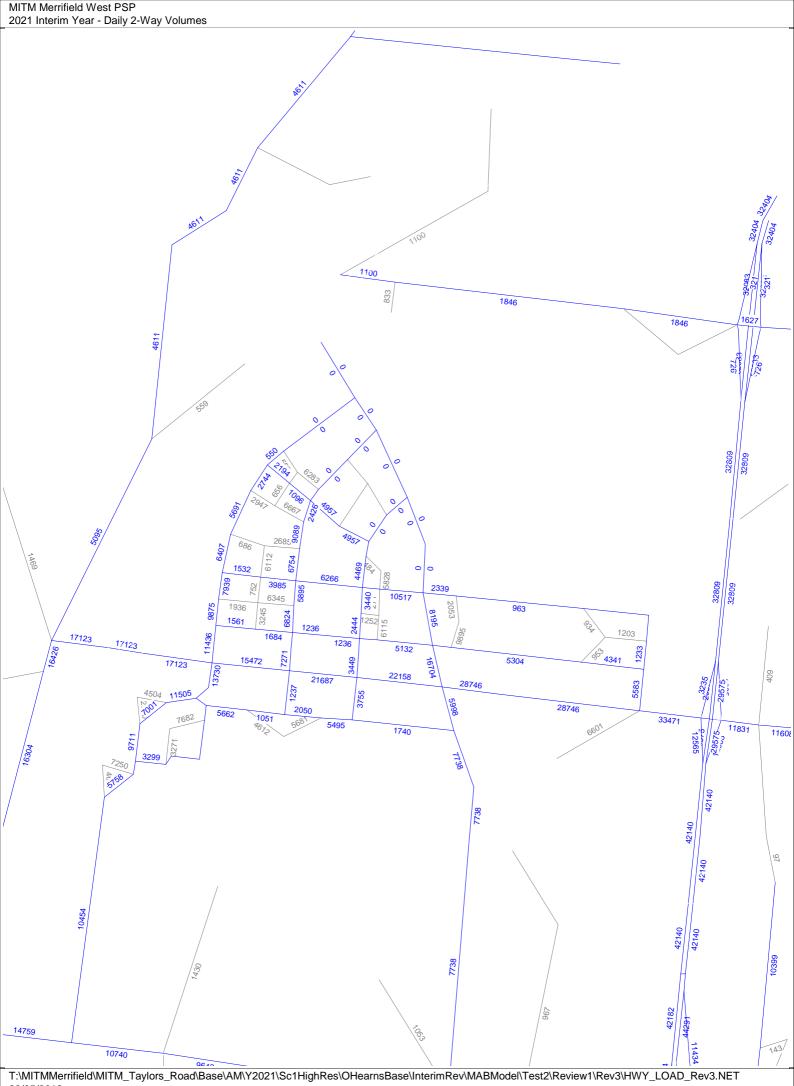

www.gta.com.au



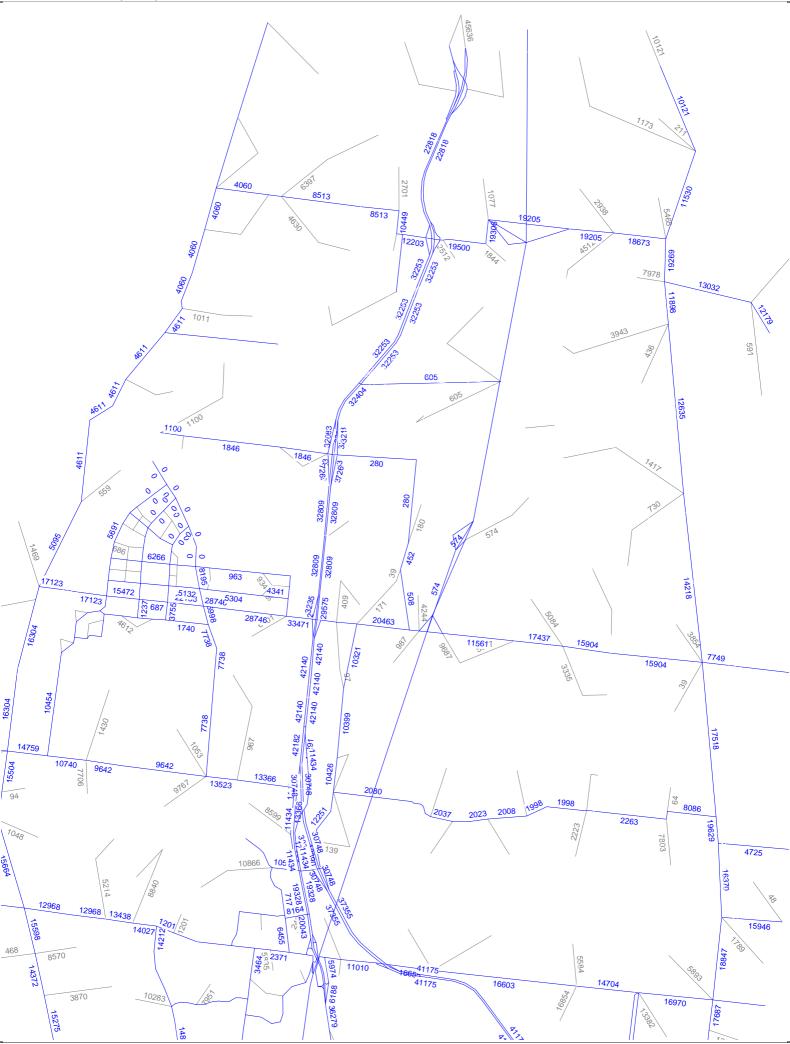
# APPENDIX 2 – MERRIFIELD WEST PRECINCT STRUCTURE PLAN



# APPENDIX 3 – MITM INTERIM (2021) AND ULTIMATE (2046) NETWORK PLOTS




22/05/2012


Cube



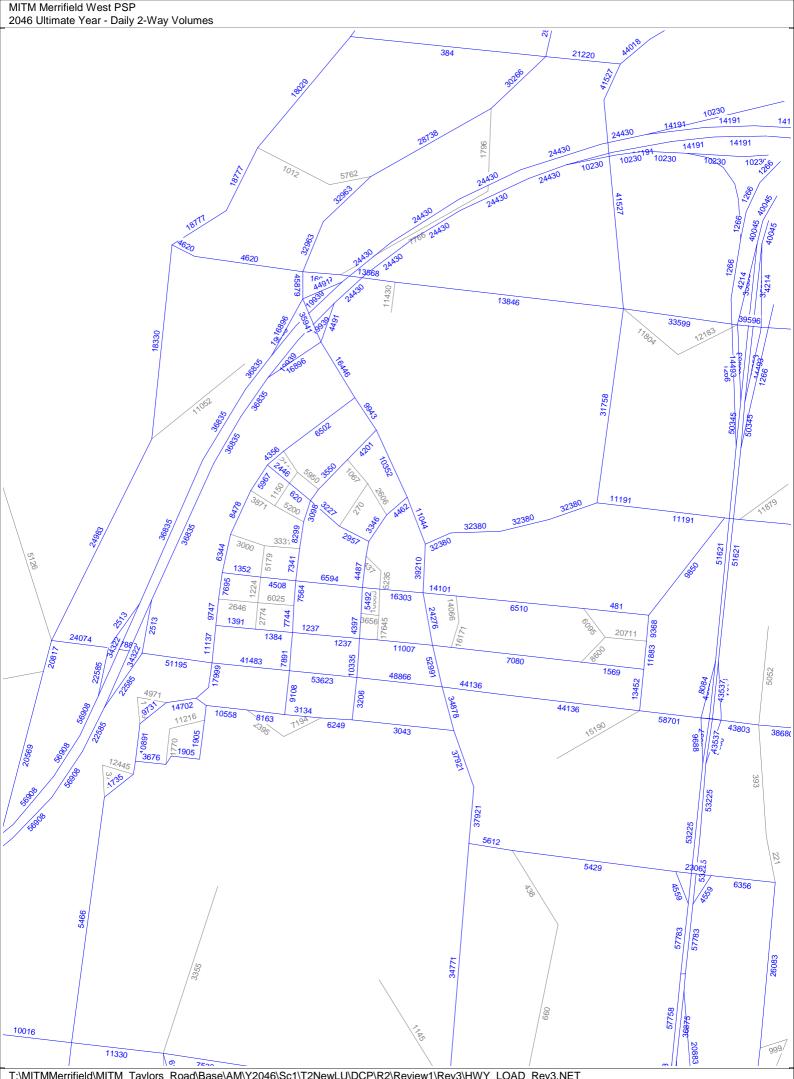
T:\MITMMerrifield\MITM\_Taylors\_Road\Base\AM\Y2021\Sc1HighRes\OHearnsBase\InterimRev\MABModel\Test2\Review1\Rev3\HWY\_LOAD\_Rev3.NET 22/05/2012



 $T: \label{thm:local_continuous} T: \label{thm:local_continuo$ 

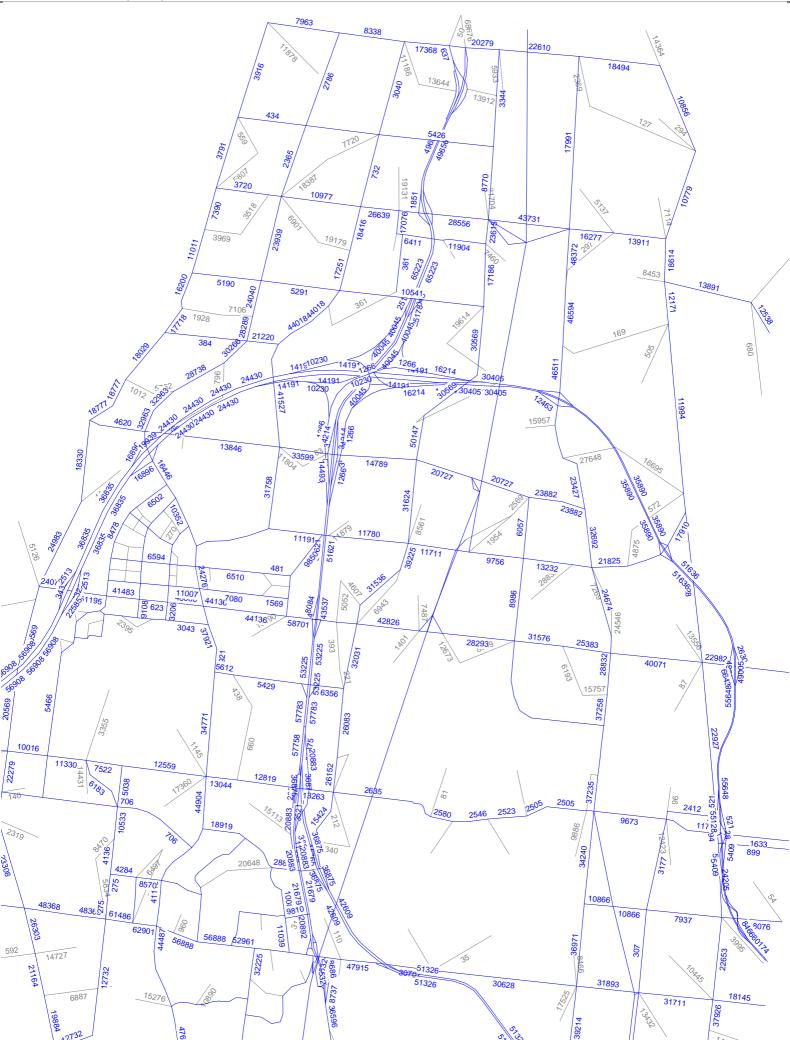


T:\MITMMerrifield\MITM\_Taylors\_Road\Base\AM\Y2021\Sc1HighRes\OHearnsBase\InterimRev\MABModel\Test2\Review1\Rev3\HWY\_LOAD\_Rev3.NET 22/05/2012


 $T:\\MITMMerrifield\\MITM_Taylors_Road\\Base\\AM\\Y2046\\Sc1\\T2NewLU\\DCP\\R2\\Review1\\Rev3\\HWY_LOAD_Rev3.NET22/05/2012$ 





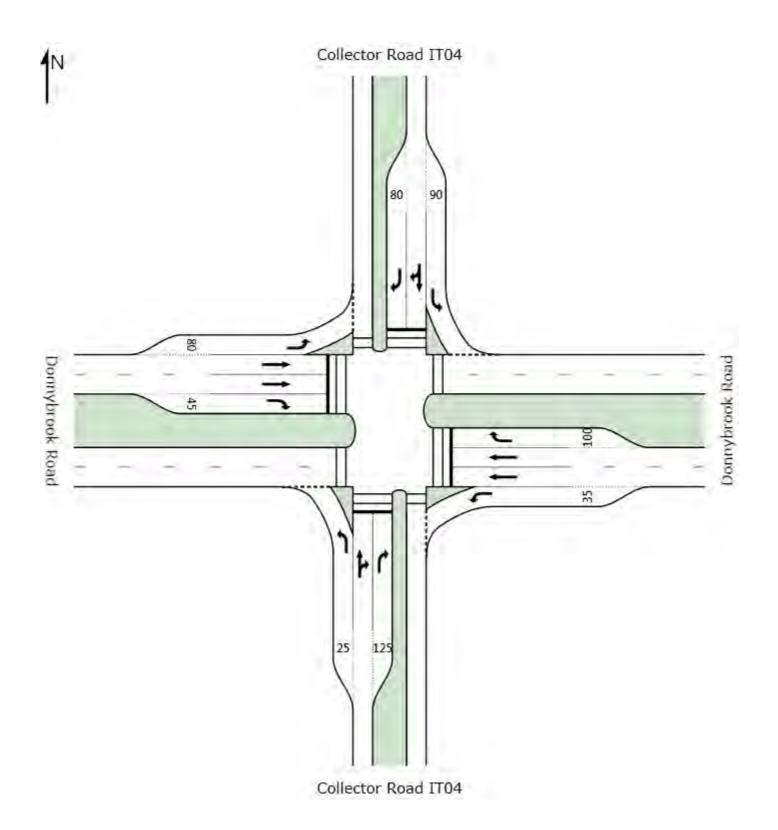

T:\MITMMerrifield\MITM\_Taylors\_Road\Base\AM\Y2046\Sc1\T2NewLU\DCP\R2\Review1\Rev3\HWY\_LOAD\_Rev3.NET 22/05/2012





T:\MITMMerrifield\MITM\_Taylors\_Road\Base\AM\Y2046\Sc1\T2NewLU\DCP\R2\Review1\Rev3\HWY\_LOAD\_Rev3.NET 22/05/2012






T:\MITMMerrifield\MITM\_Taylors\_Road\Base\AM\Y2046\Sc1\T2NewLU\DCP\R2\Review1\Rev3\HWY\_LOAD\_Rev3.NET 22/05/2012



# **APPENDIX 4 – SIDRA OUTPUTS**





| Lane Use     | and P    | erform  | ance       |       |     |                   |              |               |              |          |          |               |             |         |             |     |
|--------------|----------|---------|------------|-------|-----|-------------------|--------------|---------------|--------------|----------|----------|---------------|-------------|---------|-------------|-----|
|              | , !      | Deman   | d Flows    | Total | HV  | Сар.              | Deg.<br>Satn | Lane<br>Util. | Average      | Level of | 95% Back |               | Lane        | SL      | Cap. F      |     |
|              | veh/h    | veh/h   | R<br>veh/h | veh/h |     | veh/h             | V/C          | UIII.<br>%    | Delay<br>sec | Service  | venicies | Distance<br>m | Length<br>m | Type    | Adj. E<br>% | %   |
| South: Coll  | ector R  | oad IT0 | )4         |       |     |                   |              |               |              |          |          |               |             |         |             |     |
| Lane 1       | 1        | 0       | 0          | 1     | 5.0 | 552 <sup>1</sup>  | 0.002        | 100           | 7.9          | LOS A    | 0.0      | 0.0           | 25 T        | urn Bay | 0.0         | 0.0 |
| Lane 2       | 0        | 19      | 110        | 129   | 5.0 | 228               | 0.568        | 100           | 61.2         | LOS A    | 7.4      | 53.8          | 500         | _       | 0.0         | 0.0 |
| Lane 3       | 0        | 0       | 129        | 129   | 5.0 | 226               | 0.568        | 100           | 62.3         | LOS A    | 7.3      | 53.4          | 125 T       | urn Bay | 0.0         | 0.0 |
| Approach     | 1        | 19      | 239        | 259   | 5.0 |                   | 0.568        |               | 61.5         | LOS A    | 7.4      | 53.8          |             |         |             |     |
| East: Donn   | ybrook   | Road    |            |       |     |                   |              |               |              |          |          |               |             |         |             |     |
| Lane 1       | 37       | 0       | 0          | 37    | 5.0 | 1289 <sup>1</sup> | 0.029        | 100           | 8.3          | LOS A    | 0.1      | 0.4           | 35 T        | urn Bay | 0.0         | 0.0 |
| Lane 2       | 0        | 143     | 0          | 143   | 5.0 | 986               | 0.145        | 100           | 4.6          | LOS A    | 1.3      | 9.4           | 500         | _       | 0.0         | 0.0 |
| Lane 3       | 0        | 143     | 0          | 143   | 5.0 | 986               | 0.145        | 100           | 4.6          | LOS A    | 1.3      | 9.4           | 500         | -       | 0.0         | 0.0 |
| Lane 4       | 0        | 0       | 1          | 1     | 5.0 | 91                | 0.011        | 100           | 68.8         | LOS A    | 0.1      | 0.4           | 100 T       | urn Bay | 0.0         | 0.0 |
| Approach     | 37       | 285     | 1          | 323   | 5.0 |                   | 0.145        |               | 5.2          | LOS A    | 1.3      | 9.4           |             |         |             |     |
| North: Colle | ector Ro | ad IT0  | 4          |       |     |                   |              |               |              |          |          |               |             |         |             |     |
| Lane 1       | 7        | 0       | 0          | 7     | 5.0 | 499 <sup>1</sup>  | 0.014        | 100           | 11.1         | LOS A    | 0.1      | 0.6           | 90 T        | urn Bay | 0.0         | 0.0 |
| Lane 2       | 0        | 11      | 79         | 90    | 5.0 | 197               | 0.455        | 100           | 63.8         | LOS A    | 5.1      | 37.3          | 500         | _       | 0.0         | 0.0 |
| Lane 3       | 0        | 0       | 89         | 89    | 5.0 | 196               | 0.455        | 100           | 64.7         | LOS A    | 5.1      | 37.1          | 80 T        | urn Bay | 0.0         | 0.0 |
| Approach     | 7        | 11      | 168        | 186   | 5.0 |                   | 0.455        |               | 62.3         | LOS A    | 5.1      | 37.3          |             |         |             |     |
| West: Donr   | nybrook  | Road    |            |       |     |                   |              |               |              |          |          |               |             |         |             |     |
| Lane 1       | 77       | 0       | 0          | 77    | 5.0 | 1320 <sup>1</sup> | 0.058        | 100           | 9.1          | LOS A    | 0.3      | 2.0           | 80 T        | urn Bay | 0.0         | 0.0 |
| Lane 2       | 0        | 557     | 0          | 557   | 5.0 | 986               | 0.564        | 100           | 6.0          | LOS A    | 8.7      | 63.3          | 500         | _       | 0.0         | 0.0 |
| Lane 3       | 0        | 557     | 0          | 557   | 5.0 | 986               | 0.564        | 100           | 6.0          | LOS A    | 8.7      | 63.3          | 500         | _       | 0.0         | 0.0 |
| Lane 4       | 0        | 0       | 1          | 1     | 5.0 | 91                | 0.011        | 100           | 66.4         | LOS A    | 0.1      | 0.4           | 45 T        | urn Bay | 0.0         | 0.0 |
| Approach     | 77       | 1113    | 1          | 1191  | 5.0 |                   | 0.564        |               | 6.3          | LOSA     | 8.7      | 63.3          |             |         |             |     |
| Intersection | า        |         |            | 1959  | 5.0 |                   | 0.568        |               | 18.7         | LOSA     | 8.7      | 63.3          |             |         |             |     |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

# 1 Reduced capacity due to a short lane effect

Processed: Tuesday, 22 May 2012 1:59:34 PM SIDRA INTERSECTION 5.1.9.2068

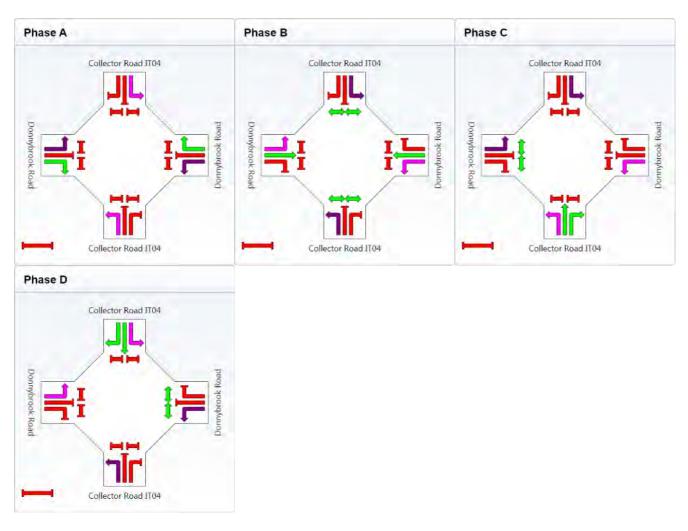
Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDICA IN LERSECTION 5.1.9.2068 www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Struture Plan\Engineering\Traffic\SIDRA\20120517 - 2021
sidras\IT04.sip

8000617, SMEC AUSTRALIA PTY LTD, SINGLE

SIDRA --INTERSECTION


Site: 2021\_AM Peak

Phase times determined by the program

Sequence: Split Phasing Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

| accgcca.cc         | •    |      |      |      |
|--------------------|------|------|------|------|
| Phase              | Α    | В    | С    | D    |
| Green Time (sec)   | 6    | 62   | 15   | 13   |
| Yellow Time (sec)  | 4    | 4    | 4    | 4    |
| All-Red Time (sec) | 2    | 2    | 2    | 2    |
| Phase Time (sec)   | 12   | 68   | 21   | 19   |
| Phase Split        | 10 % | 57 % | 18 % | 16 % |





Processed: Tuesday, 22 May 2012 1:59:34 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Strcuture Plan\Engineering\Traffic\SIDRA\20120517 - 2021 sidras\IT04.sip



| Lane Use     | and P    | erform   | nance   |       |     |                   |       |                        |         |          |          |          |        |          |        |     |
|--------------|----------|----------|---------|-------|-----|-------------------|-------|------------------------|---------|----------|----------|----------|--------|----------|--------|-----|
|              |          | Deman    | d Flows |       |     |                   | Deg.  | Lane                   | Average | Level of | 95% Back |          | Lane   | SL       | Cap. F |     |
|              | L        | Τ        | R       | Total | HV  | Cap.              | Satn  | Util.                  | Delay   | Service  |          | Distance | Length | Type     | Adj. B |     |
| South: Coll  |          | veh/h    |         | veh/h | %   | veh/h             | v/c   | %                      | sec     |          | veh      | m        | m      |          | %      | %   |
| Lane 1       | 1        | oau ii c | 0       | 1     | 5.0 | 212               | 0.003 | 100                    | 9.2     | LOS A    | 0.0      | 0.1      | 25.7   | urn Bay  | 0.0    | 0.0 |
| ' '          |          | _        | 0       | =     |     |                   |       |                        |         |          |          |          |        | ин Бау   |        |     |
| Lane 2       | 0        | 68       | -       | 68    | 5.0 | 207               | 0.329 | 100<br>56 <sup>5</sup> | 54.9    | LOSA     | 3.8      | 27.7     | 500    | <br>     | 0.0    | 0.0 |
| Lane 3       | 0        | 0        | 36      | 36    | 5.0 | 196               | 0.183 | 90                     | 61.1    | LOSA     | 2.0      | 14.4     | 125 1  | urn Bay  | 0.0    | 0.0 |
| Approach     | 1        | 68       | 36      | 105   | 5.0 |                   | 0.329 |                        | 56.6    | LOS A    | 3.8      | 27.7     |        |          |        |     |
| East: Donn   | ybrook   | Road     |         |       |     |                   |       |                        |         |          |          |          |        |          |        |     |
| Lane 1       | 239      | 0        | 0       | 239   | 5.0 | 1198 <sup>1</sup> | 0.200 | 100                    | 8.4     | LOS A    | 0.5      | 3.9      | 35 T   | urn Bay  | 0.0    | 0.0 |
| Lane 2       | 0        | 557      | 0       | 557   | 5.0 | 1002              | 0.556 | 100                    | 5.3     | LOS A    | 7.8      | 57.0     | 500    | _        | 0.0    | 0.0 |
| Lane 3       | 0        | 557      | 0       | 557   | 5.0 | 1002              | 0.556 | 100                    | 5.3     | LOS A    | 7.8      | 57.0     | 500    | _        | 0.0    | 0.0 |
| Lane 4       | 0        | 0        | 7       | 7     | 5.0 | 414 <sup>1</sup>  | 0.017 | 100                    | 42.3    | LOS A    | 0.3      | 2.1      | 100 T  | urn Bay  | 0.0    | 0.0 |
| Approach     | 239      | 1113     | 7       | 1359  | 5.0 |                   | 0.556 |                        | 6.1     | LOS A    | 7.8      | 57.0     |        |          |        |     |
| North: Colle | ector Ro | nad IT0  | 4       |       |     |                   |       |                        |         |          |          |          |        |          |        |     |
| Lane 1       | 1        | 0        | 0       | 1     | 5.0 | 022               | 0.001 | 100                    | 9.3     | LOS A    | 0.0      | 0.0      | ΩΩ Τ   | urn Bay  | 0.0    | 0.0 |
| Lane 2       | 0        | 76       | 45      | 121   | 5.0 | 218               | 0.554 | 100                    | 59.7    | LOSA     | 6.9      | 50.5     | 500    | uiii bay | 0.0    | 0.0 |
| Lane 3       | 0        | 0        | 117     | 117   | 5.0 | 211               | 0.554 | 100                    | 64.5    | LOSA     | 6.7      | 48.9     |        | urn Bay  | 0.0    | 0.0 |
| Approach     | 1        | 76       | 162     | 239   | 5.0 | 211               | 0.554 | 100                    | 61.9    | LOSA     | 6.9      | 50.5     | 00 I   | ин Бау   | 0.0    | 0.0 |
| Approacri    | '        | 70       | 102     | 239   | 5.0 |                   | 0.554 |                        | 01.9    | LOSA     | 0.9      | 30.3     |        |          |        |     |
| West: Donr   | nybrook  | Road     |         |       |     |                   |       |                        |         |          |          |          |        |          |        |     |
| Lane 1       | 253      | 0        | 0       | 253   | 5.0 | 1149 <sup>1</sup> | 0.220 | 100                    | 9.4     | LOS A    | 1.4      | 10.5     | 80 T   | urn Bay  | 0.0    | 0.0 |
| Lane 2       | 0        | 143      | 0       | 143   | 5.0 | 572               | 0.249 | 100                    | 24.3    | LOS A    | 4.7      | 34.6     | 500    | _        | 0.0    | 0.0 |
| Lane 3       | 0        | 143      | 0       | 143   | 5.0 | 572               | 0.249 | 100                    | 24.3    | LOS A    | 4.7      | 34.6     | 500    | -        | 0.0    | 0.0 |
| Lane 4       | 0        | 0        | 1       | 1     | 5.0 | 91                | 0.011 | 100                    | 66.4    | LOS A    | 0.1      | 0.4      | 45 T   | urn Bay  | 0.0    | 0.0 |
| Approach     | 253      | 285      | 1       | 539   | 5.0 |                   | 0.249 |                        | 17.4    | LOSA     | 4.7      | 34.6     |        |          |        |     |
| Intersection | ı        |          |         | 2242  | 5.0 |                   | 0.556 |                        | 17.1    | LOSA     | 7.8      | 57.0     |        |          |        |     |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 5 Lane underutilisation determined by program

Processed: Tuesday, 22 May 2012 1:59:35 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Strouture Plan\Engineering\Traffic\SIDRA\20120517 - 2021

sidras\IT04.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE



Site: 2021\_PM Peak


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

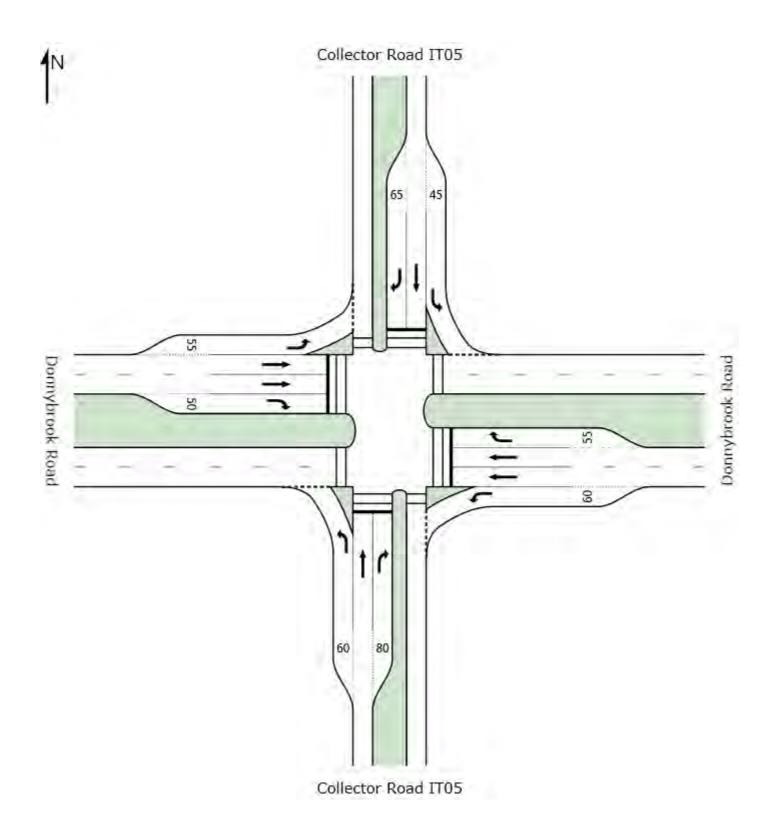
Phase times determined by the program

Sequence: Split Phasing Input Sequence: A, A1, B, C, D Output Sequence: A, A1, B, C, D

Phase Timing Results

|                    | •    |      |      |      |      |
|--------------------|------|------|------|------|------|
| Phase              | Α    | A1   | В    | С    | D    |
| Green Time (sec)   | 6    | 21   | 36   | 13   | 14   |
| Yellow Time (sec)  | 4    | 4    | 4    | 4    | 4    |
| All-Red Time (sec) | 2    | 2    | 2    | 2    | 2    |
| Phase Time (sec)   | 12   | 27   | 42   | 19   | 20   |
| Phase Split        | 10 % | 23 % | 35 % | 16 % | 17 % |




Processed: Tuesday, 22 May 2012 1:59:35 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Strcuture Plan\Engineering\Traffic\SIDRA\20120517 - 2021 sidras\IT04 sin

sidras\lT04.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE





| Lane Use     | and Pe   | erform | ance    |       |     |                   |       |       |                   |                    |                   |                   |        |          |      |        |
|--------------|----------|--------|---------|-------|-----|-------------------|-------|-------|-------------------|--------------------|-------------------|-------------------|--------|----------|------|--------|
|              |          | Deman  | d Flows |       |     |                   | Deg.  | Lane  | Average           | Level of           | 95% Back          | of Queue          | Lane   | SL       | Сар. |        |
|              | L        | T      | R       | Total | HV  | Cap.              | Satn  | Util. | Delay             | Service            |                   | Distance          | Length | Type     |      | Block. |
| South: Coll  | veh/h    |        |         | veh/h | %   | veh/h             | v/c   | %     | sec               |                    | veh               | m                 | m      |          | %    | %      |
| Lane 1       | 1        | 0 (Jau | 0       | 1     | 5.0 | 754 <sup>1</sup>  | 0.001 | 100   | 8.4               | LOS A              | 0.0               | 0.1               | 60.7   | urn Dov  | 0.0  | 0.0    |
| ' '          | -        | -      | -       |       | 5.0 | 398               | 0.001 |       |                   | LOSA               |                   |                   |        | urn Bay  |      |        |
| Lane 2       | 0        | 62     | 0       | 62    |     |                   |       | 100   | 41.9              |                    | 3.0               | 21.7              | 500    | _<br>Day | 0.0  | 0.0    |
| Lane 3       | 0        | 0      | 8       | 8     | 5.0 | 91                | 0.088 | 100   | 69.0              | LOSA               | 0.5               | 3.4               | 80 1   | urn Bay  | 0.0  | 0.0    |
| Approach     | 1        | 62     | 8       | 71    | 5.0 |                   | 0.156 |       | 44.5              | LOS A              | 3.0               | 21.7              |        |          |      |        |
| East: Donn   | ybrook F | Road   |         |       |     |                   |       |       |                   |                    |                   |                   |        |          |      |        |
| Lane 1       | 2        | 0      | 0       | 2     | 5.0 | 1131 <sup>1</sup> | 0.002 | 100   | 8.5               | LOS A              | 0.0               | 0.0               | 60 T   | urn Bay  | 0.0  | 0.0    |
| Lane 2       | 0        | 205    | 0       | 205   | 5.0 | 398               | 0.514 | 100   | 37.8              | LOS A              | 9.6               | 70.2              | 500    | _        | 0.0  | 0.0    |
| Lane 3       | 0        | 205    | 0       | 205   | 5.0 | 398               | 0.514 | 100   | 37.8              | LOS A              | 9.6               | 70.2              | 500    | _        | 0.0  | 0.0    |
| Lane 4       | 0        | 0      | 43      | 43    | 5.0 | 272 <sup>1</sup>  | 0.158 | 100   | 37.9              | LOS A              | 1.7               | 12.4              | 55 T   | urn Bay  | 0.0  | 0.0    |
| Approach     | 2        | 409    | 43      | 454   | 5.0 |                   | 0.514 |       | 37.7              | LOSA               | 9.6               | 70.2              |        |          |      |        |
| North: Colle | ector Ro | ad IT0 | 5       |       |     |                   |       |       |                   |                    |                   |                   |        |          |      |        |
| Lane 1       | 456      | 0      | 0       | 456   | 5.0 | 499 <sup>1</sup>  | 0.915 | 100   | 18.4 <sup>8</sup> | LOS D <sup>8</sup> | 10.1 <sup>8</sup> | 73.4 <sup>8</sup> | 45 T   | urn Bay  | 0.0  | 50.0   |
| Lane 2       | 0        | 31     | 0       | 31    | 5.0 | 398               | 0.078 | 100   | 42.2              | LOS A              | 1.5               | 10.6              | 500    | _        | 0.0  | 0.0    |
| Lane 3       | 0        | 0      | 2       | 2     | 5.0 | 91                | 0.022 | 100   | 69.0              | LOS A              | 0.1               | 8.0               | 65 T   | urn Bay  | 0.0  | 0.0    |
| Approach     | 456      | 31     | 2       | 489   | 5.0 |                   | 0.915 |       | 20.1              | LOS D              | 10.1              | 73.4              |        |          |      |        |
| West: Doni   | nybrook  | Road   |         |       |     |                   |       |       |                   |                    |                   |                   |        |          |      |        |
| Lane 1       | 1        | 0      | 0       | 1     | 5.0 | 961 <sup>1</sup>  | 0.001 | 100   | 9.1               | LOS A              | 0.0               | 0.0               | 55 T   | urn Bay  | 0.0  | 0.0    |
| Lane 2       | 0        | 363    | 0       | 363   | 5.0 | 398               | 0.913 | 100   | 50.2              | LOS D              | 22.8              | 166.1             | 500    | _        | 0.0  | 0.0    |
| Lane 3       | 0        | 363    | 0       | 363   | 5.0 | 398               | 0.913 | 100   | 50.2              | LOS D              | 22.8              | 166.1             | 500    | _        | 0.0  | 0.0    |
| Lane 4       | 0        | 0      | 1       | 1     | 5.0 | 254 <sup>1</sup>  | 0.004 | 100   | 36.1              | LOS A              | 0.0               | 0.3               | 50 T   | urn Bay  | 0.0  | 0.0    |
| Approach     | 1        | 726    | 1       | 728   | 5.0 |                   | 0.913 |       | 50.1              | LOS D              | 22.8              | 166.1             |        |          |      |        |
| Intersection | n        |        |         | 1742  | 5.0 |                   | 0.915 |       | 38.2              | LOS D              | 22.8              | 166.1             |        |          |      |        |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 8 Delay, queue length and stops for the short lane have been cut down to fit in the queuing space. You may wish to change the short lane to a full lane to investigate the effect on the adjacent lane performance.

Processed: Tuesday, 22 May 2012 2:05:40 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

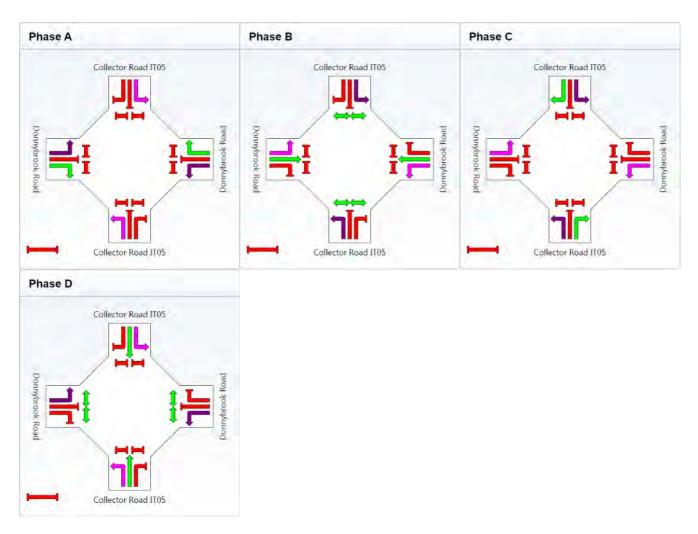
Project: I:\Projects\3004740 - Merrifield West Precinct Struture Plan\Engineering\Traffic\SIDRA\20120517 - 2021

sidras\IT05.sip

8000617, SMEC AUSTRALIA PTY LTD, SINGLE



Site: 2021\_AM Peak


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Leading Right Turn Input Sequence: A, B, C, D Output Sequence: A, B, C, D

**Phase Timing Results** 

| Phase              | Α    | В    | С    | D    |
|--------------------|------|------|------|------|
| Green Time (sec)   | 40   | 25   | 6    | 25   |
| Yellow Time (sec)  | 4    | 4    | 4    | 4    |
| All-Red Time (sec) | 2    | 2    | 2    | 2    |
| Phase Time (sec)   | 46   | 31   | 12   | 31   |
| Phase Split        | 38 % | 26 % | 10 % | 26 % |





Processed: Tuesday, 22 May 2012 2:05:40 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com



| Lane Use     | and P    | erform              | ance |                |         |                   |                     |                    |                         |                     |                             |                           |                     |            |                       |     |
|--------------|----------|---------------------|------|----------------|---------|-------------------|---------------------|--------------------|-------------------------|---------------------|-----------------------------|---------------------------|---------------------|------------|-----------------------|-----|
|              | L        | Deman<br>T<br>veh/h | R    | Total<br>veh/h | HV<br>% | Cap.              | Deg.<br>Satn<br>v/c | Lane<br>Util.<br>% | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Lane<br>Length<br>m | SL<br>Type | Cap. F<br>Adj. E<br>% |     |
| South: Coll  |          |                     |      |                |         |                   |                     |                    |                         |                     |                             |                           |                     |            |                       |     |
| Lane 1       | 1        | 0                   | 0    | 1              | 5.0     | 505 <sup>1</sup>  | 0.002               | 100                | 8.1                     | LOS A               | 0.0                         | 0.0                       | 60 T                | urn Bay    | 0.0                   | 0.0 |
| Lane 2       | 0        | 50                  | 0    | 50             | 5.0     | 207               | 0.242               | 100                | 54.2                    | LOS A               | 2.8                         | 20.1                      | 500                 | _          | 0.0                   | 0.0 |
| Lane 3       | 0        | 0                   | 22   | 22             | 5.0     | 91                | 0.243               | 100                | 70.2                    | LOS A               | 1.3                         | 9.6                       | 80 T                | urn Bay    | 0.0                   | 0.0 |
| Approach     | 1        | 50                  | 22   | 73             | 5.0     |                   | 0.243               |                    | 58.4                    | LOS A               | 2.8                         | 20.1                      |                     |            |                       |     |
| East: Donn   | ybrook   | Road                |      |                |         |                   |                     |                    |                         |                     |                             |                           |                     |            |                       |     |
| Lane 1       | 27       | 0                   | 0    | 27             | 5.0     | 1020 <sup>1</sup> | 0.026               | 100                | 8.8                     | LOS A               | 0.1                         | 1.0                       | 60 T                | urn Bay    | 0.0                   | 0.0 |
| Lane 2       | 0        | 396                 | 0    | 396            | 5.0     | 875               | 0.453               | 100                | 10.3                    | LOS A               | 8.3                         | 60.3                      | 500                 | _          | 0.0                   | 0.0 |
| Lane 3       | 0        | 396                 | 0    | 396            | 5.0     | 875               | 0.453               | 100                | 10.3                    | LOS A               | 8.3                         | 60.3                      | 500                 | _          | 0.0                   | 0.0 |
| Lane 4       | 0        | 0                   | 256  | 256            | 5.0     | 469 <sup>1</sup>  | 0.546               | 100                | 24.3                    | LOS A               | 5.8                         | 42.3                      | 55 T                | urn Bay    | 0.0                   | 0.0 |
| Approach     | 27       | 792                 | 256  | 1075           | 5.0     |                   | 0.546               |                    | 13.6                    | LOSA                | 8.3                         | 60.3                      |                     |            |                       |     |
| North: Colle | ector Ro | oad IT0             | 5    |                |         |                   |                     |                    |                         |                     |                             |                           |                     |            |                       |     |
| Lane 1       | 42       | 0                   | 0    | 42             | 5.0     | 659 <sup>1</sup>  | 0.064               | 100                | 10.2                    | LOS A               | 0.4                         | 2.7                       | 45 T                | urn Bay    | 0.0                   | 0.0 |
| Lane 2       | 0        | 82                  | 0    | 82             | 5.0     | 207               | 0.397               | 100                | 56.6                    | LOS A               | 4.6                         | 33.7                      | 500                 | _          | 0.0                   | 0.0 |
| Lane 3       | 0        | 0                   | 1    | 1              | 5.0     | 91                | 0.011               | 100                | 68.6                    | LOS A               | 0.1                         | 0.4                       | 65 T                | urn Bay    | 0.0                   | 0.0 |
| Approach     | 42       | 82                  | 1    | 125            | 5.0     |                   | 0.397               |                    | 41.1                    | LOS A               | 4.6                         | 33.7                      |                     |            |                       |     |
| West: Doni   | nybrook  | Road                |      |                |         |                   |                     |                    |                         |                     |                             |                           |                     |            |                       |     |
| Lane 1       | 1        | 0                   | 0    | 1              | 5.0     | 688 <sup>1</sup>  | 0.001               | 100                | 10.6                    | LOS A               | 0.0                         | 0.1                       | 55 T                | urn Bay    | 0.0                   | 0.0 |
| Lane 2       | 0        | 238                 | 0    | 238            | 5.0     | 429               | 0.553               | 100                | 36.0                    | LOSA                | 11.1                        | 80.8                      | 500                 | _ `        | 0.0                   | 0.0 |
| Lane 3       | 0        | 238                 | 0    | 238            | 5.0     | 429               | 0.553               | 100                | 36.0                    | LOS A               | 11.1                        | 80.8                      | 500                 | _          | 0.0                   | 0.0 |
| Lane 4       | 0        | 0                   | 1    | 1              | 5.0     | 210 <sup>1</sup>  | 0.005               | 100                | 50.6                    | LOS A               | 0.0                         | 0.3                       | 50 T                | urn Bay    | 0.0                   | 0.0 |
| Approach     | 1        | 475                 | 1    | 477            | 5.0     |                   | 0.553               |                    | 36.0                    | LOS A               | 11.1                        | 80.8                      |                     |            |                       |     |
| Intersection | า        |                     |      | 1750           | 5.0     |                   | 0.553               |                    | 23.5                    | LOSA                | 11.1                        | 80.8                      |                     |            |                       |     |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

## 1 Reduced capacity due to a short lane effect

Processed: Wednesday, 23 May 2012 11:06:09 AM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

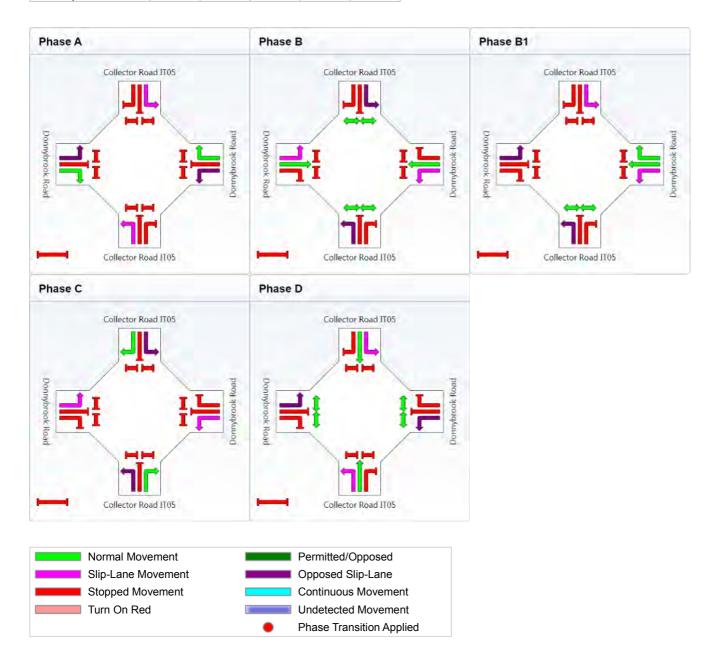
SIDICA IN LERSECTION 5.1.9.2068 www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Struture Plan\Engineering\Traffic\SIDRA\20120517 - 2021
sidras\IT05.sip

8000617, SMEC AUSTRALIA PTY LTD, SINGLE

SIDRA --INTERSECTION

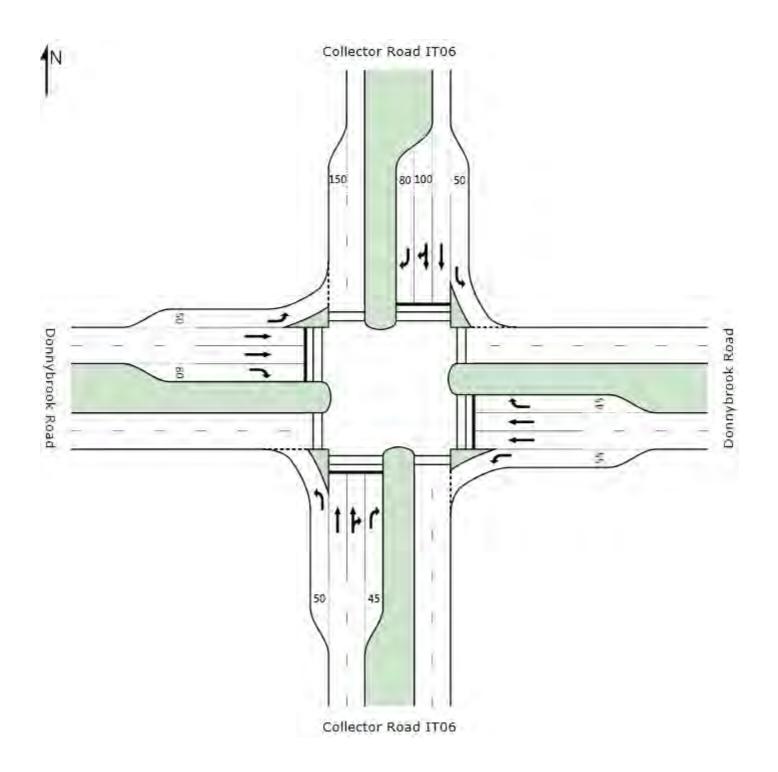
Site: 2021\_PM Peak


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Leading Right Turn Input Sequence: A, B, B1, C, D Output Sequence: A, B, B1, C, D

**Phase Timing Results** 


| Phase              | Α    | В    | B1   | С    | D    |
|--------------------|------|------|------|------|------|
| Green Time (sec)   | 22   | 27   | 22   | 6    | 13   |
| Yellow Time (sec)  | 4    | 4    | 4    | 4    | 4    |
| All-Red Time (sec) | 2    | 2    | 2    | 2    | 2    |
| Phase Time (sec)   | 28   | 33   | 28   | 12   | 19   |
| Phase Split        | 23 % | 28 % | 23 % | 10 % | 16 % |



Processed: Wednesday, 23 May 2012 11:06:09 AM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com





| Lane Use     |          |            |              |            |     |                  |              |                 |                  |                  |          |                      |                |            |                  |     |
|--------------|----------|------------|--------------|------------|-----|------------------|--------------|-----------------|------------------|------------------|----------|----------------------|----------------|------------|------------------|-----|
|              |          | Deman<br>T | d Flows<br>R | ;<br>Total | HV  | Сар.             | Deg.<br>Satn | Lane<br>Util.   | Average<br>Delay | Level of Service | 95% Back | of Queue<br>Distance | Lane<br>Length | SL<br>Type | Cap. F<br>Adj. E |     |
|              |          | veh/h      |              | veh/h      | %   | veh/h            | v/c          | %               | sec              | CCIVICC          | veh      | m                    | m              | 1,400      | %                | %   |
| South: Colle | ector Ro | oad IT0    | 16           |            |     |                  |              |                 |                  |                  |          |                      |                |            |                  |     |
| Lane 1       | 58       | 0          | 0            | 58         | 5.0 | 580 <sup>1</sup> | 0.100        | 100             | 10.0             | LOS A            | 0.7      | 5.1                  | 50             | Turn Bay   | 0.0              | 0.0 |
| Lane 2       | 0        | 125        | 0            | 125        | 5.0 | 493              | 0.254        | 44 <sup>5</sup> | 38.0             | LOS A            | 5.8      | 42.4                 | 500            | _          | 0.0              | 0.0 |
| Lane 3       | 0        | 0          | 269          | 269        | 5.0 | 468              | 0.575        | 100             | 49.2             | LOS A            | 13.8     | 100.8                | 500            | -          | 0.0              | 0.0 |
| Lane 4       | 0        | 0          | 118          | 118        | 5.0 | 205 <sup>1</sup> | 0.575        | 100             | 45.2             | LOS A            | 5.5      | 40.0                 | 45             | Turn Bay   | 0.0              | 0.0 |
| Approach     | 58       | 125        | 387          | 570        | 5.0 |                  | 0.575        |                 | 41.9             | LOS A            | 13.8     | 100.8                |                |            |                  |     |
| East: Donn   |          | Road       |              |            |     | 1                |              |                 |                  |                  |          |                      |                |            |                  |     |
| Lane 1       | 190      | 0          | 0            | 190        | 5.0 |                  | 0.314        | 100             | 11.4             | LOS A            | 2.6      | 18.9                 |                | Turn Bay   | 0.0              | 0.0 |
| Lane 2       | 0        | 111        | 0            | 111        | 5.0 | 318              | 0.347        | 100             | 41.9             | LOS A            | 5.2      | 38.3                 | 500            | _          | 0.0              | 0.0 |
| Lane 3       | 0        | 111        | 0            | 111        | 5.0 | 318              | 0.347        | 100             | 41.9             | LOS A            | 5.2      | 38.3                 | 500            | -          | 0.0              | 0.0 |
| Lane 4       | 0        | 0          | 1            | 1          | 5.0 | 181              | 0.006        | 100             | 60.9             | LOS A            | 0.1      | 0.4                  | 45             | Turn Bay   | 0.0              | 0.0 |
| Approach     | 190      | 221        | 1            | 412        | 5.0 |                  | 0.347        |                 | 27.8             | LOSA             | 5.2      | 38.3                 |                |            |                  |     |
| North: Colle | ctor Ro  | ad IT0     | 6            |            |     |                  |              |                 |                  |                  |          |                      |                |            |                  |     |
| Lane 1       | 1        | 0          | 0            | 1          | 5.0 | 487              | 0.002        | 100             | 12.5             | LOS A            | 0.0      | 0.1                  | 50             | Turn Bay   | 0.0              | 0.0 |
| Lane 2       | 0        | 244        | 0            | 244        | 5.0 | 525              | 0.465        | 80 <sup>5</sup> | 40.2             | LOS A            | 11.9     | 86.8                 | 500            | -          | 0.0              | 0.0 |
| Lane 3       | 0        | 0          | 236          | 236        | 5.0 |                  | 0.580        | 100             | 47.8             | LOS A            | 11.6     | 84.4                 | 100            | Turn Bay   | 0.0              | 0.0 |
| Lane 4       | 0        | 0          | 198          | 198        | 5.0 | 341              | 0.580        | 100             | 46.8             | LOS A            | 9.5      | 69.0                 | 80             | Turn Bay   | 0.0              | 0.0 |
| Approach     | 1        | 244        | 434          | 679        | 5.0 |                  | 0.580        |                 | 44.7             | LOSA             | 11.9     | 86.8                 |                |            |                  |     |
| West: Donn   | ybrook   | Road       |              |            |     |                  |              |                 |                  |                  |          |                      |                |            |                  |     |
| Lane 1       | 130      | 0          | 0            | 130        | 5.0 | 902 <sup>1</sup> | 0.144        | 100             | 9.5              | LOS A            | 8.0      | 5.9                  | 50             | Γurn Bay   | 0.0              | 0.0 |
| Lane 2       | 0        | 170        | 0            | 170        | 5.0 | 318              | 0.535        | 100             | 43.5             | LOS A            | 8.6      | 62.8                 | 500            | _          | 0.0              | 0.0 |
| Lane 3       | 0        | 170        | 0            | 170        | 5.0 | 318              | 0.535        | 100             | 43.5             | LOS A            | 8.6      | 62.8                 | 500            | _          | 0.0              | 0.0 |
| Lane 4       | 0        | 0          | 103          | 103        | 5.0 | 181              | 0.569        | 100             | 66.1             | LOS A            | 6.0      | 43.8                 | 80             | Turn Bay   | 0.0              | 0.0 |
| Approach     | 130      | 340        | 103          | 573        | 5.0 |                  | 0.569        |                 | 39.8             | LOSA             | 8.6      | 62.8                 |                |            |                  |     |
| Intersection |          |            |              | 2234       | 5.0 |                  | 0.580        |                 | 39.6             | LOS A            | 13.8     | 100.8                |                |            |                  |     |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 5 Lane underutilisation determined by program

Processed: Wednesday, 23 May 2012 11:09:51 AM SIDRA INTERSECTION 5.1.9.2068

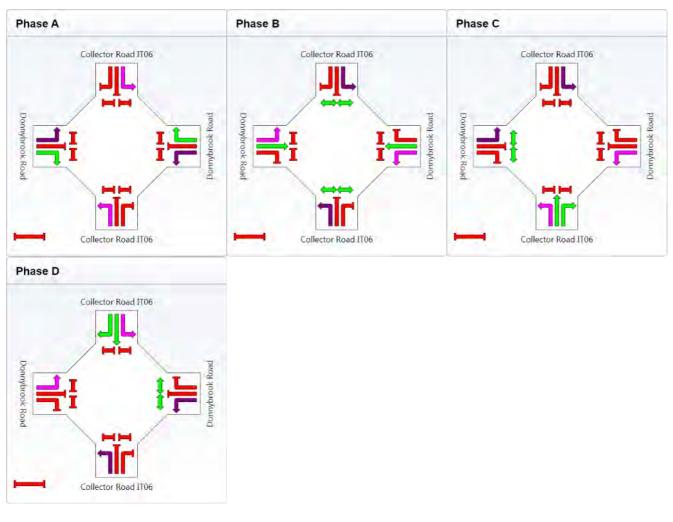
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Strcuture Plan\Engineering\Traffic\SIDRA\20120517 - 2021 sidras\IT06.sip

8000617, SMEC AUSTRALIA PTY LTD, SINGLE



Site: 2021\_AM Peak


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Split Phasing Input Sequence: A, B, C, D Output Sequence: A, B, C, D

**Phase Timing Results** 

| Phase              | Α    | В    | С    | D    |
|--------------------|------|------|------|------|
| Green Time (sec)   | 12   | 20   | 31   | 33   |
| Yellow Time (sec)  | 4    | 4    | 4    | 4    |
| All-Red Time (sec) | 2    | 2    | 2    | 2    |
| Phase Time (sec)   | 18   | 26   | 37   | 39   |
| Phase Split        | 15 % | 22 % | 31 % | 33 % |





Processed: Wednesday, 23 May 2012 11:09:51 AM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com



| Lane Use     | and Po  | erform              | ance         |             |     |                  |                     |                    |                  |                     |      |                      |                |            |                       |                      |
|--------------|---------|---------------------|--------------|-------------|-----|------------------|---------------------|--------------------|------------------|---------------------|------|----------------------|----------------|------------|-----------------------|----------------------|
|              | L       | Deman<br>T<br>veh/h | d Flows<br>R | Total veh/h | HV  | Cap.             | Deg.<br>Satn<br>v/c | Lane<br>Util.<br>% | Average<br>Delay | Level of<br>Service |      | of Queue<br>Distance | Lane<br>Length | SL<br>Type | Cap.  <br>Adj.  <br>% | Prob.<br>Block.<br>% |
| South: Colle |         |                     |              | ven/m       | 7/0 | ven/m            | V/C                 | 70                 | sec              |                     | ven  | m_                   | m              |            | 70                    | 70                   |
| Lane 1       | 103     | 0                   | 0            | 103         | 5.0 | 665 <sup>1</sup> | 0.155               | 100                | 9.6              | LOSA                | 1.1  | 8.4                  | 50 7           | urn Bay    | 0.0                   | 0.0                  |
| Lane 2       | 0       | 155                 | 0            | 155         | 5.0 | 239              | 0.649               | 89 <sup>6</sup>    | 55.9             | LOS B               | 9.0  | 65.4                 | 500            | _          | 0.0                   | 0.0                  |
| Lane 3       | 0       | 97                  | 73           | 170         | 5.0 | 233              | 0.729               | 100                | 61.0             | LOS C               | 10.1 | 74.0                 | 500            | _          | 0.0                   | 0.0                  |
| Lane 4       | 0       | 0                   | 125          | 125         | 5.0 | 172 <sup>1</sup> | 0.729               | 100                | 64.3             | LOS C               | 7.4  | 53.7                 | 45 7           | urn Bay    | 0.0                   | 21.1                 |
| Approach     | 103     | 252                 | 198          | 553         | 5.0 |                  | 0.729               |                    | 50.7             | LOS C               | 10.1 | 74.0                 |                | •          |                       |                      |
| East: Donny  | brook   | Road                |              |             |     |                  |                     |                    |                  |                     |      |                      |                |            |                       |                      |
| Lane 1       | 395     | 0                   | 0            | 395         | 5.0 | 853 <sup>1</sup> | 0.463               | 100                | 9.4              | LOS A               | 3.4  | 24.5                 | 55 7           | urn Bay    | 0.0                   | 0.0                  |
| Lane 2       | 0       | 199                 | 0            | 199         | 5.0 | 270              | 0.734               | 100                | 49.4             | LOS C               | 11.2 | 81.6                 | 500            | _          | 0.0                   | 0.0                  |
| Lane 3       | 0       | 199                 | 0            | 199         | 5.0 | 270              | 0.734               | 100                | 49.4             | LOS C               | 11.2 | 81.6                 | 500            | _          | 0.0                   | 0.0                  |
| Lane 4       | 0       | 0                   | 200          | 200         | 5.0 | 259 <sup>1</sup> | 0.772               | 100                | 42.6             | LOS C               | 8.8  | 64.3                 | 45 7           | urn Bay    | 0.0                   | 37.6                 |
| Approach     | 395     | 397                 | 200          | 992         | 5.0 |                  | 0.772               |                    | 32.1             | LOS C               | 11.2 | 81.6                 |                |            |                       |                      |
| North: Colle | ctor Ro | oad IT0             | 6            |             |     |                  |                     |                    |                  |                     |      |                      |                |            |                       |                      |
| Lane 1       | 1       | 0                   | 0            | 1           | 5.0 | 643 <sup>1</sup> | 0.002               | 100                | 10.4             | LOS A               | 0.0  | 0.1                  | 50 7           | urn Bay    | 0.0                   | 0.0                  |
| Lane 2       | 0       | 90                  | 0            | 90          | 5.0 | 207              | 0.434               | 100                | 56.9             | LOSA                | 5.1  | 37.0                 | 500            | _          | 0.0                   | 0.0                  |
| Lane 3       | 0       | 43                  | 44           | 87          | 5.0 | 201              | 0.434               | 100                | 60.7             | LOS A               | 4.9  | 36.1                 | 100 7          | urn Bay    | 0.0                   | 0.0                  |
| Lane 4       | 0       | 0                   | 85           | 85          | 5.0 | 196              | 0.434               | 100                | 64.4             | LOS A               | 4.8  | 35.3                 | 80 7           | urn Bay    | 0.0                   | 0.0                  |
| Approach     | 1       | 133                 | 129          | 263         | 5.0 |                  | 0.434               |                    | 60.4             | LOSA                | 5.1  | 37.0                 |                |            |                       |                      |
| West: Donny  | ybrook  | Road                |              |             |     |                  |                     |                    |                  |                     |      |                      |                |            |                       |                      |
| Lane 1       | 433     | 0                   | 0            | 433         | 5.0 | 603 <sup>1</sup> | 0.718               | 100                | 12.4             | LOS C               | 6.8  | 49.3                 | 50 7           | urn Bay    | 0.0                   | 3.7                  |
| Lane 2       | 0       | 139                 | 0            | 139         | 5.0 | 270              | 0.514               | 100                | 46.8             | LOSA                | 7.2  | 52.9                 | 500            | _          | 0.0                   | 0.0                  |
| Lane 3       | 0       | 139                 | 0            | 139         | 5.0 | 270              | 0.514               | 100                | 46.8             | LOS A               | 7.2  | 52.9                 | 500            | -          | 0.0                   | 0.0                  |
| Lane 4       | 0       | 0                   | 58           | 58          | 5.0 | 417 <sup>1</sup> | 0.139               | 100                | 29.9             | LOS A               | 2.0  | 14.4                 | 80 7           | urn Bay    | 0.0                   | 0.0                  |
| Approach     | 433     | 278                 | 58           | 769         | 5.0 |                  | 0.718               |                    | 26.1             | LOS C               | 7.2  | 52.9                 |                |            |                       |                      |
| Intersection |         |                     |              | 2577        | 5.0 |                  | 0.772               |                    | 37.2             | LOS C               | 11.2 | 81.6                 |                |            |                       |                      |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 6 Lane underutilisation due to downstream effects

Processed: Wednesday, 23 May 2012 11:09:51 AM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Strcuture Plan\Engineering\Traffic\SIDRA\20120517 - 2021 sidras\IT06.sip

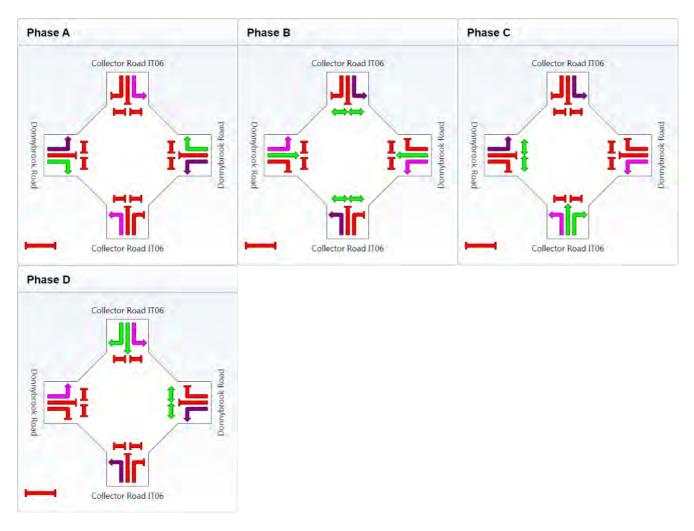
8000617, SMEC AUSTRALIA PTY LTD, SINGLE



Site: 2021\_PM Peak

# **PHASING SUMMARY**

IT06


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Split Phasing Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

| Phase              | Α    | В    | С    | D    |
|--------------------|------|------|------|------|
| Green Time (sec)   | 51   | 17   | 15   | 13   |
| Yellow Time (sec)  | 4    | 4    | 4    | 4    |
| All-Red Time (sec) | 2    | 2    | 2    | 2    |
| Phase Time (sec)   | 57   | 23   | 21   | 19   |
| Phase Split        | 48 % | 19 % | 18 % | 16 % |





Processed: Wednesday, 23 May 2012 11:09:51 AM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

8000617, SMEC AUSTRALIA PTY LTD, SINGLE



Site: 2021\_PM Peak

Old Sydney Road

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

| Lane Use     | and Pe     | erform     | nance   |                |         |                  |             |            |         |          |     |          |        |          |             |             |
|--------------|------------|------------|---------|----------------|---------|------------------|-------------|------------|---------|----------|-----|----------|--------|----------|-------------|-------------|
|              | [          | Deman      | d Flows |                | 107     |                  | Deg.        | Lane       | Average | Level of |     |          | Lane   | SL       | Cap. F      |             |
|              | L<br>Vob/b | T<br>veh/h | R       | Total<br>veh/h | HV<br>% | Cap.             | Satn<br>v/c | Util.<br>% | Delay   | Service  |     | Distance | Length | Type     | Adj. E<br>% | Block.<br>% |
| South: Old   |            |            | veh/h   | ven/m          | 70      | veh/h            | V/C         | 70         | sec     |          | veh | m        | m      |          | 70          | 70          |
| Lane 1       | 0          | 19         | 0       | 19             | 5.0     | 1511             | 0.012       | 100        | 2.7     | LOSA     | 0.2 | 1.6      | 500    | _        | 0.0         | 0.0         |
| Lane 2       | 0          | 19         | 0       | 19             | 5.0     | 1511             | 0.012       | 100        | 2.7     | LOS A    | 0.2 | 1.6      | 500    | _        | 0.0         | 0.0         |
| Lane 3       | 0          | 0          | 332     | 332            | 5.0     | 769 <sup>1</sup> | 0.432       | 100        | 19.2    | LOS A    | 8.2 | 59.5     | 120 7  | Turn Bay | 0.0         | 0.0         |
| Approach     | 0          | 37         | 332     | 369            | 5.0     |                  | 0.432       |            | 17.6    | LOSA     | 8.2 | 59.5     |        |          |             |             |
| East: Donn   | ybrook l   | Road       |         |                |         |                  |             |            |         |          |     |          |        |          |             |             |
| Lane 1       | 661        | 0          | 0       | 661            | 5.0     | 1580             | 0.418       | 100        | 10.5    | LOSA     | 5.3 | 38.8     | 500    | -        | 0.0         | 0.0         |
| Lane 2       | 0          | 0          | 35      | 35             | 5.0     | 196              | 0.178       | 100        | 63.4    | LOS A    | 1.9 | 14.0     | 500    | _        | 0.0         | 0.0         |
| Approach     | 661        | 0          | 35      | 696            | 5.0     |                  | 0.418       |            | 13.2    | LOSA     | 5.3 | 38.8     |        |          |             |             |
| North: Old   | Sydney     | Road       |         |                |         |                  |             |            |         |          |     |          |        |          |             |             |
| Lane 1       | 181        | 0          | 0       | 181            | 5.0     | 1812             | 0.100       | 100        | 9.5     | X        | Χ   | Χ        | 90 7   | Turn Bay | 0.0         | Χ           |
| Lane 2       | 0          | 73         | 0       | 73             | 5.0     | 175              | 0.415       | 100        | 57.6    | LOS A    | 4.2 | 30.4     | 500    | -        | 0.0         | 0.0         |
| Lane 3       | 0          | 73         | 0       | 73             | 5.0     | 175              | 0.415       | 100        | 57.6    | LOS A    | 4.2 | 30.4     | 500    | _        | 0.0         | 0.0         |
| Approach     | 181        | 145        | 0       | 326            | 5.0     |                  | 0.415       |            | 30.9    | LOSA     | 4.2 | 30.4     |        |          |             |             |
| Intersection | า          |            |         | 1391           | 5.0     |                  | 0.432       |            | 18.5    | LOS A    | 8.2 | 59.5     |        |          |             |             |

## X: Not applicable for Continuous lane.

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

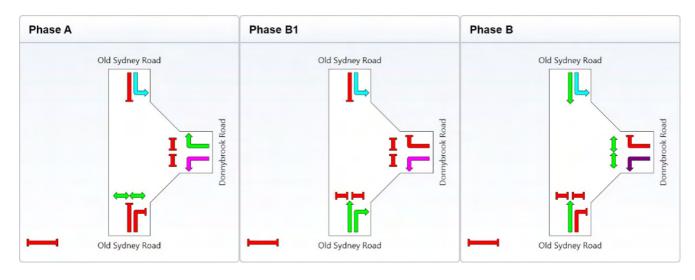
# 1 Reduced capacity due to a short lane effect

Processed: Tuesday, 22 May 2012 2:12:18 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Strcuture Plan\Engineering\Traffic\SIDRA\20120517 - 2021

sidras\IT07.sip




Phase times determined by the program

Sequence: Two-Phase Input Sequence: A, B1, B Output Sequence: A, B1, B

**Phase Timing Results** 

| Phase              | Α    | B1   | В    |
|--------------------|------|------|------|
| Green Time (sec)   | 13   | 78   | 11   |
| Yellow Time (sec)  | 4    | 4    | 4    |
| All-Red Time (sec) | 2    | 2    | 2    |
| Phase Time (sec)   | 19   | 84   | 17   |
| Phase Split        | 16 % | 70 % | 14 % |





Processed: Tuesday, 22 May 2012 2:12:18 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

 $\label{project: l:Projects 3004740 - Merrifield West Precinct Struture Plan Engineering Traffic SIDRA 20120517 - 2021 sidras 1107.sip$ 



| Lane Use      | and Pe   | erform | ance         |       |     |                  |              |               |                   |                     |                   |                    |                |            |     |        |
|---------------|----------|--------|--------------|-------|-----|------------------|--------------|---------------|-------------------|---------------------|-------------------|--------------------|----------------|------------|-----|--------|
|               | L        | Т      | d Flows<br>R | Total | HV  | Сар.             | Deg.<br>Satn | Lane<br>Util. | Average<br>Delay  | Level of<br>Service | Vehicles          |                    | Lane<br>Length | SL<br>Type |     | Block. |
| On with a Old |          |        | veh/h        | veh/h | %   | veh/h            | v/c          | %             | sec               |                     | veh               | m                  | m              |            | %   | %      |
| South: Old    |          |        | _            |       |     |                  |              |               |                   |                     |                   |                    |                |            |     |        |
| Lane 1        | 0        | 73     | 0            | 73    | 5.0 | 1511             | 0.048        | 100           | 2.8               | LOS A               | 0.9               | 6.5                | 500            | -          | 0.0 | 0.0    |
| Lane 2        | 0        | 73     | 0            | 73    | 5.0 | 1511             | 0.048        | 100           | 2.8               | LOS A               | 0.9               | 6.5                | 500            | -          | 0.0 | 0.0    |
| Lane 3        | 0        | 0      | 718          | 718   | 5.0 | 778 <sup>1</sup> | 0.923        | 100           | 34.3 <sup>8</sup> | LOS D <sup>8</sup>  | 26.8 <sup>8</sup> | 195.8 <sup>8</sup> | 120 7          | Γurn Bay   | 0.0 | 50.0   |
| Approach      | 0        | 145    | 718          | 863   | 5.0 |                  | 0.923        |               | 29.0              | LOS D               | 26.8              | 195.8              |                |            |     |        |
| East: Donn    | ybrook l | Road   |              |       |     |                  |              |               |                   |                     |                   |                    |                |            |     |        |
| Lane 1        | 389      | 0      | 0            | 389   | 5.0 | 1626             | 0.239        | 100           | 10.0              | LOSA                | 1.8               | 13.0               | 500            | _          | 0.0 | 0.0    |
| Lane 2        | 0        | 0      | 180          | 180   | 5.0 | 196              | 0.917        | 100           | 83.1              | LOS D               | 12.5              | 91.1               | 500            | _          | 0.0 | 0.0    |
| Approach      | 389      | 0      | 180          | 569   | 5.0 |                  | 0.917        |               | 33.1              | LOS D               | 12.5              | 91.1               |                |            |     |        |
| North: Old    | Sydney   | Road   |              |       |     |                  |              |               |                   |                     |                   |                    |                |            |     |        |
| Lane 1        | 35       | 0      | 0            | 35    | 5.0 | 1812             | 0.019        | 100           | 9.5               | Χ                   | X                 | X                  | 90 7           | Turn Bay   | 0.0 | Χ      |
| Lane 2        | 0        | 18     | 0            | 18    | 5.0 | 159              | 0.113        | 100           | 56.4              | LOS A               | 1.0               | 7.3                | 500            | -          | 0.0 | 0.0    |
| Lane 3        | 0        | 18     | 0            | 18    | 5.0 | 159              | 0.113        | 100           | 56.4              | LOS A               | 1.0               | 7.3                | 500            | _          | 0.0 | 0.0    |
| Approach      | 35       | 36     | 0            | 71    | 5.0 |                  | 0.113        |               | 33.3              | LOS D               | 1.0               | 7.3                |                |            |     |        |
| Intersection  | 1        |        |              | 1503  | 5.0 |                  | 0.923        |               | 30.8              | LOS D               | 26.8              | 195.8              |                |            |     |        |

## X: Not applicable for Continuous lane.

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 8 Delay, queue length and stops for the short lane have been cut down to fit in the queuing space. You may wish to change the short lane to a full lane to investigate the effect on the adjacent lane performance.

Processed: Tuesday, 22 May 2012 2:12:18 PM SIDRA INTERSECTION 5.1.9.2068

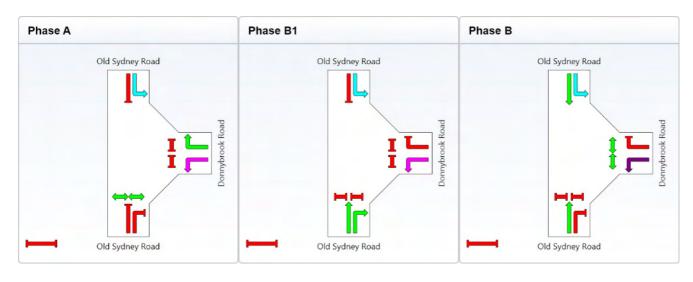
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Strouture Plan\Engineering\Traffic\SIDRA\20120517 - 2021

sidras\IT07.sip

8000617, SMEC AUSTRALIA PTY LTD, SINGLE




Site: 2021\_PM Peak

Phase times determined by the program

Sequence: Two-Phase Input Sequence: A, B1, B Output Sequence: A, B1, B

**Phase Timing Results** 

| Phase              | Α    | B1   | В    |
|--------------------|------|------|------|
| Green Time (sec)   | 13   | 79   | 10   |
| Yellow Time (sec)  | 4    | 4    | 4    |
| All-Red Time (sec) | 2    | 2    | 2    |
| Phase Time (sec)   | 19   | 85   | 16   |
| Phase Split        | 16 % | 71 % | 13 % |





Processed: Tuesday, 22 May 2012 2:12:18 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Strcuture Plan\Engineering\Traffic\SIDRA\20120517 - 2021

sidras\IT07.sip



Site: 2046\_AM Peak

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

| Lane Use     | and Pe    | rform      | nance      |                |         |                  |             |            |              |          |              |               |             |         |             |             |
|--------------|-----------|------------|------------|----------------|---------|------------------|-------------|------------|--------------|----------|--------------|---------------|-------------|---------|-------------|-------------|
|              | _ C       | eman       | d Flows    |                | 111/    | Can              | Deg.        | Lane       | Average      | Level of | 95% Back     |               | Lane        | SL      | Cap. F      |             |
|              | veh/h     | l<br>veh/h | R<br>veh/h | Total<br>veh/h | HV<br>% | Cap.             | Satn<br>v/c | Util.<br>% | Delay<br>sec | Service  | Vehicles veh | Distance<br>m | Length<br>m | Type    | Adj. B<br>% | Block.<br>% |
| South East:  |           |            |            | V C            | 70      | VC11/11          | V/ O        | /0         | 300          |          | VO11         |               | - '''       |         | 70          | /0          |
| Lane 1       | 1         | 0          | 0          | 1              | 5.0     | 768 <sup>1</sup> | 0.001       | 100        | 8.3          | LOS A    | 0.0          | 0.0           | 20 7        | urn Bay | 0.0         | 0.0         |
| Lane 2       | 0         | 118        | 0          | 118            | 5.0     | 175              | 0.672       | 100        | 55.8         | LOS B    | 6.8          | 49.9          | 500         | _       | 0.0         | 0.0         |
| Lane 3       | 0         | 118        | 0          | 118            | 5.0     | 175              | 0.672       | 100        | 55.8         | LOS B    | 6.8          | 49.9          | 500         | _       | 0.0         | 0.0         |
| Approach     | 1         | 235        | 0          | 236            | 5.0     |                  | 0.672       |            | 55.6         | LOS B    | 6.8          | 49.9          |             |         |             |             |
| North West:  | Wester    | rn Con     | nector     |                |         |                  |             |            |              |          |              |               |             |         |             |             |
| Lane 1       | 0         | 284        | 0          | 284            | 5.0     | 1367             | 0.208       | 100        | 1.0          | LOS A    | 1.0          | 7.4           | 500         | _       | 0.0         | 0.0         |
| Lane 2       | 0         | 284        | 0          | 284            | 5.0     | 1367             | 0.208       | 100        | 1.0          | LOS A    | 1.0          | 7.4           | 500         | _       | 0.0         | 0.0         |
| Lane 3       | 0         | 0          | 284        | 284            | 5.0     | 779 <sup>1</sup> | 0.364       | 100        | 14.3         | LOS A    | 1.1          | 8.0           | 20 7        | urn Bay | 0.0         | 0.0         |
| Approach     | 0         | 568        | 284        | 852            | 5.0     |                  | 0.364       |            | 5.5          | LOS A    | 1.1          | 8.0           |             |         |             |             |
| South West   | : Collect | tor Ro     | ad IT01    |                |         |                  |             |            |              |          |              |               |             |         |             |             |
| Lane 1       | 246       | 0          | 0          | 246            | 5.0     | 520 <sup>1</sup> | 0.473       | 100        | 8.7          | LOS A    | 1.8          | 13.3          | 20 7        | urn Bay | 0.0         | 0.0         |
| Lane 2       | 0         | 0          | 1          | 1              | 5.0     | 332              | 0.003       | 100        | 49.7         | LOS A    | 0.0          | 0.3           | 500         |         | 0.0         | 0.0         |
| Approach     | 246       | 0          | 1          | 247            | 5.0     |                  | 0.473       |            | 8.8          | LOS A    | 1.8          | 13.3          |             |         |             |             |
| Intersection |           |            |            | 1335           | 5.0     |                  | 0.672       |            | 14.9         | LOS B    | 6.8          | 49.9          |             |         |             |             |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

## 1 Reduced capacity due to a short lane effect

Processed: Tuesday, 22 May 2012 2:21:01 PM

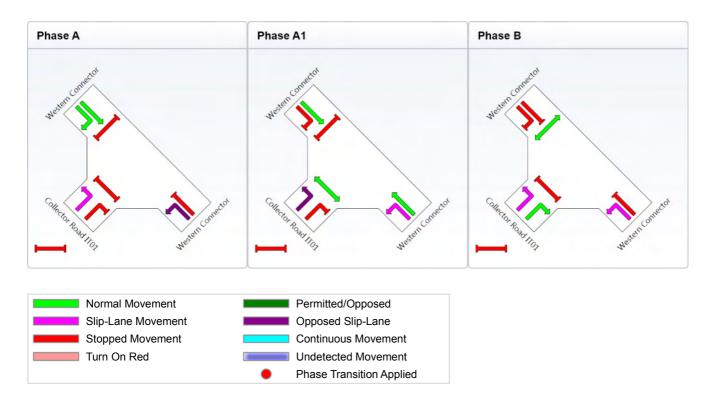
SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Strouture Plan\Engineering\Traffic\SIDRA\20120517 - 2046

sidras\IT01.sip




Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Two-Phase Input Sequence: A, A1, B Output Sequence: A, A1, B

**Phase Timing Results** 

| Phase              | Α    | A1   | В    |
|--------------------|------|------|------|
| Green Time (sec)   | 69   | 11   | 22   |
| Yellow Time (sec)  | 4    | 4    | 4    |
| All-Red Time (sec) | 2    | 2    | 2    |
| Phase Time (sec)   | 75   | 17   | 28   |
| Phase Split        | 63 % | 14 % | 23 % |



Processed: Tuesday, 22 May 2012 2:21:01 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com



| Lane Use     | and Pe     | erform     | ance       |             |         |                  |             |            |                   |                    |                  |                   |        |          |             |             |
|--------------|------------|------------|------------|-------------|---------|------------------|-------------|------------|-------------------|--------------------|------------------|-------------------|--------|----------|-------------|-------------|
|              |            | eman       | d Flows    |             | 1157    | 0                | Deg.        | Lane       | Average           | Level of           | 95% Back         |                   | Lane   | SL       | Cap.        |             |
|              | L<br>veh/h | T<br>voh/h | R<br>voh/h | Total veh/h | HV<br>% | Cap.             | Satn<br>v/c | Util.<br>% | Delay<br>sec      | Service            | Vehicles veh     | Distance          | Length | Туре     | Adj. l<br>% | Block.<br>% |
| South East:  |            |            |            | ven/m       | 7/0     | ven/m            | V/C         | 7/0        | SEC               |                    | ven              | m                 | m      |          | 70          | 70          |
| Lane 1       | 1          | 0          | 0          | 1           | 5.0     | 781 <sup>1</sup> | 0.001       | 100        | 8.3               | LOS A              | 0.0              | 0.0               | 20 7   | Turn Bay | 0.0         | 0.0         |
| Lane 2       | 0          | 284        | 0          | 284         | 5.0     | 350              | 0.812       | 100        | 46.1              | LOS C              | 16.2             | 117.9             | 500    | _        | 0.0         | 0.0         |
| Lane 3       | 0          | 284        | 0          | 284         | 5.0     | 350              | 0.812       | 100        | 46.1              | LOS C              | 16.2             | 117.9             | 500    | _        | 0.0         | 0.0         |
| Approach     | 1          | 568        | 0          | 569         | 5.0     |                  | 0.812       |            | 46.0              | LOS C              | 16.2             | 117.9             |        |          |             |             |
| North West:  | Wester     | rn Con     | nector     |             |         |                  |             |            |                   |                    |                  |                   |        |          |             |             |
| Lane 1       | 0          | 118        | 0          | 118         | 5.0     | 1367             | 0.086       | 100        | 0.9               | LOS A              | 0.4              | 2.7               | 500    | _        | 0.0         | 0.0         |
| Lane 2       | 0          | 118        | 0          | 118         | 5.0     | 1367             | 0.086       | 100        | 0.9               | LOS A              | 0.4              | 2.7               | 500    | _        | 0.0         | 0.0         |
| Lane 3       | 0          | 0          | 246        | 246         | 5.0     | 298 <sup>1</sup> | 0.825       | 100        | 35.7 <sup>8</sup> | LOS C              | 4.5 <sup>8</sup> | 32.6 <sup>8</sup> | 20 7   | Turn Bay | 0.0         | 50.0        |
| Approach     | 0          | 235        | 246        | 481         | 5.0     |                  | 0.825       |            | 18.7              | LOS C              | 4.5              | 32.6              |        |          |             |             |
| South West   | : Collec   | tor Roa    | ad IT01    |             |         |                  |             |            |                   |                    |                  |                   |        |          |             |             |
| Lane 1       | 284        | 0          | 0          | 284         | 5.0     | 314 <sup>1</sup> | 0.906       | 100        | 14.8 <sup>8</sup> | LOS D <sup>8</sup> | 4.5 <sup>8</sup> | 32.6 <sup>8</sup> | 20 7   | Turn Bay | 0.0         | 50.0        |
| Lane 2       | 0          | 0          | 1          | 1           | 5.0     | 332              | 0.003       | 100        | 49.7              | LOS A              | 0.0              | 0.3               | 500    | _        | 0.0         | 0.0         |
| Approach     | 284        | 0          | 1          | 285         | 5.0     |                  | 0.906       |            | 14.9              | LOS D              | 4.5              | 32.6              |        |          |             |             |
| Intersection |            |            |            | 1335        | 5.0     |                  | 0.906       |            | 29.5              | LOS D              | 16.2             | 117.9             |        |          |             |             |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 8 Delay, queue length and stops for the short lane have been cut down to fit in the queuing space. You may wish to change the short lane to a full lane to investigate the effect on the adjacent lane performance.

Processed: Tuesday, 22 May 2012 2:21:02 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

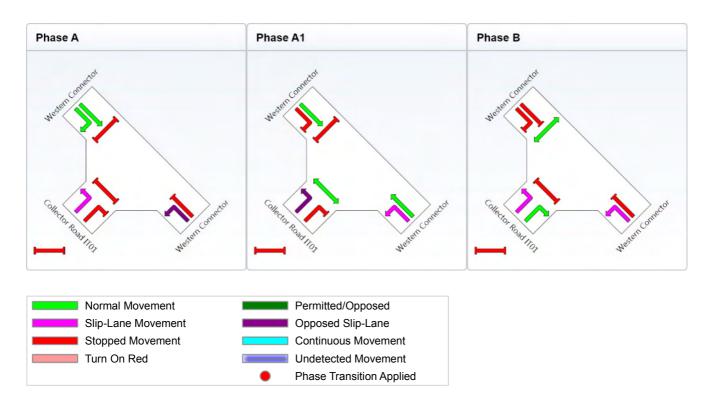
Project: I:\Projects\3004740 - Merrifield West Precinct Strouture Plan\Engineering\Traffic\SIDRA\20120517 - 2046

sidras\IT01.sip

8000617, SMEC AUSTRALIA PTY LTD, SINGLE



Site: 2046\_PM Peak


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Two-Phase Input Sequence: A, A1, B Output Sequence: A, A1, B

**Phase Timing Results** 

| Phase              | Α    | A1   | В    |
|--------------------|------|------|------|
| Green Time (sec)   | 58   | 22   | 22   |
| Yellow Time (sec)  | 4    | 4    | 4    |
| All-Red Time (sec) | 2    | 2    | 2    |
| Phase Time (sec)   | 64   | 28   | 28   |
| Phase Split        | 53 % | 23 % | 23 % |



Processed: Tuesday, 22 May 2012 2:21:02 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

sidras\IT01.sip



Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

| Lane Use     | and Pe     | erform     | nance      |                |         |                  |             |            |              |          |      |          |        |          |             |             |
|--------------|------------|------------|------------|----------------|---------|------------------|-------------|------------|--------------|----------|------|----------|--------|----------|-------------|-------------|
|              | Г          | Deman      | d Flows    |                | 1157    | 0                | Deg.        | Lane       | Average      | Level of |      |          | Lane   | SL       | Cap. F      |             |
|              | L<br>veh/h | T<br>veh/h | R<br>veh/h | Total<br>veh/h | HV<br>% | Cap.             | Satn<br>v/c | Util.<br>% | Delay<br>sec | Service  |      | Distance | Length | Type     | Adj. E<br>% | Block.<br>% |
| South East:  |            |            |            | ven/m          | 70      | ven/m            | V/C         | 7/0        | Sec          |          | veh  | m        | m      |          | 70          | . 70        |
| Lane 1       | 1          | 0          | 0          | 1              | 5.0     | 545 <sup>1</sup> | 0.002       | 100        | 8.3          | LOS A    | 0.0  | 0.0      | 20 7   | Turn Bay | 0.0         | 0.0         |
| Lane 2       | 0          | 118        | 0          | 118            | 5.0     | 175              | 0.672       | 100        | 55.8         | LOS B    | 6.8  | 49.9     | 500    | _ ´      | 0.0         | 0.0         |
| Lane 3       | 0          | 118        | 0          | 118            | 5.0     | 175              | 0.672       | 100        | 55.8         | LOS B    | 6.8  | 49.9     | 500    | _        | 0.0         | 0.0         |
| Approach     | 1          | 235        | 0          | 236            | 5.0     |                  | 0.672       |            | 55.6         | LOS B    | 6.8  | 49.9     |        |          |             |             |
| North West:  | Weste      | rn Con     | nector     |                |         |                  |             |            |              |          |      |          |        |          |             |             |
| Lane 1       | 0          | 284        | 0          | 284            | 5.0     | 1367             | 0.208       | 100        | 1.0          | LOS A    | 1.0  | 7.4      | 500    | -        | 0.0         | 0.0         |
| Lane 2       | 0          | 284        | 0          | 284            | 5.0     | 1367             | 0.208       | 100        | 1.0          | LOS A    | 1.0  | 7.4      | 500    | -        | 0.0         | 0.0         |
| Lane 3       | 0          | 0          | 496        | 496            | 5.0     | 809 <sup>1</sup> | 0.613       | 100        | 17.7         | LOS B    | 2.6  | 19.1     | 25 7   | Turn Bay | 0.0         | 0.0         |
| Approach     | 0          | 568        | 496        | 1064           | 5.0     |                  | 0.613       |            | 8.8          | LOS B    | 2.6  | 19.1     |        |          |             |             |
| South West   | : Collec   | tor Ro     | ad IT01    |                |         |                  |             |            |              |          |      |          |        |          |             |             |
| Lane 1       | 246        | 0          | 0          | 246            | 5.0     | 520 <sup>1</sup> | 0.473       | 100        | 8.7          | LOS A    | 1.8  | 13.3     | 20 7   | Turn Bay | 0.0         | 0.0         |
| Lane 2       | 0          | 0          | 240        | 240            | 5.0     | 332              | 0.723       | 100        | 59.4         | LOS C    | 13.8 | 100.6    | 500    | _        | 0.0         | 0.0         |
| Approach     | 246        | 0          | 240        | 486            | 5.0     |                  | 0.723       |            | 33.7         | LOS C    | 13.8 | 100.6    |        |          |             |             |
| Intersection |            |            |            | 1786           | 5.0     |                  | 0.723       |            | 21.8         | LOS C    | 13.8 | 100.6    |        |          |             |             |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

1 Reduced capacity due to a short lane effect

Processed: Tuesday, 22 May 2012 2:21:03 PM

SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Strcuture Plan\Engineering\Traffic\SIDRA\20120517 - 2046

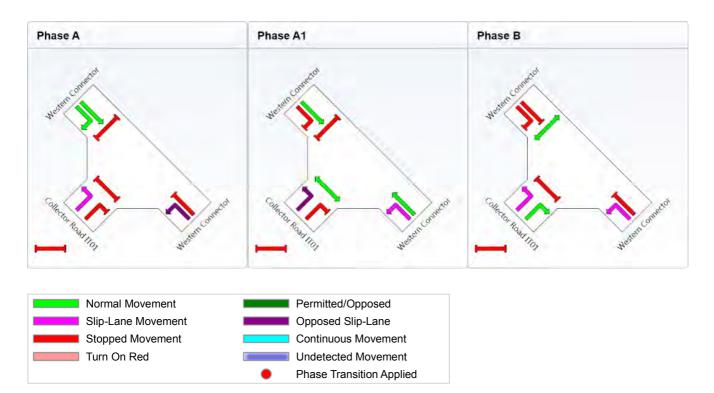
sidras\IT01.sip



# **PHASING SUMMARY**

IT01

Site: 2046\_AM Peak (RT bans)


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Two-Phase Input Sequence: A, A1, B Output Sequence: A, A1, B

**Phase Timing Results** 

| Phase              | Α    | A1   | В    |
|--------------------|------|------|------|
| Green Time (sec)   | 69   | 11   | 22   |
| Yellow Time (sec)  | 4    | 4    | 4    |
| All-Red Time (sec) | 2    | 2    | 2    |
| Phase Time (sec)   | 75   | 17   | 28   |
| Phase Split        | 63 % | 14 % | 23 % |



Processed: Tuesday, 22 May 2012 2:21:03 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

 $\label{local_project: l:Projects 3004740 - Merrifield West Precinct Struture Plan Engineering Traffic SIDRA \ 20120517 - 2046 sidras \ ITO1. sip$ 



| Lane Use     | and Pe     | rform      | ance       |             |                 |                  |             |            |                   |                    |                  |                   |             |         |             |             |
|--------------|------------|------------|------------|-------------|-----------------|------------------|-------------|------------|-------------------|--------------------|------------------|-------------------|-------------|---------|-------------|-------------|
|              | . C        | eman       | d Flows    |             | HV              | Can              | Deg.        | Lane       | Average           | Level of           | 95% Back         |                   | Lane        | SL      | Cap. I      |             |
|              | L<br>veh/h | l<br>veh/h | R<br>veh/h | Total veh/h | п <b>v</b><br>% | Cap.             | Satn<br>v/c | Util.<br>% | Delay<br>sec      | Service            | Vehicles veh     | Distance<br>m     | Length<br>m | Type    | Adj. I<br>% | Block.<br>% |
| South East:  |            |            |            |             | ,,              |                  |             | ,,         | 000               |                    | 70               |                   |             |         | ,,          | ,,          |
| Lane 1       | 1          | 0          | 0          | 1           | 5.0             | 684 <sup>1</sup> | 0.001       | 100        | 8.3               | LOS A              | 0.0              | 0.0               | 20 7        | urn Bay | 0.0         | 0.0         |
| Lane 2       | 0          | 284        | 0          | 284         | 5.0             | 318              | 0.893       | 100        | 52.8              | LOS C              | 17.6             | 128.2             | 500         | _       | 0.0         | 0.0         |
| Lane 3       | 0          | 284        | 0          | 284         | 5.0             | 318              | 0.893       | 100        | 52.8              | LOS C              | 17.6             | 128.2             | 500         | _       | 0.0         | 0.0         |
| Approach     | 1          | 568        | 0          | 569         | 5.0             |                  | 0.893       |            | 52.7              | LOS C              | 17.6             | 128.2             |             |         |             |             |
| North West   | : Wester   | rn Con     | nector     |             |                 |                  |             |            |                   |                    |                  |                   |             |         |             |             |
| Lane 1       | 0          | 118        | 0          | 118         | 5.0             | 1367             | 0.086       | 100        | 0.9               | LOS A              | 0.4              | 2.7               | 500         | _       | 0.0         | 0.0         |
| Lane 2       | 0          | 118        | 0          | 118         | 5.0             | 1367             | 0.086       | 100        | 0.9               | LOS A              | 0.4              | 2.7               | 500         | _       | 0.0         | 0.0         |
| Lane 3       | 0          | 0          | 344        | 344         | 5.0             | 386              | 0.891       | 100        | 33.7 <sup>8</sup> | LOS C              | 5.6°             | 40.8 <sup>8</sup> | 25 1        | urn Bay | 0.0         | 50.0        |
| Approach     | 0          | 235        | 344        | 579         | 5.0             |                  | 0.891       |            | 20.4              | LOS C              | 5.6              | 40.8              |             |         |             |             |
| South West   | :: Collec  | tor Ro     | ad IT01    |             |                 |                  |             |            |                   |                    |                  |                   |             |         |             |             |
| Lane 1       | 284        | 0          | 0          | 284         | 5.0             | 379 <sup>1</sup> | 0.749       | 100        | 14.7 <sup>8</sup> | LOS C <sup>8</sup> | 4.5 <sup>8</sup> | 32.6 <sup>8</sup> | 20 7        | urn Bay | 0.0         | 50.0        |
| Lane 2       | 0          | 0          | 162        | 162         | 5.0             | 332              | 0.488       | 100        | 55.6              | LOS A              | 8.7              | 63.1              | 500         | _       | 0.0         | 0.0         |
| Approach     | 284        | 0          | 162        | 446         | 5.0             |                  | 0.749       |            | 29.6              | LOS C              | 8.7              | 63.1              |             |         |             |             |
| Intersection |            |            |            | 1594        | 5.0             |                  | 0.893       |            | 34.5              | LOS C              | 17.6             | 128.2             |             |         |             |             |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 8 Delay, queue length and stops for the short lane have been cut down to fit in the queuing space. You may wish to change the short lane to a full lane to investigate the effect on the adjacent lane performance.

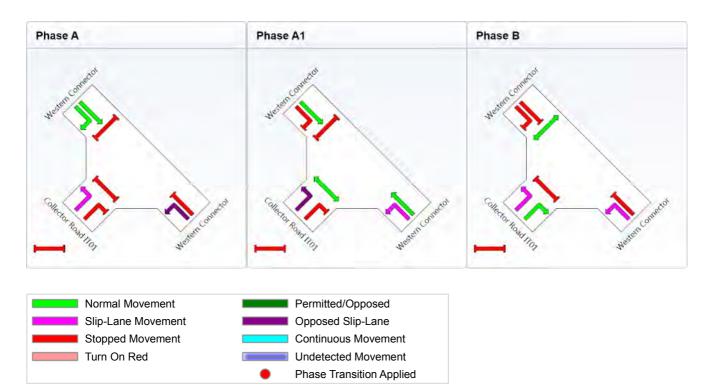
Processed: Tuesday, 22 May 2012 2:21:03 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Strouture Plan\Engineering\Traffic\SIDRA\20120517 - 2046

sidras\IT01.sip




Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Two-Phase Input Sequence: A, A1, B Output Sequence: A, A1, B

**Phase Timing Results** 

| Phase              | Α    | A1   | В    |
|--------------------|------|------|------|
| Green Time (sec)   | 60   | 20   | 22   |
| Yellow Time (sec)  | 4    | 4    | 4    |
| All-Red Time (sec) | 2    | 2    | 2    |
| Phase Time (sec)   | 66   | 26   | 28   |
| Phase Split        | 55 % | 22 % | 23 % |



Processed: Tuesday, 22 May 2012 2:21:03 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

 $\label{local_project: l:Projects 3004740 - Merrifield West Precinct Struture Plan Engineering Traffic SIDRA \ 20120517 - 2046 sidras \ ITO1. sip$ 



Site: 2046\_AM Peak

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

| Lane Use and Performance |                                 |              |         |       |     |                  |       |       |         |          |     |          |        |          |        |     |
|--------------------------|---------------------------------|--------------|---------|-------|-----|------------------|-------|-------|---------|----------|-----|----------|--------|----------|--------|-----|
|                          | Е                               | eman         | d Flows |       | 107 | _                | Deg.  | Lane  | Average | Level of |     |          | Lane   | SL       | Cap. F |     |
|                          | L<br>Vala/la                    | T<br>de //de | R       | Total | HV  | Cap.             | Satn  | Util. | Delay   | Service  |     | Distance | Length | Type     | Adj. E |     |
| South East:              |                                 |              |         | veh/h | %   | veh/h            | v/c   | %     | sec     |          | veh | m        | m      |          | %      | %   |
| Lane 1                   | 70                              | 0            | 0       | 70    | 5.0 | 949 <sup>1</sup> | 0.074 | 100   | 8.3     | LOS A    | 0.1 | 0.8      | 20.7   | Turn Bay | 0.0    | 0.0 |
| Lane 2                   | 0                               | 89           | 0       | 89    | 5.0 | 239              | 0.373 | 100   | 48.1    | LOSA     | 4.6 | 33.5     | 500    |          | 0.0    | 0.0 |
| Lane 3                   | 0                               | 89           | 0       | 89    | 5.0 | 239              | 0.373 | 100   | 48.1    | LOSA     | 4.6 | 33.5     | 500    | _        | 0.0    | 0.0 |
| Approach                 | 70                              | 178          | 0       | 248   | 5.0 | 200              | 0.373 | 100   | 36.9    | LOSA     | 4.6 | 33.5     | 300    |          | 0.0    | 0.0 |
| Арргоасті                | 70                              | 170          | U       | 240   | 3.0 |                  | 0.373 |       | 30.9    | LOSA     | 4.0 | 33.3     |        |          |        |     |
| North West:              | Wester                          | rn Con       | nector  |       |     |                  |       |       |         |          |     |          |        |          |        |     |
| Lane 1                   | 0                               | 235          | 0       | 235   | 5.0 | 1367             | 0.172 | 100   | 1.0     | LOS A    | 0.8 | 5.8      | 500    | _        | 0.0    | 0.0 |
| Lane 2                   | 0                               | 235          | 0       | 235   | 5.0 | 1367             | 0.172 | 100   | 1.0     | LOS A    | 0.8 | 5.8      | 500    | _        | 0.0    | 0.0 |
| Lane 3                   | 0                               | 0            | 98      | 98    | 5.0 | 542 <sup>1</sup> | 0.181 | 100   | 12.3    | LOS A    | 0.6 | 4.4      | 20 7   | Turn Bay | 0.0    | 0.0 |
| Approach                 | 0                               | 470          | 98      | 568   | 5.0 |                  | 0.181 |       | 3.0     | LOS A    | 8.0 | 5.8      |        |          |        |     |
| South West               | South West: Collector Road IT02 |              |         |       |     |                  |       |       |         |          |     |          |        |          |        |     |
| Lane 1                   | 57                              | 0            | 0       | 57    | 5.0 | 562 <sup>1</sup> | 0.102 | 100   | 7.8     | LOS A    | 0.3 | 2.2      | 20 7   | Turn Bay | 0.0    | 0.0 |
| Lane 2                   | 0                               | 0            | 119     | 119   | 5.0 | 332              | 0.358 | 100   | 54.2    | LOS A    | 6.2 | 45.1     | 500    | _        | 0.0    | 0.0 |
| Approach                 | 57                              | 0            | 119     | 176   | 5.0 |                  | 0.358 |       | 39.2    | LOSA     | 6.2 | 45.1     |        |          |        |     |
| Intersection             |                                 |              |         | 992   | 5.0 |                  | 0.373 |       | 17.9    | LOS A    | 6.2 | 45.1     |        |          |        |     |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

1 Reduced capacity due to a short lane effect

Processed: Tuesday, 22 May 2012 2:28:07 PM SIDRA INTERSECTION 5.1.9.2068

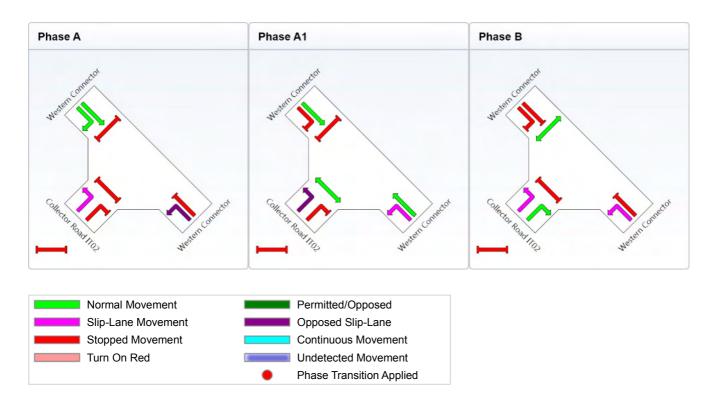
Copyright © 2000-2011 Akcelik and Associates Pty Ltd

www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Struture Plan\Engineering\Traffic\SIDRA\20120517 - 2046

sidras\IT02.sip




Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Two-Phase Input Sequence: A, A1, B Output Sequence: A, A1, B

**Phase Timing Results** 

| Phase              | Α    | A1   | В    |
|--------------------|------|------|------|
| Green Time (sec)   | 65   | 15   | 22   |
| Yellow Time (sec)  | 4    | 4    | 4    |
| All-Red Time (sec) | 2    | 2    | 2    |
| Phase Time (sec)   | 71   | 21   | 28   |
| Phase Split        | 59 % | 18 % | 23 % |



Processed: Tuesday, 22 May 2012 2:28:07 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

 $\label{local_project} Projects \ 1: Projects \ 3004740 - Merrifield\ West\ Precinct\ Struture\ Plan \ Engineering \ Traffic \ SIDRA \ 20120517 - 2046\ sidras \ 1702. sip$ 



| Lane Use and Performance                                                            |            |            |            |                |         |                  |             |            |         |          |                 |          |        |          |             |             |
|-------------------------------------------------------------------------------------|------------|------------|------------|----------------|---------|------------------|-------------|------------|---------|----------|-----------------|----------|--------|----------|-------------|-------------|
|                                                                                     | С          | eman       | d Flows    |                | 1157    | 0                | Deg.        | Lane       | Average | Level of | 95% Back        |          | Lane   | SL       | Cap. F      |             |
|                                                                                     | L<br>veh/h | T<br>veh/h | R<br>veh/h | Total<br>veh/h | HV<br>% | Cap.             | Satn<br>v/c | Util.<br>% | Delay   | Service  | Vehicles<br>veh | Distance | Length | Type     | Adj. E<br>% | Block.<br>% |
| veh/h veh/h veh/h veh/h % veh/h v/c % sec veh m m % % South East; Western Connector |            |            |            |                |         |                  |             |            |         |          |                 | /0       |        |          |             |             |
| Lane 1                                                                              | 119        | 0          | 0          | 119            | 5.0     | 970 <sup>1</sup> | 0.123       | 100        | 8.4     | LOS A    | 0.2             | 1.5      | 20 7   | Turn Bay | 0.0         | 0.0         |
| Lane 2                                                                              | 0          | 235        | 0          | 235            | 5.0     | 636              | 0.369       | 100        | 21.7    | LOS A    | 7.7             | 55.9     | 500    | _        | 0.0         | 0.0         |
| Lane 3                                                                              | 0          | 235        | 0          | 235            | 5.0     | 636              | 0.369       | 100        | 21.7    | LOS A    | 7.7             | 55.9     | 500    | _        | 0.0         | 0.0         |
| Approach                                                                            | 119        | 470        | 0          | 589            | 5.0     |                  | 0.369       |            | 19.0    | LOS A    | 7.7             | 55.9     |        |          |             |             |
| North West                                                                          | : Wester   | n Con      | nector     |                |         |                  |             |            |         |          |                 |          |        |          |             |             |
| Lane 1                                                                              | 0          | 89         | 0          | 89             | 5.0     | 1367             | 0.065       | 100        | 0.9     | LOS A    | 0.3             | 2.0      | 500    | -        | 0.0         | 0.0         |
| Lane 2                                                                              | 0          | 89         | 0          | 89             | 5.0     | 1367             | 0.065       | 100        | 0.9     | LOS A    | 0.3             | 2.0      | 500    | _        | 0.0         | 0.0         |
| Lane 3                                                                              | 0          | 0          | 57         | 57             | 5.0     | 156 <sup>1</sup> | 0.366       | 100        | 28.3    | LOS A    | 1.5             | 11.3     | 20 7   | Γurn Bay | 0.0         | 0.0         |
| Approach                                                                            | 0          | 178        | 57         | 235            | 5.0     |                  | 0.366       |            | 7.6     | LOS A    | 1.5             | 11.3     |        |          |             |             |
| South West: Collector Road IT02                                                     |            |            |            |                |         |                  |             |            |         |          |                 |          |        |          |             |             |
| Lane 1                                                                              | 98         | 0          | 0          | 98             | 5.0     | 374 <sup>1</sup> | 0.262       | 100        | 8.4     | LOS A    | 0.8             | 5.7      | 20 7   | Turn Bay | 0.0         | 0.0         |
| Lane 2                                                                              | 0          | 0          | 70         | 70             | 5.0     | 332              | 0.211       | 100        | 52.7    | LOS A    | 3.5             | 25.7     | 500    | _        | 0.0         | 0.0         |
| Approach                                                                            | 98         | 0          | 70         | 168            | 5.0     |                  | 0.262       |            | 26.8    | LOSA     | 3.5             | 25.7     |        |          |             |             |
| Intersection                                                                        |            |            |            | 992            | 5.0     |                  | 0.369       |            | 17.6    | LOS A    | 7.7             | 55.9     |        |          |             |             |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

## 1 Reduced capacity due to a short lane effect

Processed: Tuesday, 22 May 2012 2:28:08 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

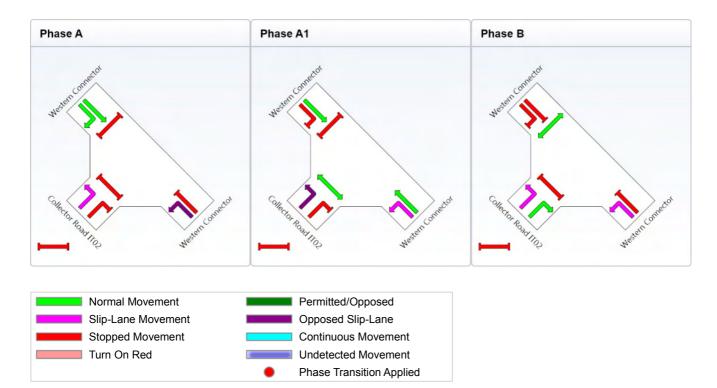
Project: I:\Projects\3004740 - Merrifield West Precinct Strouture Plan\Engineering\Traffic\SIDRA\20120517 - 2046

sidras\IT02.sip

8000617, SMEC AUSTRALIA PTY LTD, SINGLE



Site: 2046\_PM Peak


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Two-Phase Input Sequence: A, A1, B Output Sequence: A, A1, B

**Phase Timing Results** 

| Phase              | Α    | A1   | В    |
|--------------------|------|------|------|
| Green Time (sec)   | 40   | 40   | 22   |
| Yellow Time (sec)  | 4    | 4    | 4    |
| All-Red Time (sec) | 2    | 2    | 2    |
| Phase Time (sec)   | 46   | 46   | 28   |
| Phase Split        | 38 % | 38 % | 23 % |



Processed: Tuesday, 22 May 2012 2:28:08 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

 $\label{local_project} Projects \ 1: Projects \ 3004740 - Merrifield\ West\ Precinct\ Struture\ Plan \ Engineering \ Traffic \ SIDRA \ 20120517 - 2046\ sidras \ 1702. sip$ 



Site: 2046\_AM Peak

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

| Lane Use     | and Pe     | rform      | nance      |             |         |                  |             |            |              |          |                 |               |             |          |             |             |
|--------------|------------|------------|------------|-------------|---------|------------------|-------------|------------|--------------|----------|-----------------|---------------|-------------|----------|-------------|-------------|
|              | С          | )eman      | d Flows    |             | 1157    | 0                | Deg.        | Lane       | Average      | Level of | 95% Back        |               | Lane        | SL       | Cap. F      |             |
|              | L<br>veh/h | T<br>voh/h | R<br>veh/h | Total veh/h | HV<br>% | Cap.             | Satn<br>v/c | Util.<br>% | Delay<br>sec | Service  | Vehicles<br>veh | Distance<br>m | Length<br>m | Type     | Adj. E<br>% | Block.<br>% |
| South East:  |            |            |            | VEII/II     | /0      | VCII/II          | V/C         | /0         | 366          |          | Ven             | - '''         | - '''       | _        | /0          | /0          |
| Lane 1       | 91         | 0          | 0          | 91          | 5.0     | 903 <sup>1</sup> | 0.101       | 100        | 8.4          | LOS A    | 0.2             | 1.2           | 20 7        | Γurn Bay | 0.0         | 0.0         |
| Lane 2       | 0          | 104        | 0          | 104         | 5.0     | 382              | 0.271       | 100        | 36.7         | LOS A    | 4.5             | 32.6          | 500         |          | 0.0         | 0.0         |
| Lane 3       | 0          | 104        | 0          | 104         | 5.0     | 382              | 0.271       | 100        | 36.7         | LOS A    | 4.5             | 32.6          | 500         | _        | 0.0         | 0.0         |
| Approach     | 91         | 207        | 0          | 298         | 5.0     |                  | 0.271       |            | 28.0         | LOS A    | 4.5             | 32.6          |             |          |             |             |
| North West   | Wester     | rn Con     | nector     |             |         |                  |             |            |              |          |                 |               |             |          |             |             |
| Lane 1       | 0          | 238        | 0          | 238         | 5.0     | 1256             | 0.189       | 100        | 1.2          | LOS A    | 8.0             | 6.0           | 500         | -        | 0.0         | 0.0         |
| Lane 2       | 0          | 238        | 0          | 238         | 5.0     | 1256             | 0.189       | 100        | 1.2          | LOS A    | 0.8             | 6.0           | 500         | _        | 0.0         | 0.0         |
| Lane 3       | 0          | 0          | 114        | 114         | 5.0     | 205 <sup>1</sup> | 0.555       | 100        | 26.6         | LOS A    | 2.3             | 17.1          | 20 7        | Γurn Bay | 0.0         | 0.0         |
| Approach     | 0          | 475        | 114        | 589         | 5.0     |                  | 0.555       |            | 6.1          | LOS A    | 2.3             | 17.1          |             |          |             |             |
| South West   | : Collec   | tor Ro     | ad IT03    |             |         |                  |             |            |              |          |                 |               |             |          |             |             |
| Lane 1       | 41         | 0          | 0          | 41          | 5.0     | 538 <sup>1</sup> | 0.076       | 100        | 7.8          | LOS A    | 0.2             | 1.5           | 20 7        | Turn Bay | 0.0         | 0.0         |
| Lane 2       | 0          | 0          | 120        | 120         | 5.0     | 438              | 0.274       | 100        | 47.4         | LOS A    | 5.7             | 41.8          | 500         | _        | 0.0         | 0.0         |
| Approach     | 41         | 0          | 120        | 161         | 5.0     |                  | 0.274       |            | 37.3         | LOS A    | 5.7             | 41.8          |             |          |             |             |
| Intersection |            |            |            | 1048        | 5.0     |                  | 0.555       |            | 17.1         | LOS A    | 5.7             | 41.8          |             |          |             |             |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

1 Reduced capacity due to a short lane effect

Processed: Tuesday, 22 May 2012 2:30:22 PM SIDRA INTERSECTION 5.1.9.2068

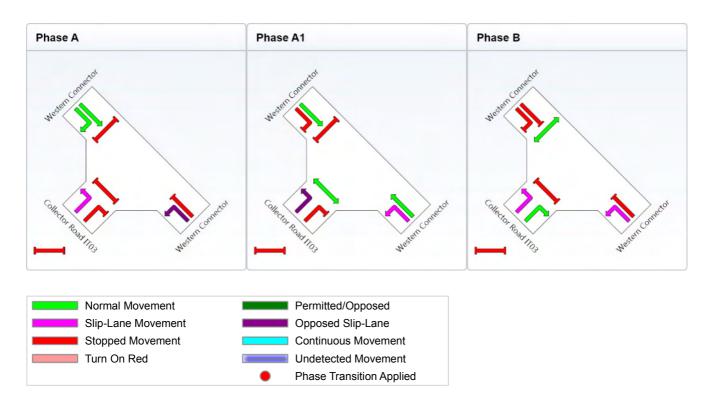
Copyright © 2000-2011 Akcelik and Associates Pty Ltd

www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Strcuture Plan\Engineering\Traffic\SIDRA\20120517 - 2046

sidras\IT03.sip




Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Two-Phase Input Sequence: A, A1, B Output Sequence: A, A1, B

**Phase Timing Results** 

| Phase              | Α    | A1   | В    |
|--------------------|------|------|------|
| Green Time (sec)   | 49   | 24   | 29   |
| Yellow Time (sec)  | 4    | 4    | 4    |
| All-Red Time (sec) | 2    | 2    | 2    |
| Phase Time (sec)   | 55   | 30   | 35   |
| Phase Split        | 46 % | 25 % | 29 % |



Processed: Tuesday, 22 May 2012 2:30:22 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Struture Plan\Engineering\Traffic\SIDRA\20120517 - 2046 sidras\IT03.sip



| Lane Use     | and Pe     | rform      | ance       |             |         |                  |             |            |              |          |              |          |        |          |             |             |
|--------------|------------|------------|------------|-------------|---------|------------------|-------------|------------|--------------|----------|--------------|----------|--------|----------|-------------|-------------|
|              | Е          | )eman      | d Flows    |             | 1.15.7  | _                | Deg.        | Lane       | Average      | Level of | 95% Back     |          | Lane   | SL       | Cap. F      |             |
|              | L<br>veh/h | T<br>voh/h | R<br>veh/h | Total veh/h | HV<br>% | Cap.             | Satn<br>v/c | Util.<br>% | Delay<br>sec | Service  | Vehicles veh | Distance | Length | Type     | Adj. E<br>% | Block.<br>% |
| South East:  |            |            |            | ven/m       | 70      | ven/m            | V/C         | 70         | Sec          |          | ven          | m        | m      |          | 70          | 7/0         |
| Lane 1       | 120        | 0          | 0          | 120         | 5.0     | 994 <sup>1</sup> | 0.121       | 100        | 8.4          | LOS A    | 0.2          | 1.5      | 20 7   | Γurn Bay | 0.0         | 0.0         |
| Lane 2       | 0          | 238        | 0          | 238         | 5.0     | 747              | 0.318       | 100        | 15.4         | LOS A    | 6.0          | 44.0     | 500    | _        | 0.0         | 0.0         |
| Lane 3       | 0          | 238        | 0          | 238         | 5.0     | 747              | 0.318       | 100        | 15.4         | LOS A    | 6.0          | 44.0     | 500    | _        | 0.0         | 0.0         |
| Approach     | 120        | 475        | 0          | 595         | 5.0     |                  | 0.318       |            | 14.0         | LOS A    | 6.0          | 44.0     |        |          |             |             |
| North West   | Wester     | rn Con     | nector     |             |         |                  |             |            |              |          |              |          |        |          |             |             |
| Lane 1       | 0          | 104        | 0          | 104         | 5.0     | 1367             | 0.076       | 100        | 0.9          | LOS A    | 0.3          | 2.3      | 500    | -        | 0.0         | 0.0         |
| Lane 2       | 0          | 104        | 0          | 104         | 5.0     | 1367             | 0.076       | 100        | 0.9          | LOS A    | 0.3          | 2.3      | 500    | _        | 0.0         | 0.0         |
| Lane 3       | 0          | 0          | 41         | 41          | 5.0     | 130 <sup>1</sup> | 0.315       | 100        | 34.5         | LOS A    | 1.3          | 9.8      | 20 7   | Turn Bay | 0.0         | 0.0         |
| Approach     | 0          | 207        | 41         | 248         | 5.0     |                  | 0.315       |            | 6.5          | LOS A    | 1.3          | 9.8      |        |          |             |             |
| South West   | : Collec   | tor Ro     | ad IT03    |             |         |                  |             |            |              |          |              |          |        |          |             |             |
| Lane 1       | 114        | 0          | 0          | 114         | 5.0     | 398 <sup>1</sup> | 0.287       | 100        | 8.1          | LOS A    | 8.0          | 5.8      | 20 7   | Гurn Bay | 0.0         | 0.0         |
| Lane 2       | 0          | 0          | 91         | 91          | 5.0     | 332              | 0.274       | 100        | 53.4         | LOS A    | 4.6          | 33.8     | 500    | _        | 0.0         | 0.0         |
| Approach     | 114        | 0          | 91         | 205         | 5.0     |                  | 0.287       |            | 28.2         | LOS A    | 4.6          | 33.8     |        |          |             |             |
| Intersection |            |            |            | 1048        | 5.0     |                  | 0.318       |            | 15.0         | LOS A    | 6.0          | 44.0     |        |          |             |             |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

1 Reduced capacity due to a short lane effect

Processed: Tuesday, 22 May 2012 2:30:23 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Strouture Plan\Engineering\Traffic\SIDRA\20120517 - 2046

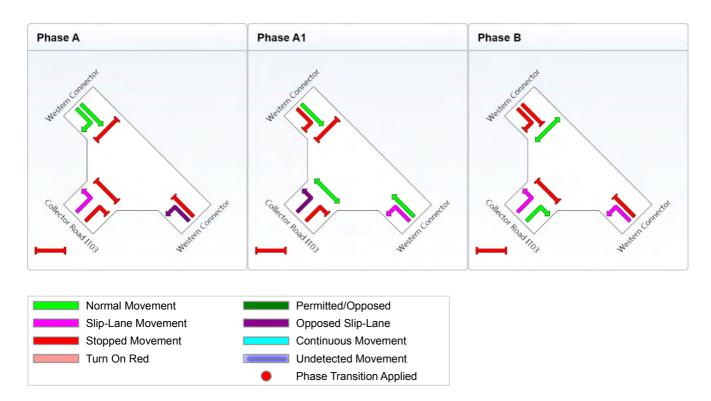
sidras\IT03.sip

8000617, SMEC AUSTRALIA PTY LTD, SINGLE



# **PHASING SUMMARY**

IT03


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

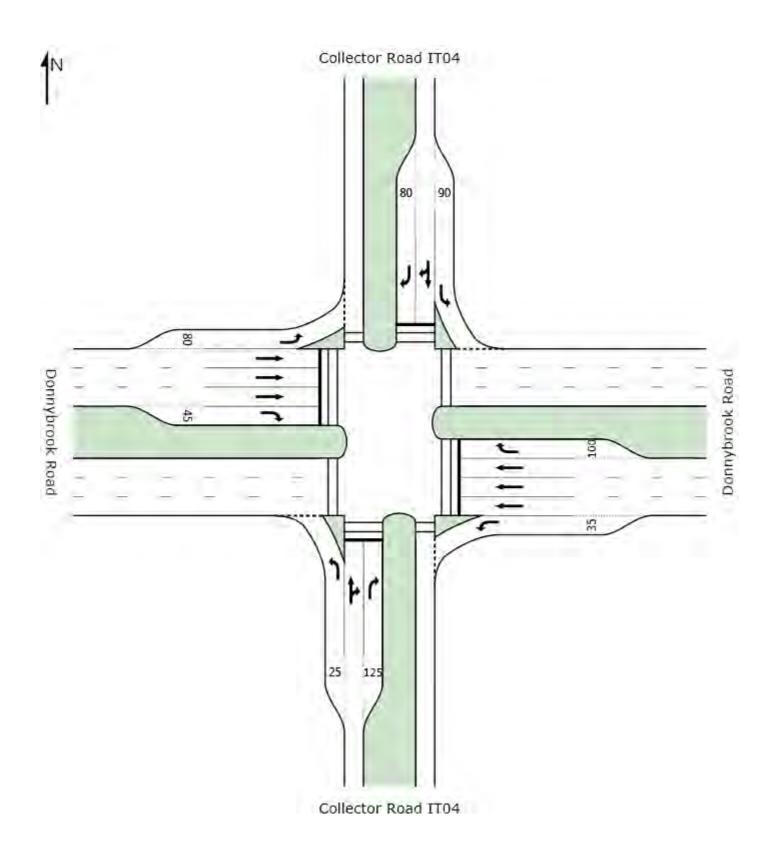
Sequence: Two-Phase Input Sequence: A, A1, B Output Sequence: A, A1, B

**Phase Timing Results** 

| Phase              | Α    | A1   | В    |
|--------------------|------|------|------|
| Green Time (sec)   | 33   | 47   | 22   |
| Yellow Time (sec)  | 4    | 4    | 4    |
| All-Red Time (sec) | 2    | 2    | 2    |
| Phase Time (sec)   | 39   | 53   | 28   |
| Phase Split        | 33 % | 44 % | 23 % |



Processed: Tuesday, 22 May 2012 2:30:23 PM SIDRA INTERSECTION 5.1.9.2068


Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Struture Plan\Engineering\Traffic\SIDRA\20120517 - 2046

sidras\IT03.sip

8000617, SMEC AUSTRALIA PTY LTD, SINGLE





|              |         | Deman   | d Flows |       |     |                   | Deg.  | Lane  | Average | Level of | 95% Back | of Oueue | Lane   | SL       | Cap. F | Prob. |
|--------------|---------|---------|---------|-------|-----|-------------------|-------|-------|---------|----------|----------|----------|--------|----------|--------|-------|
|              | L'      | Z       | R       | Total | HV  | Сар.              | Satn  | Util. | Delay   | Service  |          | Distance | Length | Type     | Adj. E |       |
|              | veh/h   | veh/h   | veh/h   | veh/h | %   | veh/h             | v/c   | %     | sec     |          | veh      | m        | m      | 71       | %      | %     |
| South: Colle | ector R | oad IT0 | 4       |       |     |                   |       |       |         |          |          |          |        |          |        |       |
| Lane 1       | 1       | 0       | 0       | 1     | 5.0 | 246 <sup>1</sup>  | 0.004 | 100   | 11.8    | LOS A    | 0.0      | 0.1      | 25     | Γurn Bay | 0.0    | 0.0   |
| Lane 2       | 0       | 44      | 44      | 88    | 5.0 | 248               | 0.354 | 100   | 55.7    | LOS A    | 4.8      | 34.9     | 500    | -        | 0.0    | 0.0   |
| Lane 3       | 0       | 0       | 85      | 85    | 5.0 | 242               | 0.354 | 100   | 59.3    | LOS A    | 4.7      | 34.0     | 125    | Γurn Bay | 0.0    | 0.0   |
| Approach     | 1       | 44      | 129     | 174   | 5.0 |                   | 0.354 |       | 57.2    | LOS A    | 4.8      | 34.9     |        |          |        |       |
| East: Donn   | ybrook  | Road    |         |       |     |                   |       |       |         |          |          |          |        |          |        |       |
| Lane 1       | 63      | 0       | 0       | 63    | 5.0 | 964 <sup>1</sup>  | 0.065 | 100   | 8.6     | LOS A    | 0.2      | 1.6      | 35     | Turn Bay | 0.0    | 0.0   |
| Lane 2       | 0       | 601     | 0       | 601   | 5.0 | 906               | 0.663 | 100   | 10.2    | LOS B    | 15.3     | 111.4    | 500    | _        | 0.0    | 0.0   |
| Lane 3       | 0       | 601     | 0       | 601   | 5.0 | 906               | 0.663 | 100   | 10.2    | LOS B    | 15.3     | 111.4    | 500    | _        | 0.0    | 0.0   |
| Lane 4       | 0       | 601     | 0       | 601   | 5.0 | 906               | 0.663 | 100   | 10.2    | LOS B    | 15.3     | 111.4    | 500    | _        | 0.0    | 0.0   |
| Lane 5       | 0       | 0       | 1       | 1     | 5.0 | 91                | 0.011 | 100   | 68.6    | LOS A    | 0.1      | 0.4      | 100    | Turn Bay | 0.0    | 0.0   |
| Approach     | 63      | 1803    | 1       | 1867  | 5.0 |                   | 0.663 |       | 10.2    | LOS B    | 15.3     | 111.4    |        |          |        |       |
| North: Colle | ctor Ro | oad IT0 | 4       |       |     |                   |       |       |         |          |          |          |        |          |        |       |
| Lane 1       | 97      | 0       | 0       | 97    | 5.0 | 522 <sup>1</sup>  | 0.186 | 100   | 12.7    | LOS A    | 1.6      | 11.5     | 90 7   | Turn Bay | 0.0    | 0.0   |
| Lane 2       | 0       | 27      | 143     | 170   | 5.0 | 259               | 0.656 | 100   | 61.8    | LOS B    | 9.7      | 71.1     | 500    | _        | 0.0    | 0.0   |
| Lane 3       | 0       | 0       | 168     | 168   | 5.0 | 257               | 0.656 | 100   | 63.0    | LOS B    | 9.7      | 70.6     | 80     | Turn Bay | 0.0    | 0.0   |
| Approach     | 97      | 27      | 311     | 435   | 5.0 |                   | 0.656 |       | 51.3    | LOS B    | 9.7      | 71.1     |        |          |        |       |
| West: Donr   | ybrook  | Road    |         |       |     |                   |       |       |         |          |          |          |        |          |        |       |
| Lane 1       | 365     | 0       | 0       | 365   | 5.0 | 1264 <sup>1</sup> | 0.289 | 100   | 9.2     | LOS A    | 1.8      | 13.1     | 80     | Γurn Bay | 0.0    | 0.0   |
| Lane 2       | 0       | 593     | 0       | 593   | 5.0 | 906               | 0.655 | 100   | 10.1    | LOS B    | 14.9     | 108.4    | 500    | _        | 0.0    | 0.0   |
| Lane 3       | 0       | 593     | 0       | 593   | 5.0 | 906               | 0.655 | 100   | 10.1    | LOS B    | 14.9     | 108.4    | 500    | _        | 0.0    | 0.0   |
| Lane 4       | 0       | 593     | 0       | 593   | 5.0 | 906               | 0.655 | 100   | 10.1    | LOS B    | 14.9     | 108.4    | 500    | _        | 0.0    | 0.0   |
| Lane 5       | 0       | 0       | 1       | 1     | 5.0 | 91                | 0.011 | 100   | 66.2    | LOS A    | 0.1      | 0.4      | 45     | Turn Bay | 0.0    | 0.0   |
| Approach     | 365     | 1780    | 1       | 2146  | 5.0 |                   | 0.655 |       | 10.0    | LOS B    | 14.9     | 108.4    |        |          |        |       |
| Intersection |         |         |         | 4622  | 5.0 |                   | 0.663 |       | 15.7    | LOS B    | 15.3     | 111.4    |        |          |        |       |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

1 Reduced capacity due to a short lane effect

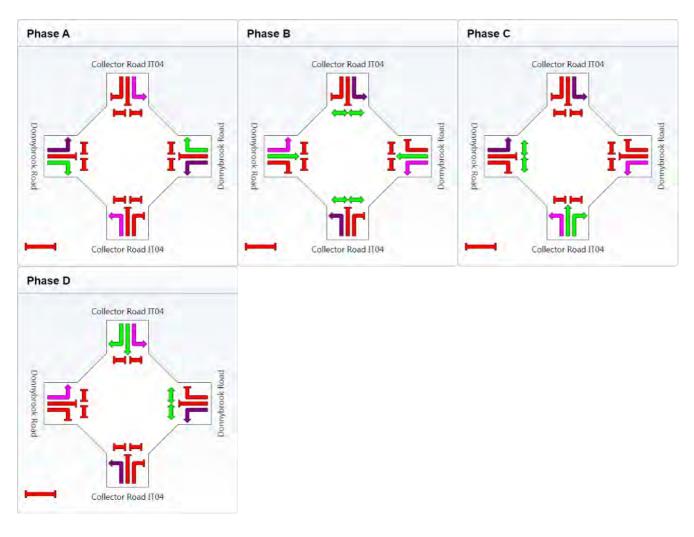
Processed: Tuesday, 22 May 2012 2:41:57 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Struture Plan\Engineering\Traffic\SIDRA\20120517 - 2046

sidras\IT04.sip




Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Split Phasing Input Sequence: A, B, C, D Output Sequence: A, B, C, D

Phase Timing Results

| Phase              | Α    | В    | С    | D    |
|--------------------|------|------|------|------|
| Green Time (sec)   | 6    | 57   | 16   | 17   |
| Yellow Time (sec)  | 4    | 4    | 4    | 4    |
| All-Red Time (sec) | 2    | 2    | 2    | 2    |
| Phase Time (sec)   | 12   | 63   | 22   | 23   |
| Phase Split        | 10 % | 53 % | 18 % | 19 % |





Processed: Tuesday, 22 May 2012 2:41:57 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com



| Lane Use     | and P    | erform     | nance        |            |     |                   |              |                 |                  |                     |      |                      |                |                                       |                |                 |
|--------------|----------|------------|--------------|------------|-----|-------------------|--------------|-----------------|------------------|---------------------|------|----------------------|----------------|---------------------------------------|----------------|-----------------|
|              | l<br>L   | Deman<br>T | d Flows<br>R | ;<br>Total | HV  | Сар.              | Deg.<br>Satn | Lane<br>Util.   | Average<br>Delay | Level of<br>Service |      | of Queue<br>Distance | Lane<br>Length | SL<br>Type                            | Cap.  <br>Adj. | Prob.<br>Block. |
|              |          | veh/h      |              | veh/h      | %   | veh/h             | v/c          | %               | sec              |                     | veh  | m                    | m              | , , , , , , , , , , , , , , , , , , , | %              | %               |
| South: Colle | ector R  | oad ITO    | )4           |            |     |                   |              |                 |                  |                     |      |                      |                |                                       |                |                 |
| Lane 1       | 1        | 0          | 0            | 1          | 5.0 | 203 <sup>1</sup>  | 0.005        | 100             | 16.9             | LOS A               | 0.0  | 0.2                  | 25 1           | urn Bay                               | 0.0            | 0.0             |
| Lane 2       | 0        | 84         | 0            | 84         | 5.0 | 254               | 0.330        | 100             | 51.9             | LOS A               | 4.6  | 33.3                 | 500            | _                                     | 0.0            | 0.0             |
| Lane 3       | 0        | 0          | 63           | 63         | 5.0 | 242               | 0.261        | 79 <sup>5</sup> | 58.5             | LOS A               | 3.4  | 24.7                 | 125 7          | urn Bay                               | 0.0            | 0.0             |
| Approach     | 1        | 84         | 63           | 148        | 5.0 |                   | 0.330        |                 | 54.5             | LOS A               | 4.6  | 33.3                 |                |                                       |                |                 |
| East: Donny  | ybrook   | Road       |              |            |     |                   |              |                 |                  |                     |      |                      |                |                                       |                |                 |
| Lane 1       | 129      | 0          | 0            | 129        | 5.0 | 730 <sup>1</sup>  | 0.177        | 100             | 9.0              | LOS A               | 0.8  | 6.0                  | 35 7           | urn Bay                               | 0.0            | 0.0             |
| Lane 2       | 0        | 593        | 0            | 593        | 5.0 | 747               | 0.794        | 100             | 20.4             | LOS C               | 25.3 | 184.8                | 500            | _                                     | 0.0            | 0.0             |
| Lane 3       | 0        | 593        | 0            | 593        | 5.0 | 747               | 0.794        | 100             | 20.4             | LOS C               | 25.3 | 184.8                | 500            | _                                     | 0.0            | 0.0             |
| Lane 4       | 0        | 593        | 0            | 593        | 5.0 | 747               | 0.794        | 100             | 20.4             | LOS C               | 25.3 | 184.8                | 500            | -                                     | 0.0            | 0.0             |
| Lane 5       | 0        | 0          | 97           | 97         | 5.0 | 121               | 0.803        | 100             | 75.5             | LOS C               | 6.2  | 45.3                 | 100 7          | urn Bay                               | 0.0            | 0.0             |
| Approach     | 129      | 1780       | 97           | 2006       | 5.0 |                   | 0.803        |                 | 22.4             | LOS C               | 25.3 | 184.8                |                |                                       |                |                 |
| North: Colle | ector Ro | oad IT0    | )4           |            |     |                   |              |                 |                  |                     |      |                      |                |                                       |                |                 |
| Lane 1       | 1        | 0          | 0            | 1          | 5.0 | 592 <sup>1</sup>  | 0.002        | 100             | 14.3             | LOS A               | 0.0  | 0.1                  | 90 7           | urn Bay                               | 0.0            | 0.0             |
| Lane 2       | 0        | 101        | 203          | 304        | 5.0 | 384               | 0.791        | 100             | 58.7             | LOS C               | 18.0 | 131.1                | 500            | _                                     | 0.0            | 0.0             |
| Lane 3       | 0        | 0          | 248          | 248        | 5.0 | 314 <sup>1</sup>  | 0.791        | 100             | 60.5             | LOS C               | 14.4 | 105.1                | 80 7           | urn Bay                               | 0.0            | 29.9            |
| Approach     | 1        | 101        | 451          | 553        | 5.0 |                   | 0.791        |                 | 59.4             | LOS C               | 18.0 | 131.1                |                |                                       |                |                 |
| West: Donn   | ybrook   | Road       |              |            |     |                   |              |                 |                  |                     |      |                      |                |                                       |                |                 |
| Lane 1       | 397      | 0          | 0            | 397        | 5.0 | 1027 <sup>1</sup> | 0.386        | 100             | 10.2             | LOS A               | 3.7  | 27.2                 | 80 7           | urn Bay                               | 0.0            | 0.0             |
| Lane 2       | 0        | 601        | 0            | 601        | 5.0 | 747               | 0.804        | 100             | 20.8             | LOS C               | 26.2 | 191.0                | 500            | _                                     | 0.0            | 0.0             |
| Lane 3       | 0        | 601        | 0            | 601        | 5.0 | 747               | 0.804        | 100             | 20.8             | LOS C               | 26.2 | 191.0                | 500            | _                                     | 0.0            | 0.0             |
| Lane 4       | 0        | 601        | 0            | 601        | 5.0 | 747               | 0.804        | 100             | 20.8             | LOS C               | 26.2 | 191.0                | 500            | _                                     | 0.0            | 0.0             |
| Lane 5       | 0        | 0          | 1            | 1          | 5.0 | 121               | 0.008        | 100             | 62.7             | LOS A               | 0.1  | 0.4                  | 45 7           | urn Bay                               | 0.0            | 0.0             |
| Approach     | 397      | 1803       | 1            | 2201       | 5.0 |                   | 0.804        |                 | 18.9             | LOS C               | 26.2 | 191.0                |                |                                       |                |                 |
| Intersection |          |            |              | 4908       | 5.0 |                   | 0.804        |                 | 26.0             | LOS C               | 26.2 | 191.0                |                |                                       |                |                 |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 5 Lane underutilisation determined by program

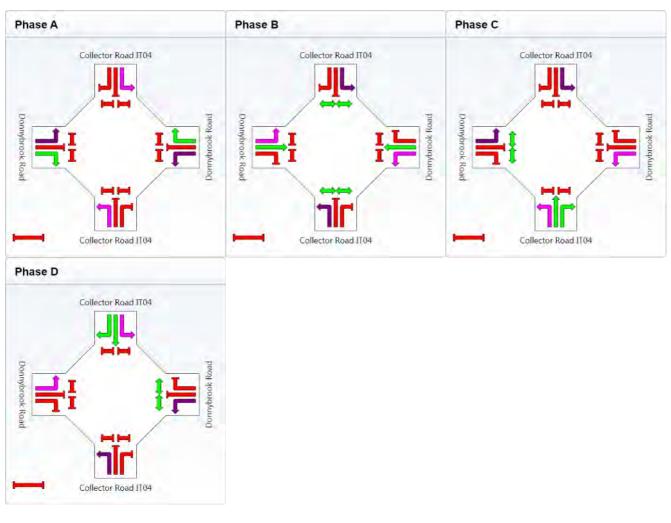
Processed: Tuesday, 22 May 2012 2:41:58 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Strcuture Plan\Engineering\Traffic\SIDRA\20120517 - 2046 sidras\IT04.sip

8000617, SMEC AUSTRALIA PTY LTD, SINGLE



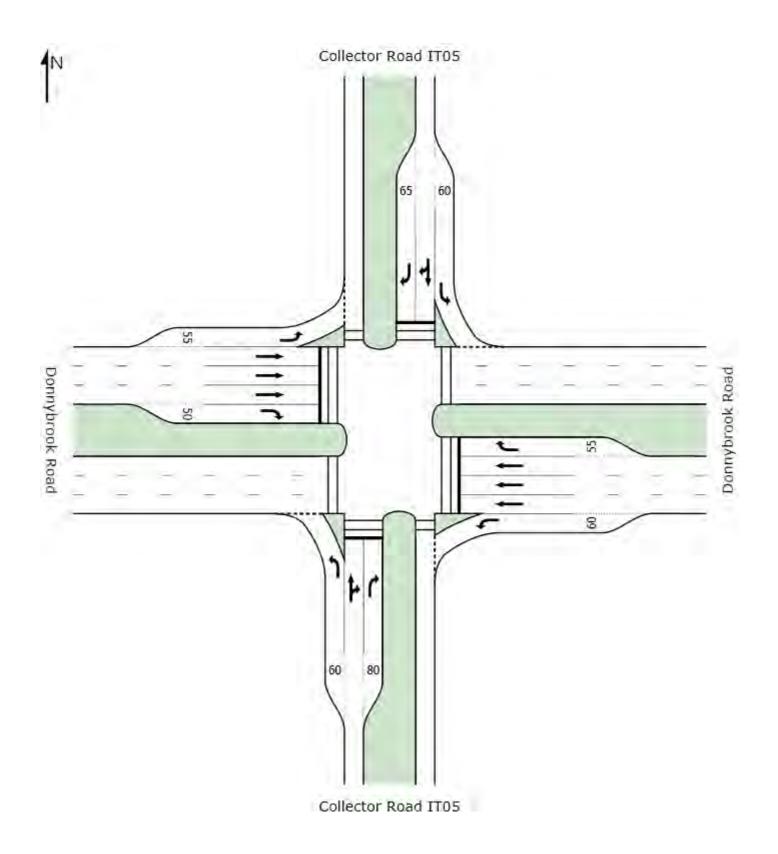

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Split Phasing Input Sequence: A, B, C, D Output Sequence: A, B, C, D

**Phase Timing Results** 

| Phase              | Α    | В    | С    | D    |
|--------------------|------|------|------|------|
| Green Time (sec)   | 8    | 47   | 16   | 25   |
| Yellow Time (sec)  | 4    | 4    | 4    | 4    |
| All-Red Time (sec) | 2    | 2    | 2    | 2    |
| Phase Time (sec)   | 14   | 53   | 22   | 31   |
| Phase Split        | 12 % | 44 % | 18 % | 26 % |






Processed: Tuesday, 22 May 2012 2:41:58 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com





| Lane Use     | and P    | erform     | nance        |       |     |                   |              |                |                  |                     |                      |                      |                |            |      |                 |
|--------------|----------|------------|--------------|-------|-----|-------------------|--------------|----------------|------------------|---------------------|----------------------|----------------------|----------------|------------|------|-----------------|
|              |          | Deman<br>T | d Flows<br>R | Total | HV  | Сар.              | Deg.<br>Satn | Lane<br>Util.  | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Lane<br>Length | SL<br>Type | Cap. | Prob.<br>Block. |
|              | veh/h    | veh/h      |              | veh/h | %   | veh/h             | v/c          | %              | sec              | 0000                | veh                  | m                    | m              | . , p o    | %    | %               |
| South: Colle | ector R  | oad IT(    | )5           |       |     |                   |              |                |                  |                     |                      |                      |                |            |      |                 |
| Lane 1       | 86       | 0          | 0            | 86    | 5.0 | 486 <sup>1</sup>  | 0.177        | 100            | 10.5             | LOS A               | 1.2                  | 8.6                  | 60 7           | Turn Bay   | 0.0  | 0.0             |
| Lane 2       | 0        | 42         | 28           | 70    | 5.0 | 234               | 0.300        | 100            | 55.5             | LOS A               | 3.8                  | 27.9                 | 500            | _          | 0.0  | 0.0             |
| Lane 3       | 0        | 0          | 68           | 68    | 5.0 | 226               | 0.300        | 100            | 59.9             | LOS A               | 3.7                  | 27.1                 | 80 7           | Turn Bay   | 0.0  | 0.0             |
| Approach     | 86       | 42         | 96           | 224   | 5.0 |                   | 0.300        |                | 39.5             | LOS A               | 3.8                  | 27.9                 |                |            |      |                 |
| East: Donn   | ybrook   | Road       |              |       |     |                   |              |                |                  |                     |                      |                      |                |            |      |                 |
| Lane 1       | 449      | 0          | 0            | 449   | 5.0 | 1086 <sup>1</sup> | 0.414        | 100            | 8.9              | LOS A               | 2.7                  | 19.5                 | 60 7           | Turn Bay   | 0.0  | 0.0             |
| Lane 2       | 0        | 505        | 0            | 505   | 5.0 | 747               | 0.676        | 100            | 18.4             | LOS B               | 18.3                 | 133.5                | 500            | -          | 0.0  | 0.0             |
| Lane 3       | 0        | 505        | 0            | 505   | 5.0 | 747               | 0.676        | 100            | 18.4             | LOS B               | 18.3                 | 133.5                | 500            | -          | 0.0  | 0.0             |
| Lane 4       | 0        | 505        | 0            | 505   | 5.0 | 747               | 0.676        | 100            | 18.4             | LOS B               | 18.3                 | 133.5                | 500            | -          | 0.0  | 0.0             |
| Lane 5       | 0        | 0          | 150          | 150   | 5.0 | 211               | 0.710        | 100            | 67.1             | LOS C               | 9.0                  | 65.4                 | 55 7           | Turn Bay   | 0.0  | 20.7            |
| Approach     | 449      | 1516       | 150          | 2115  | 5.0 |                   | 0.710        |                | 19.9             | LOS C               | 18.3                 | 133.5                |                |            |      |                 |
| North: Colle | ector Ro | oad IT0    | 15           |       |     |                   |              |                |                  |                     |                      |                      |                |            |      |                 |
| Lane 1       | 410      | 0          | 0            | 410   | 5.0 | 516 <sup>1</sup>  | 0.795        | 100            | 22.8             | LOS C               | 12.0                 | 87.3                 | 60 7           | Turn Bay   | 0.0  | 39.3            |
| Lane 2       | 0        | 40         | 0            | 40    | 5.0 | 318               | 0.126        | 100            | 47.3             | LOSA                | 2.0                  | 14.6                 | 500            | -          | 0.0  | 0.0             |
| Lane 3       | 0        | 0          | 2            | 2     | 5.0 | 258 <sup>1</sup>  | 800.0        | 6 <sup>5</sup> | 53.0             | LOS A               | 0.1                  | 0.7                  | 657            | Turn Bay   | 0.0  | 0.0             |
| Approach     | 410      | 40         | 2            | 452   | 5.0 |                   | 0.795        |                | 25.1             | LOS C               | 12.0                 | 87.3                 |                |            |      |                 |
| West: Donr   | nybrook  | Road       |              |       |     |                   |              |                |                  |                     |                      |                      |                |            |      |                 |
| Lane 1       | 1        | 0          | 0            | 1     | 5.0 | 792 <sup>1</sup>  | 0.001        | 100            | 10.0             | LOS A               | 0.0                  | 0.1                  | 55 7           | Turn Bay   | 0.0  | 0.0             |
| Lane 2       | 0        | 546        | 0            | 546   | 5.0 | 747               | 0.731        | 100            | 19.0             | LOS C               | 21.1                 | 154.1                | 500            | -          | 0.0  | 0.0             |
| Lane 3       | 0        | 546        | 0            | 546   | 5.0 | 747               | 0.731        | 100            | 19.0             | LOS C               | 21.1                 | 154.1                | 500            | -          | 0.0  | 0.0             |
| Lane 4       | 0        | 546        | 0            | 546   | 5.0 | 747               | 0.731        | 100            | 19.0             | LOS C               | 21.1                 | 154.1                | 500            | _          | 0.0  | 0.0             |
| Lane 5       | 0        | 0          | 29           | 29    | 5.0 | 204 <sup>1</sup>  | 0.142        | 100            | 56.0             | LOS A               | 1.4                  | 10.5                 | 50 7           | Turn Bay   | 0.0  | 0.0             |
| Approach     | 1        | 1638       | 29           | 1668  | 5.0 |                   | 0.731        |                | 19.6             | LOS C               | 21.1                 | 154.1                |                |            |      |                 |
| Intersection | 1        |            |              | 4459  | 5.0 |                   | 0.795        |                | 21.3             | LOS C               | 21.1                 | 154.1                |                |            |      |                 |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 5 Lane underutilisation determined by program

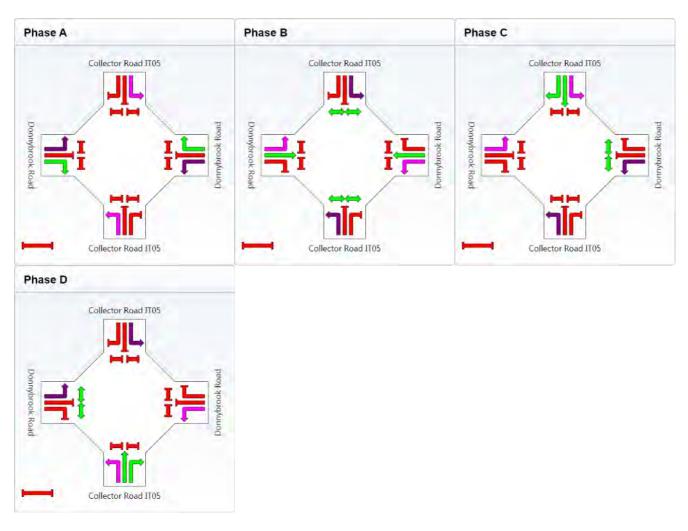
Processed: Tuesday, 22 May 2012 2:45:50 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Strcuture Plan\Engineering\Traffic\SIDRA\20120517 - 2046 sidras\IT05.sip

8000617, SMEC AUSTRALIA PTY LTD, SINGLE




Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Leading Right Turn Input Sequence: A, B, C, D Output Sequence: A, B, C, D

**Phase Timing Results** 

|                    | •    |      |      |      |
|--------------------|------|------|------|------|
| Phase              | Α    | В    | С    | D    |
| Green Time (sec)   | 14   | 47   | 20   | 15   |
| Yellow Time (sec)  | 4    | 4    | 4    | 4    |
| All-Red Time (sec) | 2    | 2    | 2    | 2    |
| Phase Time (sec)   | 20   | 53   | 26   | 21   |
| Phase Split        | 17 % | 44 % | 22 % | 18 % |





Processed: Tuesday, 22 May 2012 2:45:50 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com



| Lane Use     | and P    | erform  | ance    |       |     |                  |       |                |                   |                    |                   |                    |        |          |     |        |
|--------------|----------|---------|---------|-------|-----|------------------|-------|----------------|-------------------|--------------------|-------------------|--------------------|--------|----------|-----|--------|
|              |          | Deman   | d Flows |       |     |                  | Deg.  | Lane           | Average           | Level of           | 95% Back          |                    | Lane   | SL       |     | Prob.  |
|              | L        | . T     | R       | Total | HV  | Cap.             | Satn  | Util.          | Delay             | Service            | Vehicles          |                    | Length | Type     |     | Block. |
| South: Coll  |          | veh/h   |         | veh/h | %   | veh/h            | v/c   | %              | sec               |                    | veh               | m                  | m      |          | %   | %      |
|              |          |         | -       | 20    | F 0 | 436 <sup>1</sup> | 0.067 | 100            | 10.1              | LOS A              | 0.4               | 2.0                | 60.7   | Turn Day | 0.0 | 0.0    |
| Lane 1       | 29       | 0       | 0       | 29    | 5.0 |                  |       | 100            | 10.1              |                    | 0.4               | 2.6                |        | urn Bay  | 0.0 | 0.0    |
| Lane 2       | 0        | 60      | 206     | 266   | 5.0 | 290              | 0.917 | 100            | 76.0              | LOS D              | 18.5              | 134.9              | 500    | -        | 0.0 | 0.0    |
| Lane 3       | 0        | 0       | 263     | 263   | 5.0 | 287              | 0.917 | 100            | 75.5 <sup>8</sup> | LOS D <sup>8</sup> | 17.9 <sup>8</sup> | 130.6 <sup>8</sup> | 80 1   | urn Bay  | 0.0 | 50.0   |
| Approach     | 29       | 60      | 469     | 558   | 5.0 |                  | 0.917 |                | 72.3              | LOS D              | 18.5              | 134.9              |        |          |     |        |
| East: Donn   | ybrook   | Road    |         |       |     |                  |       |                |                   |                    |                   |                    |        |          |     |        |
| Lane 1       | 116      | 0       | 0       | 116   | 5.0 | 935 <sup>1</sup> | 0.124 | 100            | 9.3               | LOS A              | 0.8               | 6.1                | 60 7   | urn Bay  | 0.0 | 0.0    |
| Lane 2       | 0        | 568     | 0       | 568   | 5.0 | 843              | 0.674 | 100            | 13.4              | LOS B              | 17.3              | 126.0              | 500    | _        | 0.0 | 0.0    |
| Lane 3       | 0        | 568     | 0       | 568   | 5.0 | 843              | 0.674 | 100            | 13.4              | LOS B              | 17.3              | 126.0              | 500    | _        | 0.0 | 0.0    |
| Lane 4       | 0        | 568     | 0       | 568   | 5.0 | 843              | 0.674 | 100            | 13.4              | LOS B              | 17.3              | 126.0              | 500    | _        | 0.0 | 0.0    |
| Lane 5       | 0        | 0       | 210     | 210   | 5.0 | 229 <sup>1</sup> | 0.918 | 100            | 63.7 <sup>8</sup> | LOS D8             | 12.3 <sup>8</sup> | 89.8 <sup>8</sup>  | 55 7   | urn Bay  | 0.0 | 50.0   |
| Approach     | 116      | 1704    | 210     | 2030  | 5.0 |                  | 0.918 |                | 18.4              | LOS D              | 17.3              | 126.0              |        |          |     |        |
| North: Colle | ector Ro | nad IT0 | 5       |       |     |                  |       |                |                   |                    |                   |                    |        |          |     |        |
| Lane 1       | 150      | 0       | 0       | 150   | 5.0 | 402 <sup>1</sup> | 0.373 | 100            | 22.4              | LOS A              | 4.2               | 30.7               | 60.7   | urn Bay  | 0.0 | 0.0    |
| Lane 2       | 0        | 62      | 0       | 62    | 5.0 |                  | 0.244 | 100            | 52.3              | LOSA               | 3.3               | 24.2               | 500    | –        | 0.0 | 0.0    |
| Lane 3       | 0        | 0       | 1       | 1     | 5.0 |                  | 0.004 | 2 <sup>5</sup> |                   | LOSA               | 0.1               | 0.4                |        | urn Bay  | 0.0 | 0.0    |
| Approach     | 150      | 62      | 1       | 213   |     | 272              | 0.373 |                | 31.3              | LOSA               | 4.2               | 30.7               | 00 1   | uni bay  | 0.0 | 0.0    |
|              |          |         | · ·     | 2.0   | 0.0 |                  | 0.010 |                | 01.0              | 20071              |                   | 00.1               |        |          |     |        |
| West: Donr   | •        |         |         |       |     | 1                |       |                |                   |                    |                   |                    |        |          |     |        |
| Lane 1       | 1        | 0       | 0       | 1     |     |                  | 0.001 | 100            | 10.6              | LOS A              | 0.0               | 0.1                |        | urn Bay  | 0.0 | 0.0    |
| Lane 2       | 0        | 527     | 0       | 527   | 5.0 |                  | 0.921 | 100            | 41.1              | LOS D              | 32.5              | 236.9              | 500    | -        | 0.0 | 0.0    |
| Lane 3       | 0        | 527     | 0       | 527   | 5.0 | 572              | 0.921 | 100            | 41.1              | LOS D              | 32.5              | 236.9              | 500    | -        | 0.0 | 0.0    |
| Lane 4       | 0        | 527     | 0       | 527   | 5.0 | 572              | 0.921 | 100            | 41.1              | LOS D              | 32.5              | 236.9              | 500    | -        | 0.0 | 0.0    |
| Lane 5       | 0        | 0       | 86      | 86    | 5.0 | 121              | 0.712 | 100            | 68.9              | LOS C              | 5.2               | 38.2               | 50 7   | urn Bay  | 0.0 | 0.0    |
| Approach     | 1        | 1582    | 86      | 1669  | 5.0 |                  | 0.921 |                | 42.5              | LOS D              | 32.5              | 236.9              |        |          |     |        |
| Intersection | า        |         |         | 4470  | 5.0 |                  | 0.921 |                | 34.7              | LOS D              | 32.5              | 236.9              |        |          |     |        |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 5 Lane underutilisation determined by program
- 8 Delay, queue length and stops for the short lane have been cut down to fit in the queuing space. You may wish to change the short lane to a full lane to investigate the effect on the adjacent lane performance.

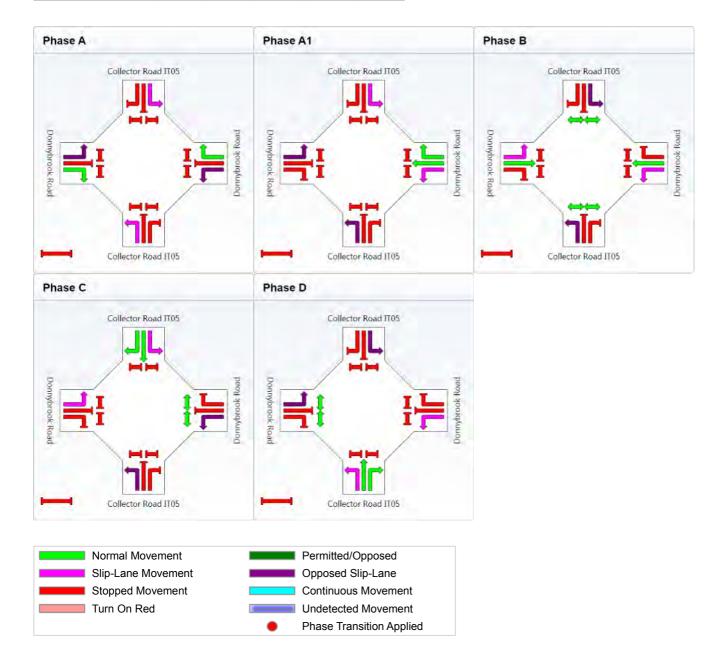
Processed: Tuesday, 22 May 2012 2:45:50 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Strcuture Plan\Engineering\Traffic\SIDRA\20120517 - 2046 sidras\IT05.sip

8000617, SMEC AUSTRALIA PTY LTD, SINGLE

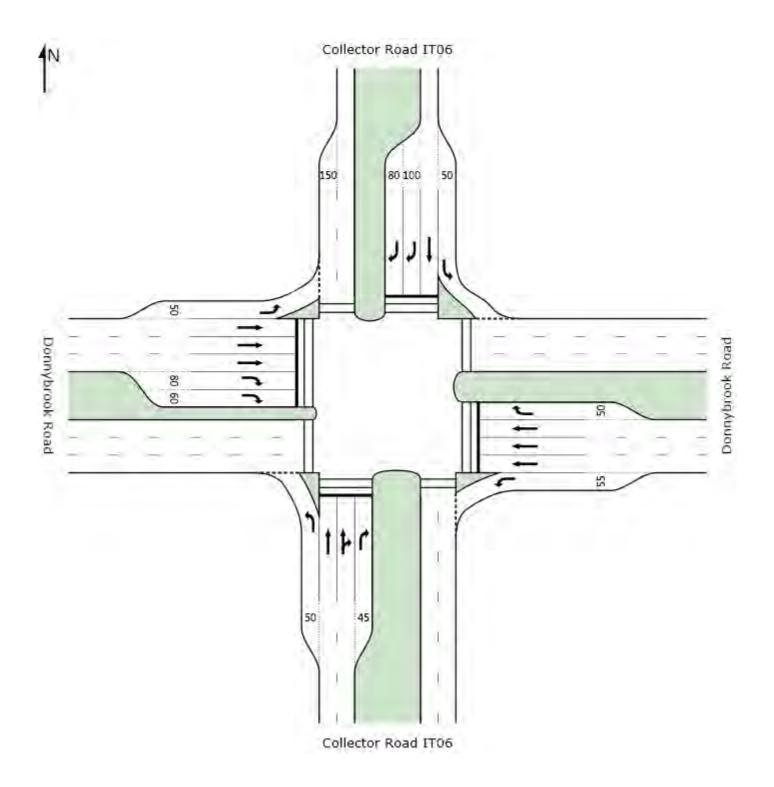



Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Leading Right Turn Input Sequence: A, A1, B, C, D Output Sequence: A, A1, B, C, D

Phase Timing Results


| Phase              | Α    | A1   | В    | С    | D    |
|--------------------|------|------|------|------|------|
| Green Time (sec)   | 8    | 11   | 36   | 16   | 19   |
| Yellow Time (sec)  | 4    | 4    | 4    | 4    | 4    |
| All-Red Time (sec) | 2    | 2    | 2    | 2    | 2    |
| Phase Time (sec)   | 14   | 17   | 42   | 22   | 25   |
| Phase Split        | 12 % | 14 % | 35 % | 18 % | 21 % |



Processed: Tuesday, 22 May 2012 2:45:50 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com





## LANE SUMMARY

Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

| Lane Use and Performance |            |            |            |             |     |                  |             |                 |              |         |                 |               |             |          |           |             |
|--------------------------|------------|------------|------------|-------------|-----|------------------|-------------|-----------------|--------------|---------|-----------------|---------------|-------------|----------|-----------|-------------|
|                          |            | Demano     |            |             | HV  | Can              | Deg.        | Lane            | Average      |         | 95% Back        |               | Lane        | SL       |           | Prob.       |
|                          | L<br>veh/h | l<br>veh/h | R<br>veh/h | Total veh/h |     | Cap.             | Satn<br>v/c | Util.<br>%      | Delay<br>sec | Service | Vehicles<br>veh | Distance<br>m | Length<br>m | Туре     | Adj.<br>% | Block.<br>% |
| South: Colle             |            |            |            | VEII/II     | /0  | VCII/II          | V/C         | /0              | 350          |         | VEII            | - '''         | - '''       |          | /0        | /0          |
| Lane 1                   | 269        | 0          | 0          | 269         | 5.0 | 386 <sup>1</sup> | 0.697       | 100             | 19.1         | LOS B   | 7.4             | 53.7          | 50 7        | Turn Bay | 0.0       | 11.4        |
| Lane 2                   | 0          | 95         | 0          | 95          | 5.0 | 366              | 0.260       | 54 <sup>5</sup> | 44.8         | LOSA    | 4.8             | 34.8          | 500         | _        | 0.0       | 0.0         |
| Lane 3                   | 0          | 0          | 167        | 167         | 5.0 | 347              | 0.480       | 100             | 54.2         | LOS A   | 8.8             | 64.3          | 500         | _        | 0.0       | 0.0         |
| Lane 4                   | 0          | 0          | 90         | 90          | 5.0 | 189 <sup>1</sup> | 0.480       | 100             | 51.9         | LOS A   | 4.6             | 33.2          | 45 7        | Γurn Bay | 0.0       | 0.0         |
| Approach                 | 269        | 95         | 257        | 621         | 5.0 |                  | 0.697       |                 | 37.2         | LOS B   | 8.8             | 64.3          |             | ,        |           |             |
| East: Donny              | /brook     | Road       |            |             |     |                  |             |                 |              |         |                 |               |             |          |           |             |
| Lane 1                   | 227        | 0          | 0          | 227         | 5.0 | 559 <sup>1</sup> | 0.406       | 100             | 12.9         | LOS A   | 3.8             | 28.0          | 55 7        | Γurn Bay | 0.0       | 0.0         |
| Lane 2                   | 0          | 459        | 0          | 459         | 5.0 | 588              | 0.780       | 100             | 29.6         | LOS C   | 22.2            | 162.3         | 500         | _        | 0.0       | 0.0         |
| Lane 3                   | 0          | 459        | 0          | 459         | 5.0 | 588              | 0.780       | 100             | 29.6         | LOS C   | 22.2            | 162.3         | 500         | _        | 0.0       | 0.0         |
| Lane 4                   | 0          | 459        | 0          | 459         | 5.0 | 588              | 0.780       | 100             | 29.6         | LOS C   | 22.2            | 162.3         | 500         | _        | 0.0       | 0.0         |
| Lane 5                   | 0          | 0          | 1          | 1           | 5.0 | 91               | 0.011       | 100             | 68.5         | LOS A   | 0.1             | 0.4           | 50 7        | Γurn Bay | 0.0       | 0.0         |
| Approach                 | 227        | 1377       | 1          | 1605        | 5.0 |                  | 0.780       |                 | 27.2         | LOS C   | 22.2            | 162.3         |             |          |           |             |
| North: Colle             | ctor Ro    | oad IT06   | 6          |             |     |                  |             |                 |              |         |                 |               |             |          |           |             |
| Lane 1                   | 1          | 0          | 0          | 1           | 5.0 | 354 <sup>1</sup> | 0.003       | 100             | 13.1         | LOS A   | 0.0             | 0.1           | 50 7        | Turn Bay | 0.0       | 0.0         |
| Lane 2                   | 0          | 194        | 0          | 194         | 5.0 | 318              | 0.610       | 100             | 52.1         | LOS B   | 10.7            | 78.5          | 500         | _        | 0.0       | 0.0         |
| Lane 3                   | 0          | 0          | 235        | 235         | 5.0 | 302              | 0.777       | 100             | 64.2         | LOS C   | 14.0            | 102.5         | 1007        | Turn Bay | 0.0       | 7.2         |
| Lane 4                   | 0          | 0          | 235        | 235         | 5.0 | 302              | 0.777       | 100             | 64.2         | LOS C   | 14.0            | 102.5         | 80 7        | Γurn Bay | 0.0       | 27.6        |
| Approach                 | 1          | 194        | 469        | 664         | 5.0 |                  | 0.777       |                 | 60.6         | LOS C   | 14.0            | 102.5         |             |          |           |             |
| West: Donn               | ybrook     | Road       |            |             |     |                  |             |                 |              |         |                 |               |             |          |           |             |
| Lane 1                   | 151        | 0          | 0          | 151         | 5.0 | 947 <sup>1</sup> | 0.159       | 100             | 9.4          | LOS A   | 0.9             | 6.4           | 50 7        | Turn Bay | 0.0       | 0.0         |
| Lane 2                   | 0          | 470        | 0          | 470         | 5.0 | 747              | 0.629       | 100             | 18.0         | LOS B   | 16.1            | 117.7         | 500         | _        | 0.0       | 0.0         |
| Lane 3                   | 0          | 470        | 0          | 470         | 5.0 | 747              | 0.629       | 100             | 18.0         | LOS B   | 16.1            | 117.7         | 500         | _        | 0.0       | 0.0         |
| Lane 4                   | 0          | 470        | 0          | 470         | 5.0 | 747              | 0.629       | 100             | 18.0         | LOS B   | 16.1            | 117.7         | 500         | _        | 0.0       | 0.0         |
| Lane 5                   | 0          | 0          | 193        | 193         | 5.0 | 242              | 0.797       | 100             | 60.4         | LOS C   | 11.3            | 82.5          | 80 7        | Turn Bay | 0.0       | 7.8         |
| Lane 6                   | 0          | 0          | 193        | 193         | 5.0 | 242              | 0.797       | 100             | 60.4         | LOS C   | 11.3            | 82.5          | 60 7        | Turn Bay | 0.0       | 34.0        |
| Approach                 | 151        | 1411       | 385        | 1947        | 5.0 |                  | 0.797       |                 | 25.7         | LOS C   | 16.1            | 117.7         |             |          |           |             |
| Intersection             |            |            |            | 4837        | 5.0 |                  | 0.797       |                 | 32.5         | LOS C   | 22.2            | 162.3         |             |          |           |             |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane. SIDRA Standard Delay Model used.

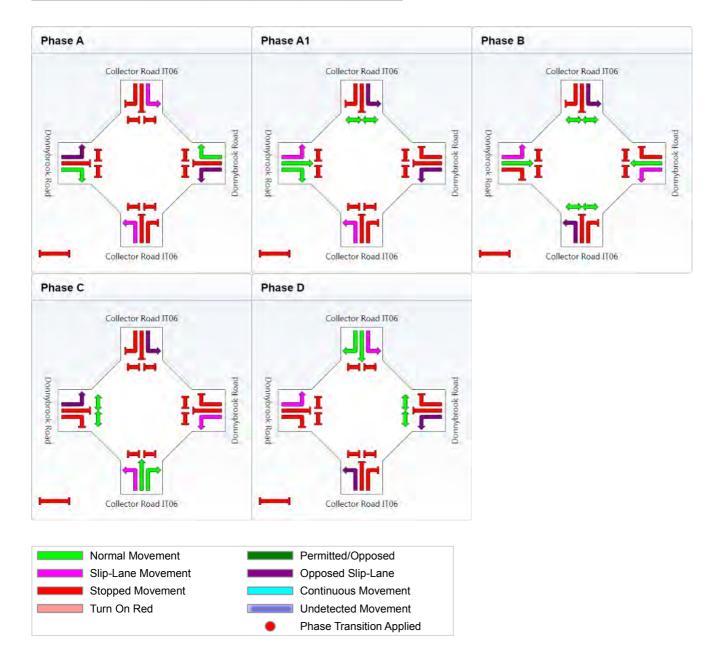
- 1 Reduced capacity due to a short lane effect
- 5 Lane underutilisation determined by program

Processed: Wednesday, 23 May 2012 10:41:54 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.9.2068 www.sidrasolutions.com
Project: I:\Projects\3004740 - Merrifield West Precinct Strcuture Plan\Engineering\Traffic\SIDRA\20120517 - 2046 sidras\IT06.sip

8000617, SMEC AUSTRALIA PTY LTD, SINGLE

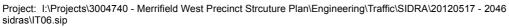


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)


Phase times determined by the program

Sequence: Diamond 1

Input Sequence: A, A1, B, C, D Output Sequence: A, A1, B, C, D


**Phase Timing Results** 

| Phase              | Α    | A1  | В    | С    | D    |  |  |  |  |  |  |  |  |
|--------------------|------|-----|------|------|------|--|--|--|--|--|--|--|--|
| Green Time (sec)   | 6    | 4   | 37   | 23   | 20   |  |  |  |  |  |  |  |  |
| Yellow Time (sec)  | 4    | 4   | 4    | 4    | 4    |  |  |  |  |  |  |  |  |
| All-Red Time (sec) | 2    | 2   | 2    | 2    | 2    |  |  |  |  |  |  |  |  |
| Phase Time (sec)   | 12   | 10  | 43   | 29   | 26   |  |  |  |  |  |  |  |  |
| Phase Split        | 10 % | 8 % | 36 % | 24 % | 22 % |  |  |  |  |  |  |  |  |



Processed: Wednesday, 23 May 2012 10:41:54 AM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com







| Lane Use     | and P   | erform | nance   |       |     |                  |       |                 |                   |                    |                   |                   |        |          |      |        |
|--------------|---------|--------|---------|-------|-----|------------------|-------|-----------------|-------------------|--------------------|-------------------|-------------------|--------|----------|------|--------|
|              |         | Deman  | d Flows |       |     |                  | Deg.  | Lane            | Average           | Level of           | 95% Back          | of Queue          | Lane   | SL       | Сар. | Prob.  |
|              | L       | Т      | R       | Total | HV  | Сар.             | Satn  | Util.           | Delay             | Service            | Vehicles          | Distance          | Length | Type     |      | Block. |
|              |         | veh/h  |         | veh/h | %   | veh/h            | v/c   | %               | sec               |                    | veh               | m                 | m      |          | %    | %      |
| South: Colle |         |        |         |       |     | 1                |       |                 | 8                 | 8                  | 8                 | 8                 |        |          |      |        |
| Lane 1       | 385     | 0      | 0       | 385   | 5.0 | 447 <sup>1</sup> |       | 100             | 22.7 <sup>8</sup> | LOS C <sup>8</sup> | 11.2 <sup>8</sup> |                   |        | Turn Bay | 0.0  | 50.0   |
| Lane 2       | 0       | 164    | 0       | 164   | 5.0 |                  | 0.543 | 93 <sup>6</sup> | 51.1              | LOSA               | 9.0               | 65.9              | 500    | -        | 0.0  | 0.0    |
| Lane 3       | 0       | 39     | 131     | 170   | 5.0 | 290              | 0.584 | 100             | 57.0              | LOSA               | 9.4               | 68.8              | 500    | -        | 0.0  | 0.0    |
| Lane 4       | 0       | 0      | 105     | 105   | 5.0 | 180              | 0.584 | 100             | 56.7              | LOS A              | 5.6               | 41.1              | 45     | Turn Bay | 0.0  | 0.0    |
| Approach     | 385     | 203    | 236     | 824   | 5.0 |                  | 0.862 |                 | 39.8              | LOS C              | 11.2              | 81.6              |        |          |      |        |
| East: Donny  | ybrook  | Road   |         |       |     | 4                |       |                 |                   |                    |                   |                   |        |          |      |        |
| Lane 1       | 266     | 0      | 0       | 266   | 5.0 | 687 <sup>1</sup> | 0.387 | 100             | 10.2              | LOS A              | 2.9               | 21.5              | 55     | Гurn Bay | 0.0  | 0.0    |
| Lane 2       | 0       | 489    | 0       | 489   | 5.0 | 541              | 0.905 | 100             | 40.7              | LOS D              | 29.3              | 214.1             | 500    | -        | 0.0  | 0.0    |
| Lane 3       | 0       | 489    | 0       | 489   | 5.0 | 541              | 0.905 | 100             | 40.7              | LOS D              | 29.3              | 214.1             | 500    | _        | 0.0  | 0.0    |
| Lane 4       | 0       | 489    | 0       | 489   | 5.0 | 541              | 0.905 | 100             | 40.7              | LOS D              | 29.3              | 214.1             | 500    | _        | 0.0  | 0.0    |
| Lane 5       | 0       | 0      | 200     | 200   | 5.0 | 215 <sup>1</sup> | 0.930 | 100             | 59.8 <sup>8</sup> | LOS D <sup>8</sup> | 11.2 <sup>8</sup> | 81.6 <sup>8</sup> | 50     | Turn Bay | 0.0  | 50.0   |
| Approach     | 266     | 1468   | 200     | 1934  | 5.0 |                  | 0.930 |                 | 38.4              | LOS D              | 29.3              | 214.1             |        |          |      |        |
| North: Colle | ctor Ro | ad IT0 | 6       |       |     |                  |       |                 |                   |                    |                   |                   |        |          |      |        |
| Lane 1       | 1       | 0      | 0       | 1     | 5.0 | 391 <sup>1</sup> | 0.003 | 100             | 15.7              | LOS A              | 0.0               | 0.1               | 50     | Гurn Bay | 0.0  | 0.0    |
| Lane 2       | 0       | 104    | 0       | 104   | 5.0 | 254              | 0.409 | 100             | 53.8              | LOS A              | 5.7               | 41.7              | 500    | _        | 0.0  | 0.0    |
| Lane 3       | 0       | 0      | 76      | 76    | 5.0 | 242              | 0.313 | 100             | 60.3              | LOS A              | 4.1               | 29.9              | 100    | Γurn Bay | 0.0  | 0.0    |
| Lane 4       | 0       | 0      | 76      | 76    | 5.0 | 242              | 0.313 | 100             | 60.3              | LOS A              | 4.1               | 29.9              | 80     | Γurn Bay | 0.0  | 0.0    |
| Approach     | 1       | 104    | 151     | 256   | 5.0 |                  | 0.409 |                 | 57.5              | LOS A              | 5.7               | 41.7              |        |          |      |        |
| West: Donn   | ybrook  | Road   |         |       |     |                  |       |                 |                   |                    |                   |                   |        |          |      |        |
| Lane 1       | 469     | 0      | 0       | 469   | 5.0 | 573 <sup>1</sup> | 0.819 | 100             | 21.0 <sup>8</sup> | LOS C <sup>8</sup> | 11.2 <sup>8</sup> | 81.6 <sup>8</sup> | 50     | Γurn Bay | 0.0  | 50.0   |
| Lane 2       | 0       | 478    | 0       | 478   | 5.0 | 541              | 0.884 | 100             | 38.4              | LOS C              | 27.6              | 201.2             | 500    | _        | 0.0  | 0.0    |
| Lane 3       | 0       | 478    | 0       | 478   | 5.0 | 541              | 0.884 | 100             | 38.4              | LOS C              | 27.6              | 201.2             | 500    | _        | 0.0  | 0.0    |
| Lane 4       | 0       | 478    | 0       | 478   | 5.0 | 541              | 0.884 | 100             | 38.4              | LOS C              | 27.6              | 201.2             | 500    | _        | 0.0  | 0.0    |
| Lane 5       | 0       | 0      | 149     | 149   | 5.0 | 364 <sup>1</sup> | 0.410 | 100             | 42.5              | LOS A              | 6.4               | 46.6              | 80     | Γurn Bay | 0.0  | 0.0    |
| Lane 6       | 0       | 0      | 120     | 120   | 5.0 | 291 <sup>1</sup> | 0.410 | 100             | 41.8              | LOS A              | 4.9               | 36.1              | 60     | Γurn Bay | 0.0  | 0.0    |
| Approach     | 469     | 1434   | 269     | 2172  | 5.0 |                  | 0.884 |                 | 35.1              | LOS C              | 27.6              | 201.2             |        | ,        |      |        |
| Intersection |         |        |         | 5186  | 5.0 |                  | 0.930 |                 | 38.2              | LOS D              | 29.3              | 214.1             |        |          |      |        |

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

- 1 Reduced capacity due to a short lane effect
- 6 Lane underutilisation due to downstream effects
- 8 Delay, queue length and stops for the short lane have been cut down to fit in the queuing space. You may wish to change the short lane to a full lane to investigate the effect on the adjacent lane performance.

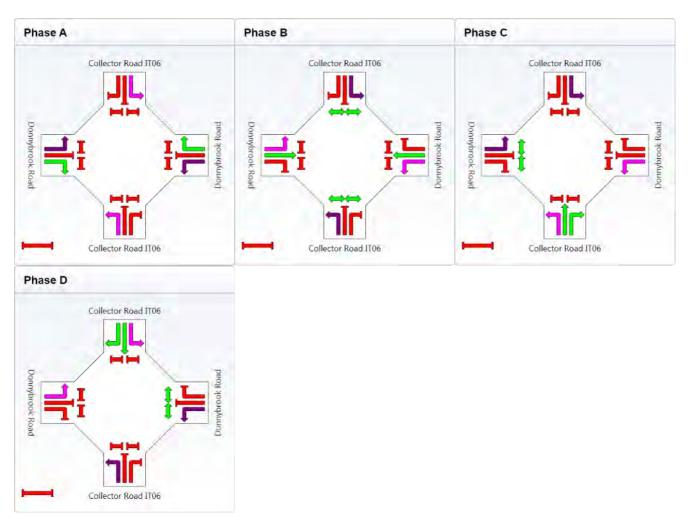
Processed: Wednesday, 23 May 2012 10:38:59 AM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com Project: I:\Projects\3004740 - Merrifield West Precinct Strcuture Plan\Engineering\Traffic\SIDRA\20120517 - 2046

sidras\IT06.sip

8000617, SMEC AUSTRALIA PTY LTD, SINGLE

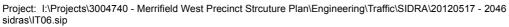
SIDRA INTERSECTION


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Diamond 1 Input Sequence: A, B, C, D Output Sequence: A, B, C, D

**Phase Timing Results** 


| Phase              | Α    | В    | С    | D    |
|--------------------|------|------|------|------|
| Green Time (sec)   | 27   | 34   | 19   | 16   |
| Yellow Time (sec)  | 4    | 4    | 4    | 4    |
| All-Red Time (sec) | 2    | 2    | 2    | 2    |
| Phase Time (sec)   | 33   | 40   | 25   | 22   |
| Phase Split        | 28 % | 33 % | 21 % | 18 % |





Processed: Wednesday, 23 May 2012 10:38:59 AM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com





Old Sydney Road

| Lane Use     | Lane Use and Performance |            |            |                |         |                  |             |            |              |          |                 |          |        |          |             |             |
|--------------|--------------------------|------------|------------|----------------|---------|------------------|-------------|------------|--------------|----------|-----------------|----------|--------|----------|-------------|-------------|
|              | [                        | Deman      | d Flows    |                | 1157    | 0                | Deg.        | Lane       | Average      | Level of |                 |          | Lane   | SL       | Cap. F      |             |
|              | L<br>veh/h               | T<br>veh/h | R<br>veh/h | Total<br>veh/h | HV<br>% | Cap.             | Satn<br>v/c | Util.<br>% | Delay<br>sec | Service  | Vehicles<br>veh | Distance | Length | Type     | Adj. E<br>% | Block.<br>% |
| South: Old   |                          |            | venin      | ven/m          | 70      | ven/m            | V/C         | 70         | 560          |          | ven             | m        | m      |          | 70          | 70          |
| Lane 1       | 0                        | 18         | 0          | 18             | 5.0     | 1511             | 0.012       | 100        | 2.7          | LOS A    | 0.2             | 1.5      | 500    | _        | 0.0         | 0.0         |
| Lane 2       | 0                        | 18         | 0          | 18             | 5.0     | 1511             | 0.012       | 100        | 2.7          | LOS A    | 0.2             | 1.5      | 500    | _        | 0.0         | 0.0         |
| Lane 3       | 0                        | 0          | 268        | 268            | 5.0     | 476 <sup>1</sup> | 0.563       | 100        | 47.7         | LOS A    | 13.1            | 95.4     | 120 7  | Turn Bay | 0.0         | 0.0         |
| Approach     | 0                        | 35         | 268        | 303            | 5.0     |                  | 0.563       |            | 42.5         | LOS A    | 13.1            | 95.4     |        |          |             |             |
| East: Donn   | ybrook l                 | Road       |            |                |         |                  |             |            |              |          |                 |          |        |          |             |             |
| Lane 1       | 348                      | 0          | 0          | 348            | 5.0     | 1029             | 0.338       | 100        | 16.0         | LOSA     | 8.8             | 64.0     | 500    | _        | 0.0         | 0.0         |
| Lane 2       | 0                        | 0          | 37         | 37             | 5.0     | 196              | 0.189       | 100        | 63.4         | LOS A    | 2.0             | 14.8     | 500    | _        | 0.0         | 0.0         |
| Lane 3       | 0                        | 0          | 37         | 37             | 5.0     | 196              | 0.189       | 100        | 63.4         | LOS A    | 2.0             | 14.8     | 500    | _        | 0.0         | 0.0         |
| Approach     | 348                      | 0          | 74         | 422            | 5.0     |                  | 0.338       |            | 24.3         | LOS A    | 8.8             | 64.0     |        |          |             |             |
| North: Old   | Sydney                   | Road       |            |                |         |                  |             |            |              |          |                 |          |        |          |             |             |
| Lane 1       | 959                      | 0          | 0          | 959            | 5.0     | 1812             | 0.529       | 100        | 9.6          | Х        | Χ               | Χ        | 90 7   | Turn Bay | 0.0         | Χ           |
| Lane 2       | 0                        | 475        | 0          | 475            | 5.0     | 859              | 0.553       | 100        | 25.7         | LOS A    | 20.1            | 146.9    | 500    | _        | 0.0         | 0.0         |
| Lane 3       | 0                        | 475        | 0          | 475            | 5.0     | 859              | 0.553       | 100        | 25.7         | LOS A    | 20.1            | 146.9    | 500    | _        | 0.0         | 0.0         |
| Approach     | 959                      | 949        | 0          | 1908           | 5.0     |                  | 0.553       |            | 17.6         | LOS A    | 20.1            | 146.9    |        |          |             |             |
| Intersection | ו                        |            |            | 2633           | 5.0     |                  | 0.563       |            | 21.6         | LOS A    | 20.1            | 146.9    |        |          |             |             |

### X: Not applicable for Continuous lane.

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

1 Reduced capacity due to a short lane effect

Processed: Tuesday, 22 May 2012 2:50:29 PM SIDRA INTERSECTION 5.1.9.2068

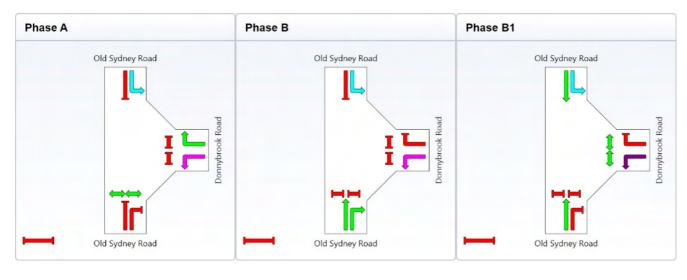
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Struture Plan\Engineering\Traffic\SIDRA\20120517 - 2046

sidras\IT07.sip

8000617, SMEC AUSTRALIA PTY LTD, SINGLE




Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Two-Phase Input Sequence: A, B, B1 Output Sequence: A, B, B1

**Phase Timing Results** 

| Phase              | Α    | В    | B1   |
|--------------------|------|------|------|
| Green Time (sec)   | 13   | 35   | 54   |
| Yellow Time (sec)  | 4    | 4    | 4    |
| All-Red Time (sec) | 2    | 2    | 2    |
| Phase Time (sec)   | 19   | 41   | 60   |
| Phase Split        | 16 % | 34 % | 50 % |





Processed: Tuesday, 22 May 2012 2:50:29 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com



| Lane Use     | Lane Use and Performance |            |            |                |         |                  |             |            |              |          |              |          |        |          |             |             |
|--------------|--------------------------|------------|------------|----------------|---------|------------------|-------------|------------|--------------|----------|--------------|----------|--------|----------|-------------|-------------|
|              | [                        | Deman      | d Flows    |                | 1.157   | 0                | Deg.        | Lane       | Average      | Level of | 95% Back     |          | Lane   | SL       | Cap. I      |             |
|              | L<br>veh/h               | T<br>veh/h | R<br>veh/h | Total<br>veh/h | HV<br>% | Cap.             | Satn<br>v/c | Util.<br>% | Delay<br>sec | Service  | Vehicles veh | Distance | Length | Type     | Adj. E<br>% | Block.<br>% |
| South: Old   |                          |            | ven/m      | ven/n          | 70      | ven/m            | V/C         | 70         | Sec          |          | ven          | m        | m      |          | 7/0         | 7/0         |
| Lane 1       | 0                        | 475        | 0          | 475            | 5.0     | 1049             | 0.452       | 100        | 17.1         | LOS A    | 16.4         | 119.5    | 500    | _        | 0.0         | 0.0         |
| Lane 2       | 0                        | 475        | 0          | 475            | 5.0     | 1049             | 0.452       | 100        | 17.1         | LOS A    | 16.4         | 119.5    | 500    | _        | 0.0         | 0.0         |
| Lane 3       | 0                        | 0          | 405        | 405            | 5.0     | 534 <sup>1</sup> | 0.759       | 100        | 42.1         | LOS C    | 19.2         | 139.9    | 120 T  | Turn Bay | 0.0         | 18.9        |
| Approach     | 0                        | 949        | 405        | 1354           | 5.0     |                  | 0.759       |            | 24.6         | LOS C    | 19.2         | 139.9    |        |          |             |             |
| East: Donn   | East: Donnybrook Road    |            |            |                |         |                  |             |            |              |          |              |          |        |          |             |             |
| Lane 1       | 325                      | 0          | 0          | 325            | 5.0     | 1618             | 0.201       | 100        | 9.9          | LOSA     | 1.2          | 9.1      | 500    | _        | 0.0         | 0.0         |
| Lane 2       | 0                        | 0          | 480        | 480            | 5.0     | 634              | 0.756       | 100        | 47.3         | LOS C    | 25.1         | 183.3    | 500    | _        | 0.0         | 0.0         |
| Lane 3       | 0                        | 0          | 480        | 480            | 5.0     | 634              | 0.756       | 100        | 47.3         | LOS C    | 25.1         | 183.3    | 500    | _        | 0.0         | 0.0         |
| Approach     | 325                      | 0          | 959        | 1284           | 5.0     |                  | 0.756       |            | 37.8         | LOS C    | 25.1         | 183.3    |        |          |             |             |
| North: Old   | Sydney                   | Road       |            |                |         |                  |             |            |              |          |              |          |        |          |             |             |
| Lane 1       | 74                       | 0          | 0          | 74             | 5.0     | 1812             | 0.041       | 100        | 9.5          | Χ        | Χ            | Χ        | 90 T   | Turn Bay | 0.0         | Χ           |
| Lane 2       | 0                        | 18         | 0          | 18             | 5.0     | 207              | 0.085       | 100        | 52.7         | LOS A    | 0.9          | 6.9      | 500    | _        | 0.0         | 0.0         |
| Lane 3       | 0                        | 18         | 0          | 18             | 5.0     | 207              | 0.085       | 100        | 52.7         | LOS A    | 0.9          | 6.9      | 500    | _        | 0.0         | 0.0         |
| Approach     | 74                       | 35         | 0          | 109            | 5.0     |                  | 0.085       |            | 23.4         | LOS C    | 0.9          | 6.9      |        |          |             |             |
| Intersection | า                        |            |            | 2747           | 5.0     |                  | 0.759       |            | 30.7         | LOS C    | 25.1         | 183.3    |        |          |             |             |

### X: Not applicable for Continuous lane.

Level of Service (LOS) Method: Degree of Saturation (SIDRA METHOD).

Lane LOS values are based on degree of saturation per lane.

Intersection and Approach LOS values are based on worst degree of saturation for any lane.

SIDRA Standard Delay Model used.

1 Reduced capacity due to a short lane effect

Processed: Tuesday, 22 May 2012 2:50:29 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

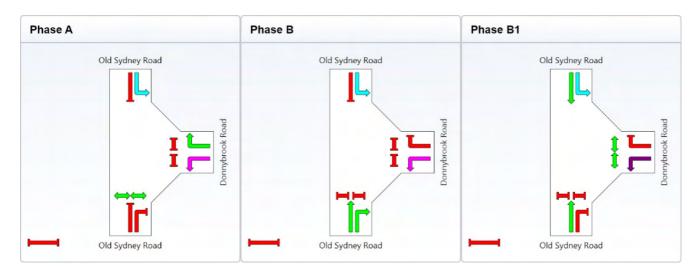
Project: I:\Projects\3004740 - Merrifield West Precinct Struture Plan\Engineering\Traffic\SIDRA\20120517 - 2046

sidras\IT07.sip

8000617, SMEC AUSTRALIA PTY LTD, SINGLE



# **PHASING SUMMARY**


Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Two-Phase Input Sequence: A, B, B1 Output Sequence: A, B, B1

**Phase Timing Results** 

| Phase              | Α    | В    | B1   |
|--------------------|------|------|------|
| Green Time (sec)   | 42   | 47   | 13   |
| Yellow Time (sec)  | 4    | 4    | 4    |
| All-Red Time (sec) | 2    | 2    | 2    |
| Phase Time (sec)   | 48   | 53   | 19   |
| Phase Split        | 40 % | 44 % | 16 % |





Processed: Tuesday, 22 May 2012 2:50:29 PM SIDRA INTERSECTION 5.1.9.2068

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004740 - Merrifield West Precinct Struture Plan\Engineering\Traffic\SIDRA\20120517 - 2046

sidras\IT07.sip

8000617, SMEC AUSTRALIA PTY LTD, SINGLE

